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Abstract

The overall theme of my research work is sketch-based computer graphics–using sketches

to create and enhance 2D/3D geometric models for a variety of applications in modeling,

design and art. This dissertation summarizes my research in four areas, with sketches as

the common theme. In sketch-based modeling, I have worked on converting freely drawn

2D sketches of objects into 3D models automatically, or with the minimal use of sketched

gestures. An extension of this work constructs navigable 3D models from a single 2D image

by treating manual traces of objects in the image as perspective sketches.

Another novel application that this dissertation discusses is sketch-based inverse lighting,

which infers lighting information that produces desired effects roughly sketched by a user

on a scene.

My thesis culminates in rendering 2D and 3D wire-frame sketches that identifies the

intricate interplay between sketch-based and non-photorealistic rendering. The goal of this

research is to construct an efficient rendering pipeline for abstract, hand-drawn sketches

that preserves tone, shape and also addresses the visibility problem for sketches without any

surface information. In addition to sketch-based applications, this research also contributes

to the area of efficient non-photorealistic rendering under dynamic conditions.

This dissertation identifies the challenges in each problem, then discusses the contribu-

tions of my work in detail and identifies the possibilities in each problem beyond the scope

of this dissertation.
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Chapter 1

Main Theme of my Research

(a) (b) (c)

Figure 1.1: Commodity tablet devices. (a) An external tablet (The Bamboo by
Wacom[3]) that needs an external display device. (b) A tablet PC that has an integrated
tablet as display. (c) An external tablet+display device (Wacom Cintiq[4]) that can be used
as a display device.

My broad research interests lie in computer graphics and its interdisciplinary applica-

tions. The greatest personal motivation behind my research work is to not only develop

algorithms and techniques that solve important problems in computer graphics, engineering

and artistic design, but also make these solutions accessible and useful to the scores of users

who are not expert computer scientists.

Various I/O devices have gained popularity in computing technology in the past decades.

1
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However, the counter-intuitiveness of these input technologies is obvious in many engineer-

ing, gaming and design applications (drawing with a mouse in a CAD application, driving

a car in a computer game with a joystick, etc.). With the advent of commodity sketching

devices like external tablet devices and tablet PC’s, sketching with a pen on a planar surface

has become an input method that is very intuitive and natural for human users.

Hand-drawn sketches have been very effective means of communication for people of all

ages and professions. Sketches have great illustrative, expressive and artistic appeal that

inspires many problems and solutions in computer science, especially in computer graphics.

As tools of communication, sketches can be effectively used to create hitherto inconceivable

applications, or even greatly improve the usability of existing applications. Their artistic

forms themselves spur one of the most popular areas of study within computer graphics–non-

photorealistic rendering. My research in general and this dissertation in particular explore

applications of human-drawn sketches in design and art, and also the implicit relationship

between sketch-based and non-photorealistic computer graphics.

Human-drawn digital sketches as input metaphors also have an important part to play

in making applications and research in computer graphics and other fields accessible to

the vast majority of computer users that are not expert computer scientists. Through my

current and future research, I wish to make existing but difficult-to-use techniques accessible

to the users that find the greatest use for them in practice. Designing new algorithms or

modifying existing ones to accommodate the fuzzy nature of sketched input offers a unique

challenge, and is an essential component of my research.



Chapter 2

Summary Of Research

Contributions

This chapter summarizes various research projects related to the theme of my dissertation

that I have worked on:

2.1 SMARTPAPER: 3D Modeling From Freehand 2D Sketches

Figure 2.1: SMARTPAPER. Figure shows how individual parts are sketched roughly,
either directly or using gestures like arrows. The reconstructed parts are then assembled
together to form a lamp.

Engineers and architects typically use pencils and paper during early conceptual design,

because no computer-based system offers enough flexibility for rough sketching. When the

design becomes more concrete, a CAD model is constructed from scratch. The objective of

this research is to take these rough 2D sketches as input and directly construct plausible

3
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3D models from them. Results of this research are prototyped in a system called SMART-

PAPER. SMARTPAPER creates plausible 3D models from orthographic sketches. It has

been designed to work with actual sketches of objects so that the user can draw exactly as

on paper using a pencil. Several gesture-based operations are also supported.

My research contributions in this work are as follows:

1. My main contribution is to make the entire process of reconstructing 3D models from

a single sketch interactive, so that it can be used as an application on a Tablet PC.

Several specific contributions listed below contribute to this.

2. Algorithms to return the set of cycles in a graph that correspond to faces of the object

whose 2D sketch the graph represents. These algorithms leverage probable sketching

order and use shortest-path algorithms from graph theory. They work in real-time for

most practical sketches.

3. An initial guess for the optimization problem that greatly speeds up its rate of con-

vergence, and in many cases, the quality of the solution.

4. A simple gesture recognition system used to signal various operations and place con-

straints on the model using sketches.

5. A feedback loop using which a user may go back to the sketch from an incorrectly

reconstructed 3D model to correct it, leading to a better 3D model. Such feedback

is important to support reconstruction of shabby sketches and also aids the user in

learning to use SMARTPAPER.

6. Several augmenting operations for completion, like cutting an object, combining sev-

eral objects and annotating them with graffiti.

Chapter 3 discusses this research work in detail. This work is also summarized in [106]

and [107].
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2.2 Peek-in-the-Pic: Using Sketches To Navigate An Image

(a) (b) (c)

Figure 2.2: Peek-in-the-Pic. (a) an input painting of Downtown Minneapolis. (b) a
distant view of the constructed geometry. (c) another view of the constructed geometry.

Restricting the sketches in SMARTPAPER to be orthographic is a strategic decision

because orthographic projections preserve many geometric properties like parallelism and

perpendicularity, which aid in the reconstruction process.

Peek-in-the-Pic represents research in reconstructing perspective sketches. The appli-

cation of choice is a system that reconstructs a rough 3D model out of a single photograph

by treating object trace-outs as perspective sketches.

My research contributions in this area are as follows:

1. My main contribution is to amalgamate many known and some new techniques to

solve the overall problem of creating a navigable 3D model from a single image, with

the aim of an easy user interface that produces a satisfactory result for images of a

certain type.

2. Support for reconstructing perspective sketches by performing automatic camera cali-

bration to distort the sketches into their orthographic counterparts before reconstruct-

ing them.

3. An ability to progressively complete hidden parts of an object extracted from a pho-

tograph. This extends the face-recognition algorithm of SMARTPAPER.



6

4. An automatic method of filling holes in an image that uses conventional texture syn-

thesis techniques, with an easy user-interface for unsatisfactory results.

Chapter 4 discusses this research work in detail. This work is also summarized in [108]

and [111].

2.3 Crayon Lighting: Sketch-based Inverse Lighting

(a) (b) (c)

Figure 2.3: Crayon Lighting. (a) a pelvis model with default lighting. (b) the sketched
input. (c) the resulting lighting using conventional OpenGL lighting. (d) a raytraced output
showing the effects of shadowing more clearly.

Given a 3D model, adjusting lighting for some desired appearance usually requires tweak-

ing light properties like positions, directions and intensity. Crayon Lighting is a goal-oriented

approach to set up lighting for a given scene. The user sketches “bright” and “dark” re-

gions on the scene to describe desired appearance. The system then automatically and

interactively infers various lighting parameters that produces these effects, assuming a sim-

ple lighting model. The user can then transform the model and sketch more desired effects,

setting up the overall lighting progressively.

My research contributions in this area are as follows:

1. My overall contribution is to make the inverse-lighting problem interactive. Even for

a simple lighting model like ours, this is very challenging. Specific contributions below

contribute to the overall interactivity.

2. A hashing technique to create good initial guesses for the complex optimization prob-

lem. This greatly speeds up the rate of convergence. This technique incorporates
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discontinuous self-shadowing effects thereby allowing limited shadow design.

3. An optimization technique that incorporates creating newer lighting configuration

without undoing the product of previous design sessions. This makes progressive

lighting design possible.

4. Effective use of the GPU to compute the objective function. Specifically this uses a

multi-pass algorithm to compute the sum of values in a texture.

5. A unique iterative optimization framework that increases speed of convergence by

dividing the solution space of the original problem into more tractable optimization

problems.

Chapter 5 discusses this research work in detail. This work is also summarized in [118]

and [119].

2.4 Sketches as Non-Photorealistic Renditions

Several sketch-based applications in design and art attach value to the original form of

the sketches instead of its refined or recognized form. This research creates a pipeline for

sketches that produces static and animated renditions at interactive rates as strokes are

being added, moved and deleted by the user. This pipeline requires only two parameters

that be refined by the user interactively. This work also makes several contributions in

the area of non-photorealistic rendering and thus, reveals the intimate relationship between

sketch-based and non-photorealistic computer graphics.

My contributions in this area are as follows:

1. A pipeline that simplifies strokes on the screen efficiently as they are added, deleted

or moved. This pipeline operates virtually transparent to the user, as it uses only two

user-defined parameters. Both these parameters can be changed interactively.

2. Temporally coherent renditions while working in the dynamic and interactive setting

described above. This is an important consideration for animated renditions.
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(a) (b) (c)

Figure 2.4: Rendering a sketch with fidelity. (a) a 2D artistic sketch of a lamp.
Thumbnail shows its appearance when zoomed out. (b) the same lamp simplified while being
zoomed out. Strokes are taken in their entirety and are not discriminated by color. (c)
When strokes are segmented and color is considered during simplification, the rendition
more closely resembles the original sketch. The bigger figures in (b) and (c) show the
simplified thumbnails magnified for better illustration.

3. A method to produce local visibility cues that cause a global occlusion effect. A

previously known method is implemented at no extra cost because of our design.

Chapter 6 discusses this research work in detail. This work is also summarized in [109]

and [110].



Chapter 3

Sketch-based 3D Modeling

3.1 The Problem and the Applications

Designers in almost all professions use sketches during the early stages of conceptual design.

This is especially true in case of architectural design, where initial ideas concentrate on

subjective and artistic aspects. At such stages, the design ideas are nascent and perhaps

too vague to be expressed precisely in terms of CAD models. Besides, the ambiguous and

shabby form of the sketches play an important role in the evolution of the design itself.

When the design becomes precise enough, wooden models or CAD models are constructed

to convey it to customers and peers. Construction of these models involves looking at the

sketches and drawing a CAD model on a computer from scratch. This divide between the

initial design and finished prototype stages can be bridged if the sketches could be directly

converted into 3D models. The area that deals with this problem is called sketch-based 3D

modeling.

In the absence of sophisticated hardware, a sketch drawn on paper would usually be

digitally scanned and processed to obtain an line drawing. Earlier tablet devices provided

an opaque surface on which one could write on a stylus. Such devices had to be plugged into

a computer and the sketch viewed on the screen, as it was being drawn on the tablet surface.

Recent commodity tablet devices have integrated the tablet surface with a display, thereby

providing a true pencil-and-paper experience of being able to see what is being drawn on the

tablet surface itself. Popularity of such devices in the form of external tablets or tablet PCs

9
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has revolutionized the area of sketch-based computing and brought the problem of sketch-

based modeling from being mostly an academic interest into the realm of applications of

daily, affordable and commercial use.

3.2 The Challenges

Mathematically, three orthogonal views of an object are enough in many cases to construct

the 3D model for that object1. A sketch provides a single projection of a 3D model, and thus

by itself theoretically corresponds to an infinite number of 3D models. Thus the problem

of inferring the geometry of the 3D model uniquely from a single sketch is mathematically

insoluble. However, when presented with the sketch of a model, most humans have no

problem in instantaneously inferring uniquely the implied 3D object. Such compelling

empirical evidence of preference of one geometric configuration over others suggests that

a computational method to infer the correct 3D model may be possible for many kinds of

sketches.

The advent of commodity tablet devices has also raised the expectation of sketch-based

modeling applications to be not only successful, but also interactive. Since sketches can be

drawn and viewed in real-time, converting them into refined 3D models is also expected to

happen within a few seconds for the process to be satisfactorily interactive. The holy grail

in the area of sketch-based modeling is thus to provide an “enhanced pencil-and-paper”

experience. The contributions of this thesis in this area concentrate mainly on making

various steps in the model construction interactive.

3.3 Related Work

The problem of converting line drawings into 3D models has been popular since the 1970s,

and some of the earliest references to it can be found in the literature of artificial intelligence.

One of the earliest attempts at sketching systems was Sketchpad[116]. Earliest approaches

classified the edges of a line drawings into convex and concave contours of the object by

1It is possible that some features hide behind others in all three views, thereby constructing a “hull” of
the 3D object instead of its precise geometry
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edge-labeling[48, 56]. Using these labels, it was possible to define the topology of many

types of objects from their single-view sketches. Other methods follow similar strategies:

inferring 3D geometry based on identifying and classifying local parts of the sketch as

corners, oriented faces, etc.[10].

The space of 3D models is too vast, and the sketches drawn for such models differ

greatly in their nature and complexity. Therefore most practical sketch-based systems

concentrate on building 3D models of specific classes from their respective sketches. Solid

geometric models used in engineering or architectural design have been the most popular

class[39, 73, 74, 133, 106, 49]. Vegetative models of plants and flowers have been created from

sketches[51]. Design of rotund, freeform objects with curved surfaces has been proposed[50,

58, 61]. Our work concentrates on creating 3D rigid body objects from sketches.

Most sketch-based modeling systems can be divided into roughly three categories–

recognition, interpretation/reconstruction and gesture-based, with many systems choosing

a hybrid approach. The method of recognition aims at building a database of known topolo-

gies of objects and then matching a candidate sketch to the closest known object. Matching

criteria are usually based on statistical learning of observed facets of the objects in their

known projections[74]. While such approaches are promising and often more successful at

recognizing known topologies than others, they are not scalable in general to include a large

class of objects. Instead of recognizing entire objects, such approaches are used to recognize

localized facets and another method is employed to construct the 3D model. The Chateau

system[49] suggests candidate 3D objects as the user adds edges to the sketch, by matching

the existing sketch with a known database of edge and plane configurations.

Interpretation/reconstruction methods attempt to infer the geometry of the 3D model

from a sketch without referring to a database of known objects and their projections. These

methods are very popular because they are not confined to succeed only for a known small

subset of objects. The simplest solutions in this category use edge labeling as a starting point

to infer the topology, which is then refined to obtain precise 3D coordinates[104]. One of the

most popular formulations arises from the notion of inflation: considering the line drawing

as a planar graph and assigning an approximate depth to every vertex, thereby inflating



12

it into a 3D model. Marill[76] proposed one of the first solutions to sketch reconstruction

using such an inflation approach, minimizing the difference between edge angles of the

sketch and the 3D model. Subsequently, many extensions to this optimization framework

have been suggested: Leclerc et al.[66], Grimstead et al.[38], Oh et al.[83], Lipson et al.[73],

etc. The Teddy system[50] inflates sketches to create rotund, toy-like objects by using

distance-transform-based inflation methods. Another typical approach to inflation is to

identify 2D regularities in the line drawings–hints in the sketch that correspond to some

geometric property of the implied 3D model. Examples of 2D regularities include planar

faces, parallelism and orthogonality of lines and faces, three-edge corners, etc. Our system,

SMARTPAPER, belongs to this category and delivers an interactive system by providing

several extensions to previous work. Identifying additional constraints like mirror symmetry

in objects[92], constraints in 3D geometry as a post-process[84], etc. contribute to making

the optimization more tractable, thereby reducing the probability of arriving at (visibly)

incorrect local minima. The challenges in such a framework tend to be defining an objective

function that accurately captures the correspondence between sketches and 3D models,

non-linearity and multi-dimensional complexity of the resulting optimization and related

problems of the speed and accuracy of convergence. An alternative approach taken by Varley

et al.[124] in the RIBALD system is to first label a given line drawing using the Huffman-

Clowes scheme[48], then categorizing the line drawing into a specific type of topology, and

then constructing a 3D model in parts using a series of vertex, edge and face “moves”.

The category of gesture-based systems arises from the observation that many complex

topologies can be easily expressed procedurally. For example, many complex objects can be

identified as surfaces of revolution, linear or non-linear extrusion, etc. Thus, this category of

proposed solutions converts 2D inputs into 3D models by constraining the space of possible

solutions. This is done by either using gestures instead of actual objects, or offering a

constrained user interface. Thus, in contrast with the earlier categories that worked with

actual sketches of objects, gestured-based systems often allow the user to draw strokes that

do not correspond to the actual geometry of the object, but hints towards their topology.

Quick Sketch[27] allows the user to draw rough 2D curves and supports extruding them along
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a curve to construct 3D models. The SKETCH system[133] uses intuitive gestures to define

a 3D model progressively. The GIDES system[91] allows the user to create 3D models by

sketching multiple 2D views or using standard gestures for some 3D configurations. Cherlin

et al.[17] use scribbling and curved-based gestures to bend surfaces and create complex 3D

models. Naya et al.[80] allow the user to draw tentative construction lines that acts as

“scaffolds” to the actual sketch and aid in the reconstruction of its 3D geometry. In the

system designed by Tolba et al.[120, 121] the user iteratively sketches objects on paper,

scans them into the system and aligns them.

There are some sketching systems whose main contribution is to design an interface

metaphor that is more intuitive and geared towards sketch-based modeling. The Chateau

system[49] suggests candidate 3D models even before the user has finished drawing the

entire sketch. Karpenko et al.[60] use epipolar geometry to create a 3D model by multi-

view sketching. Tolba et al.[120, 121] use a perspective grid to align strokes and interpret

them in 3D.

3.4 SMARTPAPER: A primer

SMARTPAPER is a design-by-sketches system that allows construction of objects made

with planar faces, and objects of extrusion that have curved surfaces. It presents a unified

sketching environment that supports both direct and gestured sketching, with emphasis

on the former. It gives more freedom to the user by supporting casual sketching styles,

where several overlapping discontinuous strokes could be sketched (Figure 3.4). In addition

to sketching objects from scratch, a user can sketch directly on a 3D model to add to its

geometry (Figure 3.5(b)). SMARTPAPER provides a feedback system that allows a user to

examine the interpretation made and provide hints accordingly to improve its performance,

leading to greater user satisfaction (Section 3.10). In addition to converting sketches into

3D models, SMARTPAPER offers a compendium of Computational Solid Geometry (CSG)

operations, synergistically resulting in a practical proof-of-concept system. Also, it employs

non-photorealistic rendering techniques to give the reconstructed objects a sketchy look. As
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will become evident in Section 3.5, from a user interface perspective, the system combines

seamlessly various 2D and 3D operations such 2D sketching, sketching on 3D, cutting and

joining.

