
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Technical Section

High-level application development for non-computer science majors using
image processing

Amit Shesh

School of Information Technology, Illinois State University, Normal, IL, USA

a r t i c l e i n f o

Article history:

Received 4 September 2011

Received in revised form

10 January 2012

Accepted 12 January 2012
Available online 26 January 2012

Keywords:

Image processing

Information systems

Computer science education

Introductory programming

a b s t r a c t

It is a unique challenge to teach programming and application development to students pursuing an IT

degree other than computer science. Using simple visual computing as a medium to teach programming

can be very helpful in such situations as it enables programmes that produce pictures rather than raw text

and data. This paper describes a semester-long experience of using image processing as the theme in a

course to teach programming and program design to students of information systems. Students

progressively built a fairly complete image processing application from scratch in a bottom-up fashion

using Java. They first concentrated on using low-level constructs like arrays and implemented several

operations on them, and then supplemented their programs with features like a GUI complete with

‘‘undo–redo’’ features and capabilities to handle most standard image file formats. Not only did this

approach satisfy all the objectives of a typical programming course but also enabled students to develop

meaningful applications from scratch with ‘‘standard’’ features. Our classroom was composed of a mix of

undergraduate and graduate students lacking sufficient programming background. A comparative analysis

shows improvement in student performance when using image processing rather than not. With minor

variations, our approach can be fit to courses for other majors where programming is considered useful

but not critical.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Computer programming is considered a basic and vital skill for
any student pursuing a career in information technology. While
computer science (CS) curricula provide rigorous training in
computer programming, other IT-related majors such as informa-
tion systems (IS) place, at best, a secondary importance to
programming. Teaching programming courses in such majors
poses several challenges.

First is the incorrect perception among students that computer
science is the only IT degree where a knowledge of programming
is needed. At our university we see many students choose a
non-computer-science degree programme simply due to fear of
programming. Many students of such majors mistakenly view
programming courses as something they are ‘‘forced to take’’ and
something they must ‘‘survive’’. Compounding this problem is the
wide scope of these courses because such majors have fewer
programming courses (usually 2) than computer science and yet
include advanced concepts like user interface design. Also, majors
like information systems emphasize the higher-level aspects of
application development and management (i.e. the ‘‘bird’s eye’’
view) as such degrees usually lead to roles of project management

and systems analysis in jobs. This often adds fuel to the perception
that knowledge of programming is neither relevant nor important to
succeed. This behooves instructors to motivate students to work
hard and learn computer programming and its benefits without
portraying it as an absolutely vital skill as it is for computer science.

Secondly, many such courses have a great diversity in the
technical backgrounds of students. This is in part because an
increasing number of universities offer courses that are cross-
listed across different majors. This compounds the challenge of
making course material interesting and comprehensible to all.
A third challenge (relevant to computer science courses also) is
presented by the ubiquity of commodity computing devices. Most
students today are regular users of technology in the form of
computers and hand-held devices (for many their interest in IT
stems from having used computers before). Thus they expect
any programming course to teach them to develop sophisticated
applications that they and others can immediately use. However
most programming courses result in programs that appear
relatively mundane and without practical use, thereby negatively
affecting student motivation. Thus pedagogical techniques that
help create programs that seem immediately usable and combine
concepts of basic programming with high-level application devel-
opment are highly desirable. This paper discusses the experience
of using image processing (henceforth abbreviated as I-P) as a
theme to address the above challenges.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2012.01.007

E-mail address: ashesh@ilstu.edu

Computers & Graphics 36 (2012) 170–177



Author's personal copy

Visual computing in general is often used as a pedagogical tool
because of its illustrative appeal. However, understanding prac-
tical forms of multimedia data and operations on them requires
knowledge of diverse technical concepts that students of elemen-
tary programming courses simply do not have. Although this can
be addressed by providing supporting code that simplifies and
hides technical details, doing so may diverge from the original
objectives of the course. Moreover we contend that writing
applications from scratch provides students with a comprehensive
understanding of how they work. Therefore we work with simple
static images and design projects that provide a balance between
simplicity and practicality. Images are inherently interesting to
most students because most have stored, classified and annotated
digital photographs using commercial software like Picasa [1] and
Flickr [2]. Secondly writing programs that work on images
provides an emphatic visual feedback unlike staring at raw
numbers, and thus likely provides a greater sense of achievement.
Technically, images provide natural examples of arrays and their
manipulation. Thus programming with images can be simulta-
neously characterized as ‘‘fun’’ and ‘‘technically challenging’’.

