
EUROGRAPHICS 2011/ S. Maddock, J. Jorge Education Paper

High-Level Application Development for non-Computer

Science majors using Image Processing

Amit Shesh†

Illinois State University

Abstract

In many ways it is a unique challenge to teach programming and high-level application development to non-

computer science majors like information systems. Simple visual computing can be a very helpful tool in such

situations because it enables programs to produce something students can see. This paper describes a semester-

long experience of using image-processing as the theme in a course to teach programming and program design

to students of information systems. Students progressively built a fairly complete image processing application

from scratch in a bottom-up fashion using Java. They first concentrated on using low-level constructs like arrays

and implementing several operations on them, and then supplemented their programs with features like a GUI

complete with “undo-redo” features and capabilities to handle most standard image file formats. This allowed us

to satisfy all the objectives of a typical programming course while simultaneously exposing students to developing

meaningful applications from scratch with “standard” features. Our classroom was comprised of a mix of under-

graduate and graduate students lacking sufficient programming background. With minor variations, our approach

can be fit to courses for other majors where programming is considered useful but not critical.

Categories and Subject Descriptors (according to ACM CCS): K.3 [Computers and Education]: Computer and Info.
Science Education—I.4 [Image Processing and Computer Vision]: —D.2.11 [Software Architectures]: Patterns—

1. Introduction

In contrast with computer science for which programming is
a critical skill, many IT-related majors such as information
systems (IS) place at best a secondary importance to pro-
gramming. Many students of such majors mistakenly view
programming courses as something they must “survive”. At
our university we see many students choose a non-computer-
science program simply due to fear of programming. In the
classroom this poses a challenge for instructors who must
motivate such students with innovative pedagogical tech-
niques. Moreover an increasing number of universities offer
courses that are cross-listed across different majors. This in-
creases the diversity in technical backgrounds that students
bring to a typical programming course which compounds the
challenge of making course material interesting, comprehen-
sible and “immediately applicable” to all.

Visual computing is often used as a pedagogical tool be-
cause of its illustrative appeal. However understanding prac-
tical forms of multimedia data and operations on them re-

† ashesh@ilstu.edu

quires knowledge of diverse technical concepts that students
of elementary programming courses simply do not have.
This can be addressed by providing supporting code that
simplifies and hides technical details, but this may distract
a course from its original objectives. Moreover we contend
that writing applications from scratch provides students with
a comprehensive understanding of how they work. Therefore
we work with static images and design projects that provide
a balance between simplicity and practicality. Images pro-
vide natural examples of arrays and their manipulation and
thus provide enough technical challenge.

Although images have been popular teaching tools in
computer science [AR98, Bur03, DGMW04, DD07, FP97,
Hun03, JPKP99, WN05], they have been largely used to
teach only low-level, piece-wise programming constructs.
We contend that image processing offers an attractive way
to introduce not only basic programming but also design
concepts which are of more interest to majors like infor-
mation systems. Many features present in standard applica-
tions, when mapped specifically to an image-manipulation
program, pose interesting problems that can lead to a better
understanding of design and implementation issues. For ex-

c© The Eurographics Association 2011.



A. Shesh / App. Dev. non-CS majors

ample, an “undo-redo” feature is standard in almost all com-
puter applications. How does this feature work in programs
like Photoshop? Is it simply a standard design that can be
replicated everywhere (and if so, what is it?), or are there
important implementation-specific issues?

Image processing, like most forms of visual computing
is very mathematical. Many non-CS majors do not include
or emphasize less on data structures, algorithms and mathe-
matics. Introducing math in a primarily programming course
for non-CS majors can prove to be counter-productive to the
course goals. We believe it is possible to teach image pro-
cessing in a strictly “applied” way, exposing students only
to implementation details of sophisticated algorithms rather
than their underlying theory. Our experiment shows some
promise in this direction, as students were motivated to com-
plete their assignments in many cases with little idea about
why the underlying algorithms worked. Many information
analysts go on to design and maintain software systems with-
out acquiring expertise in the domains within which these
systems function. We feel our approach assumes relevance in
such aspects. We used private and classroom discussions to
encourage those students who were more interested in learn-
ing the underlying algorithms.

