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Figure 1: An example output. (a) the original hip model with 40,000 triangles. (b) The user uses orange and blue strokes to bring the cavity
into focus and recede the rear part by darkening it. (c) a sample output produced by our system by moving the existing light and adding a
new light. This image is rendered using conventional OpenGL rendering. (d) compliance with the input is reinforced by this raytraced image
of the same model under the same lighting conditions, with shadowing effects.

Abstract

An interactive and intuitive way of designing lighting around a
model is desirable in many applications. In this paper, we present
a tool for interactive inverse lighting in which a model is rendered
based on sketched lighting effects. To specify target lighting, the
user freely sketches bright and dark regions on the model as if col-
oring it with crayons. Using these hints and the geometry of the
model, the system efficiently derives light positions, directions, in-
tensities and spot angles, assuming a local point-light based illu-
mination model. As the system also minimizes changes from the
previous specifications, lighting can be designed incrementally. We
formulate the inverse lighting problem as that of an optimization
and solve it using a judicious mix of greedy and minimization meth-
ods. We also map expensive calculations of the optimization to
graphics hardware to make the process fast and interactive. Our tool
can be used to augment larger systems that use point-light based il-
lumination models but lack intuitive interfaces for lighting design,
and also in conjunction with applications like ray tracing where in-
teractive lighting design is difficult to achieve.
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1 Introduction
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Lighting enhances structural details to depict the geometry of a
model well in a single image. As lighting plays an integral role
in almost any graphics application, an interactive and easy-to-use
method to design lighting around a given model is highly desirable.
However, a given 3D model is often lit by moving lights around
and “playing” with their colors and intensities in a largely trial-
and-error fashion, usually in the form of non-intuitive tweaking of
actual numbers or an interface to move lights in three dimensions
and change their properties (which has its own shortcomings). In
this paper, we present a tool, Crayon Lighting, that sets up appro-
priate lighting for a 3D model/scene using rough sketchy inputs.
Our focus is to set up lighting quickly with intuitive user input.

Although the user may have a fair idea of how he/she wants the lit
model to look and what features are to be enhanced (effect), devel-
oping an intuition for which placement of lights causes these effects
is difficult. This cause-effect relationship becomes even more com-
plex with multiple and diverse sources of light. The problem of
designing even simple shadows significantly complicates the prob-
lem, as shadows are much more complex functions of geometry
and light properties than highlighting is. In order to alleviate the
user from “thinking technically” about the physics of lighting, our
user input is goal-oriented–the user sketches desired lighting effects
while the program determines lighting parameters from them.

Inverse lighting is an old problem and has been researched well in
the context of many diverse applications like architectural lighting
design [Kawai et al. 1993], visualization [Lee et al. 2004], anima-
tion and production rendering [Marks et al. 1997; Pellacini et al.
2007], etc. While some lighting methods target automatic light-
ing design [Shacked and Lischinski 2001], others make the pro-
cess interactive by making the lighting interactive to facilitate real-
time manual movement of lights [Kristensen et al. 2005], offering
lighting cues [Schoeneman et al. 1993; Poulin et al. 1997] or even
sketching [Pellacini et al. 2007]. However a perusal of previous
work brings forth the following problems that are addressed only
partially: (1) formulating the lighting problem so that it can be ap-
plied widely across applications, (2) optimization techniques that
have good convergence, good quality results and also work at inter-
active rates, (3) tradeoff between choice of illumination model and
quality of results and interactivity, and (4) intuitive user interfaces
that can be learned easily (5) ability to work in conjunction with
existing software (i.e. popular modeling systems) that use lighting
but do not offer interfaces geared towards designing it. Our tool ad-



dresses all these problems and targets naive users who would rather
not think about the physics of light transport while achieving the
lighting they desire. Barring some optional parameter specification,
the user input is restricted to sketching on a model.

In this paper, we design a tool that can be used to design lighting
that uses local point-light based illumination models (like OpenGL
lighting). Such a tool can be used in conjunction with many mod-
eling tools that offer the option of lighting, but do not offer a good
interface for designing it. Another application of such a tool is to
design lighting quickly and use the results in an expensive rendering
algorithm (like ray tracing) that inherently does not support chang-
ing lights interactively for design purposes. Our tool solves for var-
ious lighting properties like positions, directions, spot angles and
intensities. It offers a unique feature of designing lighting while
preserving existing lighting conditions, which allows lighting to
be designed incrementally. Our optimization framework is general
enough to be applied to a wide range of lighting models, although
all results in this paper use only one such model. We achieve inter-
activity by solving this optimization problem using a judicious mix
of greedy and conventional minimization methods, and delegating
expensive operations in the optimization to graphics hardware.