Although images have been used often as examples to teach
various concepts in computer science [3–10], they have been largely
used to teach only low-level, piece-wise programming constructs.
We contend that image processing offers an attractive way to
introduce not only basic programming but also design concepts
which are of more interest to majors like information systems.
Many features present in standard applications, when mapped
specifically to an image-manipulation program, pose interesting
problems that can lead to a better understanding of design and
implementation issues. For example, an ‘‘undo–redo’’ feature is
standard in almost all computer applications. How does this feature
work in programs like Photoshop? Is it simply a standard design
that can be replicated everywhere (and if so, what is it?), or are
there important operation and implementation-specific issues?

A primary challenge associated with visual media processing is
that it tends to be very mathematical. Many non-CS curricula do
not include or place less emphasis on data structures, algorithms
and mathematics. Introducing mathematics just to use image
processing in a primarily programming course for non-CS majors
can prove to be counter-productive to the course goals.
We believe it is possible to teach image processing in a strictly
‘‘applied’’ way, exposing students only to implementation details
of sophisticated algorithms rather than their underlying theory.
Our experience shows some promise in this direction, as students
were motivated to complete their assignments in many cases
with little idea about how the underlying algorithms worked.
Many information analysts go on to design and maintain software
systems without acquiring expertise in the domains within which
these systems function. We feel our approach assumes relevance
in this aspect. Nevertheless we used 1:1 teaching and classroom
discussions to encourage those students who were more inter-
ested in learning the underlying algorithms.

This paper describes a semester-long experience of using image
processing as the theme in a course to teach programming and
program design to students of information systems. An abridged
version of this experience has been published previously [11]. This
paper discusses the motivation and experience in more detail,
includes evaluation regarding its impact on student learning and
also discusses how our approach can be repeated in similar
courses. Section 2 puts our work in the context of relevant previous
work. Section 3 discusses the details of our assignments and their
objectives. Section 4 discusses a comparative and qualitative
evaluation of our work, and finally Section 5 provides a retro-
spective look at the course, discusses issues to be considered when
repeating our approach in similar courses, and identifies avenues
for future work.

2. Related work

Visual computing in the form of computer graphics [5] or image
processing [12] has been used in programming courses, but primar-
ily in computer science where the expected knowledge of maths
and algorithms is higher. Leutenegger et al. [13] use games as tools
to teach programming for computer science students, but using
multimedia-focused languages. Duchowski et al. [6] use fairly mathe-
matical computer graphics algorithms to teach an advanced pro-
gramming course. Jordi et al. [14] discuss teaching computer graphics
specifically related to information management, thus making it
applicable to information systems students. However their goal is
to make computer graphics relevant to information systems and
not basic programming, and their course also targets computer
science students. Guzdial [15] designed a course for non-CS majors
that focuses on multimedia computation. Although the foundation
of much work in this area, their course uses significant existing
material for students to use and extend which our course does not.

The specific use of images has been largely limited to devel-
oping skills in piece-wise programming concepts like file I/O
[7,16], arrays, functions, etc. [3,4,7]. Images have also been used
to illustrate advanced data structures and their use in practical
algorithms [9], and also in program design and testing [10]. While
these are valid and interesting examples in programming, our
work uses images as an underlying and continuing theme in a
programming course. We attempt to teach students both pro-
gramming and elements of high-level application design while
still developing programs from scratch. In order to concentrate on
programming rather than domain knowledge we provide stu-
dents with only an implementation-specific view of these algo-
rithms. Although such a treatment may not be appropriate for
computer science students or in advanced programming courses
[17] we feel it is ideal for an audience of information systems
students as it provides high yield (i.e. working programs with
images) without excessive technical knowledge.

3. Details of our experiment

To conduct this experiment we chose a course (IT 275: Java as a
Second Language) that is designed primarily to provide experience
in Java to students transferring from other colleges and graduate
students lacking programming experience. Students taking this
course are required to have at least a semester’s worth of experience
in a high-level programming language (not necessarily object-
oriented). This course typically comprises of majors from information
systems with possibly a few computer science students transferring
from other smaller colleges. This course (worth 4 credit-hours) offers
an alternative (mostly for transfer and graduate students) to taking
two courses (3 credit-hours each) that introduce Java and object-
oriented concepts to undergraduate IS majors starting at our uni-
versity. An overview of the course is provided in Table 1.