3.5 User Interface

Figure 3.1: User interface of SMARTPAPER. The user sketches on the blank window
and then presses the appropriate button to specify the operation.

SMARTPAPER is implemented on the Tablet PC. It presents a directly sketchable

blank window. Alternatively, it can provide standard templates like a ground or a room as

a starting point for the user. The user can directly begin to sketch in the window with a

stylus. The stylus emulates well a standard pencil, by enabling the user to erase sketched

strokes with its other end.

The general theme of working with SMARTPAPER is to sketch strokes and then specify

what they mean. For example, to sketch an object the user places strokes as s/he likes

and then specifies the “reconstruct” operation. This allows imperfections in all operations

requiring sketchy input.

To construct simple objects like pyramids, prisms, frustums, etc. the user can directly

sketch them. All edges of the object must be drawn in this case. The user may draw

hidden edges using dotted lines, and this gesture is used accordingly when the 3D object

is constructed. Sometimes it is cumbersome for the user to draw all edges of an object.

Objects that are extrusions of planar profiles can be constructed by sketching the closed

profile and an extruding arrow (Figure 3.5(a)). To construct more complicated objects,
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Figure 3.2: The processing pipeline of SMARTPAPER.

the user can employ an incremental process by creating a simple object, transforming it,

sketching directly on it to augment it and so on (Figure 3.5(b)), or by combining several

simpler objects (Figure 3.5(c-h)). Whole objects may be constructed in multiple sessions,

making the process truly incremental.

In order to cut an object, the user can directly draw the cut edges on the object or draw

a closed curve and an extruding arrow to cut a hole through it. Pressing the “cut” button

completes the cutting operation (Figure 3.8.3). In order to select an object out of many,

the user may either encircle it and click on the “lasso” button, or simply double-click on

it. In order to join two objects by a face, the user first selects the two faces and then clicks

on the “join” button. The user can annotate an object freely by selecting the “annotate”

button and then freely scribbling on the current object. All such strokes are projected onto

the object. The user can also define a custom plane with respect to the 3D geometry of the

object, and sketch on it.

The user can create several layers and create objects in each layer. This is analogous

to a designer using transparency sheets or tracing paper to construct different aspects of

his/her design. This feature removes the limitation of space created by the screen size.
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3.6 System Overview

Figure 3.3: 3D reconstruction pipeline.
(a) the input rough sketch (b) the cleaned 2D
graph (c) the recognized faces and (d) the re-
constructed 3D object.

The block diagram in Figure 3.2 shows

the processing pipeline of SMARTPAPER.

This pipeline shows operations for which

a sketched input is required, i.e. drawing

a new object, augment existing ones, and

cutting. Point-and-click operations such as

joining two objects are not illustrated in this

pipeline.

When a set of strokes and the user com-

mand is given, over tracing and other imper-

fections are removed, as explained in Sec-

tion 3.7.1. This preprocessing is done on all

sketched strokes irrespective of the opera-

tion to be performed. A direct consequence of this is that such sketching imperfections

are allowed while drawing as well as cutting. Any gestures that are part of the set are

recognized when queried.

The top part of the pipeline enumerates the 3D reconstruction operation, while the lower

part represents the cutting operation. If the specified operation is 3D reconstruction, then

2D graphs are formed from the set of strokes (Section 3.7.2). A set of valid cycles forming

faces of the sketched object is then determined (Section 3.8.1). 3D-model reconstruction

is then performed by optimization to reconstruct the final 3D object (Section 3.8.2). This

process can be intervened by user feedback (Section 3.10). Figure 3.3 illustrates various

steps in reconstruction.

If the specified operation is cutting, then ray casting is used to determine a set of cutting

planes (Section 3.8.3). The object is then cut resulting in two or more objects.
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Figure 3.4: Examples of over tracing. (a)
over tracing done to complete an edge, (b) un-
intended over tracing, and (c) over tracing to
highlight an edge.

Our system makes a Closed Object

assumption about a drawn object: only

solid objects that are homeomorphic to a

sphere can be drawn (this assumption is re-

moved later in Chapter 4). Objects that are

not strictly closed (e.g. objects with holes)

can be constructed by a series of operations.

A series of planes resulting in an open ob-

ject cannot be drawn.

This class of objects encompasses all ob-

jects that can be physically constructed,

and hence does not impede applications like architectural design.

3.7 2D Processing

The set of strokes is subject to initial pre-processing. This process cleans up the sketch and

represents the strokes in a consistent format for 3D reconstruction or other operations.

3.7.1 Sketch Cleaning

Whenever strokes are drawn either for 3D reconstruction or cutting, some common prepro-

cessing is done. Two functions are achieved in this block: over tracing consolidation and

gesture recognition.

Over Tracing

A sketch is often drawn as a series of discontinuous strokes to illustrate edges (Figure 3.4).

Such over tracing could either be done unintentionally, to highlight an edge or to simply

complete an edge. These strokes are grouped together to form the continuous edge(s) that

they collectively represent. This grouping is achieved in two passes over the set of strokes.

In the first pass, we find pairs of strokes that qualify as over traced strokes. A pair (A,B)

qualifies when they have nearly equal slopes, and at least one end point of B lies in the x and
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y ranges of the end points of A. Let A(e1, e2) and B(e3, e4) be the two strokes, and let e3 be

the end point of B lying in the range of e1 and e2. Now, let length(e2, e4) < length(e1, e4).

Then B is changed to B′(e2, e4). At the end of this pass, overlapping segments become

segments having one common end point. The second pass then culls all vertices, all edges

incident to which have nearly equal slope. Thus, for example, if no other edges are incident

on e2, A(e1, e2) and B′(e2, e4) form a single stroke A′(e1, e4). These vertices cannot be

removed in the first pass itself because the incidence of all edges has to be known before a

vertex can be culled. The over traced sketch in Figure 3.3(a) is cleaned and interpreted as

Figure 3.3(b).

3.7.2 Graph Generation

Every sketched object is represented as a 2D graph of vertices and edges. A connectivity

matrix is maintained for each object. Each vertex stores (x,y) coordinates.

The set of input strokes is distributed among the existing set of objects depending on

their proximity with the projection of existing objects in the current viewing plane, as the

user does not explicitly specify whether the strokes specify new objects or augmentation to

existing ones. Strokes that do not augment existing objects create new graphs. Two graphs

are merged if a stroke with one end point in each of the graphs occurs. If an object is drawn

by extrusion, then two copies of the profile are made and are connected by edges parallel

to the direction of extrusion.

Clustering as proposed by Shpitalni et al.[113] is used to group vertices close to each

other in the graph. As edges are added to the graph, all end points within a distance of δ
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Construction of 3D models in SMARTPAPER. (a) Constructing a 3D
model by extrusion (b) Adding to an existing 3D model (c-h) Constructing an object by
parts.

from an existing vertex are grouped with it. Incorrect thresholding can be corrected in the

feedback system to allow sketches with lesser precision (Section 3.10).

To uphold the Closed Object assumption, each vertex must have degree at least 3. This

check is used to clean unnecessary vertices, which may be created when a single stroke is

incorrectly interpreted as two or more edges due to its slope. The final representation is a

2D graph with vertex degree at least 3 and order at least 4. Augmented and newly sketched

objects undergo 3D geometry reconstruction.

3.8 3D Geometry Reconstruction

This section encapsulates the functionality for determining the 3D aspects of each un-

constructed object, namely face determination and iterative 3D reconstruction. For the

following discussion, for a given graph G, V (G) and E(G) represent the vertex set and edge
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set of G, respectively, while G− e is the sub-graph obtained by deleting the edge e from G.

3.8.1 Face Determination

We determine the faces of the object from its representative graph G as illustrated in

Figure 3.3(c). All faces are cycles of G; however the converse is not true. Shpitalni et al.[112]

discuss a face determination algorithm based on an A* or branch-and-bound search. Their

algorithm is too slow because it performs an exhaustive search on the set of all possible

cycles, and the Closed Object assumption allows us to formulate a definition which simplifies

face determination. In the definition, graph G represents the 2D graph of an unconstructed

object:

Definition A: All edges of graph G are part of exactly two faces. Every valid face F of

G is such that for all pairs v1, v2 ∈ V (G) that are in F , the shortest v1, v2-path in G is of

the same length as the v1, v2-path in F .

Justification: The first statement is a property of closed, non-laminar, rigid objects. If

the second statement is not true, let P be the shortest v1, v2-path in G and let P ′ be the

shorter v1, v2-path in F . There is at least one edge in P not in P ′. PP ′ thus creates a

smaller closed walk and hence a smaller cycle C containing v1 and v2. The edge set E(C)−
(E(C) ∩ E(F )) divides face F into two or more different planes, which is a contradiction

as F is a valid face and hence is planar.

We propose two algorithms for face determination that directly determine all valid faces

of G instead of examining all possible cycles of G for validity. While the first algorithm

takes advantage of interactive drawing cues and is fast, the second algorithm is theoretically

more robust albeit slower.

Algorithm 1: Edge Coherence algorithm

Humans draw objects according to how they perceive them. Often our drawing styles

construct the object part by part. This algorithm examines the sequence S in which strokes

are drawn to search for cycles that form valid faces. Note that consolidating over traced

strokes does not disturb this sequence, as the earliest stroke in a series of over tracing strokes
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is used to determine the order of the consolidated stroke.

Figure 3.6: Edge coherence al-
gorithm. Edges are drawn in or-
der 01-12-23-30-04-45-35-56-62-47-
76-71 (a typical way of drawing a
cube). The first pass determines
faces {01-12-23-30} and {04-45-35-
03} and partial faces {56-62}, {47-
71} and {76}. The second pass com-
pletes these faces.

If the object is drawn face by face, then edges

of such faces are adjacent in S and thus, a linear

traversal of edges in their order directly recog-

nizes some faces. If two adjacent edges in this

order do not have a common end vertex, the

algorithm “looks ahead” in S to find an edge

connected to the current edge. Our preliminary

tests showed that a look ahead of 1 was suffi-

cient for simple primitives like prisms, pyramids,

etc. This algorithm works in two passes. Pseudo

code for it is provided in Algorithm 1 and is il-

lustrated in Figure 3.6. The main advantage of

this algorithm is its speed. The amortized cost

of the first pass is O(e), while the second pass

takes O(e1 · n2) time, where e1 is the number of

edges that are not part of two faces and n is the number of vertices of G. The first pass

amortizes the second pass depending upon how the object is drawn.

The speed of this algorithm is due to the fact that humans intuitively draw objects

according to how they perceive them and not in a completely random fashion. However,

this assumption is not theoretically strong. Also, if all the strokes collectively representing

an edge of the object are erased and redrawn, this order may be disturbed. To improve the

performance of SMARTPAPER, we have devised a second algorithm for face determination.

This is a theoretically more robust albeit considerably slower algorithm, but it still directly

determines all valid faces and hence is an improvement over [112].

Algorithm 2: Modified Dijkstra’s algorithm
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Algorithm 1 Edge Coherence Algorithm

Input: Graph G with vertices V(G). E(G) is in order of sketching
k: Look-ahead factor
Output: Complete set of faces L and incomplete set of faces X
L← {}
F ← {}
for all e ∈ E(G) do

if e is adjacent to any edge in F then
F ← F

⋃
{e}

else
if an edge e′ ahead of e within k in E(G) is adjacent to F then
F ← F

⋃{e}
else

Add F to X
F ← {}

end if
end if
if F is a cycle then
L← L

⋃{F}
F ← {}

end if
end for
G′ ← (V (G), {e ∈ E(G) : e is not part of two faces})
for all e = (v1, v2) ∈ E(G′) do
C ← shortest v1, v2 path inG′ − e
L← L

⋃{C⋃{e}}
G′ ← G′ − e

end for
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Figure 3.7: Edge coherence al-
gorithm. Edges are drawn in or-
der 01-12-23-30-04-45-35-56-62-47-
76-71 (a typical way of drawing a
cube). The first pass determines
faces {01-12-23-30} and {04-45-35-
03} and partial faces {56-62}, {47-
71} and {76}. The second pass com-
pletes these faces.

This algorithm finds all faces for each edge in the

graph such that definition A is satisfied. For every

edge e, we remove the edge from the graph and find

a shortest path between its end points. We employ

Dijkstra’s shortest path algorithm for this purpose.

We maintain a set R of edges for which all faces

containing those edges have been found. If any edge

e′ in this set shares an end vertex with the current

edge e, we mark the other end vertex of e′ as tra-

versed. This prevents the Dijkstra’s algorithm from

finding a shortest path which contains any edge in R

in it. Intuitively, once all the faces of which an edge

is part of have been determined, the edge cannot be

part of any face determined in future, even if it is on

some shortest path. Thus, this satisfies definition A

and hence the algorithm is correct. Pseudo code for the algorithm is shown in Algorithm 2.

The last step in the pseudo code removes any fictitious “internal” faces as illustrated in

Figure 3.7. Thus, the algorithm finally produces two faces per edge.

Both algorithms update face lists of objects incrementally. It is important to note that

if a sketch augments an existing object, only faces containing vertices to which new edges

are incident are determined. If an “incomplete” object is drawn, then the results of both

algorithms may be verified from the 3D model: if the face is extremely non-planar, it is

flagged as an erroneous face and is not triangulated.

3.8.2 Iterative 3D Reconstruction

SMARTPAPER uses a modification of the optimization process proposed in [73], which

we summarize here for completeness. This step “inflates” the planar sketch by assigning

suitable Z-coordinates to each vertex of the graph of the object, which are determined

using a set of geometric properties. The properties used are planarity of faces, parallelism
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Algorithm 2 Modified Dijkstra algorithm

Input: Graph G with vertices V (G) and edges E(G)
Output: Set L of all faces of the object
S ⊆ E(G): Set of edges that are not part of at least 2 faces
R ⊆ E(G): Set of edges that are part of at least 2 faces
M : Matrix having faces as rows and edges as columns
L← Known faces of the object or null
/*Initialize S */
for all e ∈ E(G) do

if e is not part of 2 faces according to M then
S ← S

⋃{e}
end if

end for
/*If a current object is being augmented, S is a proper subset of E(G)*/
while S 6= {} do
e = (v1, v2) ∈ S
for all e′ ∈ R do

if e′ shares an end vertex with e then
Mark end vertices of e′ as traversed

end if
end for
while Edge-disjoint v1, v2 paths exist in G− e do
p← v1, v2 shortest path in G− e
L← L

⋃{p⋃{e}}
Update M with {p⋃{e}}
Temporarily remove p from E(G)

end while
R← R

⋃{e}
G← G− e

end while
/*For all faces that have edges part of > 2 faces, remove them */
for all Columns M(., i) of M do

if M(., i) contains more than two faces then
Mark M(., i)

end if
end for
for all Rows M(i, .) of M do

if M(i, .) is made up of only marked columns then
Remove corresponding face from L

end if
end for
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Figure 3.8: Inflation of sketch by optimization. Upper and lower rows show how infla-
tion without and with layering respectively: (a) initial condition, (b) and (c) intermediate
states, and (d) the final object. The colored circles show how vertices move during inflation.

and perpendicularity between edges, comparing edge lengths and mutual angles at corners.

The general idea of this method is to duplicate the properties available in the 2D sketch

in the 3D object. Each constraint is expressed as a factor relating a 2D property to a 3D

property. A compliance function F (Z) is computed for an 3D configuration by summing

the contribution of the factors. The final compliance function to be optimized takes the

form

F (Z) = W
∑
A

where A is the vector of all factors and W is a weighting function. This is an n-dimensional

optimization problem. We use Brent’s minimization technique[98] to solve it as a set of 1-

dimensional optimization problems by cycling through all vertices. For a detailed discussion

on factors and formulation of the problem, please refer to [73].

A critical issue is the dependence of the result of optimization on the initial guess. If

all Z values are initialized to 0, incorrect local minima are often reached, which is visually

indicated by a deformed or collapsed reconstructed object (Figure 3.8 (a) top). The user
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(a) (b) (c) (d)

Figure 3.9: Cutting a 3D model in SMARTPAPER. (a) A planar cut specified directly
by the cut edges (b) the result of the planar cut (c) cutting by extrusion (d) result of the
extruded cut.

can provide hints (dotted lines) in the sketch by specifying hidden edges. If such a hint

is available, then the object is divided into 3 Z-layers. One layer consists of vertices to

which only hidden edges are incident (Z = −10, say), the second layer consists of vertices

to which only visible edges are incident (Z = 10, say) and a third layer consists of all

remaining vertices on silhouettes (Z = 0) , as illustrated in Figure 3.8 (a) bottom. This

partially inflates the object and our tests show that this produces a better initial guess

leading to fewer cases of convergence to incorrect local minima. This method is a simplified

version of that proposed by Company et al.[88]. It is important to note that 3D information

of vertices of existing objects to which new edges are not incident is retained, and hence 3D

reconstruction is incrementally performed.

The final representation of the object is a graph with augmented 3D information. This

representation is similar to a boundary representation. When the user wishes to sketch

from a new view point, all objects are re-projected onto the current viewing plane. These

projections are used to determine if strokes drawn augment existing objects or create new

ones, and for object selection.

3.8.3 Cutting

The user can specify cutting in two ways. A cutting plane can be directly drawn on the

object. Alternatively, an open or closed profile and an extruding arrow can also be drawn.

Due to the unified preprocessing in the pipeline, over tracing is allowed in these specifications
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as well.

Because our representation scheme is similar to B-reps, the actual cutting algorithm

is similar to that proposed in [75]. The user strokes are converted into a 2D graph after

preprocessing. A ray is cast from the eye position into the scene through both end vertices

of each edge. For the extruding arrow, the shaft edge is used to determine the direction of

extrusion by ray casting. A set of cutting planes is obtained and a set F of faces created by

them is determined. An algorithm similar in idea to that discussed in [75] then completes

this operation.

3.8.4 Joining

Two objects can be joined face-to-face by selecting each object and then selecting the face

that is to be joined to the selected face of the other. A simple coordinate transformation

“sticks” the two faces together. Now one object can be translated in the plane of the

selected face or rotated about its normal for positioning. The join operation joins the two

objects after the user commits this positioning. Since objects are drawn roughly, two faces

are seldom congruent to each other. Therefore the user can choose to deform one of the

selected faces so that it coincides seamlessly with the other selected face. Alternatively, the

user can choose to simply stick the two faces without deformation. This is desirable when

the two faces are meant to be different in size, like those of a table top and a rectangular

leg while constructing a table.