2. Related Work

Visual computing in the form of computer graph-
ics [DGMW04] or image processing [MD06] has been used
in programming courses, but primarily in computer science
where the expected knowledge of math is higher. Leuteneg-
ger et al. [LE07] use games as tools to teach programming
for computer science students, but using multimedia-focused
languages. Jordi et al. [JE10] discuss the use of computer
graphics to teach information systems students, the same
audience as ours. Guzdial [Guz03] designed a course for
non-CS majors that focuses on multimedia computation. Al-
though the foundation of much such work in this area, their
course uses significant existing material for students to use
and extend which our course does not.

Images have been used to develop skills in piece-wise
programming concepts like file I/O [FP97, Urn08], arrays,
functions, etc. [AR98, Bur03, FP97], as well as algorithm
and program design and testing [WN05]. We attempt to
teach students both programming and elements of high-
level application design while still developing programs
from scratch. In order to concentrate on programming rather
than domain knowledge we provide students with only an
implementation-specific view of these algorithms.

3. Details of our Experiment

To conduct this experiment we chose a course (IT 275: Java
as a Second Language) that is designed primarily to pro-
vide experience in Java to students transferring from other
colleges and graduate students lacking programming experi-
ence. The course typically comprises of majors from infor-

P3

512 256

256

123 213 23

...

Unique ID for ASCII PPM

Width and height

(red,green,blue) for each pixel

row-by-row

Maximum value for a component

Figure 1: The ASCII-based PPM file format.

mation systems with possibly a few computer science stu-
dents transferring from other smaller colleges. This course
(worth 4 credit-hours) offers an alternative (mostly for trans-
fer and graduate students) to taking two courses (3 credit-
hours each) that introduce Java and object-oriented concepts
to undergraduate IS majors starting at our university.

From earlier experience in teaching this course we ob-
serve that students struggle with the significant breadth of
topics that it covers. We attribute this to two factors: its
inherent role as a “make-up” course before taking other
courses directly related to the degree program and a biased
view that programming is difficult and not critical to be-
ing a good information analyst. We use image processing
to achieve the twin objectives of covering the significant
breadth of topics in a cohesive manner and to kindle stu-
dents’ interest in programming for practical problems.

Initially we did not disclose the fact that students were to
work with images. This was done so that students do not feel
apprehensive after hearing about technical jargon and the un-
derlying mathematics. After each assignment was submitted,
we had a discussion with students in class about the details
of the algorithm that they implemented and its practical use.
We also asked for their informal feedback.

3.1. Assignment 1: Working with PPM images

Learning Objective(s) :Work with text file I/O, declare and use multi-
dimensional arrays

Duration :1 week

Students were asked to create a simple class that stored in-
teger data in a 3-dimensional array. They were provided sev-
eral files in the Portable Pixmap (.ppm) file format (Figure 1
shows an example). They were supposed to write methods
to read a file(readPPM), flip the 3-dimensional array across
the first dimension(flip, flip the image vertically) and write
the 3D array to a .ppm file in the correct format(writePPM).

Experience: The PPM file format was chosen because it
is ASCII-based and thus is helpful in debugging. Many
standard image processing programs like Photoshop and
GIMP [gim] support it. This assignment was given to stu-
dents in a lab environment to acclimatize them with the pro-
gramming environment. A pre-compiled program was pro-
vided that checked whether the images they produced were
valid flips of each other. After the lab was over, the results
produced by their programs were revealed to be images and
were visualized in Photoshop.

c© The Eurographics Association 2011.



A. Shesh / App. Dev. non-CS majors

(a) (b)

Figure 2: Image Filters: Top row: Convolution with a 3× 3 filter.

The two filters on the right represent the Sobel edge detector. (a)

original image (b) edge-detected result (inverted for illustration).

3.2. Assignment 2: Image Filters

Learning Objective(s) :Write loops for multi-dimensional arrays
Duration :1 week

Filtering by Convolution: This assignment was named
“Operations on Arrays”, and asked students to write several
methods in the class that they wrote earlier. Specifically they
were to write a method(filter) to implement a 3× 3 filter by
placing the center of the filter at a provided location in the
image, and convolving it with the image(see Figure 2). They
were to write another method (convolve) that applied this
filter at every location in the image, for each color channel
(the 3rd dimension of the array). They would have a third
method (thresholdForDisplay) to clamp all the numbers to
the range 0− 255 so that Photoshop can display it. Finally
students were provided with 3×3 Sobel filters [GW08] that
produced an edge-detected image as its result (shown in Fig-
ure 2, bottom row).

