
Optimally Solving Dec-POMDPs
as Continuous-State MDPs

Jilles Dibangoye (1), Chris Amato (2), Olivier Buffet (1) and François Charpillet (1)

(1)Inria, Université de Lorraine — France

(2)MIT, CSAIL — USA

IJCAI — August 8, 2013

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 1 / 20

Outline

Outline

1 Background
Overview
Decentralized POMDPs
Existing methods

2 Dec-POMDPs as continuous-state MDPs
Overview
Solving the occupancy MDP
Exploiting multiagent structure

3 Experiments

4 Conclusion

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 2 / 20

Background Overview

General overview

Agents situated in a world, receiving information and choosing actions

Uncertainty about outcomes and sensors
Sequential domains
Cooperative multi-agent
Decision-theoretic approach

Developing approaches that scale to real-world domains

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 3 / 20

Background Overview

Cooperative multiagent problems

Each agent’s choice affects all others, but must be made using only
local information

Communication may be costly, slow or noisy

Domains of interest — robotics, disaster response, networks, . . .

Surveillance

Area

Communication

Area

Base

Area

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 4 / 20

Background Decentralized POMDPs

Multi-Agent Decision Making Under Uncertainty
Decentralized partially observable Markov decision process (Dec-POMDP)

Sequential decision-making
At each stage, each agent takes an action and receives:

A local observation
A joint immediate reward

Environment

a1

o1
an

on

r

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 5 / 20

Background Decentralized POMDPs

Multi-Agent Decision Making Under Uncertainty
Dec-POMDP definition

Dec-POMDP — 〈I , S , {Ai}, {Zi}, p, r , o, b0,T 〉
I , a finite set of agents

S , a finite set of states

Ai , each agent’s finite set of actions

Zi , each agent’s finite set of observations

p, the state transition model: Pr(s ′|s,~a)

o, the observation model: Pr(~o|s ′,~a)

r , the reward model: R(s,~a)

b0, initial state distribution

T , planning horizon

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 6 / 20

Background Decentralized POMDPs

Dec-POMDP solutions

History θti = 〈a0
i , o

1
i , . . . , a

t−1
i , oti 〉

Local policy: each agent maps histories to actions, πi : Θi → Ai

State is unknown, so beneficial to remember history

πi , a sequence of decision rules πi = π0
i , . . . , π

T−1
i mapping histories

to actions, πti (θti) = ai

Joint policy π = 〈π1, . . . , πn〉 with individual (local) agent policies πi

Goal is to maximize expected cumulative reward over a finite horizon

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 7 / 20

Background Decentralized POMDPs

POMDPs

o,r
Environment

a

Subclass of Dec-POMDPs with only one agent

Agent maintain’s belief state (distributions over states)

Policy = mapping from histories or belief states

π : B → A

Can solve a POMDP as a continuous-state “belief” MDP

V π(b) = R(b, a) +
∑
o

Pr(b′|b, a, o) Pr(o|b′, a)V π(b′)

Structure: piecewise linear convex (PWLC) value function s1 s2
S

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 8 / 20

Background Decentralized POMDPs

Example: 2-Agent Navigation
Meeting in a grid

States: grid cell pairs

Actions: move ↑, ↓, ←, →,
stay

Transitions: noisy

Observations: red lines

Rewards: negative unless
sharing the same square

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 9 / 20

Background Decentralized POMDPs

Challenges in solving Dec-POMDPs

Partial observability makes the problem difficult to solve

No common state estimate (centralized belief state) or concise
sufficient statistic

Each agent depends on the others
Can’t directly transform Dec-POMDPs into a continuous-state MDP
from a single agent’s perspective

Therefore, Dec-POMDPs are fundamentally different and more
complex (NEXP instead of PSPACE)

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 10 / 20

Background Existing methods

Current methods

Assume an offline planning phase that is centralized

Generate explicit policy representations (trees) for each agent

Search bottom up (DP) or top down (heuristic search)

