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Abstract— Automatically generating solutions to general
multi-robot coordination problems with communication limita-
tions is challenging, but crucial in many domains. As one way
to address this problem, we describe a probabilistic framework
for synthesizing control policies for general multi-robot systems
based on decentralized partially observable Markov decision
processes with macro-actions (MacDec-POMDPs). MacDec-
POMDPs are a general model of decision-making where a
team of robots cooperates to optimize a shared objective in
the presence of uncertainty. MacDec-POMDPs also consider
communication limitations, so execution is decentralized. We
describe how, in contrast to most existing methods that are
specialized to a particular problem class, we can synthesize
control policies that exploit whatever opportunities for coordi-
nation are present in the problem, while balancing uncertainty,
sensor information, and information about other robots.

I. INTRODUCTION

A wide range of approaches have been developed for
solving specific classes of multi-robot problems, such as
task allocation [1], navigation in a formation [2], cooperative
transport of an object [3], and communication under various
limitations [4]. Broadly speaking, the current state of the
art is to hand-design special-purpose controllers that exploit
some property of the environment or produce a specific
desirable behavior. It would be preferable to instead specify
a world model and a cost metric, and then have a general-
purpose planner automatically derive controllers that find
minimum cost solutions while remaining robust to uncer-
tainty.

The decentralized partially observable Markov decision
process (Dec-POMDP) is a general framework for represent-
ing multiagent coordination problems. Dec-POMDPs have
been widely studied in artificial intelligence as a way to
address the fundamental differences in decision-making in
decentralized settings [5], [6], [7]. Like the POMDP [8]
model that it extends, Dec-POMDPs consider general dy-
namics, cost and sensor models. Any problem where multiple
robots share a single overall reward or cost function can
be formalized as a Dec-POMDP. As such, Dec-POMDP
solvers could automatically generate control policies (in-
cluding policies over when and what to communicate) for
very rich decentralized control problems, in the presence
of uncertainty in outcomes, sensors and information about
the other robots. Unfortunately, this generality comes at a
cost: Dec-POMDPs are typically infeasible to solve except
for very small problems [6], [9].

One reason for the intractability of solving large Dec-
POMDPs is that current approaches model problems at a low
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level of granularity, where each robot’s actions are primitive
operations lasting exactly one time step. Recent research has
addressed the more realistic MacDec-POMDP case where
each robot has macro-actions: temporally extended actions
which may require different amounts of time to execute [9].
This enables systems to be modeled so that coordination
decisions only occur at the level of deciding which macro-
actions to execute. Macro-actions are a natural model for
the modular controllers (e.g., navigating to a waypoint or
grasping an object) often sequenced to obtain robot behav-
ior, bridging the gap between robotics research and Dec-
POMDPs. This approach has the potential to produce high-
quality general solutions for real-world heterogeneous multi-
robot coordination problems by automatically generating
control and communication policies, given a model.

II. MACDEC-POMDPS

The MacDec-POMDP formulation models a group of
robots that must plan by sequencing an existing set of
controllers. It extends the Dec-POMDP model to plan using
options, or temporally extended actions [9]. In Dec-POMDPs
(as depicted in Fig. 1), multiple robots operate based on
partial and local views of the world. At each step, every
robot chooses an action (in parallel) based purely on locally
observable information, resulting in an an observation for
each individual robot. The robots also share a single reward
or cost function, making the problem cooperative, but their
local views mean that execution is decentralized.