Experience: After a few attempts, many students figured out
what the expected output would be and started using Photo-
shop as a verification tool. Some were familiar with similar
operations that Photoshop had to offer.

3.3. Assignment 3: Compressing Artifacts using

Wavelet Transforms

Learning Objective(s) :Use more loops with arrays, working with sub-
parts of arrays

Duration :2 weeks

The main goal of this assignment was to provide prac-
tice in writing more complicated loops. This was motivated
by our observation that although students were well-versed
in the syntactic details of loops they often could not cor-
rectly use them to solve a given problem. Students used 2D
Haar wavelets(see Figure 3(b-e)) to perform multi-resolution
analysis of images, with the purpose of simulating compres-
sion artifacts. Wavelets break a signal into base (or coarse
approximation) and detail (difference between base and ac-
tual signal) coefficients. If some or all the details are lost, an
inverse transformation does not yield the original image, but
one with visible compression artifacts (Figure 3(h)).

A 1D Haar wavelet transform is applied to a 1D array
whose dimension is a power of 2 as follows:

1. Read the array 2 numbers at a time, say p and q.
2. Compute two numbers b =

p+q√
2

and d =
p−q√

2
.

3. Create a new array whose first half consists of all b’s
(“base”) and the other of all d’s (“details”).

4. Recursively apply above steps to the “base” sub-array.

An inverse Haar wavelet can be applied by starting from
the array obtained in step 3, reading 2 corresponding num-
bers from the two halves of the array, applying the same
equations in step 2 to them, and storing them at successive
positions in the new array. Figure 3(a) illustrates the process.
A 2D Haar wavelet is simply the application of steps 1− 3
above to every row, followed by every column of the 2D ar-
ray. We refer the interested reader to Gonzalez et al. [GW08]
for an in-depth overview of the Haar wavelet transform.

Students had to apply the 2D Haar wavelet transform to an
image, threshold the detail coefficients and invert the trans-
formations to see the results. We provided actual examples
of the 1D array transform to help them to test their programs.

Experience: Once again students were told about the ex-
pected outcome only in words (“blocky artifacts in images”).
Some students used the thresholdForDisplay method devel-
oped in Assignment 2 to visualize individual iterations of
their transforms (e.g. visualize Figure 3(g)). Many students
found such “visual” debugging useful, while there were
some who struggled with it.

3.4. Assignment 4: Basic Program Design with Menus

and the Undo-Redo Feature

Learning Objective(s) :Using MVC architecture, use inheritance and
polymorphism in good design

Duration :2 weeks

With this assignment the focus was changed from tech-
nical operations to overall program design. The first objec-
tive of the assignment was to introduce the model-view-
controller (MVC) architecture. Students had to write a han-
dler class that acted as the “controller” by working with both
the user interface and the actual Image class. The second ob-
jective was to provide them with an example of using inher-
itance and polymorphism. This was done by asking students
to design all the image operations in a streamlined manner
using the command design pattern [GHJV95]. This allowed
them to regard all these operations in a general manner. This
point of view motivated the undo-redo mechanism in terms
of general operations. The third objective was to teach them
to think how a particular data structure (in this case, a stack)
is suited for specific functionality (in this case, the ability to
undo and redo operations).

This was the only assignment in which they were provided
with some existing code. In order to compensate for stu-
dents’ lack of knowledge of data structures a simple stack
implementation was provided to them, along with a short

c© The Eurographics Association 2011.