Often use game-theoretic ideas from the perspective of a single agent

Search in the space of policies for the optimal set

a 1

o1 o2

o1 o2

a 1

a 1 a 2

o1 o2

a 2

a 2

a 1

o1 o2

o1 o2

a 1

a 1 a 2

o1 o2

a 2

a 2

Bottom upTop down

new
old

a 2 a 2t = 2

t = 1

t = 0

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 11 / 20

Dec-POMDPs as continuous-state MDPs Overview

Overview of our approach

Current methods don’t take full advantage of centralized planning phase

Overview

Push common information into an occupancy state

Move local information into action selection as decision rules

Formalize Dec-POMDPs as continuous-state MDPs
with a PWLC value function

Exploit multiagent structure in representation, making it scalable

This doesn’t use explicit policy representations
or construct policies from a single agent’s perspective

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 12 / 20

Dec-POMDPs as continuous-state MDPs Overview

Centralized Sufficient Statistic

Policy π, sequence of decentralized
decision rules, π = 〈π0, . . . , πT−1〉
Joint history θt = 〈θt1, . . . , θtn〉,
with πt(θt) = 〈a1, . . . , an〉

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

An occupancy state is a distribution η(s, θt) = Pr(s, θt |π0:t−1, b0)

The occupancy state is a sufficient statistic:
Can optimize future policy πt:T over η
rather than initial belief and past joint policies

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 13 / 20

Dec-POMDPs as continuous-state MDPs Overview

Dec-POMDPs as continuous-state MDPs

Occupancy state ηt(s, θt) = Pr(s, θt |π0:t−1, η0) with η0 = b0

Transform Dec-POMDP into a continuous-state MDP

sMDP : η
aMDP : πt (decentralized decision rules)
TMDP : Pr(ηt |πt−1, ηt−1) — Deterministic with P(ηt , πt) = ηt+1

RMDP :
∑
s,θt

ηt(s, θt)R(s, πt(θt))

Centralized sufficient statistic (the occupancy state)

Decision rules ensure decentralization

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 14 / 20

Dec-POMDPs as continuous-state MDPs Overview

Piecewise linear convexity

Bellman optimality operator:

V ∗t (ηt) = max
πt∈D

RMDP(ηt , πt) + V ∗t+1(P(ηt , πt))

1- Operator preserves PWLC property
(piecewise linearity and convexity)

2- RMDP(ηt , πt) is linear
⇒ PWLC value function

POMDP algorithms can be used!

SxΘt

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 15 / 20

Dec-POMDPs as continuous-state MDPs Solving the occupancy MDP

Solving the occupancy MDP
Feature-based heuristic search value iteration (FB-HSVI)

Based on heuristic search value iteration (Smith and Simmons, UAI 04)

Sample occupancy distributions starting from the initial occupancy

Update upper bounds based on decision rules (on the way down)

Update lower bounds (on the way back up)

Stop when bounds converge for initial occupancy

lower bound Λ = {βk}k

η

υ
(η

)
≥
〈η
,β
〉 β2β1

β0

upper bound Γ = {(ηk , vk)}k

(η1, v1) (η2, v2)

η = 0.2 · η1 + 0.8 · η2ῡ
(η

)
≤

0
.2
·v

1
+

0
.8
·v

2

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 16 / 20

Dec-POMDPs as continuous-state MDPs Exploiting multiagent structure

Scaling up

The occupancy MDP has very large action and state spaces

Two key ideas to deal with these combinatorial explosions:

1 State reduction through history compression

Compress histories of the same length (Oliehoek et al., JAIR 13)
Reduce history length without loss

2 More efficient action selection

Generating a greedy decision rule for an occupancy state
as a weighted constraint satisfaction problem

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 17 / 20

Experiments

Experiments

Tested 3 versions of our algorithm

Algorithm 0: HSVI with occupancy MDP

Algorithm 1: HSVI with efficient action selection

Algorithm 2: HSVI with efficient action selection
+ feature-based state space

Comparison algorithms

Forward search: GMAA*-ICE (Spaan et al., IJCAI 2011)

Dynamic programming: IPG (Amato et al., ICAPS 2009),
LPC (Boularias and Chaib-draa, ICAPS 2008)

Optimization: MILP (Aras and Dutech, JAIR 2010)

