
Crayon Lighting: Sketch-guided Illumination of Models

Amit Shesh
University of Minnesota at Twin Cities

Baoquan Chen
University of Minnesota at Twin Cities

Abstract

Appropriate lighting that highlights the salient features
of a geometric model is critical to its visualization. In this
paper, we propose and implement an interactive inverse
lighting system in which the model is rendered based on
sketched lighting effects. To specify target lighting, theuser
freely sketches highlights and dark regions on the model as
if coloring it with crayons. Using the geometry of the model
and these hints, the system efficiently derives light positions,
directions and spot angles that attempt to achieve the hinted
lighting conditions. As the system also minimizes changes
from the previous specifications, lighting can be designed
incrementally. The system solves the inverse lighting prob-
lem as an optimization problem and leverages commodity
graphics hardware to make the process fast and interactive.

1 Introduction

Appropriate lighting of a model is critical to its visualiza-
tion. Lighting enhances structural details to depict the ge-
ometry of a model well in a single image. However, given
a model, its desired lighting is often achieved by moving
lights around and “playing” with their colors and intensi-
ties in a largely trial-and-error fashion. This is a tricky pro-
cess because traditional modeling systems that are meant
for other high-level purposes assume lighting as a given,
and so do not offer intuitive interfaces to set the lighting.
Designing lighting in such systems is usually in the form of
non-intuitive tweaking of actual coordinates and intensities.
A method to automatically derive necessary lighting param-
eters based on a more intuitive specification of the desired
lighting effects is desirable, and is referred to as the inverse
lighting problem.

Many diverse approaches to solving the inverse light-
ing problem have been proposed and adopted. These ap-
proaches can be classified as being automatic or interactive.
In the first category, a “good” lighting is procedurally in-
ferred by using various perceptual metrics [3, 4]. There is
little or no user intervention, and so speed is important but

not critical. It is difficult in general to devise such metrics
that work for all models and their geometric features, which
is why most such approaches depend on several model-
dependent parameters that can be set by the user. Other
systems rely on interactive user input to determine a target
lighting [5, 7]. These methods place the user in the driver’s
seat and conform lighting to the user’s input. We contribute
to this category of inverse lighting systems by proposing a
simple sketch-based interface and using efficient data struc-
tures and hardware-assisted techniques to make the system
fast.

As with rendering, global inverse illumination meth-
ods [3, 7] tend to be significantly slower but produce better
pictures. However, in many applications, local illumination
methods suffice to visualize a model–indeed many profes-
sional modeling tools support basic, point-light-based local
illumination models. Many inverse illumination systems
like those in [4, 5] use local illumination methods. Our
work belongs to this category, and we mainly concentrate
on point, directional and spot sources of light. Due to this,
results from our work can be easily incorporated in simple
graphics tools as well as larger systems that use point-light
based illumination models.

The main motivation for our work is to develop a tool
that can be used to quickly set up appropriate lighting for a
model, given an illumination model. Our focus is to set up
lighting quickly with intuitive user input. In this work, we
first propose a sketch-based interface for general interactive
inverse lighting systems. We process this input efficiently
and use GPU-assisted techniques to solve the inverse light-
ing problem as a minimization problem. Our system han-
dles point, directional and spot lights.

2 Overview

The user loads a model into the system with default light-
ing. The user uses an orange highlighting pen to sketch
highlights on a part and a blue darkening pen for darken-
ing parts of geometry by contrast (see Figure 1(b)). When
the user input is complete, the system efficiently determines
the affected parts of the model and the target lighting con-
ditions. Various lighting parameters like positions, direc-

(a) (b) (c)

Figure 1. An example output of our system. (a) the original hip model with 40,000 triangles. (b) the user uses orange and blue
strokes to bring the cavity into focus and recede the rear part by darkening it. (c) the result of the lighting (arrows showthe light
sources).

tions and spot angles of light sources are optimized to min-
imize the per-vertex differences between the actual and tar-
get lighting. When the optimized lighting is presented, the
user can rotate the model, specify more constraints sim-
ilarly and continue the design procedure. After satisfac-
tory lighting is achieved, the system outputs all the relevant
lighting parameters that can be plugged into any other pro-
gram using a similar lighting model to reproduce the light-
ing. In this implementation, we adhere to theOpenGLlight-
ing model, and thus the results produced by our system can
be directly replicated in any rendering program that uses
OpenGLlighting.