A. Shesh / App. Dev. non-CS majors

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 3: Multiresolution analysis. (a) 1-D haar wavelets. In the first iteration, successive pairs of values in an array are used to populate

another array that contains base (yellow) and detail (cyan) values. This process is recursively applied to the base-part until it reduces to size

1 (bottom). (b-e) 2D haar wavelets. In the first iteration the 1D transform is applied to all rows ((b)→(c)) followed by all columns ((c)→(d))

resulting in base (yellow) and detail (cyan) values. This process is recursively applied to the base-part until it reduces to size 1× 1 (e). (f-h)

Illustration on an example image of size 1024× 512. (f) The original image (g) Illustration of the result after one iteration (i.e. corresponding

to step (d)). (h) Compression artifacts created by transforming, reducing all details below 0.4 to 0 and inverting the transform.

explanation. We asked students to implement the undo-redo
feature by simply writing the “before” and “after” versions
of an image for every operation to files.

Experience: This assignment generated an interesting dis-
cussion in class about how to undo certain operations. While
the flip operation can be undone by flipping once again, the
edge-detection operation cannot. This showed students how
different mechanisms may be necessary within the same pro-
gram to implement one feature (e.g. the undo mechanism).
Some students implemented the undo mechanism by main-
taining a stack of Image objects directly. While this was con-
ceptually correct, they experienced an “Out of memory” er-
ror after they specified 4-5 operations in succession without
undoing any of them. This was attributed to the large size
of some images resulting in large objects being pushed on
the stack. This generated an even more interesting discus-
sion since most students were unfamiliar with memory man-
agement issues, thanks to Java’s automatic garbage collec-
tion, and hence had never encountered such an error before.
Upon subsequent investigation we found documentation on
the open-source GIMP program that actually defines sepa-
rate mechanisms for undoing several operations, and how it
allows the user to customize its undo-redo capability.

3.5. Assignment 5: Graphical user interface

Learning Objective(s) :Design GUIs using Swing without WYSIWYG
utilities, exploring Java documentation

Duration :2 weeks (2 more weeks for extra credit)

This assignment was designed to give students practice
in developing user interfaces in Java. Students were not al-
lowed to use WYSIWYG tools for this purpose–they were
expected to write all the code themselves and use existing
layout managers. A secondary objective was to make them

Welcome to my small image manipulation program.
Main menu:
‘o’ :Open a PPM image.
‘s’ :Save the current image in PPM format.
‘p’ :Print name of the current image.
‘f’ :Flip the current image vertically.
‘e’ :Find edges in current image.
‘c’ :See compression artifacts in image.
‘u’ :Undo.
‘r’ :Redo.
‘x’ :Exit the program.
Please select an option:

Figure 4: Assignment 4: Text interface for program. A user would

save a file after processing it and then use Photoshop to view it.

Figure 5: Students replicated this GUI using Java Swing.

rely more on documentation to determine which classes to
use and to solve a given problem. This was an important goal
towards the end of such a programming course so that stu-
dents become more self-reliant rather than expecting to be
taught everything by instructors. At the end of this assign-
ment, students had created a fully functional image manipu-
lation application with three image operations.

Students were provided with a screen shot of the desired
layout (Figure 5). We provided hints about specific Java
classes that would be useful in this assignment. For extra

c© The Eurographics Association 2011.



A. Shesh / App. Dev. non-CS majors

credit they were asked to use the Java Swing API to read
and convert between standard image formats (i.e. .bmp, .jpg,
etc.) and their own Image class. This assignment generated
enthusiasm among students as it enabled them to finally see
and work with images in their own program.

4. Overall Feedback

In general students were enthused with the idea of working
with images. This was especially evident after the first as-
signment when they realized that the text files provided to
them were images. After the first assignment, as soon as an
assignment was posted a few students regularly searched on-
line for the details of the algorithm that they were asked to
implement and contacted us to confirm what they “guessed”
they were implementing. This showed us that students were
motivated to complete the assignments. We received quite a
few questions about the details of the underlying algorithms:
“how does the edge detection actually work?”, “is this what