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 18 / 20

Experiments

Experiments
Optimal υ within ε = 0.01

using constraint optimization with the toulbar2 solver. We
initialize the upper bound as the value function of the under-
lying MDP; and the lower bound as the value function of the
blind policy. We evaluate three variants of FB-HSVI(⇢): the
first variant, ⇢ = 0, is FB-HSVI presented in Algorithm 1; the
second variant, ⇢ = 1, is FB-HSVI(0) where k =1 (full his-
tories are used) with efficient point-based backups; and ⇢ = 2
is FB-HSVI(1) where k is calculated by FOFS (thereby using
efficient backups and history compression).

The multi-agent tiger problem (|S| = 2, |Z| = 4, |A| = 9, K = 3)

T MILP LPC IPG ICE FB-HSVI(⇢) �✏(⌘
0)

0 1 2

2 � 0.17 0.32 0.01 0.05 0.03 0.03 �4.00
3 4.9 1.79 55.4 0.01 2.17 0.06 0.40 5.1908
4 72 534 2286 108 9164 2.66 1.36 4.8027
5 347 22.2 9.65 7.0264
6 171.3 24.42 10.381
7 33.11 9.9935
8 41.21 12.217
9 58.51 15.572

10 65.57 15.184

The recycling-robot problem (|S| = 4, |Z| = 4, |A| = 9, K = 1)

2 � � 0.30 36 0.03 0.02 0.01 7.000
3 � � 1.07 36 0.05 0.47 0.10 10.660
4 � � 42.0 72 0.85 0.65 0.30 13.380
5 � � 1812 72 1.52 0.87 0.34 16.486

10 5.06 2.83 0.52 31.863
30 62.8 37.9 1.13 93.402
70 78.1 2.13 216.47
100 259 2.93 308.78

The grid-small problem (|S| = 16, |Z| = 4, |A| = 25, K = 4)

2 � � � � 1.42 0.0 0.0 0.37
3 0.65 � 0.18 36 116.1 0.1 0.1 0.9100
4 1624 � 4.09 1512 3024 6.09 0.73 1.5504
5 � 77.4 242605 12.85 1.39 2.2415
6 148.2 2.40 2.9704
7 319.8 7.12 3.7171
8 645.1 58.25 4.4657
9 65.12 5.2319

10 71.38 5.9878

The cooperative box-pushing problem (|S| = 100, |Z| = 16, |A| = 25, K = 3)

2 � � 1.07 36 0.1 0.1 0.1 17.600
3 � � 6.43 540 2026 0.64 0.457 66.081
4 � � 1138 2596 3.16 0.622 98.593
5 16.72 5.854 107.72
6 274.6 70.67 120.67
7 462.4 74.40 156.42
8 751.5 95.38 191.22
9 105.7 208.19

10 168.5 220.45

The mars-rovers problem (|S| = 256, |Z| = 81, |A| = 36, K = 3)

2 � � 83 1.0 0.21 0.09 0.10 5.80
3 � � 389 1.0 2.84 0.21 0.23 9.38
4 103 104.2 1.73 0.47 10.18
5 6.38 0.82 13.26
6 8.16 3.97 18.62
7 11.13 5.81 20.90
8 35.49 22.8 22.47
9 57.47 26.5 24.31
10 316.2 62.7 26.31

Table 1: Experiments comparing the computation times (in
seconds) of all exact solvers. Time limit violations (1000s)
are indicated by “ ”, and “–” indicate unknown values.

We evaluated our algorithms on five benchmark problems
from the literature: multi-agent tiger; recycling-robot; grid-
small; cooperative box-pushing; and mars rovers1. These
are the largest and most difficult benchmarks from the lit-

1All problems definitions are available online at
http://www.isr.ist.utl.pt/mtjspaan/decpomdp

The multi-agent tiger problem (|S| = 2, |Z| = 4, |A| = 9, K = 3)

T MILP LPC IPG ICE FB-HSVI(⇢) �✏(⌘
0)