Table 1
Overview of our course.

Week Topics

1,2 Introduction, classes, objects

3 Conditionals and loops

4,5,6 Arrays, multidimensional arrays, method overloading

7–8 Inheritance and polymorphism in Java

9 Exception handling

10,11 GUI in Java Swing

12–13 Generics and collection classes

14 Multithreading

15 Java and XML, Javadocs and jar files

A. Shesh / Computers & Graphics 36 (2012) 170–177 171



Author's personal copy

From earlier experience in teaching this course we observe that
students struggle with the significant breadth of topics that it
covers. We attribute this to two factors: its inherent role as a
‘‘make-up’’ course before taking other courses directly related to the
degree programme and a biased view that programming is difficult
and not critical to being a good information analyst. We use image
processing to achieve the twin objectives of covering the significant
breadth of topics in a cohesive manner and to kindle students’
interest in programming for practical problems.

Initially we did not disclose the fact that students were to work
with images. This was done so that students do not feel apprehen-
sive after hearing about technical jargon and the underlying
mathematics. Not all assignments in this course involved images.
We felt this was important so that if some students do not find
images interesting as we hoped, the course would not seem
completely inaccessible to them. Since each assignment (and its
code) built upon previous assignments we were concerned that
students would gradually fall behind. We mitigated this in two
ways: (1) including copious comments with the grade of each
assignment detailing their specific errors so that they do not waste
time debugging previous errors, (2) having 1:1 discussions with
students and helping them with their code, mostly during regularly
scheduled office hours. We deliberately decided not to provide
ready-made solutions to our assignments because we wanted
students to approach us and work through their problems instead
of ignoring their errors and moving on. After each assignment was
submitted, we had a discussion with students in class about the
details of the algorithm that they implemented and its practical use.
We also asked for their informal feedback.

3.1. Assignment 1: Working with PPM images

Learning
objective (s):

Work with text file I/O, create and
manipulate multi-dimensional arrays

Duration: 1 week

Students were asked to create a simple class that stored
integer data in a 3D array. They were provided with a narrative
explanation of the Portable Pixmap (.ppm) file format [25], along
with several example files in that format (Fig. 1 shows an
example). They were asked to write methods to read a file
(fromFile) into a 3D array, flip the 3D array across the first
dimension (flip, flip the image vertically) and write the 3D array
to a .ppm file in the correct format (toFile).

Experience: The PPM file format was chosen because it is
extremely simple and ASCII-based, and thus helpful in debugging.
Many standard I-P programs like Photoshop [18] and GIMP [19]
support it. This assignment was given to students in a lab
environment to acclimatize them with the programming envir-
onment. A pre-compiled program was provided that checked
whether the files they produced were valid flips of each other.
After the lab was over, the results produced by their programs
were revealed to be images and were visualized in Photoshop. As
many students initially have difficulty understanding applications
of arrays with more than two dimensions, the realization that

color images can be represented simply as 3D arrays was inter-
esting for many students.

3.2. Assignment 2: Image filters

Learning
objective(s):

Write loops correctly, manipulate
arrays

Duration: 1 week

This assignment was named ‘‘Operations on Arrays’’, and asked
students to write several methods in the class that they wrote
earlier. Specifically they were to write a method (filter) to
implement a 3�3 filter by placing the center of the filter at a
provided location in the image, and convolving it with the image
(see Fig. 2) (considering only those parts of the filter that over-
lapped an image pixel, to address the issue of pixels at the edges
of the image). They were to write another method (getEdges) that
applied this filter at every location in the image, for each color
channel (the third dimension of the array). They would have a
third method (thresholdForDisplay) to clamp all the numbers to
the range 0–255 so that Photoshop can display it. Finally students
were provided with 3�3 Sobel filters [20] that produced an edge-
detected image as the result (shown in Fig. 2, bottom row).

Experience: As Fig. 2 illustrates, the convolution filtering algo-
rithm can be expressed succinctly using pictures. After a few
attempts, many students figured out what the expected output
would be and started using Photoshop as a verification tool. Some
were familiar with similar operations that Photoshop had to offer.