3.9 Gestures

SMARTPAPER recognizes standard gestures for gestured drawing and cutting. Gestures

can be used to create a 3D model by extrusion, cut a 3D object by extrusion or modify the

geometry of a 3D model by placing additional constraints on it. Gestures are also sketched

and are part of the input set of strokes. The reconstruction and cutting modules query

a gesture recognizer for gestures. The set of strokes is then passed to the recognizing or

cutting module, depending upon the operation specified.

Figures 3.10 and 3.11 summarize all gestures supported by SMARTPAPER. The drawing
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       1
2

Arrow gesture:
numbers indicate
sequence of draw-
ing and red arrows
indicate possible
pen paths.

Use of the arrow
gesture in drawing
by extrusion.

Use of the arrow
gesture in cutting
by extrusion.

Selection of an ob-
ject.

Figure 3.10: Gestures in drawing and
editing modes of SMARTPAPER.

Making two edges
congruent to each
other.

Making two edges
of a face parallel to
each other.

Making two con-
nected edges per-
pendicular to each
other.
Making two faces
perpendicular to
each other. The
right figure is
rotated to show
the result.

Figure 3.11: Gestures in feedback sys-
tem. In the first column, figures on the
right show the result of the respective oper-
ation.

convention for an arrow is to draw two strokes, the first being the shaft and the second being

the head, drawn from end to end.

Additional constraints can be placed on the structure of 3D objects after they have

been created. All algorithms use and modify the properties of the underlying graph of the

object. To visualize these algorithms it is helpful to imagine the solid as a region enclosed

by several bounded or unbounded planes and move them as per the operation. Our current

implementation supports the following structural changes:

3.9.1 Making two edges of an object parallel to each other

This operation is useful in making two edges parallel. The two edges are specified by drawing

two parallel lines across them as shown in Figure 3.11. By default, the second edge is made

parallel to the first. The affected vertices are moved as explained in Algorithm 4.
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3.9.2 Making two edges of a face perpendicular to each other

This operation is useful to make a face rectangular. It is specified by drawing a bracket

between the two edges as shown in Figure 3.11. The two edges specified have to belong

to the same face. After determining the edges from the bracket gesture, they are made

perpendicular by moving vertices of the graph using Algorithm 5.

3.9.3 Making two faces of the object perpendicular to each other

This is specified by drawing two lines along the two faces meeting near their common

edges, and a bracket between them as shown in Figure 3.11. The two faces must share an

edge. These faces are determined from the end points of the first two strokes by traditional

ray-casting. Algorithm 6 is then used to accordingly move the affected vertices.

3.9.4 Making two faces of an object parallel to each other

The two faces are specified by drawing two parallel lines on them (one face is marked, the

object is rotated and then the second face is marked). By default, the second face is changed

to make it parallel to the first. Affected vertices are moved according to Algorithm 7 to

complete the operation.

Our experience shows that an object can be quickly refined to regular shapes using these

gestures. Regularity cannot be implicitly assumed in the sketch because it will artificially

classify all sketches into a small class of regular objects. However, it can be achieved easily

through operations like these.

3.10 Feedback System

There are many uncertainties in sketch reconstruction and sketching systems in general.

The reconstruction process is based on optimization and heuristics and hence results may

not always satisfy the user. Also, the sketch can be unpredictably shabby leading to misin-

terpretation.

We feel that the best way to improve the performance of a system like SMARTPAPER

is to facilitate user feedback and dialogue. If the user sees what the problem is, s/he can
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Algorithm 3 MakeEdgesCongruent

Input: Edges e and e′(v, v′) of face F
F ′ ← the face sharing e′ with F
e′′(v, v′′)← the edge incident on v′ in face F
F ′′ ← the face sharing edge e′′ with F
e1(v

′, v1)← the edge incident on v′ not in F .
e2(v1, v2)← the edge in F ′ incident on v1 and is not e1.
Move v′ along e′ till the length is equal to e.
Move v1 an equal distance along e2 in F ′ by an equal distance to keep the slope of e1
unchanged.
/*Face F ′ has a new plane formed by new v′, new v1 and unchanged v′′.*/
for all V ∈ F ′′, V

⋂{v′, v′′, v1} = {} do
E ← edge incident on V that is not in F ′′.
V ← the intersection of E with new F ′′

end for

Algorithm 4 MakeEdgesParallel

Input: Edges e and e′(v, v′) of face F
F ′ ← the face sharing edge e′ with F
e′′(v, v′′) 6= e′ ← the edge incident to v′ and in F
e1(v, v1)← the edge incident at v in F ′.
Move v′ along e′′ till e and e′ are parallel
F ′ ← plane formed by v, v1 and the new v′

for all V ∈ F ′, V
⋂{v, v′} = {} do

E ← edge incident on V that is not in F ′

V ← new intersection of E and the new F ′

end for

Algorithm 5 MakeEdgesPerpendicular

Input: Edges e and e′(v, v′) of face F
v ← the common vertex between e and e′. If there is no such vertex, then the operation
cannot be performed.
F ′ ← the face sharing e′ with F
e′′ ← the edge in F other than e′ incident on v′

e1(v, v1)← the edge incident at v which is not in F
Move v′ along e′′ till e ⊥ e′.
F ′ ← new plane formed by v, new v′ and v1
for all V ∈ F ′, V

⋂{v, v′, v1} = {} do
E ← edge incident on V that is not in F ′

V ← the intersection of E and the new F ′

end for
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Algorithm 6 MakeFacesPerpendicular

Input: Faces A and B with common edge e(v1, v2)
nA ← normal of A
nB ← normal of B
Move B′ by computing a new normal n′B ⊥ nA

for all V ∈ B,V ⋂{v1, v2} = {} do
e′ ← edge at v which is not in B
V ← intersection of e′ and new B

end for

Algorithm 7 MakeFacesParallel

Input: Faces A and B with face F which shares an edge each with A and B
nA ← normal of A
nB ← normal of B
e(v, v′)← edge in F which is shared with B

e′ ← the other edge in F that is incident on v′

e′′(v, v′′)← the edge in B incident at v and not in F
Move v′ along e′ till nB equals nA

Face B has a new plane formed by v, new v′ and v′′

for all V ∈ B,V ⋂{v, v′, v′′} = {} do
E ← edge incident at V that is not in face B
V ← intersection of E and B′

end for

Figure 3.12: A single object shown in three views in the feedback system (a) Sketch
view (b) Face view (c) Object view.
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greatly assist in quickly correcting it. This is the motivation behind the feedback system in

SMARTPAPER.

The goals of this system are effective visualization to enable the user to pinpoint the

problem, allowance to changes and suggestions and quick response to them, and the provi-

sion of ways to refine a correctly reconstructed object. Visualization is important because

an erroneous result often offers little insight into its cause. Therefore, three views of an

object are offered (Figure 3.12).

3.10.1 Sketch View

This view shows how the system interpreted the user’s strokes. If the sketch is dirty,

then clustering may be incorrect leading to an erroneous reconstruction. This view shows

the cleaned graph superimposed on the user’s input (after preprocessing as described in

Section 3.7.1). This makes any incorrect clustering obvious.

The user can manually suggest clustering by enclosing all the vertices to be clustered as

shown in Figure 3.13 (b). When s/he presses OK, the points are combined, the whole graph

is re-clustered and the results are immediately shown as in Figure 3.13 (c). It can be seen

from these figures that correcting one clustering can produce wholly correct results. The

user can then press the refresh button to make the other views consistent with this view.

3.10.2 Face View

The face view shows an exploded view of the object(Figure 3.12). This view is useful in

verifying if the faces have been determined correctly. If any faces have been incompletely

or incorrectly determined, the user can sketch a face directly in this view (Figure 3.14).

Whenever a new face is sketched by the user, all edges that are part of more than two faces

are marked, and all faces made of only marked edges are deleted.

3.10.3 Object View

This view shows the reconstructed object, which is topologically correct if the clustering

and face determination was done correctly. This view is used to further refine the object
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Figure 3.13: Example of clustering by giving a hint. The thick black lines show the
original sketch and the green lines show result of automatic clustering: (a) Initial sketch
and clustering output, (b) the vertices to be clustered are marked by encircling, (c) the result
of the hint, showing overall correct clustering by just one hint.

by specifying additional constraints on its structure (Figure 3.11).

Figure 3.14: Gestures in the face view. (a) a sample object with incorrectly determined
faces, (b) and (c)upper figures show a face sketched and lower figures show their respective
results, (d) the resultant object (with all faces correctly determined.)

3.11 Construction of curved objects

SMARTPAPER supports drawing objects with curved edges by extrusion. Extrusion re-

quires a closed profile. However, the user may draw a curve whose end points either do not



34

meet or cross each other. To generate a smooth closed curve from such input, we employ a

modified version of the Snake algorithm [126, 5].

The original Snake algorithm is interactive in semi-automatic conditions where the user

explicitly inputs an approximated closed curve that is used as an initial guess, resulting in

fast convergence. This is not feasible in our case as this problem is transparent to the user.

Therefore we fit a circle using least-square approximation to the stroke data and use it as

the initial guess. This potentially decreases the rate of convergence and hence we modify

the implementation of the Snake algorithm in the following ways:

1. It is required to compute the nearest point in the input data (edge data) to a point on

the closed curve in a particular direction during each iteration. This is an expensive

operation if there are a lot of points in the input data. Therefore, we allow 3 initial

expensive iterations to “guess” a subset of the input for every point on the closed

curve, and cache it for further iterations. This greatly speeds up the program.

2. The original condition for convergence in the Snake algorithm is the number of points

moved in one iteration. This causes points to oscillate if the input data is not smooth,

as in the case of strokes. Hence, we eliminate points on the closed curve from further

consideration if they are within a certain distance to the input data. Thus more and

more points are culled as the iterations proceed, leading to an increase in speed.

3.12 User Evaluation

SMARTPAPER was demonstrated to 10 students of the Department of Architecture at the

University of Minnesota. Two graduate students from the Department of Architecture and

four computer science graduate students participated in a detailed user evaluation session.

The users were briefed about its functionality, gestures and usage and then were asked to

perform some pre-defined tasks.

Support for over traced sketching was appreciated by the students, as a lot of them

indulged in similar sketching practices. They were asked to construct primitive objects like

cubes and prisms and curved objects like cylinders which they did with reasonable ease.
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In an effort to confirm the intuitiveness of the gestures in the feedback system, they

were not explained to the architecture students beforehand and were asked to do whatever

they deemed intuitive. Some gestures were guessed correctly by them, which showed that

they were fairly intuitive to users of non-computer science background. Other gestures were

learnt easily when they were explained. The users received the seemingly “new” theme of

explicit gestures and direct sketching very well, compared to their experience with mouse-

based CAD software. The overall theme of the feedback system and the feature of instant

shape modification found immediate support among our users. In an attempt to evaluate

how all the gestures worked in tandem towards a common goal, the users were asked to

make the object shown in Figure 3.12 into a uniform cube. The total time inclusive of the

time taken to learn the gestures by both users was approximately 2.5 minutes.

(a) (b)

Figure 3.15: Results. (a) A table with lamp (b) A house.

3.13 Remarks and Future Work

Sketch-based reconstruction is a tough problem with only heuristic solutions. SMART-

PAPER is an attempt to reconstruct 3D models from sketches by solely relying on the

constituent strokes. While we have achieved some success, it is obvious that the success is

limited. There exist a large number of sketches for which reconstruction cannot be correctly
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performed. This limitation is in part because of its mathematical insolubility.

The choice of supporting only orthographic sketches is strategic. Orthographic projec-

tions preserve parallelism and congruence of lines in many cases, thereby providing more

reliable 2D image regularities. Other projections like isometric, etc. that preserve such

regularities may also be used. Chapter 4 extends this pipeline to perspective sketches in

the context of images.

Although tablet devices have been around for a while, developments to support truly

intuitive and useful interfaces for rough sketching for conceptual design leave much to be de-

sired. My ongoing work includes several new ideas to design such interfaces and metaphors.

Along with tablet devices, I am also interested in leveraging other commodity devices like

web cameras and pen-top computers. Commodity cameras have been used in computer

vision for several 3D tracking applications. I believe such work and easy access to such

camera devices can be used effectively to conceptualize 3D sketching and modeling. I en-

vision a “poor man’s desktop VR setup” that can be used for desktop 3D sketching and

sculpting applications, with emphasis on affordability over immersion.

Most of the work in computer graphics focuses on rapid prototyping (quickly building

a plausible and complete 3D model) rather than truly supporting conceptual design which

mixes abstract freeform sketching with ambiguous and incomplete geometry. During my

doctoral study, I interacted with students and faculty at the Department of Architecture

and researchers from the automotive design industry. I observed how both domains meticu-

lously follow similar underlying rules and practices for sketching and interpreting conceptual

designs that appear very abstract to outsiders. In contrast to the aims of much of today’s

research to facilitate design, conceptual designers need tools that do not attempt to refine

their sketches or distract their users from the actual design process by feedback and interac-

tion geared solely towards better reconstruction. There is an overwhelming need to create

assisting non-interfering tools that adhere to domain practices, rather than those that ei-

ther create new metaphors that must be learned or apply CAD-like refined metaphors to

conceptual design. I wish to continue working closely with different domains to create such

practical and professional sketching applications.



Chapter 4

Image-based Modeling: 3D Models

from a Single Image

4.1 The Problem and the Applications

Sketch-based modeling as discussed in the previous chapter concentrated on orthographic

sketches. These types of sketches have the advantages of being easier to draw for untrained

users, and somewhat easier to reconstruct 3D models from. However many designers are

trained to draw in perspective projection because it represents what our visual system sees

in the real world. Perspective projections also enable the designer to depict a larger 3D scene

more compactly and unambiguously. Therefore there is a need for sketch-based modeling

systems to support perspective sketches.

The applications of perspective-sketch-based modeling systems go beyond actual hand-

drawn perspective sketches. Images in the form of photographs are the most common

examples of perspective projections of 3D models. Reconstructing a 3D model from pho-

tographs is a very old and popular problem in computer vision, and lots of diverse solutions

with varying degrees of success have been proposed for it. Tracing objects from an image

produces a line drawing in perspective projection. Such line drawings could potentially be

fed to a sketch-based modeling system to reconstruct a 3D model. This chapter discusses

an image-based modeling system that is based on this idea.

Reconstructing 3D models from images has many applications, ranging from entertain-

ment and modeling to surveying. Many methods that concentrate on solving it better or

37
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quicker or both have been proposed over the years[42, 21, 47, 72, 46, 23, 85, 108, 96, 50, 133].

Most of these methods concentrate on producing accurate models from single or multiple

images. However, most of these methods also suffer from an “esoteric” interface, i.e. the

user is assumed to have some technical knowledge of perspective projections and projective

geometry. My work targets ordinary users who are interested in spending a small amount

of time on some images and quickly generate a 3D model using a simple and interactive

user interface. Thus my work concentrates on a crude but “navigable” 3D model instead

of an accurate one, while creating an easier user interface in the process. The resulting

prototype creates a sense of “being there” for a user by allowing him/her to fly through (a

rough approximation of) the 3D scene that a photograph captures.

4.2 Challenges

Extracting 3D models from images is a very challenging task. As a single method is unlikely

to reconstruct various entities contained in photographs like buildings, vegetation, etc.,

most approaches concentrate on particular classes of entities (faces[69], trees[100], etc.).

Observing that many photographs largely capture buildings and other forms of architecture,

my system is designed to create 3D models from such casually captured/created images.

Construction of a 3D model from a single image poses the same challenge as that

in sketch-based modeling: mathematical insolubility. While projective geometry provides

many hints about the captured 3D model in an image, it also lacks several features that

orthographic projections preserve. This makes the problem easier in some aspects and

challenging in others.

Central to reconstructing a 3D model from a single perspective projection are concepts

from projective geometry like vanishing points, vanishing lines, homologies, etc. A set of

mutually parallel lines lying on parallel 3D planes intersect at a point called the vanishing

point. Various sets of such parallel lines (differing in their orientation) form vanishing lines.

A perspective projection is usually defined by one, two or three different vanishing lines

depending on the position and orientation of the camera. Projective geometry identifies
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relationships between points on various planes in the 3D environment from their projections.

Such relationships between projections of planes are called homologies. Homologies are

matrices that transform points on one plane to another within the image, without explicitly

converting them into 3D coordinates and re-projecting them into the image. Positions

of vanishing points, orientations of vanishing lines and homologies derived from known

point correspondences form the basis of typical computer-vision methods to reconstruct 3D

models from a single image. A detailed overview and analysis of such methods can be found

in [42, 21].

The main drawback of these methods is that the user interface is laborious and assumes

that the user is knowledgeable about these concepts. However to an untrained user, the

concept and logic behind identifying point correspondences and vanishing lines may not be

obvious. Moreover an untrained user may not be as motivated to spend time on a single

image to reconstruct an accurate 3D model. In fact, an accurate 3D model may not even be

necessary for applications like a better image-navigation experience by flying through them,

etc. This possibility of creating an easier user interface by compromising on the accuracy

of the obtained model is the inspiration behind Peek-in-the-Pic, a tool that summarizes my

work in image-based modeling. Another motivation is that a solution to this problem is

intimately related to that of sketch-based modeling for perspective line drawings.

4.3 Related Work

4.3.1 Image-based Modeling

Image-based modeling reconstructs a scene from multiple photographs taken from various

viewpoints by identifying correspondences between points in different images. If a sufficient

number of photographs of a scene are available, reconstruction is a mathematically soluble,

albeit semi-automatic problem. The PhotoModeler program1 works on multiple images and

concentrates on getting precise architectural measurements. The ARBA3D program2 uses

only two images, but their absolute positions and correspondence between them have to

1
http://www.photomodeler.com

2
http://www.arba3d.com
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be manually specified. Software like SilverEye3are limited to reconstructing geometry from

satellite images.

3D models captured in images can be acquired by instantiation (associating and aligning

pre-defined building blocks with the image), or reconstruction (actually reconstructing the

captured geometry). Instantiation is the concept behind the Canoma6 program which works

only on one image. Instantiation may work well in many situations, but conceptually it

offers a very technical user interaction, unlikely to be intuitive for the typical user.