A MacDec-POMDP is defined by a tuple
hI, S, {Ai}, {Mi}, T, R, {⌦i}, O, hi, where I is a finite set
of robots, S is a finite set of states, Ai is a finite set of
low-level actions for each robot i with A = ⇥iAi the set of
joint actions; Mi is a finite set of options for each robot, i,
with M = ⇥iMi the set of joint options [9]; T is a state
transition probability function, T : S ⇥ A ⇥ S ! [0, 1]
with T (s,~a, s0) = Pr(s0|~a, s), R is a reward function:
R : S ⇥ A ! R, the immediate reward for being in state
s 2 S and taking the actions ~a 2 A, ⌦i is a finite set of
observations for each robot, i, with ⌦ = ⇥i⌦i the set of
joint observations, O is an observation probability function:
O : ⌦ ⇥ A ⇥ S ! [0, 1], with O(~o,~a, s0) = Pr(~o|~a, s0),
and h is the horizon. Because the full state is not directly
observed, optimal or approximately optimal behavior
generally requires each agent to remember a history of its
observations. We define an action-observation history for
agent i (up to step t) as HA

i = (a0i , o
0
i , . . . , a

t
i, o

t
i).

For simplicity, we consider only local options that only de-
pend on a single robot’s information: Mi = (�mi , Imi ,⇡mi),
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Fig. 1. Representation of an n-robot Dec-POMDP with actions ai and
observations oi for each robot i along with a single reward r.
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Fig. 2. Policies for four robots for two (macro-action) steps using options
m1 and m2 and (deterministic) terminal states as �

s.

with stochastic termination condition �mi : HA
i ! [0, 1],

initiation set Imi ⇢ HA
i and option policy ⇡mi : H

A
i ⇥Ai !

[0, 1]. Note that this representation uses action-observation
histories in the termination and initiation conditions as well
as the option policy. Simpler cases can consider reactive
policies that map single observations to actions as well as
termination and initiation sets that depend only on single
observations.

Since it may be beneficial for robots to remember their
histories when choosing which option to execute, we define
an option history, which includes both the action-observation
histories where an option was chosen and the selected options
themselves, as HM

i = (h0
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t�1
i ,mt

i). We then
define a (stochastic) local policy, µi : HM

i ⇥Mi ! [0, 1] that
depends on option histories and a joint policy for all robots
as µ. The goal of planning to produce a local policy for each
robot, that maps its observation history to a choice of option
to execute, and maximizes reward. The selected option then
executes a closed-loop policy (built out of primitive actions)
to completion. Existing planners [9] output a deterministic
policy tree (as shown in Figure 2) for each robot, which
defines a policy based on local observations. The root node
defines the option to execute in the known initial state, and
another option is assigned to each of the legal terminal states
of that option; this continues for the depth of the tree.

III. SOLVING MULTI-ROBOT PROBLEMS WITH
MACDEC-POMDPS

The MacDec-POMDPs framework is a natural way to
represent and generate behavior for general multi-robot sys-
tems. We assume an abstract model of the system is given
in the form of macro-action representations, which include
the associated policies as well as initiation and terminal
conditions. These macro-actions are controllers operating
in (possibly) continuous time with continuous actions and
feedback, but their operation is discretized for use with the
planner. Given the macro-actions and simulator, the planner
then automatically generates a solution which optimizes the
value function with respect to the uncertainty over outcomes,
sensor information and other robots. This solution comes in
the form of SMACH controllers [10] which are hierarchical
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Fig. 3. (a) High level system diagram and (b) The warehouse domain with
three robots.

state machines for use in a ROS environment. A high-level
description of this process is given in Figure 3(a).

We tested this approach in in a warehousing scenario using
a set of iRobot Creates (Figure 3(b)), and demonstrate how
the same general model and solution methods can be applied
in versions of this domain with different communication
capabilities.1 The planner was able to produce controllers
that leveraged the available communication capabilities to
most efficiently solve the task—including determining how
and when to communicate, and how to respond to communi-
cation signals. This is the first time that Dec-POMDP-based
methods have been used to solve large multi-robot domains.
The results demonstrate that our methods can automatically
generate the appropriate motion and communication behavior
while considering uncertainty over outcomes, sensor infor-
mation and other robots. Additional details can be found in
a preliminary paper [11].
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1Videos can be seen at http://youtu.be/fGUHTHH-JNA


