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Abstract

We describe a probabilistic framework for synthesizing con-
trol policies for general multi-robot systems, given environ-
ment and sensor models and a cost function. Decentral-
ized, partially observable Markov decision processes (Dec-
POMDPs) are a general model of decision processes where
a team of agents must cooperate to optimize some objective
(specified by a shared reward or cost function) in the presence
of uncertainty, but where communication limitations mean
that the agents cannot share their state, so execution must
proceed in a decentralized fashion. While Dec-POMDPs are
typically intractable to solve for real-world problems, recent
research on the use of macro-actions in Dec-POMDPs has
significantly increased the size of problem that can be prac-
tically solved as a Dec-POMDP. We describe this general
model, and show how, in contrast to most existing methods
that are specialized to a particular problem class, it can syn-
thesize control policies that use whatever opportunities for
coordination are present in the problem, while balancing off
uncertainty in outcomes, sensor information, and information
about other agents. We use three variations on a warehouse
task to show that a single planner of this type can generate
cooperative behavior using task allocation, direct communi-
cation, and signaling, as appropriate.

Introduction

The decreasing cost and increasing sophistication of recently
available robot hardware has the potential to create many
new opportunities for applications where teams of relatively
cheap robots can be deployed to solve real-world problems.
Practical methods for coordinating such multi-robot teams
are therefore becoming critical. A wide range of approaches
have been developed for solving specific classes of multi-
robot problems, such as task allocation [15]], navigation in a
formation [5]], cooperative transport of an object [20], coor-
dination with signaling [6] or communication under various
limitations [33]]. Broadly speaking, the current state of the
art in multi-robot research is to hand-design special-purpose
controllers that are explicitly designed to exploit some prop-
erty of the environment or produce a specific desirable be-
havior. Just as in the single-robot case, it would be much
more desirable to instead specify a world model and a cost
metric, and then have a general-purpose planner automati-
cally derive a controller that minimizes cost, while remain-
ing robust to the uncertainty that is fundamental to real robot

systems [37]].

The decentralized partially observable Markov decision
process (Dec-POMDP) is a general framework for repre-
senting multiagent coordination problems. Dec-POMDPs
have been studied in fields such as control [1, 23|], opera-
tions research [8] and artificial intelligence [29]. Like the
MDP [31]] and POMDP [17] models that it extends, the Dec-
POMDP model is very general, considering uncertainty in
outcomes, sensors and information about the other agents,
and aims to optimize policies against a a general cost func-
tion. Dec-POMDP problems are often characterized by in-
complete or partial information about the environment and
the state of other agents due to limited, costly or unavailable
communication. Any problem where multiple agents share
a single overall reward or cost function can be formalized as
a Dec-POMDP, which means a good Dec-POMDP solver
would allow us to automatically generate control policies
(including policies over when and what to communicate) for
very rich decentralized control problems, in the presence of
uncertainty. Unfortunately, this generality comes at a cost:
Dec-POMDPs are typically infeasible to solve except for
very small problems [3].

One reason for the intractability of solving large Dec-
POMDPs is that current approaches model problems at a low
level of granularity, where each agent’s actions are primitive
operations lasting exactly one time step. Recent research has
addressed the more realistic MacDec-POMDP case where
each agent has macro-actions: temporally extended actions
which may require different amounts of time to execute [3].
MacDec-POMDPs cannot be reduced to Dec-POMDPs due
to the asynchronous nature of decision-making in this con-
text — some agents may be choosing new macro-actions
while others are still executing theirs. This enables sys-
tems to be modeled so that coordination decisions only oc-
cur at the level of deciding which macro-actions to execute.
MacDec-POMDPs retain the ability to coordinate agents
while allowing near-optimal solutions to be generated for
significantly larger problems than would be possible using
other Dec-POMDP-based methods.

Macro-actions are a natural model for the modular con-
trollers often sequenced to obtain robot behavior. The
macro-action approach leverages expert-designed or learned
controllers for solving subproblems (e.g., navigating to a
waypoint or grasping an object), bridging the gap between



traditional robotics research and work on Dec-POMDPs.
This approach has the potential to produce high-quality gen-
eral solutions for real-world heterogeneous multi-robot co-
ordination problems by automatically generating control and
communication policies, given a model.