If multiple images are available, photogrammetry and computational stereopsis[78, 117]

can be effective. Herman et al.[44] attempt to reconstruct 3D models of large scenes using

multiple aerial images. Debevec et al.[24] interactively build an approximate model of the

photographed scene that is then refined by locating image correspondences from multiple

images. Reconstructing 3D models from single images, being mathematically insoluble,

usually involves making assumptions about the apparent geometry in an image[56], or at-

tempting to fit simple 3D objects (cubes, wedges, etc.) of known topology to a line drawing

obtained from the image[101]. Seminal work by Huffman[48] on the notion of labeling con-

tours in an image to infer their geometric nature form the basis of many approaches to

reconstruct 3D geometry from 2D inputs[104, 61, 57]. Tour-Into-The-Picture[47] provides

a spidery-mesh interface for the user to manually locate vanishing points of the image. Au-

tomatic Photo Pop-up[46] automatically creates billboards and “folds” from a single image

to create a “pop-up” effect. Both these approaches generate very crude approximations of

geometry in the scene, which limits the types of scenes they can navigate and the freedom

of navigation itself. Typical vision-based approaches[72, 18, 22] perform reconstruction of a

single image by calculating camera parameters, using vanishing lines and point correspon-

dences on each plane. Such a “reconstruct-plane-by-plane” interface may be excessive for

our application where accurate geometry is not desired. Also, such methods may not work

correctly without a lot of interaction for planes that do not contain parallel edges from which

vanishing lines can be computed (like pyramids). Oh et al.[85] regard reconstruction as a

3
http://www.geotango.com/products/silvereye.htm

6
http://www.canoma.com
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Photoshop-like operation termed depth painting. They segment the photograph into layers

and assign depth coordinates to every pixel of every layer to produce convincing depth im-

ages, but at the cost of heavy and time-consuming user interaction. Peek-in-the-Pic works

at the object level instead of the pixel level.

4.3.2 Reconstruction of Line Drawings

Reconstruction of geometry from freehand 2D sketches is another related area of research

and is related to modeling from images in many ways. Although many sketching metaphors

exist (Teddy[50] for making rotund objects, SKETCH[133] for design by extrusion), ap-

proaches that use actual 2D projections to infer 3D geometry are more relevant to image-

based modeling. Reconstruction of 3D models from line drawings is a very old research

problem (Barrow et al.[10], Marill[76], Leclerc et al.[66], Varley[122] are excellent exam-

ples). Lipson et al.[73] and SMARTPAPER[106] formulate reconstruction as an optimiza-

tion problem by evaluating the 2D input for various 2D image regularities like parallelism

and orthogonality of lines and replicating their corresponding 3D properties in the geom-

etry. Moreover while both reconstruct wire frame drawings (with hidden parts drawn),

we reconstruct “line drawings” (with hidden parts unavailable). Most image regularities

in many of these approaches are robust only if the underlying sketch is orthographic. We

extend the optimization formulation to support perspective images and use gestures to pro-

vide geometric regularities that could otherwise be obtained implicitly from orthographic

images. After the user “traces” out a building, we use this formulation to reconstruct its

3D geometry. Several other interesting approaches use a minimal set of lines (for example,

only silhouettes and creases) to produce a plausible set of 3D curved surface models from

them using simple mathematical constraints[96]. Kaplan et al.[57] propose an iterative user

interaction process to progressively refine the constraint space and make the overall problem

tractable.

Since we strive to devise a method that requires minimal and simple user interaction,

Peek-in-the-Pic combines different disparate bodies of research in sketch-based geometry

reconstruction, vision-based geometry reconstruction and image completion to provide a
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Partial geometry reconstruction of lower Manhattan, New York City
from a single image. (a) the original image. (b) all line drawings made by the user
(figure shows all traced lines; actually, one building is traced and reconstructed at a time).
(c) eight reconstructed buildings, with the ground relief and the background. (d) the original
image with holes to be synthesized. (e) the synthesized image for background and ground
geometry. (f) an alternate view of the city.

complete image-to-navigable-geometry tool. Many operations of our pipeline are fully au-

tomatic, with interactive alternatives to improve the automatic results.

4.4 Peek-in-the-Pic: A primer

The general theme of Peek-in-the-Pic is “trace and reconstruct”. Figure 4.1 illustrates its

pipeline. An object is converted into a line drawing by tracing out its edges (Figure 4.1(b)

shows all such tracings). Note that only the visible parts of an object can be drawn this way.

They are consolidated to form a 2D graph and loops representing the faces of the object

are determined. The graph is then analyzed to infer structural constraints on the object to

be reconstructed. The user can also specify constraints via simple gestures (Section 4.6.1).

The object is then reconstructed by solving an optimization problem (Section 4.6.2) that
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considers various structural constraints placed on it and camera parameters obtained in

Section 4.5. Hidden parts of the object can be completed automatically or by interactive

sketching (Section 4.6.3). The ground geometry is obtained after all desired objects have

been reconstructed (Section 4.7, reconstructed geometry shown in Figure 4.1(c)). Holes in

the image resulting from construction (Figure 4.1(d)) are filled automatically and can be

refined using a simple interface (Section 4.8, Figure 4.1(e)). Finally, textures are mapped

on all constructed geometry using the original and the synthesized images for navigation.

4.5 Camera Calibration

Camera parameters like focal length f of the lens and principal point p0 are required to

correct the perspective distortion in the image before it is reconstructed. Camera calibra-

tion by planting a known object in the scene[125] cannot be performed in our case as the

photographs we strive to reconstruct are unplanned and casually taken. There are several

existing methods to estimate camera parameters from a single image. We use the method by

Cipolla et al.[18] to calculate camera parameters assuming a simple camera. This method

requires knowledge of the vanishing points of an image.

Automatic detection of vanishing points in an image has been a subject of research in

computer vision[102, 79, 29]. A common approach is to detect lines in the image and deter-

mine points in the image domain where large number of such lines intersect. Intersections

can be determined by considering the domain to be the infinite image plane[102] or project-

ing them as great circles onto a Gaussian sphere and clustering their intersections[29]. We

follow the former approach and use a RANSAC algorithm[32] to determine likely vanishing

points.

We begin by finding all edges in the image using a Canny edge filter[15] and linking

them to find line segments in the image. We find the three vanishing points using the

RANSAC algorithm as follows: we randomly choose two lines and determine their point of

intersection v. We then count the number of lines in the remaining set that this point is

close to (we set the threshold subtended by v and one of the end points of the line onto the
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other end point to be 5◦). If this count is greater than that in the previous iteration, we

select v as a candidate vanishing point. In the next iteration, we randomly pick another

pair of lines and proceed similarly. After a sufficient number of iterations (one-third of the

total number of detected lines in our implementation) we record the resulting point as a

vanishing point and remove all lines that pass through or near this point from the set of

lines. We repeat the algorithm twice to retrieve the remaining two vanishing points. If the

randomly selected pair of lines is parallel to each other, the point is at infinity and we use

their common direction to test the point against all remaining line segments. The figure

below shows the lines used to get the three vanishing points in three different colors.

Previous work and our experiments indicate that this algorithm is prone to failures and

errors in some cases: spurious edges, Canny thresholds and vanishing points approaching

infinity leading to precision errors. When this occurs, we revert to a manual approach: the

user selects three pairs of parallel lines that are mutually perpendicular to each other. This

has to be done only once per image. These pairs give the three vanishing points.

The three vanishing points constitute a triangle T whose sides are the vanishing lines.

Then, p0 is the orthocenter of T , while f is a function of λ1
2,λ2

2,λ3
2, where the λi’s are

the areas of triangles subdivided by p0 in T . A perspective matrix P is constructed from

these two parameters, that is then used during optimization. Please refer to [18] for further

details.
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4.6 Reconstruction of Object Geometry From Perspective

Line Drawings

The user now traces7 the visible edges of a building to be reconstructed from the image,

forming a perspective line drawing (since photographs are perspective by nature). All lines

are consolidated into a 2D graph G of vertices and edges. Clustering[113] is used for this

consolidation. (Visible) faces of the object are then determined using the modified Dijkstra

algorithm proposed earlier (Algorithm 2). All vertices of the graph that are on the ground

are determined by starting at the lowest vertex of the graph (obviously on the ground). A

breadth-first search of the graph is initiated from this vertex. Any edge from the current

vertex that makes a small enough angle (say Θ) with the horizontal is assumed to lie on

the ground. In our current implementation, we use Θ = 35◦. In case the program does not

select these vertices correctly, the user can manually specify them.

4.6.1 Constraint Specification

Once a 2D graph representing the traced object is compiled, constraints are imposed on

its 3D structure that are used during optimization. Although similar constraints have been

used to refine crudely approximated 3D geometry from photographs[16], the aim of our

constraints is to approximate 3D geometry from 2D inputs. Techniques explained by Lipson

et al.[73] or SMARTPAPER cannot be directly applied to perspective images because these

images cannot provide the same 2D regularity cues. For example, two parallel 3D lines are

almost never parallel in perspective projection. We assume some constraints implicitly and

also allow the user to explicitly specify them.

Some general observations can be made about architectural objects: they are attached

to the ground, the walls touching the ground most likely rise vertically upwards, many edges

tend to be parallel or perpendicular to each other, etc. These observations can be implicitly

used as constraints on the geometry of the object. As the line drawing is in perspective

7Our experiments indicated that detecting only the visible edges of a building is much more difficult to
achieve through automatic edge detection than detecting all straight-line edges, as was needed to automat-
ically infer the vanishing points. This is largely because of a large number of “spurious” edges produced by
textures.
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projection, only a few constraints can be obtained from image regularities. The user can

specify more constraints explicitly through gestures. The three vanishing points (and hence

the vanishing lines) obtained during camera calibration are used to derive more parallel

lines. In any face, if two edges intersect at or near a vanishing line, they are assumed to be

parallel to each other. It is also assumed that all edges that have exactly one vertex on the

ground are perpendicular to the edges on the ground. This observation is not true for all

objects–a notable example being a pyramid. But as these constraints are used as penalties

in our optimization, they are not hard constraints.

Making two edges par-
allel to each other

Making two edges
perpendicular to each
other

Making two edges con-
gruent to each other

Making two faces
perpendicular to each
other

Additional geometric constraints can be specified by the use of gestures. We currently

support four types of constraints. These constraints can also be specified after the object

has been reconstructed; the reconstruction algorithm is rerun in this case. Constraints

assumed implicitly or imposed by the user are used to derive other constraints. For example,

(e1‖e2) ∧ (e2‖e3)→ (e1‖e3).

4.6.2 Optimization for Geometry Reconstruction

Given a 2D graph G of the traced object and structural constraints, we reconstruct the 3D

model that represents the object’s projection in the photograph. Specifically, we “inflate”

G by assigning suitable depth to each vertex.

This problem finds some common ground with that of reconstructing 3D geometry from

2D sketches in SMARTPAPER. However, SMARTPAPER assumes orthographic drawings

with image regularities that provide most of the constraints used by their optimization

process. Most of the assumed image regularities do not exist for perspective line drawings.
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We extend SMARTPAPER’s pipeline by following a similar framework to reconstruct per-

spective line drawings through constraints explained in the previous section. All geometric

constraints are incorporated into the compliance function as penalties.

It must be noted that inflation of the graph G by assigning a Z-coordinate to each

vertex does not result in the actual correct geometry, as G originally represents a distorted

projection of the object. Therefore, we use the perspective matrix P (Section 4.5) to

undistort a candidate 3D graph before evaluating all characteristics. The resulting 3D

graph projects onto the region occupied by it in the image.

The compliance function that the optimization attempts to minimize is of the form:

f = wi ∗ fi

where w = [wi] is a weighting factor and fi are various terms calculated as below. In

practice, we use a weighting vector of (1
3 ,

2
3 ) which was obtained empirically. The following

notation is used henceforth:

vi : ith vertex of the graph G

fi : ith face in the graph G

~vi : 3D vector representing edge ei

v̂i : Normalized 3D vector representing edge ei

‖~vi‖ : Magnitude of vector ~vi

n̂i : Unit normal vector of face fi

n(G) : Number of vertices in the graph G

e(G) : Number of edges in the graph G

f(G) : Number of faces in the graph G

The various terms fi used are as follows:

1. Face Planarity
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This constraint ensures that all faces of the objects are planar. A plane is fit on all

vertices on each face fi and the sum of distances of each vertex from its fit plane

comprises this term.

f1 =
∑f(G)

i=1

∑
vj∈face Fi

|ai ∗ xj + bi ∗ yj + ci ∗ zj + di|

2. Geometry Constraints

This set of terms is used to evaluate all the geometric constraints compiled earlier.

(a) Parallelism of edges

For all pairs ei and ej of edges (total nparallel) that are supposed to be parallel

to each other,

t1 =

P
ei‖ej

(1−|v̂i·v̂j |)

nparallel

(b) Perpendicularity of edges

For all pairs ei and ej of edges (total nperp) that are supposed to be perpendicular

to each other,

t2 =

P
ei⊥ej

|v̂i·v̂j |

nperp

(c) Congruence of edges

For all pairs ei and ej of edges (total ncong) that are supposed to be equal in

length to each other,

t3 =

P
ei=ej

abs(‖~vi‖−‖ ~vj‖)

max(‖~vi‖,‖ ~vj‖)

ncong

(d) Perpendicularity of faces

For all pairs fi and fj of faces (total nfperp) that are supposed to be perpendicular

to each other,

t4 =

P
fi⊥fj

|n̂i·n̂j |

nfperp
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(e) Edge-face perpendicularity

For all pairs ei and fj (total nefperp)of such that edge ei is perpendicular to face

fj,

t5 =

P
ei‖fj

|v̂i·n̂j |

nefperp

f2 = 0.2 ∗∑5
i=1 ti

We use Brent’s minimization[98] to solve the above optimization problem, as it offers

a good tradeoff between speed and accuracy. We use the same layered method explained

in Section 3.8.2 for a good initial guess: all vertices on the silhouette form a middle layer,

visible vertices not on the silhouette form the front layer and hidden vertices not on the

silhouette form the back layer. Although this initial guess works well for closed objects, it

tends to fail in case of incomplete objects composed of facades, like Figure 4.4(j-l). In that

case we resort to the trivial initial guess (all vertices with the same Z-coordinate) and rely

more on implied and gestured hints to reconstruct the 3D model.

4.6.3 Completing Object Geometry

The user can trace only those parts of the objects that are visible in the image. In order

to complete the 3D model, hidden edges must be estimated. In general, this is a difficult

problem because there can theoretically be an infinite number of configurations for hidden

geometry. However, in case of architectural buildings, a reasonable hidden topology can be

estimated automatically.

If we assume that all buildings are trihedral, this problem can be solved automatically.

Our solution is similar to that offered by Varley et al.[123], but for perspective line drawings.

We first detect vertices that have degree two (i.e they have an edge missing). Then, we

estimate the direction of the missing edge by pairing the visible edges at these vertices

with the known vanishing points. Then, we iteratively select two incomplete vertices, and

determine the intersection of the two rays along their respective hidden edge directions. In

order to prune incorrect pairs of vertices, we constrain all these intersections to lie within
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the convex hull of the building in the image (implicitly sketched by the user). Thus we

keep eliminating vertices, until we are left with only two vertices (that we simply connect

to each other). Below, the figures show the input sketched by the user (in blue) and the

automatically completed line drawing (in green).

In case the trihedral assumption does not hold for a building, the user can resort to

completing its geometry manually. In this case, although the user could “guess” the invisible

edges while tracing an object, our initial experiments indicated that such guesses can affect

the overall geometry reconstruction adversely. This is mainly because invisible edges also

define vertices on the ground, and so guessing them can adversely affect the resulting ground

geometry. Also, it is difficult to draw accurately in perspective and it may be easier to specify

these edges from a different view.

The figures above provide an example of the L-shaped building in Figure 4.1(c). The

object is rotated and completed progressively. The user sketches strokes for missing edges.
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When the program detects a new face formed by them, it reconstructs its 3D geometry. The

user can then rotate the partially completed object and continue sketching. This effectively

removes the Closed Object assumption in Section 3.6.

It may be observed that this functionality of progressively constructing an object can

be used independently as a design tool. In fact, the input image is used only as a guide for

setting up the camera (Section 4.5), tracing out buildings (Section 4.6) and texturing the

reconstructed buildings (Section 4.8). Thus, 3D models can be progressively reconstructed

from perspective sketches once a perspective camera is set up.

4.7 Ground and Background Geometry

Once all the buildings have been constructed, the ground geometry must be determined to

complete the environment. All the edges of the buildings that should be on the ground are

heuristically determined as discussed in Section 4.6. Figure 4.2(a) shows these vertices in

red. Let the set of such vertices be denoted by S. A least-squares plane P (shown in grey

in Figure 4.2(b)) is fit through points in S. It can be seen that P may pass through some

objects.

The user then sketches out a pseudo-horizon curve (intersection of the ground and the

background, see Figure 4.2(b)). This curve should be drawn just under the buildings in the

background, so that the image does not “fold” in the middle of a building. The curve is

then projected on P to obtain its 3D coordinates. These projected points are added to S,

along with two points on the bottom corners of the screen. All points in S are triangulated

in P . These form the ground relief (shown in orange in Figure 4.2(c)). Points of the pseudo-

horizon curve are raised up to form the background, as seen in Figure 4.1(c). This completes

the geometry of the 3D scene.

4.8 Image Completion

As a building is constructed, it has to be removed from the original image, creating a hole

(Figure 4.1(d)). Such textures are usually filled manually by cloning (such as in [85]), a
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(a) (b) (c)

Figure 4.2: Determination of ground and background geometry. (a) the image with
reconstructed objects in wire frame; the vertices marked in red lie on the ground. (b) a mean
plane is constructed from these vertices as shown in grey. As it is a mean plane, it passes
through some objects (shown in light blue). A horizon curve is sketched by the user. (c)
points on the horizon line are projected on the mean plane and are used with the red vertices
to get the ground geometry shown as an orange mesh. The background relief is raised from
the horizon curve as shown in Figure 4.1(c).

user-intensive and cumbersome process. Many image completion methods exist in computer

graphics and vision literature. Many texture synthesis algorithms exist that complete a

given “target region” of an image from source regions contained within the same or different

images. Recent research has even led to real-time[71] and controllable[68] texture synthesis.