3.3. Assignment 3: Compressing artifacts using wavelet transforms

Learning
objective(s):

Write more complicated loops, work on sub-
parts of arrays

Duration: 2 weeks

The main objective of this assignment was to provide practice
in writing more complicated loops. This was motivated by our
observation that although students were well-versed in the syn-
tactic details of loops they often could not correctly use them to
solve a given problem. This assignment also asked students to
work on sub-parts of arrays by choosing and manipulating appro-
priate indices.

Students used 2D Haar wavelets (see Fig. 3(b–e)) to perform
multi-resolution analysis of images, with the purpose of simulat-
ing compression artifacts. Wavelets break a signal into base (or
coarse approximation) and detail (difference between base and

Fig. 2. Image filters: top row: convolution with a 3�3 filter. The two filters on the

right represent the Sobel edge detector. Bottom row: (a) original image and

(b) edge-detected result (inverted for illustration).

P3

512 256

256

123 213 23

...

Unique ID for ASCII PPM

Width and height

(red,green,blue) for each pixel
row-by-row

Maximum value for a component

Fig. 1. The ASCII-based PPM file format.

A. Shesh / Computers & Graphics 36 (2012) 170–177172



Author's personal copy

actual signal) coefficients. If some or all the details are lost, an
inverse transformation does not yield the original image, but one
with visible compression artifacts (Fig. 3(h)).

A 1D Haar wavelet transform is applied to a 1D array whose
dimension is a power of 2 as follows:

1. Read the array two numbers at a time, say p and q.
2. Compute two numbers b¼ ðpþqÞ=

ffiffiffi

2
p

and d¼ ðp�qÞ=
ffiffiffi

2
p

.
3. Create a new array whose first half consists of all b’s (base) and

the other of all d’s (details).
4. Recursively apply above steps to the ‘‘base’’ sub-array.

An inverse Haar wavelet can be applied by starting from the
array obtained in step 3, reading two corresponding numbers
from the two halves of the array, applying the same equations in
step 2 to them, and storing them at successive positions in the
new array. Fig. 3(a) illustrates the process. A ‘‘non-standard’’ 2D
Haar wavelet is simply the application of steps 1–3 above to every
row, followed by every column of the 2D array.1 We refer the
interested reader to Gonzalez et al. [20] for an in-depth overview
of the Haar wavelet transform.

Students had to apply the 2D Haar wavelet transform to an
image, threshold the detail coefficients and invert the transforma-
tion to see the results. We provided actual examples of the 1D
array transform to help them to test their programs.

Experience: This was designed to be one of the more difficult
assignments of the semester, and therefore students asked for and
were provided more hints and help in this assignment than any
other. We felt that a step-by-step illustration of the algorithm (i.e.
a 1D Haar wavelet transform, followed by a 2D transform and
inverse transforms) helped them to implement it correctly. Once
again students were told about the expected outcome only in
words (blocky artifacts in images). As a hint, they were encour-
aged to use the thresholdForDisplay method developed in Assign-
ment 2 to visualize individual iterations of their transforms (e.g.

visualize Fig. 3(g)). Many students found such ‘‘visual’’ debugging
useful, while some struggled with it. This was addressed during
1:1 discussions by showing them examples of how their code
affected the image visually.

3.4. Assignment 4: Basic program design with menus and the undo-

redo feature

Learning
objective(s):

Introduce MVC architecture, use inheritance
and polymorphism for good design

Duration: 2 weeks

This assignment changed the focus from technical operations to
overall program design. The first objective of the assignment was
to introduce the model-view-controller (MVC) architecture. Stu-
dents had to write a handler class that acted as the ‘‘controller’’ by
working with both the user interface (a text-based user interface
for this assignment, as shown in Fig. 4) and the actual Image class.
The second objective was to provide them with an example of
using inheritance and polymorphism. This was done by asking
students to design all the image operations in a streamlined
manner using the command design pattern [21]. This allowed them
to regard all these operations in a general manner. This point of
view motivated the undo–redo mechanism in terms of general
operations. The third objective was to teach them to think how a
particular data structure (in this case, a stack) is suited for specific
functionality (in this case, the ability to undo and redo operations).