The goal of this paper is to present this general frame-
work for solving decentralized cooperative partially observ-
able robotics problems and provide the first demonstration
of such a method running on real robots. We begin by
formally describing the Dec-POMDP model, its solution
and relevant properties, and describe MacDec-POMDPs and
a memory-bounded algorithm for solving them. We then
describe a process for converting a robot domain into a
MacDec-POMDP model, solving it, and using the solu-
tion to produce a SMACH [9] finite-state machine task con-
troller. Finally, we use three variants of a warehouse task to
show that a MacDec-POMDP planner allows coordination
behaviors to emerge automatically by optimizing the avail-
able macro-actions (allocating tasks, using direct commu-
nication, and employing signaling, as appropriate). We be-
lieve the MacDec-POMDP represents a foundational algo-
rithmic framework for generating solutions for a wide range
of multi-robot systems.

Decentralized, Partially Observable Markov
Decision Processes

Dec-POMDPs [8] generalize partially observable Markov
decision processes to the multiagent, decentralized setting.
Multiple agents operate under uncertainty based on (possi-
bly different) partial views of the world, with execution un-
folding over a bounded or unbounded sequence of steps. At
each step, every agent chooses an action (in parallel) based
purely on locally observable information, resulting in an im-
mediate reward and an observation being obtained by each
individual agent. The agents share a single reward or cost
function, so they should cooperate to solve the task, but their
local views mean that operation is decentralized during exe-
cution.

As depicted in Fig. [I] a Dec-POMDP [§] involves mul-
tiple agents that operate under uncertainty based on differ-
ent streams of observations. We focus on solving sequen-
tial decision-making problems with discrete time steps and
stochastic models with finite states, actions, and observa-
tions, though the model can be extended to continuous prob-
lems. A key assumption is that state transitions are Marko-
vian, meaning that the state at time ¢ depends only on the
state and events at time ¢ — 1. The reward is typically only
used as a way to specify the objective of the problem and is
not observed during execution.

More formally, a Dec-POMDP is described by a tuple
(1,5,{A;},T, R,{%}, O, h), where

e [ is a finite set of agents.

e S is a finite set of states with designated initial state dis-
tribution bg.

e A, is afinite set of actions for each agent i with A = x; A;
the set of joint actions, where X is the Cartesian product
operator.

Figure 1: Representation of n agents in a Dec-POMDP set-
ting with actions a; and observations o; for each agent ¢
along with a single reward r.

T is a state transition probability function, 7 : .S x A x
S — [0, 1], that specifies the probability of transitioning
from state s € S to s’ € S when the actions @ € A are
taken by the agents. Hence, T'(s, @, s') = Pr(s'|d, s).

e Ris areward function: R : S x A — R, the immediate
reward for being in state s € S and taking the actions
acA.

e (); is a finite set of observations for each agent, i, with
Q = x,€); the set of joint observations.

e () is an observation probability function: O : Qx Ax S —
[0, 1], the probability of seeing observations o € €2 given
actions @ € A were taken which results in state s’ € S.
Hence O(d,d, s') = Pr(ald, s').

e |/ is the number of steps until the problem terminates,
called the horizon.

Note that while the actions and observation are factored,
the state need not be. This flat state representation allows
more general state spaces with arbitrary state information
outside of an agent (such as target information or environ-
mental conditions). Because the full state is not directly ob-
served, it may be beneficial for each agent to remember a
history of its observations. Specifically, we can consider an
action-observation history for agent ¢ as
HiA =(s%,a},..., 52_1, al).
Unlike in POMDPs, it is not typically possible to calculate a
centralized estimate of the system state from the observation
history of a single agent, because the system state depends
on the behavior of all of the agents.

Solutions

A solution to a Dec-POMDP is a joint policy—a set of poli-
cies, one for each agent in the problem. Since each policy is
a function of history, rather than of a directly observed state,
it is typically represented as either a policy tree, where the
vertices indicate actions to execute and the edges indicate
transitions conditioned on an observation, or as a finite state
controller which executes in a similar manner. An example
of each is given in Figure 2}

As in the POMDP case, the goal is to maximize the to-
tal cumulative reward, beginning at some initial distribution



Figure 2: A single agent’s policy represented as (a) a policy
tree and (b) a finite-state controller with initial state shown
with a double circle.

over states bg. In general, the agents do not observe the ac-

tions or observations of the other agents, but the rewards,

transitions, and observations depend on the decisions of all

agents. The work discussed in this paper (and the vast ma-

jority of work in the Dec-POMDP community) considers the

case where the model is assumed to be known to all agents.
The value of a joint policy, 7, from state s is

h—1
thR(c?t,st)lsm] |
t=0

which represents the expected value of the immediate reward
for the set of agents summed for each step of the problem
given the action prescribed by the policy until the horizon is
reached. In the finite-horizon case, the discount factor, v, is
typically set to 1. In the infinite-horizon case, as the number
of steps is infinite, the discount factor v € [0, 1) is included
to maintain a finite sum and h = oco. An optimal policy
beginning at state s is 7*(s) = arg max, V7 (s).