However, texture synthesis primarily works well for amorphous images (flowers, stones,

fuzzy background scenery, etc.) and its matching techniques tend to break down when

synthesizing well-defined geometric structures like buildings. Image inpainting[12] works

well for filling small holes in images, but it is not as effective on large missing regions.

Although automatic, both texture synthesis and image inpainting are too slow for the size

of images in this paper, mitigating most advantages of the automation.

From our initial experiments with manual cloning, we observed that buildings tend to

be filled up using regions immediately surrounding them, not from distant image regions.

Intuitively a building must be replaced by the background it occludes, which can be approx-

imated from the image regions adjacent to the building. We use this observation to define

the source region for a given hole. We calculate the bounding box of the hole to be filled,

and scale it by 25%. We use the region in this scaled bounding box (minus the hole) as the
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(a) (b)

(c) (d) (e)

Figure 4.3: Hole-filling by texture synthesis. Top row: automatic texture synthesis
(a) when a building is sketched by the user, its outline is used as the region for synthesis.
The bounding box of this region is scaled up and used as the source region for the texture
synthesis. (b) Holes from Figure 4.1(d) filled using this method. Note that although this
image looks patchy, the reconstructed buildings overlap these regions for most view points.
Row 2: interactive texture synthesis (c) the source and target regions are specified in green
and red respectively. (d) the synthesized output for (a). (e) Holes from Figure 4.1(d) filled
using this interactive method.

source for the texture synthesis process. We use the texture synthesis algorithm proposed

in [26, 71]. As the hole is automatically derived from the user’s sketch, the synthesis is done

with no extra input. Row 1 of Figure 4.3 shows how this method produces a synthesized

image. Each hole was filled in less than 30 seconds.

Although the image in Row 1 contains very obvious patches and discontinuities, the

reconstructed buildings occlude large parts of these patches from most view points, and

thus they are not as disturbing. However, because of the limitations of texture synthesis

discussed earlier, the results produced may sometimes be too disturbing. In these cases, the

user can resort to an interactive process. We take inspiration from the paint-by-numbers

interface[41] by augmenting this process with a simple interface to interactively synthesize
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these holes (see Row 2 of Figure 4.3). The user marks the source and target regions in the

image with poly-lines to start texture synthesis. As the user marks small regions at a time,

this synthesis is fast.

4.9 Implementation and Results

All the following results were produced on a desktop system with a 2.6 GHz Pentium Xeon

processor and 1 GB RAM, with an external tablet device (Wacom Cintiq PL-550).

Figure 4.4(c) shows a part of Manhattan, New York reconstructed using Figure 4.4(a)8

as input. Figure 4.4(b) shows how the constructed 3D environment looks from a distant

view point. Eight buildings have been reconstructed in this example. The total time from

(a) to (c) took about 15 minutes (including interaction), while the image completion took

another 10 minutes. The actual optimization time is 2-3 seconds per building.

Figure 4.4(d) shows a drawing of Foshay Tower in Minneapolis, MN (USA)9 from the

1930s. Figure 4.4(f) shows an alternate view obtained by reconstruction (note the correctly

reconstructed pyramidal top of the tower). Three buildings were reconstructed in this view.

The total time taken for geometry reconstruction was 5 minutes (including interaction),

while the actual optimization time is 2-3 seconds per object.

Figure 4.4(g) shows a drawing of the 1305 Church of Aston-Cantlow, Warwickshire,

England10. Figure 4.4(i) shows a zoom and change of angle towards the church. The image

synthesis in this case was done by cloning, as the background is fairly homogeneous.

Figure 4.4(j) shows a photograph from Liebowitz et al. [72] (used with permission from

the authors). This photograph is challenging because of some radial camera distortion and

because it breaks the layered initial guess assumption made earlier11 (the corner between

the walls and ground is further away from the viewer than the vertices on the silhouette,

instead of being nearer to it). The models in (k) and (l) were produced in two steps: first

reconstructing the two walls and then reconstructing the roof and ground (1 second each).

8
Source:http://www.pilotlist.org/balades/manhattan/manhattan.html

9
Source:http://www.minneapolishistory.com/marriott3.htm

10
Source:http://www.holoweb.net/ liam/pictures/oldbooks/OldEngland/

pages/1305-Church-of-Aston-Cantlow/
11Section 3.8.2
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4.10 Remarks and Future Work

Peek-in-the-Pic performs image navigation using a single photograph by amalgamating cam-

era calibration techniques and work done in the area of sketch reconstruction. Since it takes

mostly “tracing” operations from the user and works on general photographs taken casually,

it is suitable for non-technical users as well. Peek-in-the-Pic works best for modern archi-

tectural buildings that have polyhedral shapes. Reconstructing more involved architecture

like buildings with ancient carvings is more difficult. However, as the final 3D model is

textured, artifacts are not noticeable even if a building with details is approximated by

simpler geometry, unless one zooms in closely near a building.

Peek-in-the-Pic uses a mathematical approach to reconstructing 3D models from a sin-

gle image with (minimal) user input. Nevertheless, in order for the optimization framework

to be applicable to a large set of images and line drawings, parameters like Θ and those

required for clustering line drawings may have to be tuned by the user based on their in-

terpretation. These parameters, and indeed even the reconstruction process can be inferred

by machine learning or statistical analysis. Lipson et al.[74] and Automatic Photo-Pop[46]

use probabilistic learning models to infer 3D geometry from a single 2D input. Similar

approaches can be used to learn characteristics of building geometries and their correspon-

dences to projections in an image. However some user interaction is unavoidable for any

method to work for general cases.

Although tracing out buildings is simple and easy, it may still be a tedious task. In-

stead, segmenting out buildings and automatically constructing their profiles may reduce

user interaction further. Extending methods like Lazy snapping[70] to segment buildings

automatically is worthy of further study.

My work in Peek-in-the-Pic was an attempt to create an explorative experience for

images that worked for small sets of photographs of a specific type. However organizing,

exploring and searching in large sets of photographs is a much tougher problem that is

relevant to any camera user today. The advent of cheap digital cameras has created a broad

base of end users who grapple with this problem on a regular basis. It is common to forget
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who a particular person or what a particular place in a photograph is. Users struggle with

quickly browsing through photographs or presenting them to others, because selecting the

appropriate photographs from a large collection is cumbersome. Moreover it is frustrating

to remember a photograph but go through thousands of them because one cannot remember

where the photograph is stored. Most users are too impatient to manually organize and tag

newly taken photographs so that searching for them later is easier.

This problem is, in many ways, the graphical equivalent of organizing text and data files

on a computer. However there are several unique challenges. Firstly, interpreting images

to organize them better is much more difficult than interpreting text for the same purpose.

Secondly, compiling images into a slide show or presentation is a much more common task

that users are willing to devote very little time for. Thirdly, processing and maintaining

images for search-and-query purposes is both time and data intensive. Fourthly, there are

many ways in which a user may want to look for an image (sketching queries by drawing

shapes and their relative positions, approximate color distributions, providing (parts of) a

similar photograph, or a combination), as supposed to a simple text query.

Available commercial software that work on image collections can be divided into many

categories like image editing (Adobe Photoshop, Gimp, etc.), organization and presentation

(Google Picasa, etc.), or some combination (Microsoft Digital Image Suite, etc.). A quick

trial of these software is enough to realize that no satisfactory solution for image organiza-

tion and search exists that works on a large collection of arbitrary, untagged photographs

in an efficient and automatic way. Research related to image collections is very popular

because of the above reasons. Recently, there have been promising research developments

like Microsoft Research’s PhotoTourism[114] and PhotoSynth[2] that work on a variant of

this problem: photographs that densely sample a place or an event. Many solutions that

work with particular sets of input metaphors (sketching, image similarity, etc.) exist. How-

ever a holistic solution that works efficiently in space and time and correctly on large image

collections using different query metaphors is still elusive. The focus of my future work will

be to develop algorithms to organize, search and present personal image collections that

sparsely sample events, places and people.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Results. (a) photograph of Manhattan, NY (b) view from a distant point. (c)
a unique view of the reconstructed 3D scene. (d) painting of 1930s downtown Minneapolis,
MN. (e) view from a distant point. (f) a unique view of the reconstructed 3D scene. (g)
painting of 1305 church (h) view from a distant point. (i) a unique view of the reconstructed
3D scene. (j) the original photograph of Merton College, Oxford, taken from [72]. (k) view
from a distant point. (l) a unique close-up view of the 3D reconstructed scene.



Chapter 5

Sketch-based Inverse Lighting:

using sketches to design lighting

While the previous two chapters of this dissertation concentrate on creating 3D models from

sketches, this chapter and the next concentrate on other applications directly related to or

greatly aided by hand-drawn sketches.

5.1 The Problem and the Applications

Lighting is an integral aspect of any application or process that concerns the appearance

of objects. Lighting in concert halls, meeting rooms, living rooms, etc. are specifically

designed to suit a particular purpose. In any modeling in computer graphics, lighting is

used to give models a desired look. Lighting is a critical tool in cinematography and other

performing arts. But how is lighting designed?

In the real world, artists and technicians use their knowledge of the subjective and

interpretative aspects of lighting to design it for a particular place and purpose. Animators

and artists fulfill a similar role in motion pictures and animations. Irrespective of the

application, the designer has a specific “look” in his/her mind which must be realized using

lights of various kinds and colors. Technically, this problem of translating desired lighting

effects into actual lighting configurations is termed inverse-lighting.

One of the most important aspects of solving inverse lighting problem computation-

ally is the metaphor used to communicate “desired lighting effects”. Traditionally artists

58
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and designers express lighting effects similar to contours and geometry–via sketching and

painting. The most expressive and intricate lighting effects have been illustrated through

sketching, shading and painting by artists. Thus, specifying desired lighting effects to a

computer using sketched input seems a natural extension of what artists have been always

doing. This chapter deals specifically with solving a simplified version of the inverse light-

ing problem using interactive sketched input. The direct applications of our prototype are

confined to model visualization in modeling systems that support basic lighting but no

satisfactory way of designing it, and applications like ray tracing where designing lighting

interactively is a challenge. However we propose an optimization framework that can be

scaled to accommodate complex lighting models.

5.2 Challenges

The problem of inverse lighting by nature is complex even if the most basic lighting model

is chosen. This is mainly because the relationship between various lighting effects like

highlights, colors, intensities, etc. and lighting parameters like positions, angles, directions,

etc. is not always obvious. While relationships between lighting parameters and highlights

can be expressed mathematically, that between parameters and shadows cannot always be.

Shadows add great complexity to the problem because of their dependence not only on the

lighting parameters but also the nature of models (occluders).

In the absence of a more sophisticated work-flow, a typical lighting design session may

proceed as follows: the user places some lights around the model randomly and then tweaks

their positions and other parameters to achieve the desired look in largely a trial-and-error

fashion. The user tries to decide where to place lights, where to point them, how to change

their colors and intensities and whether to add/delete lights simultaneously. Although the

user may have a fair idea of how he/she wants the lit model to look and what features

are to be enhanced (effect), developing an intuition for which placement of lights causes

these effects (cause) is difficult. This cause-effect relationship becomes even more complex

with multiple and diverse sources of light. The problem of designing even simple shadows
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significantly complicates the problem, as shadows are much more complex functions of

geometry and light properties than highlighting is. A good work-flow for lighting design

would be goal-oriented, alleviating the user from “thinking technically” about the physics

of lighting. This chapter realizes this goal for a simplified lighting model.

In terms of sheer speed (for interaction), the problem of inverse lighting is at least as

complex as that of rendering itself. If the rendering model is complex, designing lights for

the model becomes even more difficult. The lighting design process is interactive by nature,

and hence an interactive solution to computational inverse lighting is highly desired. The use

of sketches as an input metaphor for inverse lighting, while very suitable and natural, also

raises the expectation of the overall system being interactive. Secondly, as will be obvious in

later sections, formulating this problem mathematically is relatively simpler than solving it

correctly and interactively because of a vast solution space. Lastly, as the user has complete

control over the sketched input, nothing prevents him/her from providing infeasible lighting

effects1.

As the next section summarizes, many solutions for inverse lighting have been proposed

over the years. A perusal of previous work brings forth the following problems that are

addressed only partially: (1) formulating the lighting problem so that it can be applied

widely across applications, (2) optimization techniques that have good convergence, good

quality results and also work at interactive rates, (3) tradeoff between choice of illumination

model and quality of results and interactivity, and (4) intuitive user interfaces that can be

learned easily (5) ability to work in conjunction with existing software (i.e. popular modeling

systems) that use lighting but do not offer interfaces geared towards designing it. This work

addresses all these problems and targets naive users who would rather not think about the

physics of light transport while achieving the lighting they desire. Barring some optional

parameter specification, the user input is restricted to sketching on a model.

This chapter of this dissertation presents my work in this area in the form of Crayon

Lighting, a prototypical tool that solves the sketch-based inverse-lighting problem efficiently

1The definition of infeasibility itself depends on the nature of the lighting model and the actual compu-
tational work-flow of solving the inverse lighting problem.
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for a simple point-light-based model by utilizing the computational power of the Graphics

Processing Unit (GPU).

5.3 Related Work

Inverse lighting is a sought-after area of research. This section shortly summarizes work

done in this area. Patow et al.[87] provide a more comprehensive survey.

Inverse lighting has been tackled in various contexts ranging from interior design to

cinematography. Barzel[11] proposes a very general lighting model with a lot of degrees of

freedom in the context of cinematographic lighting. Radiooptimization[62] and Painting-

with-Light[103] use radiosity and target interior design applications. We target the large

number of applications which either use lighting when lighting design and setup is not their

main purpose, or applications like ray tracing which are computationally expensive and

hence make interactively designing lights difficult.

Various user models have been attempted in the context of lighting design. Kristensen et

al.[64] concentrate on real-time rendering so that the user may interactively place lights and

examine their visual effects. Automatic techniques to infer lighting are based on analysis

of the scene geometry[105]. In contrast, many approaches allow the user to specify desired

lighting effects in some intuitive manner and design lighting that produces them. Crayon

Lighting belongs to this category. A popular approach is to directly “splatter” the model

with desired colors[103, 95]. Poulin et al.[93, 94] allow users to hint shadows and highlights

by outlining “footprints” of light sources on the model. If all the specified highlights are

assumed to come from specular lighting effects, then such footprints or contours make the

light placement problem easier. However determining light positions and intensities is more

difficult for diffuse lighting effects. Many applications target specific users like animators and

professional artists[77, 90, 89] by offering domain-specific interface metaphors. We target

naive users whose main aim is not to design lighting but to use it in a bigger application.

Depending on the application, choice of lighting and user model, the inverse light-

ing problem can be formulated in several ways. Some formulations are tightly coupled
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with the lighting model (inferring patch radiosities[62]) while others are more generalized.

Gumhold[40] formulates it as an entropy minimization. Costa et al.[20] propose a com-

prehensive general technique based on optimizing complex cost functions constructed from

hints about desired rendering using global illumination. Two radically different formulations

are presented in Design-Galleries[77] where the user selects between various configurations

through an interface, and Light Collages[67] which formulate the problem as an efficient

greedy problem that infers possibly globally inconsistent lighting. Shacked et al.[105] take

an image-based approach in which the object is lit and rendered into a portion of the frame

buffer, read back and evaluated. Though the complexity depends only on the size of this

buffer, determining its size so that no features are lost is a difficult problem. An object-

based approach considers vertex intensities as a representation of a candidate light field.

Since this method works on 3D object data, various geometric characteristics like edges,

etc. can be pre-computed for efficiency during optimization. A disadvantage of this method

is that this operation is now of scene complexity and hence is slower for larger models. We

formulate this operation so that it can be efficiently executed on modern graphics hard-

ware. Our formulation is similar to that of Lighting-with-Paint[89], in that we minimize

the per-primitive difference between actual and target lighting. Our work is different from

theirs in three aspects: (1) we optimize over vertices, allowing the user to easily and fre-

quently change view points (although their method can do this, they target an application

where view point changes, if any, are infrequent.) (2) our framework attempts to retain

existing lighting conditions and hence is more amenable to designing lighting incrementally

(3) whereas they rely on the user to choose between adding a new light and retaining the

existing ones, we automate this process. The last feature is significant because the free-

dom of adding a new light automatically within the optimization framework significantly

complicates solving the optimization problem.

5.4 Crayon Lighting: A Primer

Crayon Lighting can be used to design lighting that uses local point-light based illumination
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(a) (b) (c) (d)

Figure 5.1: An example output. (a) the original hip model with 40,000 triangles. (b)
The user uses orange and blue strokes to bring the cavity into focus and recede the rear part
by darkening it. (c) a sample output produced by our system by moving the existing light
and adding a new light. This image is rendered using conventional OpenGL rendering. (d)
compliance with the input is reinforced by this ray-traced image of the same model under
the same lighting conditions, with shadowing effects.

models (like OpenGL lighting). Such a tool can be used in conjunction with many modeling

tools that offer the option of lighting, but do not offer a good interface for designing it.

Another application of such a tool is to design lighting quickly and use the results in an

expensive rendering algorithm (like ray tracing) that inherently does not support changing

lights interactively for design purposes. The current prototype of Crayon Lighting solves

for various lighting properties like positions, directions, spot angles and intensities. It offers

a unique feature of designing lighting while preserving existing lighting conditions, which

allows lighting to be designed incrementally. The underlying optimization framework is

general enough to be applied to a wide range of lighting models, although all results in

this chapter use only one such model. Interactivity is achieved by solving this optimiza-

tion problem using a judicious mix of greedy and conventional minimization methods, and

delegating expensive operations in the optimization to graphics hardware.

Crayon Lighting works as follows: the user starts by loading in a model that is lit us-

ing a default lighting (Figure 5.1(a)). The user uses an orange highlighting pen to sketch

highlights and a blue darkening pen for darkening parts of geometry by contrast (Fig-

ure 5.1(b)). The system determines affected parts of the model and the target lighting

conditions. Various lighting parameters like positions, directions and spot angles of light

sources are optimized to minimize the per-vertex differences between the actual and target
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lighting (Section 5.6.4). When the optimized lighting is presented(Figure 5.1(c)), the user

can rotate the model, specify more constraints similarly and continue the design proce-

dure. After satisfactory lighting is achieved, the system outputs all the relevant lighting

parameters that can be plugged into any other program using a similar lighting model to

reproduce the lighting. We show how our tool can be used in conjunction with existing

applications/tools with lighting capabilities by designing lighting for OpenGL-like systems

and ray tracing(Figure 5.1(d)).