Photoshop uses (for edge detection)?”, “what do the num-

bers in the filters actually mean?”, “are wavelets practically

used for image compression, and if so, where?”. Soon af-
ter assignment 3 was posted one student contacted the in-
structor saying he searched online, found “something called

wavelets” and “thought it looked really complicated”. That
seemed to support our theory that hiding mathematical de-
tails indirectly helps students to complete assignments with
lesser apprehension. Assignment 4 generated useful discus-
sion about design. Some students wondered if there was
better way to implement the mechanism without resorting
to files that took up unnecessary space on the hard drive.
One student implemented an undo-redo mechanism that pre-
served the order of operations across several images (i.e.
his program regarded the file “open” and “close” operations
as undo-able as well, making it possible to revert back to
an earlier opened image and undoing its operations. This is
not possible in most commercial image manipulation pro-
grams.). Some students described the overall experience of
the course as “..great way to improve critical thinking with

just about sufficient help from the instructor”, “good job

fitting students from different backgrounds”, “great class”,
“images were useful and more importantly we learned Java

while working on them”, etc. There were a few comments
about how the nature of the assignments made the course
difficult for them because the basic idea of working with im-
ages did not excite them. A few students struggled with ma-
nipulation of 3D arrays as they had never encountered them.

In future, we plan to evaluate our experiment more for-
mally by including student surveys at regular intervals in the
course. This would give us focussed and precise feedback
on whether this theme has an impact on student learning.
We also plan to solicit feedback of instructors teaching sub-
sequent courses to determine if students have demonstrated
the expected programming skills.

5. Variants and Future Work

Many variations on the above assignments can be designed
to expose students to other image effects. Convolution filter-
ing can be used for effects such as blurring and affine trans-
formations on color for sepia toning (i.e. old photographs
that appear “brown-toned”). Similar to the wavelet trans-
form, other seemingly “complicated” algorithms like the
Fourier transform can be used to create interesting effects.
More design patterns can be introduced to emphasize more
on design aspects, such as proxy and adapter.

In the future we wish to perform this experiment in more
traditional IS programming courses. Performing this experi-
ment on some but not all sections of the same course could
help us to better understand its impact on students’ learning
in a comparative way.

References

[AR98] ASTRACHAN O., RODGER S. H.: Animation, visual-
ization, and interaction in cs 1 assignments. In Proc. SIGCSE

(1998), pp. 317–321.

[Bur03] BURGER K. R.: Teaching two-dimensional array con-
cepts in java with image processing examples. SIGCSE Bull. 35,
1 (2003), 205–209.

[DD07] DUCHOWSKI A., DAVIS T.: Teaching algorithms and
data structures through graphics. In EG Edu. Papers Program

(2007).

[DGMW04] DAVIS T. A., GEIST R., MATZKO S., WESTALL J.:
τεχνη: a first step. In SIGCSE (2004), pp. 125–129.

[FP97] FELL H., PROULX V.: Exploring martian planetary im-
ages: C++ exercises for cs1. SIGCSE Bull. 29, 1 (1997), 30–34.

[GHJV95] GAMMA E., HELM R., JOHNSON R., VLISSIDES J.:
Design Patterns. Addison Wesley, 1995.

[gim] GIMP. http://www.gimp.org.

[Guz03] GUZDIAL M.: A media computation course for non-
majors. SIGCSE Bull. 35 (2003), 104–108.

[GW08] GONZALEZ R., WOODS R.: Digital Image Processing.
Prentice Hall, 2008.

[Hun03] HUNT K.: Using image processing to teach cs1 and cs2.
SIGCSE Bull. 35, 4 (2003), 86–89.

[JE10] JORDI L., ESPARAZA J.: Computer graphics for informa-
tion system programmers. In EG Edu. Papers Program (2010).

[JPKP99] JIMÉNEZ-PERIS R., KHURI S., PATI NO-MARTÍNEZ

M.: Adding breadth to cs1 and cs2 courses through visual
and interactive programming projects. In Proc. SIGCSE (1999),
pp. 252–256.

[LE07] LEUTENEGGER S., EDGINGTON J.: A games first ap-
proach to teaching introductory programming. In Proc. SIGCSE

(2007), pp. 115–118.

[MD06] MATZKO S., DAVIS T.: Using graphics research to teach
freshman computer science. In SIGGRAPH 2006 Edu. Program

(2006).

[Urn08] URNESS T.: Teaching file input/output, loops, and if-
statements via a red eye reduction assignment. J. Comput. Small

Coll. 23, 4 (2008), 286–290.

[WN05] WICENTOWSKI R., NEWHALL T.: Using image pro-
cessing projects to teach cs1 topics. SIGCSE Bull. 37, 1 (2005),
287–291.

c© The Eurographics Association 2011.

http://www.gimp.org