Unfortunately, large problem instances remain in-
tractable: some advances have been made in optimal algo-
rithms [1} 2} |4} 10, [12} 27]], but optimally solving a Dec-
POMDP is NEXP-complete, so most approaches that scale
well make very strong assumptions about the domain (e.g.,
assuming a large amount of independence between agents)
[13} 124} 126]] and/or have no guarantees about solution quality
(28 134, 38]].

V7(s) =E

Macro-Actions for Dec-POMDPs

Dec-POMDPs typically require synchronous decision-
making: every agent repeatedly determines which action to
execute, and then executes it within a single time step. This
restriction is problematic for robot domains for two reasons.
First, robot systems are typically endowed with a set of con-
trollers, and planning consists of sequencing the execution
of those controllers. However, due to both environmental
and controller complexity, the controllers will almost always
execute for an extended period, and take differing amounts
of time to run. Synchronous decision-making would thus
require us to wait until all robots have completed their con-
troller execution before we perform the next action selec-
tion, which is suboptimal and may not even always be pos-
sible (since the robots do not know the system state and stay-
ing in place may be difficult in some domains). Second, the

planning complexity of a Dec-POMDP is doubly exponen-
tial in the horizon. A planner that must try to reason about all
of the robots’ possible policies at every time step will only
ever be able to make very short plans.

Recent research has extended the Dec-POMDP model to
plan using options, or temporally extended actions [3]. This
MacDec-POMDP formulation models a group of robots that
must plan by sequencing an existing set of controllers, en-
abling planning at the appropriate level to compute near-
optimal solutions for problems with significantly longer
horizons and larger state-spaces.

We can gain additional benefits by exploiting known
structure in the multi-robot problem. For instance, most con-
trollers only depend on locally observable information and
do not require coordination. For example, consider a con-
troller that navigates a robot to a waypoint. Only local in-
formation is required for navigation—the robot may detect
other robots but their presence does not change its objective,
and it simply moves around them—but choosing the target
waypoint likely requires the planner to consider the loca-
tions and actions of all robots. Macro-actions with indepen-
dent execution allow coordination decisions to be made only
when necessary (i.e., when choosing macro-actions) rather
than at every time step. Because we build on top of Dec-
POMDPs, macro-action choice may depend on history, but
during execution macro-actions may depend only on a sin-
gle observation, depend on any number of steps of history, or
even represent the actions of a set of robots. That is, macro-
actions are very general and can be defined in such a way
to take advantage of the knowledge available to the robots
during execution.

Model

We first consider macro-actions that only depend on a sin-
gle robot’s information. This is an extension the options
Jframework [36] to multi-agent domains while dealing with
the lack of synchronization between agents. The options
framework is a formal model of a macro-actions [36] that
has been very successful in aiding representation and solu-
tions in single robot domains [19]. A MacDec-POMDP with
local options is defined as a Dec-POMDP where we also as-
sume M; represents a finite set of options for each agent, ¢,
with M = x;M; the set of joint options [3]. A local option
is defined by the tuple:

Mi = (Bml ) Imq' ) Trmi)v

consisting of stochastic termination condition f3,,, : H* —
[0, 1], initiation set Z,,, C H;* and option policy 7,

H# x A; — [0, 1]. Note that this representation uses action-
observation histories of an agent in the terminal and initia-
tion conditions as well as the option policy. Simpler cases
can consider reactive policies that map single observations
to actions as well as termination and initiation sets that de-
pend only on single observations. This is especially appro-
priate when the agent has knowledge about aspects of the
state necessary for option execution (e.g., its own location
when navigating to a waypoint causing observations to be
location estimates). As we later discuss, initiation and termi-



nal conditions can depend on global states (e.g., also ending
execution based on unobserved events).

