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Multi-agent systems are (going
to be) everywhere
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Uncertainties

« [hese real-world problems have several forms of
uncertainty:

« QOutcome uncertainty
e SENSOor uncertainty

« Communication uncertainty




Uncertainties: Search and Rescue

o A team of ground and aerial robots searching for people
after a disaster:

« Outcome uncertainty: Unmanned Alrcrat
movement of robots and N
people Is uncertain | ‘
:Jr Unmanned Vehicle
. Search and Rescue
e Sensor uncertainty: st intos k>
location of people and x> A
obstacles Is uncertain . : <A

« Communication uncertainty: communication range is
imited, so location and choices of other robots is
uncertain




Uncertainties

« Many other real-world problems have outcome,
sensor and communication uncertainty




Multiple cooperating agents

e Decentralized partially observable Markov decision process
(Dec-POMDP) Bernstein et al., 02

« Extension of the single agent MDP and POMDP models
o Multiagent sequential decision-making under uncertainty
e At each stage, each agent takes an action and receives:

« A local observation

e A joint immediate reward




Dec-POMDP

Decision-theoretic model of multi-agent systems =
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We need to model:
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« The environment states, § Eﬂ;ﬂj ' dﬁ] 5

. The environment dynamics, Pr(s’|s, a)

« FEach agent's actions, 4,, for each agent i

« FEach agent’'s sensor and communication observations, /2.
. The observation function, Pr(o|s’, a)
« The reward function, R(s, a)

A solution seeks to maximize the expected sum of rewards from policies
that only consider /oca/observations




Dec-POMDPs are general

« Any real-world problem with outcome, sensor anad
communication uncertainty

Smart energy grids

Search and rescue

Cyber security P

« |If we can solve the Dec-POMDP optimally, we get an
optimal solution to our problem




Now what?

e Any cooperative multi-agent problem is a Dec-
POMDP

« But, modeling and solving is hard

e Solutions: approximate the model or approximate
the solution




Our solutions (so tar)

« Making limited approximations by:

e Planning using hierarchy and sample-based
methods

e Learning solutions directly from data




Scaling up: macro-actions

Amato, Konidaris and Kaelbling - AAMAS 14

e Dec-POMDP methods model and solve at a low level (actions as control inputs)




Scaling up: macro-actions

Amato, Konidaris and Kaelbling - AAMAS 14

e Dec-POMDP methods model and solve at a low level (actions as control inputs)

This is intractable (and unnecessary!) for real-world systems

Often easy to plan for subgoals/subtasks
e Set initial and terminal conditions (i.e., states)

e Have expertly programmed controllers

Allows for asynchronous decision-making

Resulting model: MacDec-POMDP (macro-action Dec-POMDP)
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Macro-action solution representations

Can extend policy representations to macro-action case
m = macro-action

-z = high-level observation

Finite-state controllers u for each agent i defined with node set Q:i:
o Action selection, A: Qi — Mi

« Node transitions, §: Qi x Zi — Qi

« Aninitial node: gic € Qi

But macro-actions finish at different times!

Developed semi-Markov model, decentralized partially observable semi-
Markov decision process (Dec-POSMDP)

Omidshafiei, Agha-mohammadi, Amato, Liu and How - [JRR 17

VH(q,8) = R(s, M) + Y _ 7" D Pr(s', kls, A()) Pr(o]s’, A\(¢))V*(5(g, 0), §")
k s’ 0




Generating solutions

Extended dynamic programming methods from Dec-POMDPs to build up trees
Amato, Konidaris and Kaelbling - AAMAS 14
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Developed heuristic-based policy search methods to optimize controller
parameters Amato, Konidaris, Anders, Cruz, How and Kaelbling - RSS 15

On

Perform evaluation using samples from simulator rather than have full model
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Orders of magnitude faster and can solve problems that are orders of
magnitude larger than previous Dec-POMDP methods (including robotics
problems)




Cooperative beer delivery
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Cooperative beer delivery

o Controller values
« 1-node controllers: 1231 (~13.98 drinks delivered)
« 5-node controllers: 1296 (~14.56 drinks delivered)
« Hand-coded solution: 917 (~11.13 drinks delivered)
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Generating the ‘macro’-observations

Omidshafiei, Liu, Everett, Lopez, Amato, Liu, How, Vian - ICRA 17




| earning the solutions

« We may not have a model of the problem
« Want to learn solutions directly from data

« E£.g., Learning a set of controllers from limited demonstrations
Liu, Amato, Anesta, Griffith and How, AAAI 16
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« Scalable to large state, macro-action and observation sets




Why can't we just use
deep RL?

« Using deep RL for Dec-POMDPs has become a hot topic
(e.g., Omidshafiei, Pazis, Amato, How and Vian, ICML 17,
Foerster, Assael, de Freitas, and Whiteson, NIPS 16,
Gupta, Egorov, Kochenderfer ICML 17)

« Some good results, but many open questions
« (Centralized vs. decentralized learning
o Sample efficiency/online learning
e Dealing with nonstationarity

e Dealing with partial observability




Conclusions

Dec-POMDPs represent a powerful probabilistic multi-agent framework

« Considers outcome, sensor and communication uncertainty in a single
framework

« Can model any multi-agent coordination problem
« Need to think about how to solve them
Macro-actions provide an abstraction to improve scalability

Learning methods can remove the need to generate a detailed multi-agent
model

Begun demonstrating scalability and quality in a number of domains, but a
lot of great open gquestions to solve!

A lot of great work by us and others as well (go see Frans Oliehoek!)




Postdoc(s) wanted!

« Come postdoc with me (or others) at Northeastern
e Multi-agent RL
e Deep RL

« RL for robotic manipulation

e Come talk to or email me