This was the only assignment in which they were provided with
some existing code. In order to compensate for students’ lack of
knowledge of data structures a simple stack implementation was
provided to them, along with a short explanation. Students were
expected to observe how a stack worked and relate its behavior to
the intended behavior of the ‘‘undo’’ and ‘‘redo’’ operations. We asked
students to implement the undo–redo feature by simply writing the
‘‘before’’ and ‘‘after’’ versions of an image for every operation to files.

Experience: This assignment generated an interesting discus-
sion in class about how to undo certain operations. While the
flip operation can be undone by flipping once again, the

Fig. 3. Multiresolution analysis. (a) 1D Haar wavelets. In the first iteration, successive pairs of values in an array are used to populate another array that contains base

(yellow) and detail (cyan) values. This process is recursively applied to the base-part until it reduces to size 1 (bottom). (b–e) (Non-standard) 2D Haar wavelets. In the first

iteration the 1D transform is applied to all rows (b,c) followed by all columns ((c)-(d)) resulting in base (yellow) and detail (cyan) values. This process is recursively

applied to the base-part until it reduces to size 1�1 (e). (f–h) Illustration on an example image of size 1024�512. (f) The original image. (g) Illustration of the result after

one iteration (i.e. corresponding to step (d)). (h) Compression artifacts created by transforming, reducing all details below 0.4–0 and inverting the transform.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 A standard Haar wavelet transform completes the row iterations before the

column iterations. A non-standard transform visualizes better.

A. Shesh / Computers & Graphics 36 (2012) 170–177 173



Author's personal copy

edge-detection operation cannot. This showed students how
different mechanisms may be necessary within the same program
to implement one feature (e.g. the undo mechanism). Some
students implemented the undo mechanism by maintaining a
stack of Image objects directly. While this was conceptually
correct, they experienced an ‘‘Out of memory’’ error after they
specified 4–5 operations in succession without undoing any of
them. This was attributed to the large size of some images
resulting in large objects being pushed on the stack. This gener-
ated an even more interesting discussion since most students
were unfamiliar with memory management issues, thanks to
Java’s automatic garbage collection, and hence had never encoun-
tered such an error before. Upon subsequent investigation we
found documentation on how GIMP [22] defines separate
mechanisms for undoing operations, and allows the user to
customize its undo–redo capability.

3.5. Assignment 5: Graphical user interface

Learning
objective(s):

Design GUIs using Swing without WYSIWYG
utilities, exploring Java documentation

Duration: 2 weeks (2 more weeks for extra credit)

This assignment was designed to give students practice in
developing user interfaces in Java. Students were not allowed to
use WYSIWYG tools (e.g. Netbeans [23] for Java) for this purpose–
they were expected to write all the code themselves and use
existing layout managers. A secondary objective was to make
them rely more on documentation to determine which classes to
use and how. This was an important goal towards the end of such
a programming course so that students become more self-reliant

rather than expecting to be taught everything by instructors.
At the end of this assignment, students had created a fully
functional image manipulation application with three image
operations and the undo–redo feature.

Students were asked to replace the text-based interface made
in Assignment 4 (Fig. 4) with a GUI that matched the layout
provided to them as a screen capture (Fig. 5). We provided hints
about specific Java classes that would be useful in this assign-
ment. For extra credit they were asked to use the Java Swing API
to read and convert between standard image formats (i.e. .bmp,
.jpg, etc.) and their own Image class. This assignment generated
enthusiasm among students as it enabled them to finally see and
work with images in their own program.

4. Evaluation

4.1. Comparative quantitative evaluation

In order to evaluate the effect of our I-P theme on student
performance we compared the average performance of students
in three sections of the same course taught in different semesters.
The first and second sections (referred henceforth as Sr1 and Sr2

respectively) had a total of five unrelated assignments and a project.
The third section (referred henceforth as Simage) had a total of seven
assignments (five of which were I-P related) and two lab sessions
(many of these assignments were smaller than those in the other
two sections). Sr1 and Simage had two exams and were taught by the
author, while Sr2 had three exams and was taught by a different
instructor. All sections comprised of a mixture of undergraduate and
graduate students, and were mostly information systems majors
(with some computer science majors).