Because it may be beneficial for agents to remember their
histories when choosing which option to execute, we con-
sider policies that remember option histories (as opposed to
action-observation histories). We define an option history as

M 0,1 -1 1
HY = (hj,my,....,h; ",m;),

which includes both the action-observation histories where
an option was chosen and the selected options themselves.
The option history also provides an intuitive representation
for using histories within options. It is more natural for op-
tion policies and termination conditions to depend on his-
tories that begin when the option is first executed (action-
observation histories) while the initiation conditions would
depend on the histories of options already taken and their
results (option histories). While a history over primitive ac-
tions also provides the number of steps that have been ex-
ecuted in the problem (because it includes actions and ob-
servations at each step), an option history may require many
more steps to execute than the number of options listed. We
can also define a (stochastic) local policy, p; : HM x M; —
[0, 1] that depends on option histories. We then define a joint
policy for all agents as .

Because option policies are built out of primitive actions,
we can evaluate policies in a similar way to other Dec-
POMDP-based approaches. Given a joint policy, the primi-
tive action at each step is determined by the high level pol-
icy which chooses the option and the option policy which
chooses the action. The joint policy and option policies can
then be evaluated as:

h—1
Vi) =E | _4'R(@, s")|s,m p .
t=0

For evaluation in the case where we define a set of options
which use observations (rather than histories) for initiation,
termination and option policies (while still using option his-
tories to choose options) see Amato, Konidaris and Kael-
bling [3]].

Algorithms

Because Dec-POMDP algorithms produce policies mapping
agent histories to actions, they can be extended to consider
options instead of primitive actions. Two such algorithms
have been extended [3]], but other extensions are possible.

In these approaches, deterministic polices are generated
which are represented as policy trees (as shown in Figure
[2). A policy tree for each agent defines a policy that can
be executed based on local information. The root node de-
fines the option to choose in the known initial state, and an-
other option is assigned to each of the legal terminal states
of that option; this continues for the depth of the tree. Such a
tree can be evaluated up to a desired (low-level) horizon us-
ing the policy evaluation given above, which may not reach
some nodes of the tree due to the differing execution times
of some options.

A simple exhaustive search method can be used to gen-
erate hierarchically optimal deterministic policies. This al-
gorithm is similar in concept to the dynamic programming

(a) Step 1
Figure 3: Policies for a single agent after (a) one step and
(b) two steps of dynamic programming using options m;
and ms and (deterministic) terminal states as 3°.

(b) Step 2 of DP

algorithm used in Dec-POMDPs [16]], but full evaluation and
pruning (removing dominated policies) are not used. Instead
the structure of options is exploited to reduce the space of
policies considered. That is, to generate deterministic poli-
cies, trees are built up as in Figure [3} Trees of increasing
depth are constructed until all of the policies are guaran-
teed to terminate before the desired horizon. When all poli-
cies are sufficiently long, all combinations of these policies
can be evaluated as above (by flattening out the polices into
primitive action Dec-POMDP policies, starting from some
initial state and proceeding until h). The combination with
the highest value at the initial belief state, by, is a hierarchi-
cally optimal policy. Note that the benefit of this approach
is that only legal policies are generated using the initiation
and terminal conditions for options.

Memory-bounded dynamic programming (MBDP) [34]
has also been extended to use options as shown in Algo-
rithm |1} This approach bounds the number of trees that are
generated by the method above as only a finite number of
policy trees are retained (given by parameter MaxTrees) at
each tree depth. To increase the tree depth to ¢ + 1, all pos-
sible trees are considered that choose some option and then
have the trees retained from depth ¢ as children. Trees are
chosen by evaluating them at states that are reachable using
a heuristic policy that is executed for the first h — ¢ — 1 steps
of the problem. A set of MaxTrees states is generated and
the highest-valued trees for each state are kept. This process
continues, using shorter heuristic policies until all combina-
tions of the retained trees reach horizon h. Again, the set
of trees with the highest value at the initial belief state is
returned.

The MBDP-based approach is potentially suboptimal be-
cause a fixed number of trees are retained, and trees op-
timized at the states provided by the heuristic policy may
be suboptimal (because the heuristic policy may be subop-
timal and the algorithm assumes the states generated by the
heuristic policy are known initial states for the remaining
policy tree). Nevertheless, since the number of policies at
each step is bounded by MaxTrees, MBDP has time and
space complexity linear in the horizon. As a result, this ap-
proach has been shown to work well in many large MacDec-
POMDPs [3].