0 1 2

2 � 0.17 0.32 0.01 0.05 0.03 0.03 �4.00
3 4.9 1.79 55.4 0.01 2.17 0.06 0.40 5.1908
4 72 534 2286 108 9164 2.66 1.36 4.8027
5 347 22.2 9.65 7.0264
6 171.3 24.42 10.381
7 33.11 9.9935
8 41.21 12.217
9 58.51 15.572
10 65.57 15.184

The recycling-robot problem (|S| = 4, |Z| = 4, |A| = 9, K = 1)

2 � � 0.30 36 0.03 0.02 0.01 7.000
3 � � 1.07 36 0.05 0.47 0.10 10.660
4 � � 42.0 72 0.85 0.65 0.30 13.380
5 � � 1812 72 1.52 0.87 0.34 16.486
10 5.06 2.83 0.52 31.863
30 62.8 37.9 1.13 93.402
70 78.1 2.13 216.47
100 259 2.93 308.78

The mars-rovers problem (|S| = 256, |Z| = 81, |A| = 36, K = 3)

2 � � 83 1.0 0.21 0.09 0.10 5.80
3 � � 389 1.0 2.84 0.21 0.23 9.38
4 103 104.2 1.73 0.47 10.18
5 6.38 0.82 13.26
6 8.16 3.97 18.62
7 11.13 5.81 20.90
8 35.49 22.8 22.47
9 57.47 26.5 24.31
10 316.2 62.7 26.31

Table 2: Experiments comparing the computation times (in
seconds) of all exact solvers. Time limit violations (1000s)
are indicated by “ ”, and “–” indicate unknown values.

erature. For each benchmark, we compared our algorithms
with state-of-the-art exact solvers: GMAA*-ICE [Spaan et
al., 2011], IPG [Amato et al., 2009], MILP [Aras and Dutech,
2010], and LPC [Boularias and Chaib-draa, 2008]. IPG and
LPC perform dynamic programming, GMAA*-ICE performs
heuristic search and MILP is a mixed integer linear pro-
gramming method. Results for GMAA*-ICE (provided by
Matthijs Spaan), IPG, MILP and LPC were conducted on dif-
ferent machines. As a result, the timing results are not di-
rectly comparable to the other methods, but are likely to only
differ by a small constant factor.

The results can be seen in Table 1. For each algorithm
we reported the computation time, which includes the time
to compute heuristic values when appropriate since all algo-
rithms do not use the same heuristics. We also reported the ✏-
optimal expected cumulative reward �✏(⌘

0) (where ✏ = 0.01)
at the initial occupancy state. Furthermore, we also reported
K the maximum parameter k found by FOFS for each bench-
mark (representing the maximum history length used). Ta-
ble 1 clearly shows that FB-HSVI(2) allows for significant
improvement over the state-of-the-art solvers: for all tested
benchmarks we provide results for longer horizons than any
previously solved (the bold entries).

There are several reasons for the performance of FB-
HSVI(2): first, we search in the space of policies mapping
lower-dimensional features to actions, whereas all the other
solvers search in the space of policies mapping full histo-
ries to actions; then, we use a value function mapping occu-
pancy states to reals allowing it to generalize the value func-
tion over unvisited occupancies whereas all other solvers use
value function mapping partial policies to reals; finally, we

Time and value on benchmarks

Blank space = algorithm over

time (200s)

Red for fastest and previously

unsolvable horizons

K is the largest history window

used

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 19 / 20

Conclusion

Conclusion

Summary

Dec-POMDPs are powerful multiagent models

Formulated Dec-POMDPs as continuous-state MDPs with PWLC value function

POMDP (and continuous MDP) methods can now be applied

Can also take advantage of multiagent structure in the problem

Our approach shows significantly improved scalability

Future work

Approximate solutions (bounds on the solution quality)

More concise statistics

Subclasses like TI Dec-MDPs in our AAMAS-13 paper

Just observation histories as in Oliehoek, IJCAI 13

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs August 8, 2013 20 / 20

	Background
	Overview
	Decentralized POMDPs
	Existing methods

	Dec-POMDPs as continuous-state MDPs
	Overview
	Solving the occupancy MDP
	Exploiting multiagent structure

	Experiments
	Conclusion