Fig. 6(a) shows the comparison between percentage average
performance of students across five unrelated assignments in Sr1

(blue), Sr2 (green) and the 5 I-P assignments in Simage (red). Each
corresponding assignment in the three sections had roughly similar
objectives, although they were unevenly distributed because Simage

had more but smaller assignments. This comparison shows that
although Sr2 is different, Sr1 and Simage followed roughly similar trends
in performances from one assignment to the next. It also shows that,
overall, students in Simage with the image processing assignments
performed slightly better than those in Sr1 and Sr2. Fig. 6(b) compares
the performance trend of students in Sr1 (blue), Sr2 (green) and Simage

(red) across all assignments and exams spanning the semester (X-
axis). The black dots denote the averages of exams during the
semester, while the green dots reflects those of the final exams in

Welcome to my small image manipulation program.
Main menu:
‘o’ :Open a PPM image.
‘s’ :Save the current image in PPM format.
‘p’ :Print name of the current image.
‘f’ :Flip the current image vertically.
‘e’ :Find edges in current image.
‘c’ :See compression artifacts in image.
‘u’ :Undo.
‘r’ :Redo.
‘x’ :Exit the program.
Please select an option:

Fig. 4. Assignment 4: text interface for program. A user would save a file after

processing it and then use Photoshop to view it.

Fig. 5. Students replicated this GUI using Java Swing.

A. Shesh / Computers & Graphics 36 (2012) 170–177174



Author's personal copy

the three sections. Fig. 6(c) shows a summary of letter grades
(expressed as a percentage of the number of students). All sections
were graded on an absolute basis. It shows that although more
students in Simage received worse grades, it also got more A’s. The
absence of grades lower than ‘B’ in Sr1 can be attributed to two
reasons. First the minimum cutoff for a ‘B’ was lower by one
percentage point in Sr1 than in Sr2 and Simage. Secondly, Sr1 had
approximately 70% graduate students whereas Simage had about 50%,
which likely increased overall class performance in the former.

Although the above comparison shows only a marginal
increase in performance, it does not take into consideration other
benefits of our approach, namely progressively creating a single
application from scratch and exposing students to practical image
processing algorithms from an implementation point of view.
Although it is difficult to measure the influence of these factors to
student learning, we believe that these aspects contribute posi-
tively to what our students could implement and accomplish in a
single semester. As it is included in an introductory course such
material also helps students to broaden their awareness and
understanding of other subjects within information technology.

We also attempted to assess whether students felt that they
accrued the overall benefits of this course even when working
with specific I-P related material. Every course in our school
undergoes a standardized IDEA assessment [24]. Table 2 reports
and compares some details from student feedback for Sr1 and
Simage, respectively. The objectives were collectively set by the
faculty who teach this course. Although factors like student
background and teaching styles also affect such responses (e.g.
Sr1 and Simage represent the first and second time respectively that
the author taught this course), these results nevertheless show a
greater percentage of students concurring that course objectives
were met when I-P assignments were introduced.

4.2. Qualitative evaluation

In general students were enthused with the idea of working with
images. This was especially evident after the first assignment when

they realized that the text files provided to them were images. After
the first assignment, as soon as an assignment was posted a few
students regularly searched online for the details of the algorithm
that they were asked to implement and contacted us to confirm what
they ‘‘guessed’’ they were implementing. This showed us that
students were motivated to complete the assignments. We received
quite a few questions about the details of the underlying algorithms:
‘‘how does the edge detection actually work?’’, ‘‘is this what Photoshop

uses (for edge detection)?’’, ‘‘what do the numbers in the filters actually

mean?’’, ‘‘are wavelets practically used for image compression, and if so,
where?’’. Soon after assignment 3 was posted one student contacted
the instructor saying he searched online, found ‘‘something called

wavelets’’ and ‘‘thought it looked really complicated’’. That seemed to
support our theory that hiding mathematical details indirectly helps
students to complete assignments with less apprehension. Assign-
ment 4 generated useful discussion about design. Some students
wondered if there was a better way to implement the mechanism
without resorting to files that took up unnecessary space on the hard
drive. One student implemented an undo–redo mechanism that
preserved the order of operations across several images (i.e. his
program regarded the file ‘‘open’’ and ‘‘close’’ operations as undo-
able as well, making it possible to revert back to an earlier opened
image and undoing its operations. This is not possible in most
commercial image manipulation programs.). Some students described
the overall experience of the course as ‘‘: :great way to improve critical

thinking with just about sufficient help from the instructor’’, ‘‘good job

fitting students from different backgrounds’’, ‘‘great class’’, ‘‘images were

useful and more importantly we learned Java while working on them’’,
etc. There were a few comments about how the nature of the
assignments made the course difficult for them because the basic
idea of working with images did not excite them. A few students
struggled with manipulation of 3D arrays as they had never
encountered them.