Solving Multi-Robot Problems with

MacDec-POMDPs

The MacDec-POMDPs framework is a natural way to rep-
resent and generate behavior for general multi-robot sys-
tems. A high-level description of this process is given in



Algorithm 1 Option-based memory bounded dynamic pro-
gramming

1: function OPTIONMBDP(M axT'rees,h,H o)

2: t«0

3: someTooShort < true

4: Mt <— @

5: repeat

6: te+1 <GeneateNextStepTrees (1)

7: Compute V#H¢+1

8: ﬂt+1 —0

9: for all k € MaxTrees do

10: sy < GenerateState(Hpo;,h —t — 1)
11: fig1 < flep1 Uargmax,, , VFH#e+1(sy)
12: end for

13: t—t+1

14: < ﬂt+1

15: someT ooShort «testLength(p:)

16: until someT ooShort = false

17: return /i

18: end function

Figure df We assume an abstract model of the system is
given in the form of macro-action representations, which in-
clude the associated policies as well as initiation and termi-
nal conditions. These macro-actions are controllers oper-
ating in (possibly) continuous time with continuous actions
and feedback, but their operation is discretized for use with
the planner. This discretization represents an underlying dis-
crete Dec-POMDP which consists of the primitive actions,
states of the system and the associated rewards. The Dec-
POMDP methods discussed above typically assume a full
model is given, but in this work, we make the more realis-
tic assumption that we can simulate the macro-actions in an
environment that is similar to the real-world domain. As a
result, we do not need a full representation of the underly-
ing Dec-POMDP and use the simulator to test macro-action
completion and evaluate policies. In the future, we plan
to remove this underlying Dec-POMDP modeling and in-
stead represent the macro-action initiation, termination and
policies using features directly in the continuous robot state-
space. In practice, models of each macro-action’s behavior
can be generated by executing the corresponding controller
from a variety of initial conditions (which is how our model
and simulator was constructed in the experiment section).
Given the macro-actions and simulator, the planner then au-
tomatically generates a solution which optimizes the value
function with respect to the uncertainty over outcomes, sen-
sor information and other agents. This solution comes in
the form of SMACH controllers [9]] which are hierarchical
state machines for use in a ROS [32] environment. Each
node in the SMACH controller represents a macro-action
which is executed on the robot and each edge corresponds
to a terminal condition. In this way, the trees in Figure
can be directly translated into SMACH controllers, one for
each robot. Our system is thus able to automatically gen-
erate SMACH controllers, which are typically designed by
hand, for complex, general multi-robot systems.

[ System description ]

(macro-actions, dynamics, sensor uncertainty, rewards/costs)

Planner
(solving the MacDec-POMDP)

Optimized controllers for each robot
(in SMACH format)

Figure 4: A high level system diagram.

It is also worth noting that our approach can incorporate
existing solutions for more restricted scenarios as macro-
actions. For example, our approach can build on the large
amount of research in single and multi-robot systems that
has gone into solving difficult problems such as navigation
in a formation [5] or cooperative transport of an object [20].
The solutions to these problems could be represented as
macro-actions in our framework, building on existing re-
search to solve even more complex multi-robot problems.

Planning using MacDec-POMDPs in the
Warehouse Domain

We test our methods in a warehousing scenario using a set
of iRobot Creates (Figure[3)), and demonstrate how the same
general model and solution methods can be applied in ver-
sions of this domain with different communication capabil-
ities. This is the first time that Dec-POMDP-based meth-
ods have been used to solve large multi-robot domains. We
do not compare with other methods because other Dec-
POMDP cannot solve problems of this size and current
multi-robot methods cannot automatically derive solutions
for these multifaceted problems. The results demonstrate
that our methods can automatically generate the appropri-
ate motion and communication behavior while considering
uncertainty over outcomes, sensor information and other
robots.

The Warehouse Domain

We consider three robots in a warehouse that are tasked with
finding and retrieving boxes of two different sizes: large
and small. Robots can navigate to known depot locations
(rooms) to retrieve boxes and bring them back to a desig-
nated drop-off area. The larger boxes can only be moved
effectively by two robots (if a robot tries to pick up the large
box by itself, it will move to the box, but fail to pick it up).
While the locations of the depots are known, the contents
(the number and type of boxes) are unknown. Our planner
generates a SMACH controller for each of the robots offline
which are then executed online in a decentralized manner.
In each scenario, we assumed that each robot could ob-
serve its own location, see other robots if they were within
(approximately) one meter, observe the nearest box when
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Figure 5: The warehouse domain with three robots.