3 User Input

The user is equipped with two pen styles, a highlighter
and a darkener (orange and blue strokes in Figure 1). The
user sketches strokes to specify bright (highlights) and dark
regions. Strokes can be in the form of hatching, cross-
hatching or even solid coloring, as only the vertices they
approximately cover are of importance. It is not necessary
to stay within the silhouettes; the user can freely scribble
on the model. Strokes can be retraced to emphasize greater
brightness or darkness.

3.1 Determining affected vertices

We now efficiently determine the vertices marked by the
user’s strokes. Towards this purpose, we create a volume
Cray around the loaded model. Every voxel inCray con-
tains a list of triangles that lie (at least partially) in it.In our
current implementation, we use a2563 volume to achieve
a reasonable trade-off between speed and memory require-
ments. In order to determine the vertices marked by the
user, we cast rays from the eye through the marked pixels

into Cray. We use the fast voxel traversal algorithm pro-
posed by Amanatides and Woo [1].

3.2 Determining the Target Light Field

The user’s strokes are now interpreted to set up a target
light field that the subsequent lighting must attempt to cre-
ate. This light field is created by starting from the existing
light field, and incrementing or decrementing vertex inten-
sities according to strokes (if any) placed on them. LetS be
the set of hit triangles obtained as explained in the previous
section. Triangles inS by themselves do not represent the
set of all affected triangles by the desired lighting parame-
ters. We need a target light field that gradually changes over
the model, starting from the hit triangles.

We pre-compute a scorekv for every vertexv in the
mesh. We start with a default score of0.1 for every ver-
tex. For every edgee in the mesh, we calculate the gradient
around it from the (at most 2) triangles that share it and in-
crease the score of its end vertices accordingly. Thus,kv

is an indicator of the change in surface geometry around
vertexv. We make increments and decrements of vertex in-
tensities linear functions ofkv, thus enhancing each vertex
according to its geometric context.

4 Solving the Inverse Lighting Problem

We now explain how various lighting parameters are ob-
tained, given the target field generated as explained in the
previous section. Various possible lighting parameters that
can be solved for are light positions, intensities, directions
and spot angles.

The general problem framework is similar to that sug-
gested in [2, 3]: we formulate the problem as an n-
dimensional non-linear optimization problem and solve it.
Our minimizing function is of the formf(X) = wi ∗ ti

wherew = [wi] is a weight vector, andX is a candidate set
of lighting parameters consisting of light intensities, direc-
tions, angles of spotlight, etc. Termsti measure the change
in vertex intensities. For hit vertices, the intensities change
according to the input, while for all other vertices, they re-
main unchanged. They are quantified by taking the maxi-
mum and sum of the difference between vertex intensities
in the target lighting field and a candidate lighting field,
respectively. We use Brent’s minimization method [6] to
solve this problem.

There are three primary issues with solving the above
problem efficiently, which we briefly discuss in the follow-
ing sub-sections.

4.1 Initial guess

As we solve for the position (in polar coordinates(θ, φ)),
direction(dx, dy, dz), diffuse (kd) and specular (ks) inten-
sities and spot angleψ of a light, there are up to 8 pa-
rameters per each light source used. Solving such a multi-
dimensional problem requires a good initial guess to mini-
mize convergence to an incorrect local minima.

We surround the model with a sphere, tesselated into a
fixed number of quadrilaterals (400 for results shown in this
paper). Each quadrilateral serves as a bin of lights; there
is at most one light source representing each bin. Every
bin maintains a score that approximates the probability of a
light being placed in that bin. When a vertex is sketched
upon, we use its vertex normal to determine which bins
are most and least probable to contain a light source that
will produce the required lighting effect at that vertex, de-
pending on whether the vertex is to be lit or darkened re-
spectively. When all the input is processed in this way, we
greedily choose the bins with the highest scores. The cen-
ter of each such bin serves as an initial guess for the light
contained in the bin.

4.2 Fast evaluation of f(X)

Every calculation off(X) requires calculation of the
maximum and the sum of difference between two vertex in-
tensities. This is an expensive operation because there area
large number of vertices. We delegate this calculation fully
to the GPU to make it fast and efficient. This technique is
inspired by the work by Windsheimeret al [8], who imple-
ment a visual difference metric in hardware.

Let V be a set of vertices over whichf has to be cal-
culated. We arrange vertices inV in a quad textureT of
dimensions

√

|V |x
√

|V |. Every texel of this quad tex-
ture contains the difference between target and candidate
intensities of a vertex. We pad the texture with0’s so that
every dimension is a power of2. We now read the tex-
ture locationsT (2x, 2y), T (2x + 1, 2y), T (2x, 2y + 1),

T (2x+ 1, 2y + 1) and store their sum (or their maximum)
as the color of an output textureP (x, y). This texture is
used as input for the next iteration. Finally, when the out-
put texture contains only one texel, its value stores the re-
quired sum (or the maximum) that we simply read off. Thus
this operation is completed inO(log4 n) iterations, with
n =

√

|V |.