5.5 Sketching Interface

A wide range of user interfaces can be used in the context of inverse lighting systems;

Painting-with-light[103] and the work done by Poulin et al.[94] are some good examples.

Sketching strokes is an intuitive way even for amateurs to specify lighting of a model in an

abstract way. Sketching can not only be used to illustrate lighting in an abstract way, but

also hint desired lighting. We call this the “crayon coloring interface”.

Many inverse-rendering systems are based on a user interface in which the user directly

“paints” desired colors onto visible parts of the model. As the user cannot be expected

to exactly paint the correct colors, the painted colors are regarded as “hints”. Such inac-

curate hints may be interpreted incorrectly as a target lighting field, often misguiding the

underlying optimization. To circumvent this potential problem and to relieve the user from

selecting the most appropriate colors, our method works towards a more high-level goal of

brightening and darkening. Orange and blue strokes can be used to specify bright and dark

regions respectively. The user can cross-hatch or even directly paint, as only the vertices

the strokes approximately cover are of importance. It is not necessary to stay within the

silhouettes. Strokes can be retraced to emphasize greater brightness or darkness.

We refer to the vertices that the user sketches upon as “hit vertices”. In order to identify

these vertices, we enclose the model in a volumetric grid Cray and use it for efficient ray-

casting. We use the fast voxel traversal algorithm proposed by Amanatides et al.[6] for

this purpose. In our current implementation, we use a 2563 volume to achieve a reasonable
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trade-off between speed and memory requirements. Although using the depth buffer as

an ID buffer[63] to identify triangles may be faster, our volumetric grid is useful for other

purposes as well, as explained in Section 5.6.3.

5.6 Lighting Design

Once the user has finished sketching highlighted and darkened regions, a target lighting

field is constructed from these hints. A non-linear optimization is formulated that attempts

to design lighting to achieve this target lighting.

5.6.1 Quantifying the target lighting

The user’s hints merely indicate which regions should be made brighter or darker. We

now quantify this input by determining a target light field,i.e. we assign a “desired final”

intensity to every vertex of the model that reflects the user’s input. We start from the

current vertex intensities, and then increment or decrement them according to the input.

Since triangles other than those sketched upon may also be affected by the desired lighting

parameters, we need a target light field that gradually changes over the model.

A given light can affect vertices that are geodesically close quite differently, depending

on their normals, which can vary significantly due to curvature inspite of the small geodesic

distance between then. Thus, a good target light field should mimic this by enhancing every

vertex according to its geometric context, i.e. the local gradient around it. We employ a

scoring method to approximate the surface gradient around a vertex by pre-computing a

score kv for every vertex v in the mesh. We start with a default score of 0.1 for every vertex.

For every edge e in the mesh, we increase the score of its end vertices proportional to the

gradient around it from the (at most 2) triangles that share it. Thus, kv is an indicator of

the change in surface geometry around vertex v. We make increments and decrements of

vertex intensities linear functions of kv to obtain their target intensities.
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5.6.2 Optimization Formulation and Solution

We now explain how various lighting parameters are obtained, given the target field gener-

ated as explained in the previous section. The following notation is used in this section:

V :Set of all vertices of the model

Vh :Set of hit vertices

Vother:Vertices in V \ Vh to evaluate light field

Li :ith light

I(Li) :Intensity of ith light

X :Set of all unknowns (lighting parameters)

ci :Intensity of vertex i in candidate field

ti :Intensity of vertex i in target field

We construct a function that is to be minimized to achieve two main objectives: (1)

the function should capture the difference between the target lighting field and a candidate

lighting field in a particular iteration for all hit vertices, and (2) for incremental lighting de-

sign it is desired that the current setting of lights minimizes changes in those set previously.

Our minimizing function is given by

f(X) = w1 ∗ fchange + w2 ∗ fretain + w3 ∗ fbarrier (5.6.1)

X is the set of various lighting parameters. We use [w1, w2, w3] = [0.7, 0.1, 0.2] for all

results shown here. We consider seven lighting parameters as degrees of freedom (DOFs):

position (in polar coordinates, explained later in Section 5.6.3) (θ, φ), direction (in polar

coordinates)(θdir, φdir), diffuse (kd) and specular (ks) intensities and spot angle ψ.

fchange =

∑

vi∈Vh

|ci − ti|

|Vh|

fretain =

∑

vi∈Vother

|ci − ti|

|Vother|
fbarrier =

∑

lightsLi

max(0,−I(Li)) +max(0, I(Li)− 1)
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fchange minimizes the sum of differences between the candidate and target intensities

of vertices in Vh. This term is similar to that in Lighting-with-paint[89]. fretain minimizes

the change of intensities of vertices in Vother. fbarrier prevents light intensities from falling

below 0 and going above 1.

The problem is to minimize f(X) parameterized by the various DOF’s mentioned above.

The generality of such a function makes its solution difficult in many aspects. Firstly, as

f(X) is discontinuous (because of fbarrier and spot angle cutoffs), conventional optimiza-

tion methods, if used directly, may not converge properly. Secondly, as global minimization

methods like genetic methods may be infeasible for interactive solutions, locally minimizing

methods must be used. A good initial guess is critical for such methods to work correctly.

Thirdly, when darkening or shadowing is desired, none of the DOFs (and hence none of the

terms in f(X)) have a continuous and direct relationship with shadowing effects, especially

those concerning self-shadowing. The fourth and most critical difficulty is that not only

are the various DOFs unknown for each light, but also the number of lights (thus the num-

ber of variables itself is unknown). Devising an optimizing framework that automatically

adds/removes variables is very difficult. Lastly, the goals of interactivity and good quality

of solution in general may appear contradictory in practice.

We address the above problems in two ways. First, we devise a novel method to initialize

lighting parameters of all newly added lights that works well towards converging to the

correct minima. We use this method to also automatically add or delete lights from the

system. We take into account self-shadowing effects while initializing lighting configurations.

Secondly, we delegate evaluation of f(X) to the GPU to facilitate faster computations.

5.6.3 Lighting Setup

We surround the model with a sphere of lights Slights. We assume that any new lights lie on

this sphere; the position of every light source L can thus be described in polar coordinates

(θL, φL). This sphere is centered at the center of the model with a radius equal to the

body diagonal of its enclosing volume Cray (Section 5.5). We discretize the sphere into

quadrilateral bins. Let v ∈ Vh be a vertex with normal ~n. Let ~q be a vector from v to
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the center of a quadrilateral Q on Slights. If v is to be highlighted, then the score of every

quadrilateral Q is increased by w ∗ (~n · ~q), while if v is to be darkened, it is increased by

(1− w) ∗ (1− ~n · ~q) (in the adjoining illustrating figure, whiter quads have greater scores).

The weight w = (0, 1) is a visibility term that encodes whether Q is visible from v along ~n,

and accounts for shadowing. We tried two different implementations to get w: ray casting

using Cray and hardware-based occlusion queries. Surprisingly we found that ray casting

performed comparably to the occlusion queries. We believe this is because there are a large

number of small occlusion queries (one per (v,Q) pair). Occlusion queries are inefficient in

such scenarios because they cause blocking calls from the driver between the CPU and the

GPU.

When all the vertices in Vh are processed this way, Slights encodes a per-light proba-

bility of it being added to the system. In addition, every bin encodes the complete initial

configuration of the light: initial position (on the sphere), direction (towards the center),

default intensity (0.5) and spot angle (10◦). Our experiments have shown that discretizing

Cray into 400 quadrilaterals gives satisfactory results; making it finer increases the potential

number of light sources that the program adds in response to a series of inputs.

5.6.4 Solving the optimization

In order to achieve automatic light addition/deletion and to keep the problem tractable, we

perform the optimization in several stages (Figure 5.2). At any stage, if f(X) falls below a

certain threshold Tf(X) (0.2 for all the results shown here), the system declares success. In
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Figure 5.2: Flow chart describing the optimization procedure in Crayon Lighting

the first stage, only the positions and intensities of all existing lights are used to minimize

f(X). If this succeeds (the value of f(X) falls below Tf(X)), the system declares success.

If this is not the case, the system iteratively checks Slights for “hot spots”, i.e bins that

have a clearly large probability over others. To do this, it monitors the maximum, mean

and standard deviations of probabilities in Slights. If the ratio of standard and maximum

deviations rises above a certain threshold K(40%), it concludes that there are no more

clear choices of new lights. If it finds hot-spots, it greedily selects the one with maximum

probability and adds the corresponding light to the system, with all its DOF’s enabled. It

then attenuates the probabilities in Slights by a function that increases as one moves away

from the selected light on Slights. The intuition is to prevent selection of a neighboring light

in the very next iteration. Then it solves the minimization problem using previous lights

(position modification disabled) and the newly added light (with all its DOFs enabled). If

f(X) falls below Tf(X), it declares success. If f(X) increases in value because of addition of

this light, it deletes it from the system. If f(X) has decreased but is above the threshold,

it disables all the DOFs of the newly added light except its intensity for the next iteration.

It then looks for another hot-spot in Slights and continues this until a maximum of 5 new

lights are added, f(X) goes below Tf(X) or the ratio of standard and maximum deviations

in Slights exceeds K.
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We use the conjugate gradient method to solve the actual optimization at any stage.

This method requires calculation of the gradient of f(X) for which we use partial central dif-

ferences. fbarrier produces a discontinuity for all intensities I < 0 or I > 1. Since these cases

are easily detectable (an unusually large derivative component in the forward/backward dif-

ference but a normal component in the other), we set it to the lesser of the two to “guide”

the optimization away from the discontinuity. If the gradient using forward difference is

positive and backward difference is negative (implying that the function is minimum at this

point along the particular variable domain), we set the gradient to 0 to preclude it from

further optimization steps. Thus, we use the conventional conjugate gradient minimization

method in various stages with greedy initialization and light retention.

5.7 Implementation and System Features

Crayon Lighting has been implemented with OpenGL and GLSL for graphics on a desktop

machine with a 3.0GHz Pentium 4 processor with 1GB RAM and an NVIDIA GeForce

FX-6600 on the Windows XP platform. Tablet input and output is provided by an external

Wacom Cintiq PL-550 tablet device.

5.7.1 Calculating the minimization function

The most computationally expensive operation in each iteration of the optimization is calcu-

lating f(X) at a given X, whose bottlenecks in turn are fchange and fretain. We implement

their evaluation fully on the GPU. This technique is inspired by the work by Windsheimer

et al.[128], who implement a visual difference metric in hardware.

It can be observed that both fchange and fretain are linear functions over (intensities of)

sets of vertices Vh and Vother respectively. We map these vertex sets to texture memory and

evaluate fchange and fretain as texture operations.

Consider a set V of vertices over which a linear function f has to be calculated. We

first arrange all vertices in V in a vertex quad. If |V | = n then this quad is
√
n×√n pixels

in dimensions. We pass the position of each vertex in this quad as its texture coordinate.

In a vertex shader, we perform per-vertex lighting computations and set the target location
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of the vertex to its texture coordinate. We render this quad as a texture T1 and use it as

input to render the vertices in V again, this time with the target vertex intensities and no

lighting. In this pass, we compute in a fragment shader the difference |ci − ti| and store it

in the target render texture DT , where ci is the current pixel intensity and ti is the value

of this pixel in T1. We thus obtain a “difference texture” where every texel represents the

difference between the target and candidate light field at a vertex. For calculating fchange,

V = Vh and for fretain, V = Vother.

To calculate fchange and fretain we have to find the sum of all texels in its difference

texture. We use a multi-pass approach to achieve this. We create two float buffers and

render DT in one of them. We use them alternately as the rendering context and input

texture in various passes as follows: we start from s0 =
√
n and at the ith iteration, we

render a quad of size si = s0

2i+1 . The quad in the (i − 1)th iteration of size si−1 is used

as an input texture T in the ith iteration. In a fragment shader, every pixel P (x, y) reads

the texture locations T (2x, 2y), T (2x + 1, 2y), T (2x, 2y + 1), T (2x + 1, 2y + 1) and stores

their sum as the color of P (x, y). As we use float buffers, fragment colors are not clamped.

In this way, the size si goes on decreasing to 1, when we simply read out a single pixel

value from one of the buffers. This operation takes log4 n passes (on the GPU using a pixel

shader) and involves reading only one pixel from the GPU into the CPU.
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For this algorithm to work, the initial difference texture DT must be a square texture

of power-of-two dimensions. If |Vh| or |Vother| do not satisfy this condition, DT is padded

with 0’s.

5.7.2 Sampling vertices

The set of vertices Vh ∪ Vother used to calculate f(X) can simply be all the vertices in the

mesh. Considering all vertices in the mesh causes two problems. First, calculation of fretain

and hence f(X) becomes expensive. Secondly, if fretain is a function of a large number of

vertices, then it causes the optimization to always converge to the trivial local minimum

(the previous lighting configuration). Thus some sampling scheme must be devised to select

a subset of V \ Vh as Vother. It is desirable that this sampling be fairly representative of

the whole mesh, so that minimizing the difference between target and candidate lighting

intensities over Vother retains the overall look of parts of the model not in Vh.

(a) (b) (c)

A sampling of vertices such that those near the hit triangles have a greater probability

of being selected than the distant ones is desirable, so that only these samples are included

in Vother instead of all the vertices. We achieve this by a Sampling-By-Random-Number

(SRN) method as follows (please refer to Figure (a) above): we generate a random number

ri for every vertex vi in the mesh (red numbers). We then compute a score for each vertex

(blue numbers) that varies directly with its distance from the hit region (orange dot) (in

practice we consider the centroid of a contiguous hit region for this purpose). If this score is

less than ri, the vertex is selected (yellow), else it is rejected (black). Figures (b-c) illustrate

this sampling on an actual model. In Figure (b) the input strokes are drawn to focus on a

region. The corresponding hit vertices are shown in red and the sampled vertices are shown
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(a) (b) (c) (d)

Figure 5.3: Results: Pelvis. (a) a pelvis model with 50,000 triangles with default lighting.
(b) A slightly contrived input is given to switch the contrast between oppositely lit lower
cavities. (c) the system realizes this input by adding two lights and moving the existing
one. Notice how one lower cavity is highlighted while the other remains dark. (d) the final
ray-traced output.

in yellow in (c). Notice how sampling is sparser in regions distant from the marked region in

(b). Similar random sampling methods have been used in the context of non-photorealistic

rendering[82], volume rendering[131] and point-based rendering[99].

5.7.3 Added Benefits and Features

Our implementation choices lead to some minor but useful features that make user experi-

ence more convenient. The user can enable/disable individual DOFs of lights to facilitate

better results or to exclude features that he/she does not need.

If the result looks to conform with the input in quality but not in quantity (e.g. looks

brighter but not bright enough), the user can choose to repeat the previous input without

sketching anything. It can be observed that Slights not only stores configurations of lights

to be added, but also those that are already added. Thus, if the user wishes to minimize

the number of lights while relaxing the constraint on their intensity ranges, lights can be

trivially clustered together using Slights. This can be useful if the external application

supports only a fixed maximum number of lights.



74

5.8 Results

Figures 5.1, 5.3, 5.4, 5.5 and 5.6 show results on some models. All of these results were

produced by a computer science professional who does not primarily work in computer

graphics. In general several inputs could be required progressively to arrive at the desired

result. Each figure shows lights in the form of arrows; the base of the arrow indicates

its position and the direction shows its direction. Figure 5.1(a) shows an example of the

medical model of a hip with 40,000 triangles, lit with default lighting. Figure 5.1(b) shows

the user input. The aim of the user input was to shift focus to the cavity in the model while

receding the remaining model into shadow. Figure 5.1(c) shows the result produced by our

system in 5 seconds, in which a light is added to create the highlight and the existing one is

shifted to darken the part marked in the input with the blue pen. Figure 5.1(d) shows the

final result produced by an anti-aliased ray tracer. It can be seen how the light placement

has included self-shadowing aspects.

Figure 5.3(a) shows a pelvis model2 with a slightly contrived user input. The aim is to

switch the opposing lighting conditions on the two lower cavities of the pelvis. Figure 5.3(b)

shows how the system accordingly complies with this input. Although the rendering of the

upper cavities seems unsatisfactory in the OpenGL rendering of this figure, the ray-traced

result in Figure 5.3(c) shows compliance with the input. In particular it can be seen that

the lighting has produced a dark region in the upper left region through shadowing.

Figure 5.4 shows results on the ball joint model having 35,000 triangles. The goal of the

input in Figure 5.4(a) is to highlight the ball region. The result of this input is shown in

Figure 5.4(b-c). This result took 4.16 seconds.

Figure 5.53 shows how lights can be obtained by progressively transforming a model

and sketching on it. Figure 5.5(a) shows the filigree model having 177,000 triangles with

default lighting. The goal is to contrast facets facing in opposite directions to arrive at a

better lighting that enhances the structure of the model. The object is rotated and sketched

upon in Figure 5.5(b) to obtain the lighting of Figure 5.5(c-d). Again, the object is rotated

2model obtained courtesy of VCG-ISTI by the AIM@SHAPE Shape repository
3model obtained courtesy of SensAble Technologies inc. by the AIM@SHAPE Shape repository
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(a) (b) (c) (d)

Figure 5.4: Results: Ball joint. (a) the ball joint model with 35,000 triangles with default
lighting. (b) user input. (c) output produced by our tool showing the resulting lighting
focusing on the ball. (d) ray-traced rendering using the same lighting conditions as (b).

and some more hints are sketched (Figure 5.5(e)) to increase the contrast, as shown in

Figure 5.5(f-h).

Figure 5.6 exemplifies an interesting application of our system. Figure 5.6(a) shows a

pre-existing image of an NPR rendering of the same model that shows lit and darkened

regions4. We estimated the view point by trial and error and then attempted to reproduce

the lighting effects in this image by progressively sketching highlights and dark spots corre-

sponding to the dark and light regions of the image (Figure 5.6(b) shows one such input).

Figures 5.6(c-d) show the result in which most of the effects in Figure 5.6(b) have been

reproduced. Thus, our system can be used to reverse-engineer lighting of a model, given an

example image of its rendering.