in a depot and observe the size of the box if it is holding
one. These observations were implemented within a Vicon
setup to allow for system flexibility, but the solutions would
work in any setting in which these observations are gener-
ated. In the simulator that is used by the planner to generate
and evaluate solutions, the resulting state space of the prob-
lem includes the location of each robot (discretized into nine
possible locations) and the location of each of the boxes (in
a particular depot, with a particular robot or at the goal). The
primitive actions are to move in four different directions as
well as pickup, drop and communication actions. Note that
this primitive state and action representation is used for eval-
uation purposes and not actually implemented on the robots
(which just utilize the SMACH controllers). Higher fidelity
simulators could also be used. The three-robot version of
this scenario has 1,259,712,000 states, which is several or-
ders of magnitude larger than problems typically solvable by
Dec-POMDP solvers. These problems are solved using the
option-based MBDP algorithm initialized with a hand coded
heuristic policy. Experiments were run on a single core of
a 2.5 GHz machine with 8GB of memory. Exact solution
times were not calculated, but average solution times for the
policies presented below were approximately one hour.

In our Dec-POMDP model, navigation has a small
amount of noise in the amount of time required to move to
locations (reflecting the real-world dynamics): this noise in-
creases when the robots are pushing the large box (reflecting
the need for slower movements and turns in this case). We
defined macro-actions that depend only on the observations
above, but option selection depends on the history of op-
tions executed and observations seen as a result (the option
history).

Scenario 1: No Communication

In the first scenario, we consider the case where robots could
not communicate with each other. Therefore, all cooperation
is based on the controllers that are generated by the planner
(which knows the controllers generated for all robots when
planning offline) and observations of the other robots (when
executing online). The macro-actions were as follows:

e Go to depot 1.
e Go to depot 2.

Macro-actions
dI=depot 1
d2=depot 2

g=goal (drop-off area)

ps=pick up small box

pl=pick up large box
dr=drop box

Figure 7: Path executed in policy trees. Only macro-actions
executed (nodes) and observations seen (edges, with boxes
and robots given pictorially) are shown.

Go to the drop-off area.

Pick up the small box.

Pick up the large box.

Drop off a box.

The depot macro-actions are applicable anywhere and ter-
minate when the robot is within the walls of the appropriate
depot. The drop-off and drop macro-actions are only appli-
cable if the robot is holding a box, and the pickup macro-
actions are only applicable when the robot observes a box of
the particular type. Navigation is stochastic in the amount of
time that will be required to succeed (as mentioned above).
Picking up the small box was assumed to succeed determin-
istically, but this easily be changed if the pickup mechanism
is less robust. These macro-actions correspond to natural
choices for robot controllers.

This caseﬂ (seen in Figure EI along with a depiction of the
executed policy in Figure [7) uses only two robots to more
clearly show the optimized behavior in the absence of com-
munication. The policy generated by the planner assigns one
robot to go to each of the depots (Figure [6(a)). The robots
then observe the contents of the depots they are in (Figure
[6(®)). If there are two robots in the same room as a large
box, they will push it back to the goal. If there is only one
robot in a depot and there is a small box to push, the robot

'Videos  for  all scenarios can  be seen  at
http://youtu.be/istb8TIp_jw



ent depots.

(e) Green robot drops the box off (f) Green robot goes to the de-
pot 1 and sees the other robot and

at the goal.
large box.

(a) Two robots set out for differ- (b) The robots observe the boxes
in their depots (large on left,
small on right).

(c) White robot moves to the (d) White robot waits while
large box and green robot moves green robot pushes the small box.
to the small one.

(g) Green robot moves to help (h) The two robots push the large
the white robot.

box back to the goal.

Figure 6: Video captures from the no communication version of the warehouse problem.

will push the small box (Figure [6(c)). If the robot is in a
depot with a large box and no other robots, it will stay in the
depot, waiting for another robot to come and help push the
box (Figure [6(d)). In this case, once the the other robot is
finished pushing the small box (Figure[6(e)), it goes back to
the depots to check for other boxes or robots that need help
(Figure [6(f)). When it sees another robot and the large box
in the depot on the left (depot 1), it attempts to help push
the large box (Figure[6(g)) and the two robots are successful
pushing the large box to the goal (Figure[6(h)). In this case,
the planner has generated a policy in a similar fashion to task
allocation—two robots go to each room, and then search for
help needed after pushing any available boxes. However,
in our case this behavior was generated by an optimization
process that considered the different costs of actions, the un-
certainty involved and the results of those actions into the
future.