5 Results and Conclusions

Figure 1 shows results of our system on the medical
model of a hip with 40,000 triangles. Figure 1(a) shows the
initial lighting conditions. The aim of the user input (Fig-
ure 1(b)) was to shift focus to the cavity in the model. The
program correctly placed one directional source of light on
the left of the model to create the highlight and others at the
bottom to enhance the darkened region (Figure 1(c)). This
result took 3 seconds.

Figure 2 shows results on some other models. In general
several inputs could be required progressively to arrive at
the desired result.

Figure 2(a) shows a pelvis model1 with default lighting.
The sacrum and coccyx area of the pelvis (marked by the
rectangle) appears somewhat flat. The goal of the input in
Figure 2(b) is to enhance the depiction of the geometry in
this area. Figures 2(c-d) show the result using 4 sources
of light. The grooves in the area of interest are enhanced
because of the contrast produced by the lights.

Figure 22(e-l) show how lights can be obtained by pro-
gressively transforming a model and sketching on it. Fig-
ure 2(e) shows the filigree model having 177,000 triangles
with default lighting. The goal is to contrast facets facing
in opposite directions to arrive at a better lighting that en-
hances the structure of the model. The object is rotated and
sketched upon in Figure 2(f) to obtain the lighting of Fig-
ures 2(g-h). Again, the object is rotated and some more
hints are sketched (Figure 2(i)) to increase the contrast, as
shown in Figures 2(j-k). Figure 2(l) shows how 8 light
sources are placed (red arrow shows initial view point) to
arrive at the final lighting in Figure 2(k).

In summary, “Crayon lighting” is a tool that performs
inverse lighting given a sketchy input in which the user
sketches highlights and shadows directly on the model. We
envision this tool being used by modelers or researchers in
computer graphics and visualization as a simple tool that
outputs the necessary lighting parameters for good model
visualization. Our system is easy to use and hence no prior
learning is required.

1
model obtained courtesy of VCG-ISTI by the AIM@SHAPE Shape repository

2model obtained courtesy of SensAble Technologies inc. by the AIM@SHAPE Shape repository

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Results: filigree and pelvis. (a) a pelvis model with 50,000 triangles with default lighting. The sacrum and coccyx area
marked by the rectangle appears flat. (b) the input specifying contrast in these regions to be increased. (c-d) the resultshowing the
region enhanced by contrast. (e) a filigree model having 177,000 triangles with default lighting. (f) model is rotated and highlights
and dark regions are specified. (g-h) result of input from (f). Some faces are better lit than in (e). (i) model is rotated again and
more highlights and shadows are specified. (j-k) result of input from (i). Due to oblique and back lighting, the faces of the model
are properly contrasted. (l) the same lighting in (k) shown from a different view point to see all the light sources. Red arrow shows
the original view point in (e),(h) and (k).

6 Acknowledgements

Support for this work includes an NSF CAREER award
(ACI-0238486). We thank Minh Nguyen for his technical
inputs and Nathan Gossett for proofreading the paper..

References

[1] J. Amanatides and A. Woo. A fast voxel traversal algorithm
for ray tracing. InProc. Eurographics ’87, pages 3–10, 1987.

[2] A. C. Costa, A. A. Sousa, and F. N. Ferreira. Optimisation
and lighting design. InProc. WSCG ’99, pages 29–36, 1999.

[3] J. K. Kawai, J. S. Painter, and M. F. Cohen. Radioptimization:
goal based rendering. InProc. SIGGRAPH ’93, pages 147–
154, 1993.

[4] C. H. Lee, X. Hao, and A. Varshney. Light collages: Lighting
design for effective visualization. InProc. IEEE Visualization
’04, pages 281–288, 2004.

[5] P. Poulin and A. Fournier. Lights from highlights and shad-
ows. InProc. SI3D ’92, pages 31–38, 1992.

[6] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Nu-
merical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, New York, NY, 2002.

[7] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Green-
burg. Painting with light. InProc. SIGGRAPH ’93, pages
143–146, 1993.

[8] J. E. Windsheimer and G. W. Meyer. Implementation of a
visual difference metric using commodity graphics hardware.
In Human Vision and Electronic Imaging IX, Proceedings of
the SPIE, volume 5292, pages 150–161, 2004.