In future, we plan to evaluate our experiment more formally by
including student surveys at regular intervals in the course. This
would give us more progressive and precise feedback regarding
impact on student learning. We also plan to solicit the feedback of

65
70
75
80
85
90
95

100

A1 A2 A3 A4 A5

A
ve

ra
ge

 b
y 

pe
rc

en
ta

ge

Assignments

Regular 1

100%

80%

60%

40%

20%

0%
Regular1 Regular2 Image

Processing

Regular 2
Image Processing

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 b
y 

pe
rc

en
ta

ge

Week

Regular 1
Regular 2
Image Processing

B C D F

Fig. 6. Performance trends comparing three course sections in different semesters without (blue and green in (a–b)) and with (red in (a–b)) I-P assignments respectively.

(a) Average performance on assignments (each assignment is worth 100 points). The courses shown in blue and green had a larger project as the last assignment. Although

the same approximate trends were followed, the overall performance was positively affected because of the I-P assignments. (b) Average performance trend over the entire

semesters for the three evaluated sections. The black dots represent the mid-semester exam(s), while the green dots represent the final exams of both sections. (c) Plot of

letter grades awarded for both sections as percentages of their respective sizes. The semester with I-P assignments had a greater number of A grades, although the lowest

grades were worse than those in one of the semesters with no such assignments. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

A. Shesh / Computers & Graphics 36 (2012) 170–177 175



Author's personal copy

instructors teaching subsequent courses to determine if students
have demonstrated the expected programming skills.

5. Conclusions

We had two main objectives in mind when teaching this course
using the I-P theme. The first objective was to make programming
more interesting to students who do not view it so, assuming that
greater student interest would lead to better performance in class and
deeper understanding and appreciation of the subject. Introductory
programming courses often teach such basic concepts that it is
difficult to design assignments that are simultaneously simple,
challenging and interesting. We feel an image processing theme
provides all three aspects. Our interactions in the classroom, along
with the average performance of the students in the assignments,
provide encouraging evidence that our approach worked well in these
aspects. Creating the application progressively also allowed greater
modularity and flexibility in how the assignments were set up.

The second objective was to use image processing purely as a
pedagogical tool without deviating from the more general goals of
the course. This was especially important since our students are
not likely to encounter I-P due to their choice of major. Our I-P
assignments directly mapped to many of the topics explicitly
covered in this course. Some unrelated assignments, originally
included to prevent focusing too much on image processing, also
helped in covering course topics that did not map well to the I-P
assignments. We highly recommend this hybrid approach when
adopting our theme in other programming courses.

Many variations on the above assignments can be designed to
expose students to other image effects. Convolution filtering can be
used for effects such as blurring and affine transformations on color
for sepia toning. Similar to the wavelet transform, other seemingly
‘‘complicated’’ algorithms like the Fourier transform can be used to
create interesting effects. More design patterns, such as proxy and
adapter, can be introduced to emphasize more on design aspects.

Adopting the image processing theme was easier and more
intuitive as we had a background in computer graphics and visual
computing. However, when we encouraged other instructors to
adopt our approach, they were concerned about whether their
insufficient image processing knowledge would have a negative
effect on their teaching. In our experience good textbooks on image
processing (e.g. [20]) explain operations in algorithmic form with
enough detail to directly translate into tractable programming
assignments. Verification of correctness is both visual and simple
in many cases. Thus similar to students, instructors can also view
I-P operations purely from an implementation perspective without
being experts in the field.

Ongoing and future work: After this experience with IT 275, a
section of a traditional IS programming course mandatory for all
IS undergraduate students was taught using an image processing

theme. Some of the variations discussed above were given as
assignments (e.g. blurring and sepia toning). However the size of
the section was too small to perform a reliable quantitative
analysis of student performance. We wish to continue performing
this experiment in such traditional courses to evaluate whether
such an approach is viable for a course that is mandatory for all
students. Although only one section of IT 275 is offered in a
semester, it would be worthwhile performing this experiment on
some but not all sections of the same course during the same
semester. This could help us to better understand its impact on
students’ learning in a comparative way.