Scenario 2: Local Communication

In scenario 2, robots can communicate when they are within
one meter of each other. The macro-actions are the same
as above, but we added ones to communicate and wait for
communication. The resulting macro-action set is:

e Go to depot 1.

e Go to depot 2.

e Go to the drop-off area.

e Pick up the small box.

e Pick up the large box.

e Drop off a box.

e (o to an area between the depots (the “waiting room”).
e Wait in the waiting room for another robot.

e Send signal #1.

e Send signal #2.

Here, we allow the robots to choose to go to a “waiting
room” which is between the two depots. This permits the
robots to possibly communicate or receive communications
before committing to one of the depots. The waiting-room
macro-action is applicable in any situation and terminates
when the robot is between the waiting room walls. The de-
pot macro-actions are now only applicable in the waiting
room, while the drop-off, pick up and drop macro-actions
remain the same. The wait macro-action is applicable in
the waiting room and terminates when the robot observes
another robot in the waiting room. The signaling macro-
actions are applicable in the waiting room and are observ-
able by other robots that are within approximately a meter
of the signaling robot. Note that we do not specify what
sending each communication signal means.

The results for this domain are shown in Figure [8| We
see that the robots go to the waiting room (Figure (be-
cause we required the robots to be in the waiting room before
choosing to move to a depot) and then two of the robots go
to depot 2 (the one on the right) and one robot goes to de-
pot 1 (the one on the left) (Figure 8(b)). Note that because
there are three robots, the choice for the third robot is ran-
dom while one robot will always be assigned to each of the
depots. Because there is only a large box to push in depot 1,
the robot in this depot goes back to the waiting room to try
to find another robot to help it push the box (Figure [8(c)).
The robots in depot 2 see two small boxes and they choose
to push these back to the goal (Figure [8(d)). Once the small
boxes are dropped off (Figure([8(e)), one of the robots returns
to the waiting room (Figure nd then is recruited by the
other robot to push the large box back to the goal (Figure

. The robots then successfully push the large box back
to the goal (Figure B(h)). Note that in this case the plan-
ning process determines how the signals should be used to




(a) The three robots begin mov- (b) One robot goes to depot 1 and
ing to the waiting room. two robots go to depot 2. The de-

pot 1 robot sees a large box.

(e) The two robots drop off the (f) The green robot goes to the
small boxes at the goal while the waiting room to try to receive any
other robot waits. signals.

(c) The depot 1 robot saw alarge (d) The depot 1 robot waits with
box, so it moved to the wait- the other robots push the small
ing room while the other robots boxes.

pushed the small boxes.

(g) The white robot sent signal (h) The two robots in depot 1
#1 when it saw the green robot push the large box back to the
and this signal is interpreted as a goal.

need for help in depot 1.

Figure 8: Video captures from the limited communication version of the warehouse problem.

perform communication.

Scenario 3: Global Communication

In the last scenario, the robots can use signaling (rather than
direct communication). In this case, there is a switch in each
of the depots that can turn on a blue or red light. This light
can be seen in the waiting room and there is another light
switch in the waiting room that can turn off the light. (The
light and switch were simulated in software and not incorpo-
rated in the physical domain.) As a result, the macro-actions
in this scenario were as follows:

e Go to depot 1.

e Go to depot 2.

e Go to the drop-off area.

e Pick up the small box.

e Pick up the large box.

e Drop off a box.

e Go to an area between the depots (the “waiting room”).
e Turn on a blue light.

e Turn on a red light.

o Turn off the light.

The first seven macro-actions are the same as for the com-
munication case except we relaxed the assumption that the
robots had to go to the waiting room before going to the
depots (making both the depot and waiting room macro-
actions applicable anywhere). The macro-actions for turn-
ing the lights on are applicable in the depots and the macro-
actions for turning the lights off are applicable in the waiting
room. While the lights were intended to signal requests for
help in each of the depots, we did not assign a particular

color to a particular depot. In fact, we did not assign them
any specific meaning, allowing the planner to set them in
any way that improves performance.