5.9 Remarks and Future Work

Crayon Lighting is a tool that performs inverse lighting given a sketchy input in which

the user sketches bright and dark regions directly on the model. I envision this tool being

used by modelers or researchers in computer graphics and visualization as a simple tool

4both model and image were obtained from the Suggestive Contour Gallery
(http://www.cs.princeton.edu/gfx/proj/sugcon/models/)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Progressive inverse lighting. Figures show a filigree model having 177,000
triangles. The aim is to contrast opposite faces with light and darkness. (a) the model with
default lighting. (b) the model is rotated and some input is given. (c) result of input from
(b). (d) the lighting seen from the original view point. Some faces are better lit than in the
default lighting in (a). (e) model is rotated again and more strokes are sketched. (f) result
of input from (e). (g) the lighting seen from the original view point. (h) the lighting from
a new view point to show the light positions better. All images have been rendering using
conventional OpenGL rendering.

that outputs the necessary lighting parameters for good model visualization. With some

modification it can even be used in an educational setting to teach the primary physics of

light in introductory graphics courses. Crayon Lighting is easy to use, works at interactive

rates and restricts user input to drawing highlights and shadows.

The following are some practical issues with Crayon Lighting:

Error detection mechanism: There is currently no built-in error detection mechanism–if

the user chooses to specify an invalid input (e.g. highlighted and darkened regions very close

to each other), the system will still try to solve for the lighting and may come up with an

unsatisfactory or degenerate result. Besides the user refraining from specifying such inputs,
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(a) (b) (c) (d)

Figure 5.6: Results: Heptoroid. (a) pre-existing NPR rendering of the heptoroid showing
areas of highlights and shadows. (b) we progressively sketched highlights and dark regions on
the model to replicate the darker and lighter regions in the image. (c-d) the result showing
most of the light effects reproduced. In this way our system can be used to reverse engineer
lighting, given a model and a pre-rendered image.

an undoing mechanism can be easily incorporated into the system to revert to the previous

stable lighting.

Choice of parameters: Discretization of Cray simply affects the speed vs. memory ratio of

the ray casting (Section 5.6.1) and not the quality of the final result. If Slights (Section 5.6.3)

is finely discretized, the likelihood of a new light source being added for an input is greater.

Hence, if the desired number of light sources is limited, a coarser discretization may be more

suitable. Optimization threshold Tf(X) and K were obtained empirically after testing on

various 3D models for various inputs. Changing K results in more or less lights to be added.

However we discovered that after some iterations, the program starts to “thrash”, i.e. it adds

a new light and upon realizing that the value of the objective function actually increased ,

it deletes the light. Thus increasing the number of added lights does not necessarily result

in a better quality output.

Crayon Lighting is mainly for the purposes of visualizing a model by setting the lighting

in an intuitive manner. However, the larger problem of inverse lighting has a variety of

applications. Architectural lighting design and cinematic lighting use complex and realistic

illumination models and diverse sources of lights, like colored lights, spot lights, point and

linear lights, etc. A second requirement is the ability to have fine control over the lighting
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conditions (i.e, in cinematic lighting, directors need precise control over how and where

shadows fall, to make the set look as appropriate to the mood of the scene as possible).

Accordingly, a method to solve the interactive inverse lighting problem that allows usage of

complex illumination models, and offers fine control over the produced lighting conditions

can be useful in many ways to a large number of applications.

In the future, I would like to investigate solving the interactive inverse lighting for more

common, real-world but complex applications like architectural and cinematic lighting de-

sign. There has been recent work in the area of sketch-based inverse lighting like Illumi-

nation Brush[86], interactive global illumination[81, 43] targeted towards real-time lighting

design[64]. Many of these alleviate the costs of performing global illumination by using

approximation methods like wavelets or smart matrix approximations. My interest lies in

investigating whether such methods that make rendering efficient can also be leveraged to

design lighting based on intuitive sketch-based input.

Specifically, consider the approach of compressing a light field using wavelets[81]. Such

a formulation expresses the intensity of a vertex as the dot product of two vectors: a row

of the transport matrix and all possible light positions on a surrounding cube in terms

of their wavelet coefficients (the light vector). Because of the sparsity of the transport

matrix, the two vectors are also sparse. Physically, the wavelet coefficients of the transport

vector correspond to the contributions of various square regions that are created when each

side of the cube is recursively sub-divided. Thus the coefficients provide a per-quadrant

distribution of light as one descends the hierarchy formed by the sub-division. The goal of

inverse lighting is to predict the corresponding coefficients of the light vector. The physical

interpretation of the coefficients may be used to design a hierarchical optimization that

converges quickly to the desired local minimum.



Chapter 6

Sketches as Non-Photorealistic

Renditions

6.1 The Problem and the Applications

Sketching is a natural activity for us. We use sketches every day and everywhere–an artist

sketches abstract illustrations, a designer sketches initial design ideas, etc. Research in

sketch-based computer graphics often proceeds orthogonal to this aspect of sketches. The

role of sketches in such research remains passive–a means to an end. Traditionally, sketched

inputs are either parsed to identify domain-specific entities[65, 34], interpreted to create

the implied, more concrete form of data[133, 39] or used to annotate existing data[55].

Thus, most work in sketch-based systems (including that in the previous chapters of this

dissertation) is geared towards interpreting or refining sketches.

While this goal is useful in many applications and has its challenges, it is best for a

lot of applications involving sketches to leave interpretation to the creator. For an artist,

sketches are abstract means of expression, that do not necessarily have refined forms in

geometry. The initial conceptual sketches made by a designer are often too abstract for

any algorithmic interpretation. This is reflected in the fact that many conceptual designers

do not approve of computer programs changing their original sketches into refined forms

because that is considered detrimental to the design process itself. Thus, computer-assisted

design in such scenarios involves rendering these sketches with fidelity, i.e. satisfying aes-

thetic requirements but retaining their overall shape and abstract nature. This creates the

79
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need to recognize lines and curves as active rendering primitives.

Such a characterization is in many ways, complementary to the field of non-photorealistic

rendering (NPR). NPR deals with creating artistic and abstract renditions from various

forms of 2D/3D geometry. Many of the challenges concerned with such sketch-based ap-

plications are also shared by NPR, with possibly one important addition: interactivity.

While most forms of NPR are generated from static geometric models, sketch-based appli-

cations are inherently dynamic and interactive. Strokes are added, deleted and transformed

on-the-fly as the renditions are viewed. The overall problem is to be able to create aes-

thetic, clutter-reducing, smoothly transforming and efficient static (images) and animated

renditions in an environment where strokes are added, deleted and transformed arbitrarily.

There are many applications for such a rendering pipeline. First, such a pipeline can

act as a front-end for many sketch-based applications[53, 59, 25, 51]. Secondly, such a

pipeline addresses an important problem in NPR: creating efficient, temporally consistent,

aesthetically pleasing static and animated renditions in an interactive and dynamic setting.

Thus it can be used to render different types of geometric models non-photorealistically.

6.2 Challenges

Like its applications, this problem shares most of its challenges with non-photorealistic

rendering.

Simplifying and rendering sketches (line drawings in general) on-the-fly obtained from

2D/3D data in general presents two unique challenges. First, as line data may be subject

to an arbitrary sequence of rigid, deforming and projective (for 3D lines) transformations,

simplifying them efficiently on-the-fly is difficult. The second challenge concerns the issue

of visibility. Many techniques to create line drawings from 3D geometry in the form of

meshes[115, 37, 127, 52, 45], points[130] and volumes[13] have been proposed in the past.

Most previous work use attributes of the underlying surface geometry to address visibility.

However in many cases, using an underlying surface to determine visibility between strokes

may be inappropriate (e.g. freehand strokes drawn on planes, as in Mental Canvas[25]
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and 3D6B[53]) or even impossible (interactively created wire frame CAD models). Thus

appropriate visibility cues must be generated to disambiguate the depth between strokes.

There are two generic principles governing the process of line simplification: proximity

(strokes near each other should affect each other) and continuity (the integrity of each

stroke must be preserved) as described by Barla et al.[9]. To adhere to these principles,

some form of a level-of-detail hierarchy of strokes can be built based on proximity so that

continuity is maintained during rendering and animation. For static 2D line models (from

vectorized images or previously drawn digital sketches), such a hierarchy can be generated

off-line and only once. To support progressive sketching and editing sessions or to render 3D

line models, this hierarchy must be created dynamically and interactively whenever strokes

move on the screen (e.g. view point changes) or are added/deleted. Detecting proximity

and simplifying to maintain continuity in such a dynamic setting is challenging.

6.3 Related Work

The issue of line simplification that is central to this work has been addressed in several

ways in NPR. Strokes are simplified in a line drawing to maintain tone and overall shape

and possibly for rendering efficiency. Tone is quantified by measuring local screen-space

density[37], often for static line drawings[127]. Simplification is typically done by creating

a level-of-detail (LOD) hierarchy of lines. Lines are prioritized and rendered according to

this hierarchy. Creation of these levels of detail under various settings is the subject of

many papers. Tonal art maps are used by Praun et al.[97] as an image-based method to

create LODs in hatching. In the field of illustration, Winkenbach et al.[129] introduce the

concept of indication to prioritize lines in textures to achieve control over density, albeit

semi-automatically. With a sketch drawn in real time as its input, WYSIWYG-NPR[55]

takes a user-centric approach by relying on manual specification of LODs when they cannot

be extracted automatically. All these approaches simplify strokes using an accept/reject

scheme, i.e. removing strokes to simplify the drawing. An interesting approach by Cole

et al.[19] uses priority buffers to modulate line density for localized simplification effects.
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Their focus however, is on user-assisted customization of line drawings created from static

models, and hence may not be suitable for automatically simplifying interactively sketched

line drawings.

This work is partly inspired by that of Barla et al.[9] who merge strokes by using screen-

space proximity and color-based clustering. However there are three primary differences

between their work and ours. First, their hierarchy can be created only once for a given

drawing (possibly off-line) as they assume that drawings can only be zoomed in or out. We

create and manage a time-coherent hierarchy on-the-fly to allow an arbitrary sequence of

2D/3D transformations in an interactive and dynamic setting. Secondly, they rely on a

manual classification of strokes as contour and hatching and employ different simplification

methods for them. We present a unified and automatic simplification strategy, whose ad-

vantages are discussed in Sections 6.5.2 and 6.7. Lastly, a change in their input parameters

requires the hierarchy to be completely re-calculated (their ǫ-lines and ǫ-groups change with

ǫ). Our implementation does not suffer from this restriction. This is an advantage because

such parameters are model-dependent and often have to be determined interactively by

trial-and-error.

6.4 Overview

Stroke Proximity: Given a set of strokes projected on the screen, we first determine which

strokes are (at least partially) “near enough” to other strokes to affect their appearance. We

define a parameter δ as the maximum distance between two strokes for them to affect each

other. This parameter can be changed interactively. Section 6.5.1 explains stroke proximity

in detail. Proximity calculations are also used to generate visibility cues to mitigate depth

ambiguity and visual clutter. This is explained in Section 6.5.4.

Stroke Pairing And Simplification: To disambiguate multiple interactions (a single

stroke can affect and be affected by many strokes), we pair every stroke with one other

stroke that it affects the most, according to proximity, color, local gradient and extent of

overlap as a percentage ρ. This parameter can also be changed interactively. We merge two
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(a) (b) (c)

Figure 6.1: Line drawings of the Eiffel Tower. Each column shows the Eiffel Tower
zoomed out to the same level (thumbnail) and the thumbnail magnified. (a) the original
wireframe model. (b) the tower rendered using only visibility cues that reduce some of the
clutter. Without simplification, this figure is rendered at a very low frame rate. (c) the
tower rendered after simplification and with visibility cues. Simplification further reduces
the clutter when zoomed out to such a level in the thumbnail in (c) to retain the overall
shape of the tower but hide the detailed truss structures.

paired strokes into a single stroke. Section 6.5.2 explains pairing and simplification.

Hierarchy Maintenance: Stroke simplification results in a dynamic binary tree hi-

erarchy. Whenever points move on the screen, this hierarchy must be updated and an

appropriate level in it must be chosen for rendering. Section 6.5.3 discusses how this hier-

archy is maintained.

Rendering: Every point in the sampled stroke is rendered as an oriented, alpha-

textured quad with the stroke’s thickness and color. Each point’s opacity modulates that

of its texture to produce the final result. The texture can be changed to produce various

styles.
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6.5 Simplification and Rendering

Figure 6.2: Rendering pipeline for strokes.

6.5.1 Proximity

Line simplification can be thought of as a localized process, where strokes are affected only

by other strokes near them. If a shape-defining feature like a contour is specified using

many small strokes (a common sketching style), then proximity groups such small strokes

together so that they may be approximated by a single long stroke. A local group of hatching

strokes may be approximated by fewer strokes to maintain stroke density as the user zooms

out. Thus, proximity is an effective measure of identifying groups of strokes that may be

approximated by a different set of strokes.

To determine which strokes to simplify, one must determine which strokes are near each

other in screen space. Data structures employed for this purpose must support adding and

removing strokes efficiently. Moreover, as the strokes move incrementally on the screen,

proximity should be re-calculated quickly to maintain interactive rendering rates.



85

Given a set of curves, it is difficult to efficiently determine proximity as they move. This

problem can be solved in a variety of ways:

Representing strokes as a collection

An obvious solution would be to divide the 3D space using an octree. Each cell of the octree

would store (parts of) all the curves that pass through it. Thus, a single stroke is divided

into multiple cells that are arranged hierarchically.

The octree can be supplemented with additional data about each cell’s siblings to make

the proximity query efficient. However the octree responds poorly to moving strokes. Dur-

ing every frame, all the strokes would need to be re-distributed within the octree. Thus,

although an octree would produce an efficient proximity query, it would not be suitable for

our dynamic and interactive setting.

Representing a stroke individually

An alternative would be to represent each stroke separately, and then check which strokes

are near each other. This may be viewed as a “collision detection” test between strokes

under movement. Collision detection is a very popular problem in computational geometry,

and many solutions exist for it. However most of these methods apply to objects that can

be represented as points.

A strip-tree[8, 31] is a hierarchical data structure to represent a curve. In a strip-tree

representation, every curve is recursively sub-divided along its arc length, until arcs of

sufficiently small length are obtained. Thus the leaves of a strip-tree are line segments that

represent the curve at a particular resolution. This representation has the advantage that

a stroke may also self-simplify, i.e. reduce in resolution as its screen size becomes smaller.

Collision detection is a standard operation on a strip tree because it can be determined

hierarchically[132]. This is based on the (loose) assumption that if two nodes of two strip

trees do not collide, none of their children collide with each other either1. Thus it is efficient

to check whether two strip-trees collide with each other. Another advantage is that since

1This is not always true as a node in a strip tree is not constrained to fully contain both its children.
Due to this property, the collision query will realistically be more expensive than logarithmic time
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every stroke is represented as a single tree, updating strip-trees when strokes move simply

amounts to transforming the whole tree.

Unfortunately, in the absence of a “higher” data structure, all pairs of strip trees will

have to be exhaustively checked for collision detection in order to determine proximity.

Another data structure that manages this “strip forest” more efficiently potentially has the

same drawbacks as the octree above. Thus although the strip tree representation is efficient

under addition, deletion and movement, its proximity query is inefficient.

Divide-and-Conquer: Strokes ↔ Points

We resort to a divide-and-conquer approach–we pool the underlying points of every stroke,

solve the proximity problem for points and then interpret the results at the stroke level.

Each stroke is in general a one-dimensional (parametric) curve. We first sample each stroke

uniformly (in terms of its arc length) into a set of points and then represent the input

model at two levels: strokes consisting of points and an independent set of points from

all strokes. Every point stores the tangent to the stroke at that point, its screen-space

position and orientation (projected tangent), and rendering attributes like thickness, color,

transparency, stroke texture id, etc. Our processing pipeline works fully in screen space.

In general, we estimate the expected “pairability” E(S, T ) between strokes S and T as

E(S, T ) ∝ Co(S, T ) ∗
∑

(p,q):p∈S,q∈T,d(p,q)≤δ

(~p.~q) (6.5.1)

where p and q are screen points with screen-space (normalized) tangents ~p and ~q and d(.)

is the Euclidean distance. Co(.) is the color similarity between S and T , but may include

other suitable metrics as well. If two strokes are very near each other, then more pairs will

be found, leading to a greater expected value. Thus E(S, T ) measures how “near”, “locally

parallel” and similar in color S and T are.

Many solutions for point proximity problems exist in computational geometry[14, 30].

As strokes can be added, deleted, or dynamically modified, we require a data structure

that supports efficient nearest-point queries under motion, dynamic insertion and deletion.

Hence, we use the (1 + ǫ)-deformable spanner by Gao et al.[33].
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(1 + ǫ)-deformable Spanner

For a set of points in R
d, an s-spanner is a graph on the set such that any pair of points is

connected via some path in the spanner whose total length is at most s times the Euclidean

distance between the points. A (1 + ǫ)-deformable spanner (for any ǫ > 0) is a sparse

spanner that is suitable for dynamic sets of points. Because of its hierarchical construction

and sparseness, a (1 + ǫ)-spanner efficiently “repairs” itself incrementally whenever points

move continuously. Thus, in the context of rendering, it works on the notion of using results

from the previous frame to determine those for the current frame. Moreover it supports

dynamic insertion and deletion of points, making it suitable for our setting. Specifically,

for a set of n points in R
d bounded by an aspect ratio α (the ratio of the maximum and

minimum distance between two points), the (1+ ǫ)-spanner supports insertion and deletion

of a point in O( h
ǫd ) time, where h = O(log2 α). The nearest-point query – given a set of

points, for each point p, enumerate all points within a distance δ from p is defined as a

standard operation on this spanner. For k such pairs, the (1 + ǫ)-spanner supports this

query in O(k + n) time. Our pipeline uses this data structure as-is (like a black box). We

refer the reader to Gao et al.[33] for further details.

We project all strokes onto the screen and build the (1 + ǫ)-spanner on these projected

2D points. After any screen-space movement, we update(repair) the spanner and query it

to return all pairs of points that are within a distance δ (Section 6.4) from each other. As

long as the movement is incremental (points do not move by a large distance abruptly),

the updating operation is efficient irrespective of the actual nature of movement. Thus

our pipeline is not limited to simple rigid transformations–any incremental motion can be

handled.

The parameter ǫ controls the extent of approximation of level i in its parent level i− 1

(we chose ǫ = 16 empirically for all results shown here). Our experiments indicated that

increasing the value of ǫ increases the time to “repair” the spanner during every frame.