Acknowledgments

We thank Dr. Yongning Tang for providing data for one of the
sections of this course for comparative evaluation. We also thank
our students for motivating us to try interesting approaches to
teaching programming and responding enthusiastically to them.

References

[1] Google picasa. 2011. /http://picasa.google.comS.
[2] Flickr. 2011. /http://www.flickr.comS.
[3] Astrachan O, Rodger SH. Animation, visualization, and interaction in cs

1 assignments. In: Proceedings of SIGCSE; 1998. p. 317–21.
[4] Burger KR. Teaching two-dimensional array concepts in java with image

processing examples. SIGCSE Bull 2003;35(1):205–9.
[5] Davis TA, Geist R, Matzko S, Westall J. tewnZ: a first step. In: SIGCSE; 2004.

p. 125–9.
[6] Davis T. Teaching data structures and algorithms through graphics. In:

Proceedings of Eurographics—education papers; 2007. p. 33–40.
[7] Fell H, Proulx V. Exploring martian planetary images: Cþþ exercises for cs1.

SIGCSE Bull 1997;29(1):30–4.
[8] Hunt K. Using image processing to teach cs1 and cs2. SIGCSE Bull

2003;35(4):86–9.
[9] Jiménez-Peris R, Khuri S, Pati No-Martı́nez M. Adding breadth to cs1 and cs2

courses through visual and interactive programming projects. In: Proceedings
of SIGCSE; 1999. p. 252–6.

[10] Wicentowski R, Newhall T. Using image processing projects to teach cs1
topics. SIGCSE Bull 2005;37(1):287–91.

[11] Shesh A. High-level application development for non-computer science
majors using image processing. In: Proceedings of Eurographics—education
papers; 2011. p. 29–36.

[12] Matzko S, Davis T. Using graphics research to teach freshman computer
science. In: SIGGRAPH education program; 2006.

[13] Leutenegger S, Edgington J. A games first approach to teaching introductory
programming. In: Proceedings of SIGCSE; 2007. p. 115–8.

[14] Jordi L, Esparaza J. Computer graphics for information system programmers.
In: Proceedings of Eurographics—education papers; 2010. p. 57–62.

[15] Guzdial M. A media computation course for non-majors. SIGCSE Bull
2003;35:104–8.

[16] Urness T. Teaching file input/output, loops, and if-statements via a red eye
reduction assignment. J Comput Small Colleges 2008;23(4):286–90.

[17] Sutherland KT. Image processing programming projects in an upper division
algorithms course abstract. In: Midwest instruction and computing sympo-
sium; 2004.

[18] Adobe photoshop /http://www.photoshop.comS, 2011.

Table 2
Results from IDEA evaluations. The rating of each objective were given by faculty who regularly teach this course. The responses show that most students perceive that

the objectives considered most important were fulfilled in this experimental way of teaching it, and that this perception was greater compared to when I-P assignments

were not used. (Note: Responses to each question in a section do not add up to 100% because (i) IDEA does not report statistics about the rating of 3

(ii) not all surveyed students answered every question.).

Question Rating Percentage of students rating (out of 5)

Without I-P With I-P

1–2 4–5 1–2 4–5

Gaining factual knowledge (terminology, classifications, methods, trends) Important 13 60 0 90

Learning fundamental principles, generalizations, or theories Important 0 50 0 90

Learning to apply material (to improve thinking, problem solving, and decisions) Essential 27 53 0 80

Developing specific skills, competencies, and points of view needed by professionals

in the field most closely related to this course

Essential 20 53 0 78

A. Shesh / Computers & Graphics 36 (2012) 170–177176



Author's personal copy

[19] GIMP 2011. /http://www.gimp.orgS.
[20] Gonzalez R, Woods R. Digital image processing.Prentice-Hall; 2008.
[21] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns.Addison Wesley;

1995.

[22] Undoing in GIMP. 2011 /http://docs.gimp.org/en/gimp-concepts-undo.htmlS.
[23] THE NETBEANS IDE. 2011 /http://netbeans.orgS.
[24] The IDEA center. 2011 /http://www.theideacenter.org/S.
[25] PPM format. 2011 /http://netpbm.sourceforge.net/doc/ppm.htmlS.

A. Shesh / Computers & Graphics 36 (2012) 170–177 177