The results are shown in Figure [0} Because one robot
started ahead of the others, it was able to go to depot 1 to
sense the size of the boxes while the other robots go to the
waiting room (Figure O(a)). The robot in depot 1 turned on
the light (red in this case, but not shown in the images) to
signify that there is a large box and assistance is needed
(Figure P(b)). The green robot (the first other robot to the
waiting room) sees this light, interprets it as a need for help
in depot 1, and turns off the light (Figure [0(c)). The other
robot arrives in the waiting room, does not observe a light
on and moves to depot 2 (also Figure 0(c)). The robot in
depot 2 chooses to push a small box back to the goal and the
green robot moves to depot 1 to help the other robot (Fig-
ure[9(d)). One robot then pushes the small box back to the
goal while the two robots in depot 1 begin pushing the large
box (Figure P(e)). Finally, the two robots in depot 1 push
the large box back to the goal (Figure [9(f)). This behavior
is optimized based on the information given to the planner.
The semantics of all these signals as well as the movement
and signaling decisions were decided on by the planning al-
gorithm to maximize value.

Related Work

There are several frameworks that have been developed for
multi-robot decision making in complex domains. For in-
stance, behavioral methods have been studied for perform-
ing task allocation over time in loosely-coupled [30] or
tightly-coupled [35] tasks. These are heuristic in nature and
make strong assumptions about the type of tasks that will be
completed.

One important related class of methods is based on using



(a) One robot starts first and (b) The robot in depot 1 sees a
goes to depot 1 while the other large box, so it turns on the red
robots go to the waiting room.  light (the light is not shown).

(c) The green robot sees the light (d) The robots in depot 1 move
first, so it turns it off and goes to the large box, while the robot
to depot 1 while the white robot in depot 2 begins pushing the
small box.

goes to depot 2.

B e

(e) The robots in depot 1 begin (f) The robots from depot 1 suc-
pushing the large box and the cessfully push the large box to
robot in depot 2 pushes a small the goal.

box to the goal.

Figure 9: Video captures from the signaling version of the
warehouse problem.

linear temporal logic (LTL) [7, to specify behavior for
a robot; from this specification, reactive controllers that are
guaranteed to satisfy the specification can be derived. These
methods are appropriate when the world dynamics can be
effectively described non-probabilistically and when there
is a useful discrete characterization of the robot’s desired
behavior in terms of a set of discrete constraints. When ap-
plied to multiple robots, it is necessary to give each robot
its own behavior specification. Other logic-based represen-
tations for multi-robot systems have similar drawbacks and
typically assume centralized planning and control [22].

Market-based approaches use traded value to establish an
optimization framework for task allocation [[111 [15]. These
approaches have been used to solve real multi-robot prob-
lems [[18], but are largely aimed to tightly-coupled tasks,
where the robots can communicate through a bidding mech-
anism.

Emery-Montemerlo et al. [14] introduced a (coopera-
tive) game-theoretic formalization of multi-robot systems
which resulted in solving a Dec-POMDP. An approximate
forward search algorithm was used to generate solutions,
but scalability was limited because a (relatively) low-level
Dec-POMDP was used. Also, Messias et al. [23]] introduce

an MDP-based model where a set of robots with controllers
that can execute for varying amount of time must cooper-
ate to solve a problem. However, decision-making in their
system is centralized.

Conclusion

We have demonstrated—for the first time—that complex
multi-robot domains can be solved with Dec-POMDP-based
methods. The MacDec-POMDP model is expressive enough
to capture multi-robot systems of interest, but also simple
enough to be feasible to solve in practice. Our results show
that a general purpose MacDec-POMDP planner can gener-
ate cooperative behavior for complex multi-robot domains
with task allocation, direct communication, and signaling
behavior emerging automatically as properties of the solu-
tion for the given problem model. Because all coopera-
tive multi-robot problems can be modeled as Dec-POMDPs,
MacDec-POMDPs represent a powerful tool for automati-
cally trading-off various costs, such as time, resource us-
age and communication while considering uncertainty in the
dynamics, sensors and other robot information. These ap-
proaches have great potential to lead to automated solution
methods for general multi-robot coordination problems with
large numbers of heterogeneous robots in complex, uncer-
tain domains.

In the future, we plan to explore incorporating these state-
of-the-art macro-actions into our MacDec-POMDP frame-
work as well as examine other types of structure that can be
exploited. Other topics we plan to explore include increas-
ing scalability by making solution complexity depend on the
number of agent interactions rather than the domain size,
and having robots learn models of their sensors, dynamics
and other robots. These approaches have great potential to
lead to automated solution methods for general multi-robot
coordination problems with large numbers of heterogeneous
robots in complex, uncertain domains.
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