Henceforth, all screen-projected points are represented in lower case while all strokes

are represented in upper case. A screen-projected point p has a screen-space orientation ~p.
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Point Pairing

All pairs returned by the spanner are not useful in determining stroke-stroke proximity

(e.g. the spanner returns pairs of adjacent points along the same stroke due to the absence

of connectivity information in it). Intuitively, we try to select pairs that are near to each

other, have similar colors and screen-space orientations.

During every frame, we build two tables from all the pairs returned by the spanner:

C(p, S) that maintains the “closest” point in every stroke S to a given point p, and Q(S, T )

that maintains the geometric likelihood that strokes S and T will be paired together (Q is

the summation part of Equation 6.5.1). Let p → q(p ∈ S, q ∈ T ) be a candidate pair of

points returned by the spanner. If S = T , we reject the pair. Otherwise, we determine a

score Sim(p, q) proportional to the Euclidean distance and color difference between p and

q. We update the entries C(p, T ) and C(q, S) with Sim(p, q) if necessary. Then we add ~p ·~q
to Q(S, T ) and Q(T, S). Thus Q(S, T ) maintains a score that is proportional to the number

of pairs between points in S and T respectively, modulated by the similarity between their

local gradients. It may be noted that C and Q are sparse as they contain data only for

points and strokes that are near each other.

6.5.2 Stroke Pairing and Simplification

Given updated sparse tables C and Q, we now consolidate the results to pair strokes. Sim-

plification happens at the stroke level, maintaining continuity wherever appropriate. We

maintain continuity geometrically by preventing strokes from disintegrating. Although ap-

parent continuity (interpreting multiple short strokes as a single long stroke) is maintained,

it is not guaranteed (please refer to Section 6.7)2.

Intuitively, we pair stroke S with a stroke T if ρ% of the points of S are paired to some

point in T with comparable corresponding local gradients. We select an ordered pair of

strokes (S, T ) for simplification if Co(S, T )Q(S, T ) ≥ ρ |S|3. Our formulation allows us to

2Maintaining the integrity of special strokes like dashed lines depends on how they are represented in the
application–if passed to the pipeline as one long stroke, continuity is maintained.

3It may happen that Co(S, T )Q(S,T ) ≥ ρ |S| but Co(T, S)Q(T, S) ≤ ρ |T |. This happens if S is shorter
than and so overlaps only a small portion of T .
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handle fork cases (neither of the end points of S pair with T ) seamlessly. Since entries

in Q are averaged over a stroke, they vary smoothly as points move continuously. Thus

simplification is also incremental and smooth, providing temporal coherence.

It is important to note that once (S, T ) are paired and simplified to U in a particular

frame, no other strokes can pair with either S or T until U again separates into them. Thus

in the case that multiple strokes have sufficient overlap with a single stroke S to trigger

simplification, the first of these strokes (in the order in which they were created) is paired

with S, ruling out any other pairs with S during that frame.

Stroke Simplification

The problem of simplifying two strokes into one is difficult in general, because some corre-

spondence between their points must be known for any interpolation scheme. This problem

occurs in many applications: simplifying strokes in NPR, representing rough over-traced

sketches by a representative stroke, etc. It is often addressed by classifying strokes and

employing multiple simplifying strategies.

If the two strokes were parameterized in a common domain, the parametrization would

serve as an implicit correspondence. There are existing methods to fit curves to noisy point

data [36] that parameterize points in a common domain. The strategy is to define a reference

parameterized curve. Then for every point, the point on the curve that is nearest to it is

determined and parameterized accordingly. While this seems inefficient for an interactive

setting, we reuse the point pairs from the spanner to determine this correspondence.

Noting that at least ρ% of points of S are paired to some point in T for a pair (S, T ), we



90

choose T as our reference curve and parameterize it in (0, 1) using arc-length parametriza-

tion. For every point p ∈ S, if C(p, T ) exists, the parameter value at p is trivially known.

This scheme divides S into a set of alternating parameterized (green above) and (possibly)

unparameterized (red above) segments. We parameterize these segments using interpolation

(if it lies between two parameterized segments) or extrapolation (otherwise). Another pass

through S makes this parametrization consistent (monotonically increasing/decreasing).

Then we sort the points in S and T according to the common parameter and fit a curve

through this point set (a similar technique for parameter propagation was used by Kalnins

et al.[54] to produce coherent silhouette animations).

In regions where S and T do not coincide, this point set may cause a zig-zagged curve.

To minimize this effect we choose Rational Gaussian curves[35] for interpolation. RaG

curves work by centering a Gaussian function at every control point and using these weights

to calculate interpolating points on the curve. They offer good control over local and

global smoothness by changing the standard deviations of the interpolating Gaussians (we

use σ = 3
|S+T | for all models). We use pre-computed Gaussian tables to improve speed.

Figures 6.3 and 6.5 show how this single simplification scheme works well for both contour

strokes (maintaining shape in the Gandhi and boat sketches) and hatching strokes (hull of

the boat).

For a pair (S, T ) simplified to a stroke U , U records a representative pair of points

(pS ∈ S, qT ∈ T ) and the Euclidean distance dfirst(pS , qT ) between them at the time of

simplification. They are used to decide whether to move down the hierarchy (replace U

with S and T ).

6.5.3 Hierarchy Maintenance

Simplification creates a localized hierarchy of strokes. Strokes should smoothly merge into

their parent, or should smoothly separate into their children for coherent animation.

Based on strokes S and T simplified into stroke U with the parameters (pS, qT ) and

dfirst(pS , qT ) as explained previously and distance dcurr(pS , qT ) in the current frame, a life

cycle of U can be defined in terms of the following phases:
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Separation phase

(red phase;right)

In this phase characterized by dcurr(pS , qT ) > l∗dfirst(pS , qT ), S and T are apart enough

to exist as separate strokes. Thus we descend one level down the hierarchy and render them

instead of U . Points of S and T are added to the spanner, and those of U are deleted. l > 1

provides a wider hysteresis loop (so that points are not repeatedly added to/deleted from

the spanner between frames).

Transition phase

(yellow phase;middle)

In this phase characterized by k ∗ dfirst(pS , qT ) < dcurr(pS , qT ) ≤ l ∗ dfirst(pS , qT ), U , S

and T are rendered as if in transition between the two levels. Their opacity is governed by

dcurr(pS, qT ), such that α(S) = α(T ) ∝ dcurr(pS ,qT )
dfirst(pS ,qT ) , α(U) = 1− α(S). 0 ≤ k ≤ 1 creates a

smooth transition.

Simplified phase

(green phase;left)

In this phase characterized by dcurr(pS , qT ) ≤ k ∗ dfirst(pS , qT ), S and T are too near

each other to exist as separate strokes. If they were in the transient phase in the previous

frame (they would have had low opacity then to be in this phase now), we stop rendering

them and set U at full opacity. Points of S and T are removed from the spanner, and those
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of U are added.

We implement this scheme using two lists. At every frame, one list is marked as the

current list. Any strokes created during that frame (by simplification) are added to this

list. We check every stroke in the list, and either push it (yellow phase) or its children (red

phase) into the other list. The lists are swapped in the next frame. Any stroke that has

already been paired (i.e. its ancestor exists in the list) is neglected.

To summarize, the following high-level operations are performed in order during every

frame:

1. Verify the hierarchy. (Section 6.5.3)

2. Update the spanner, get and process all pairs. (Section 6.5.1)

3. Determine strokes pairs and simplify them. (Section 6.5.2)

4. Render the strokes.

6.5.4 Visibility Cues

If surfaces are available in case of 3D models, visibility cuing by occlusion may be performed

easily in some cases. However in the general case of 3D curves, such occlusion may not be

possible or desirable even if the surfaces that they lie on are available. For example, consider

two 3D curves that lie on two known surfaces. How does one decide the surface bounds to

get occluding polygons? Is it always conceptually sensible for one curve to occlude another?

We generate cues to alleviate depth ambiguity and visually de-emphasize distant parts of

the model by further modulating the transparency of every stroke. Our technique is similar

to the haloed line effects proposed by Appel et al.[7] and Elber[28]; however our pipeline

implements it at no extra cost. For every intersection point of two strokes on the screen, we

locally increase the transparency of the stroke that is behind by a certain amount. Thus,

the stroke appears “lighter” or hidden behind the stroke that is in front. These intersection

points can be approximated from the pairs of points returned by the spanner. Such local

modulation of transparency values results in a global visibility cuing effect. In Figure 6.4(b),
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the right wheel of the cart appears occluded due to these cues. In Figure 6.1(b), these cues

reduce clutter when the Eiffel Tower is rendered from different distances.

(a) (b)

Figure 6.3: Results on 2D sketches of objects. Column (a) shows the original sketch
zoomed out to a certain level (thumbnail), while column (b) shows the sketch zoomed out and
simplified to the same level (thumbnail) and the thumbnail magnified. The top row shows a
sketched boat (δ = 4, ρ = 85), while the bottom row shows a sketched sailboat(δ = 8, ρ = 85).

6.6 Results

Figure 6.3 shows how our system can be used to render 2D sketches. These sketches were

drawn on a tablet PC, using a simple program that allowed the user to draw strokes by

tracing a photograph. Row 1 shows the 2D sketch of a boat. Notice how the hatching

strokes on the hull and the contours of the boat are simplified correctly with our unified
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simplification technique. Row 2 shows another 2D sketch of a sailboat. The thumbnail

shows how the wrinkles on the sail were simplified upon zooming out.

Figure 6.5 shows how our system can be used to render creative sketches directly drawn

on computer by an artist. Typically, such sketches are ambiguous and are drawn by over

sketching with many small strokes. The first row shows a character sketch of Mahatma

Gandhi. Notice how various silhouettes are drawn with multiple smaller strokes. Column

(b) shows our simplified rendering where such strokes are consolidated into fewer strokes,

thereby preventing them from thickening and darkening. The second row shows a sketch

of a lamp. While sketching, the artist went over the same regions with strokes of multiple

colors, due to which there is some color mixing as the sketch is zoomed out (thumbnail in

(c)). Some parts (yellow shading on the lamp shade) were drawn using a few long, winding

strokes. The lamp simplifies into (d) if such strokes are taken in their entirety. It can be seen

that such strokes are not simplified significantly as their length mitigates sufficient overlap

with any other stroke to trigger simplification. To improve this, we first segment such

strokes by monitoring abrupt curvature changes. Simplification after such segmentation is

shown in (e). Notice how the lamp is now simplified to a greater extent and resembles the

original sketch more (the two thumbnails), in terms of stroke placement and density.

Figure 6.6 shows a comparison with a result from Barla et al.[9] by using the data of

one of their sketches. Our pipeline simplifies the hatching strokes similar to theirs (without

explicitly labeling them so). Result (c) was obtained by fixing δ and ρ so that zooming out

to the same size as the thumbnail in (b) results in an image that looks similar to the original

sketch in terms of shape and tone. Notice how the overall appearance of the thumbnail of

(c) matches that of the original sketch. In particular, notice the locally darker hatches on

the big branch on the right that are somewhat preserved in our thumbnail. This is reflected

in the sparse dark stroke on this branch in the magnified thumbnail in (c).

Figure 6.4 shows how 3D sketches (here drawn using the 3D6B interface[53]) can be

rendered using our system. Notice how our visibility cues correctly depict the depth by

“occluding” the right wheel of the cart (first row). In the second row , notice how the

tone of the dense strokes on the roof, the shingle pattern and the shape of the clocks are
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Model Nstrokes Npts(initial) FRavg(fps)

Sailboat 281 4817 7.7

Boat 359 6000 9.24

Gandhi 757 7197 12.52

Lamp 2559 31444 3.16

Tree 2376 34424 11.3

Clock tower 961 21445 2.69

Cart 162 8851 5.45

Eiffel 2742 22119 5.11

Table 6.1: Performance results. Nstrokes: number of strokes in the model, Npts(initial):
number of points initially added into the spanner. All frame rates were captured at a 950×
950 resolution.

retained. Figure 6.1 shows how our system can be used to render 3D wireframe CAD models

(δ = 3,ρ = 80). This Eiffel Tower model was obtained from Google 3D Warehouse[1] and

rendered without any surface information.

Table 6.1 shows the average frame rates for the results shown in this paper. These frame

rates were calculated for a resolution of 950 × 950 on a desktop machine with a 3.0 GHz

Intel Pentium 4 processor and 1 GB RAM. The implementation is fully CPU-based. As the

screen size decreases, the number of points in the spanner decreases due to simplification,

leading to faster frame rates.

6.7 Qualitative Analysis and Limitations

The main highlight of our pipeline is that it works in a dynamic setting for an arbitrary

sequence of transformations. Towards this goal, the most expensive operation is to deter-

mine proximity between strokes, which we perform efficiently with the (1+ ǫ)-spanner. The

cost of dynamism principally comes in the form of per-frame updates of the spanner, which

is why the performance of our pipeline is interactive, but not real-time. It may be possi-

ble to improve the performance of the spanner if only specific transformations are allowed.

Implementation of the spanner as-is on the GPU will greatly boost performance without
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compromising on generality. I have reserved this for the near future.

The main advantage of a unified simplification strategy (Section 6.5.2) is that strokes

need not be annotated (e.g. “contour” and “hatching”) explicitly. In a sketching session,

this may have to be done manually which would seem contextually unnecessary. However

the notion of continuity may be compromised in some cases. Consider a (implied) long

stroke that is drawn using two strokes A and B overlapping end-to-end. If a third stroke C

pairs with A to create a simplified stroke D, then D and B may not look like a continuous

long stroke as A and B were meant to be. As small values of δ are normally used to prevent

over-simplification, such an effect is usually not obvious. However it is theoretically possible.

The two parameters δ and ρ offer limited control over subjective simplification effects.

Both δ and ρ are applied globally, i.e. to the entire (projection of) model. Although this ap-

proach makes them intuitive to change, it makes local customizations difficult. For example,

it is not possible to simplify a local region more while retaining the original simplification

elsewhere. A possible solution could be to allow additional localized simplification effects

like those by Cole et al.[19] as a post-process. Another issue concerns the “constancy” of δ,

i.e. although δ can be changed by the user, it is independent of the actual scale of the model.

This creates artifacts when the model is scaled down greatly. At that stage the model may

be over-simplified. A better strategy could be to modulate the value of δ with the overall

scale of the model, but achieving a proper control is difficult because this correspondence

is often model-dependent. Such a strategy may also make δ less intuitive to change.

Another issue concerns our stroke simplification algorithm. Our parameter propagation

when creating a merged stroke is based on a simple merging procedure. This may cause

strokes to jump (spatially, not temporally) from the unpaired parts to those that are paired.

This, along with our method of determining the standard deviations of the RaG curves

sometimes creates wiggly strokes (some strokes in Figure 6.6(c)).
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6.8 Remarks and Future Work

This work simplifies line drawings and generates visibility cues from purely 2D/3D line-based

models obtained from various types of data. By using a (1+ ǫ)-spanner to determine stroke

proximity, we dynamically build and maintain a stroke hierarchy based on the high-level

principles of proximity and continuity. The line drawings thus created are geometrically

meaningful and temporally coherent.

Synthesis of line drawings is a complementary and more difficult problem, in which

strokes are synthesized (instead of simplified) to achieve the same goals of shape and tone

preservation. In the future, I wish to extend our pipeline to synthesize line drawings. In

addition to line-based NPR, I would like our pipeline to support other styles of abstract

drawings like point stippling. Point-based and line-based NPR effects are often treated

exclusively because of operations required to realize each of them. I envision a hybrid

pipeline that feeds off a common efficient representation of underlying data, supports both

styles simultaneously and switches between them interactively, and that offers intuitive

controls for an artistic user.

Lastly, I am interested in working further at the overlapping areas of sketch-based ap-

plications and non-photorealistic rendering. So far, these two areas have been treated

separately: the former concentrating on modeling while the latter on rendering models.

However, as non-photorealistic rendering is principally aimed at reproducing the natural

form of hand-drawn sketches, I feel that the two areas have great potential to reinforce each

other. First, I am interested in investigating how the effectiveness and subjectivity of non-

photorealistic renditions can be improved by using sketched inputs. This would facilitate

artistic control over a computer-based process that is essentially algorithmic and/or statis-

tical in nature. It would provide local and global “NPR-by-example” control to the artist

instead of relying on parameters and sliders. Secondly, I am interested in exploring the

role of sketch-based NPR in art education. I believe the collective knowledge of computer

scientists in understanding and reproducing artistic renditions can be used to create very

effective tools for teaching and refining the art of sketching and painting in art classes.
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(a) (b)

Figure 6.4: Results on 3D sketches (created using the 3D6B interface [53]). Col-
umn (a) shows the original sketch zoomed out to a certain level (thumbnail). Column (b)
shows the sketch zoomed out and simplified to the same level(thumbnail) and the magnified
thumbnail. First row: 3D sketch of a cart (δ = 5, ρ = 85). Second row: two facades of a
clock tower (δ = 5, ρ = 80).
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(a) (b)

(c) (d) (e)

Figure 6.5: Results on artistic sketches. First row: (a) a sketch of Mahatma Gandhi
made by an artist, zoomed out to a certain level (thumbnail). (b) the simplified sketch
zoomed out to the same level (thumbnail) and the thumbnail magnified (δ = 5, ρ = 80).
Notice the typical over-tracing sketching style in the sketch that is suitably simplified by
our rendering. Second row: (a) an artistic sketch of a lamp, zoomed out to a certain level
(thumbnail). This sketch was made by the artist by sketching repeatedly with overlapping
strokes of various colors, giving it a composite appearance. Notice how parts of the lamp
shade are sketched using a single winding stroke. If such strokes are taken in their entirety,
the simplified result appears as in (b)(δ = 6, ρ = 85). To improve on this, we break the
stroke into segments so that they may be simplified, producing the result in (c). Notice how
the strokes in the lamp shade have been simplified correctly due to this segmentation.
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(a) (b) (c)

Figure 6.6: Comparison with previous work. (a) A sketch from Barla et al. [9]. (b)
Their result upon zooming out. (their result was darkened to better compare with our render-
ing style. The number and shapes of strokes were unchanged. Reproduced with permission
from the authors) (c) Our result when zoomed out to the level shown in the bottom left
thumbnails (δ = 6, ρ = 90). Our simplification preserves the apparent tone produced by the
hatching strokes as in their result, shown in (b). The result was obtained by fixing δ and ρ
empirically and zooming out till a satisfactory image at the same size was obtained.
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