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Overview
 DEC-POMDPs and their solutions
 Fixing memory with controllers
 Previous approaches
 Representing the optimal controller
 Some experimental results



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 3

DEC-POMDPs

 Decentralized partially observable Markov decision
process (DEC-POMDP)

 Multiagent sequential decision making under
uncertainty
 At each stage, each agent receives:

 A local observation rather than the actual state
 A joint immediate reward

Environment
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DEC-POMDP definition
 A two agent DEC-POMDP can be defined with

the tuple: M = 〈S, A1, A2, P, R, Ω1, Ω2, O〉
 S, a finite set of states with designated initial state

distribution b0

 A1 and A2, each agent’s finite set of actions
 P, the state transition model: P(s’ | s, a1, a2)
 R, the reward model: R(s, a1, a2)
 Ω1 and Ω2, each agent’s finite set of observations
 O, the observation model: O(o1, o2 | s', a1, a2)
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DEC-POMDP solutions
 A policy for each agent is a mapping from their

observation sequences to actions, Ω* → A ,
allowing distributed execution

 A joint policy is a policy for each agent
 Goal is to maximize expected discounted

reward over an infinite horizon
 Use a discount factor, γ, to calculate this
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Example: Grid World

States: grid cell pairs

Actions: move    ,   ,    ,    ,
stay

Transitions: noisy

Observations: red lines

Goal: share same square
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Previous work
 Optimal algorithms

 Very large space and time requirements
 Can only solve small problems

 Approximation algorithms
 provide weak optimality guarantees, if any
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Policies as controllers
 Finite state controller for each agent i

 Fixed memory
 Randomness used to offset memory limitations
 Action selection, ψ : Qi → ΔAi
 Transitions, η : Qi × Ai × Oi → ΔQi

 Value for a pair is given by the Bellman
equation:
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Where the subscript denotes the agent and lowercase
values are elements of the uppercase sets above
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Controller example
 Stochastic controller for a single agent

 2 nodes, 2 actions, 2 obs
 Parameters

 P(a|q)
 P(q’|q,a,o)
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Optimal controllers
 How do we set the parameters of the

controllers?

 Deterministic controllers - traditional
methods such as best-first search (Szer
and Charpillet 05)

 Stochastic controllers - continuous
optimization
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Decentralized BPI
 Decentralized Bounded Policy Iteration (DEC-

BPI) - (Bernstein, Hansen and Zilberstein 05)

 Alternates between improvement and
evaluation until convergence

 Improvement: For each node of each agent’s
controller, find a probability distribution over
one-step lookahead values that is greater than
the current node’s value for all states and
controllers for the other agents

 Evaluation: Finds values of all nodes in all
states
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DEC-BPI - Linear program
NEED TO FIX THIS SLIDE IF I WANT TO USE

IT!
For a given node, q
Variables: ε, P(ai, qi’|qi, oi)
Objective:  Maximize ε
Improvement Constraints: ∀s ∈ S, q–i ∈ Q–i

Probability constraints: ∀a ∈ A

Also, all probabilities must sum to 1 and be
greater than 0
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Problems with DEC-BPI

 Difficult to improve value for all states and
other agents’ controllers

 May require more nodes for a given start state
 Linear program (one step lookahead) results in

local optimality

 Correlation device can somewhat improve
performance
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Optimal controllers
 Use nonlinear programming (NLP)
 Consider node value as a variable
 Improvement and evaluation all in one

step
 Add constraints to maintain valid values
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NLP intuition
 Value variable allows improvement and

evaluation at the same time (infinite
lookahead)

 While iterative process of DEC-BPI can
“get stuck” the NLP does define the
globally optimal solution
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Variables:
                          ,                                 ,
Objective:  Maximize

Value Constraints: ∀s ∈ S,   ∈ Q

Linear constraints are needed to ensure controllers
are independent

Also, all probabilities must sum to 1 and be greater
than 0

NLP representation
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Optimality

Theorem: An optimal solution of the NLP
results in optimal stochastic controllers
for the given size and initial state
distribution.
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Pros and cons of the NLP
 Pros

 Retains fixed memory and efficient policy
representation

 Represents optimal policy for given size
 Takes advantage of known start state

 Cons
 Difficult to solve optimally
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Experiments
 Nonlinear programming algorithms (snopt and

filter) - sequential quadratic programming
(SQP)

 Guarantees locally optimal solution
 NEOS server
 10 random initial controllers for a range of

sizes
 Compared the NLP with DEC-BPI

 With and without a small correlation device
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 Two agents share a broadcast channel (4
states, 5 obs , 2 acts)

 Very simple near-optimal policy

mean quality of the NLP and DEC-BPI
implementations

Results: Broadcast Channel
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Results: Recycling Robots

mean quality of the NLP and DEC-BPI
implementations on the recycling robot domain (4
states, 2 obs, 3 acts)
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Results: Grid World

mean quality of the NLP and DEC-BPI
implementations on the meeting in a grid (16
states, 2 obs, 5 acts)



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 23

Results: Running time
 Running time mostly comparable to DEC-BPI corr
 The increase as controller size grows offset by

better performance

Broadcast

Recycle

Grid
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Conclusion

 Defined the optimal fixed-size stochastic
controller using NLP

 Showed consistent improvement over
DEC-BPI with locally optimal solvers

 In general, the NLP may allow small
optimal controllers to be found

 Also, may provide concise near-optimal
approximations of large controllers
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Future Work
 Explore more efficient NLP formulations
 Investigate more specialized solution

techniques for NLP formulation
 Greater experimentation and

comparison with other methods