Crayon Lighting works as follows: the user starts by loading in a
model that is lit using a default lighting (Figure 1(a)). The user uses
an orange highlighting pen to sketch highlights and a blue darken-
ing pen for darkening parts of geometry by contrast (Figure 1(b)).
The system determines affected parts of the model and the target
lighting conditions. Various lighting parameters like positions, di-
rections and spot angles of light sources are optimized to minimize
the per-vertex differences between the actual and target lighting
(Section 4). When the optimized lighting is presented, the user
can rotate the model, specify more constraints similarly and con-
tinue the design procedure. After satisfactory lighting is achieved,
the system outputs all the relevant lighting parameters that can be
plugged into any other program using a similar lighting model to
reproduce the lighting. We show how our tool can be used in con-
junction with existing applications/tools with lighting capabilities
by designing lighting for OpenGL-like systems and ray tracing.

2 Related Work

Inverse lighting is a sought-after area of research. In this section,
we shortly summarize work done in this area. Patow et al. [2003]
provide a more comprehensive survey.

Inverse lighting has been tackled in various contexts ranging from
interior design to cinematography. Barzel [1997] proposes a very
general lighting model with a lot of degrees of freedom in the con-
text of cinematographic lighting. Radiooptimization [1993] and
Painting-with-Light [1993] use radiosity and target interior design
applications. We target the large number of applications which ei-
ther use lighting when lighting design and setup is not their main
purpose, or applications like ray tracing which are computationally
expensive and hence make interactively designing lights difficult.

Various user models have been attempted in the context of lighting
design. Kristensen et al. [2005] concentrate on real-time render-
ing so that the user may interactively place lights and examine their
visual effects. Automatic techniques to infer lighting are based on
analysis of the scene geometry [Shacked and Lischinski 2001]. In
contrast, many approaches allow the user to specify desired lighting
effects in some intuitive manner and design lighting that produces
them. Our tool belongs to this category. A popular approach is to
directly “splatter” the model with desired colors [Schoeneman et al.
1993; Poulin and Fournier 1995]. Poulin et al. [1992; 1997] allow
users to hint shadows and highlights by outlining “footprints” of

light sources on the model. If all the specified highlights are as-
sumed to come from specular lighting effects, then such footprints
or contours make the light placement problem easier. However de-
termining light positions and intensities is more difficult for diffuse
lighting effects. Many applications target specific users like ani-
mators and professional artists [Marks et al. 1997; Pellacini et al.
2005; Pellacini et al. 2007] by offering domain-specific interface
metaphors. We target naive users whose main aim is not to design
lighting but to use it in a bigger application.

Depending on the application, choice of lighting and user model,
the inverse lighting problem can be formulated in several ways.
Some formulations are tightly coupled with the lighting model
(inferring patch radiosities [Kawai et al. 1993]) while others are
more generalized. Gumhold [2002] formulates it as an entropy
minimization. Costa et al. [1999] propose a comprehensive gen-
eral technique based on optimizing complex cost functions con-
structed from hints about desired rendering using global illumina-
tion. Two radically different formulations are presented in Design-
Galleries [1997] where the user selects between various configu-
rations through an interface, and Light Collages [2004] which for-
mulate the problem as an efficient greedy problem that infers pos-
sibly globally inconsistent lighting. Shacked et al. [2001] take an
image-based approach in which the object is lit and rendered into
a portion of the frame buffer, read back and evaluated. Though
the complexity depends only on the size of this buffer, determin-
ing its size so that no features are lost is a difficult problem. An
object-based approach considers vertex intensities as a representa-
tion of a candidate light field. Since this method works on 3D object
data, various geometric characteristics like edges, etc. can be pre-
computed for efficiency during optimization. A disadvantage of this
method is that this operation is now of scene complexity and hence
is slower for larger models. We formulate this operation so that
it can be efficiently executed on modern graphics hardware. Our
formulation is similar to that of Lighting-with-Paint [2007], in that
we minimize the per-primitive difference between actual and target
lighting. Our work is different from theirs in three aspects: (1) we
optimize over vertices, allowing the user to easily and frequently
change view points (although their method can do this, they tar-
get an application where view point changes, if any, are infrequent.
(2) our framework attempts to retain existing lighting conditions
and hence is more amenable to designing lighting incrementally (3)
whereas they rely on the user to choose between adding a new light
and retaining the existing ones, we automate this process. The last
feature is significant because the freedom of adding a new light au-
tomatically within the optimization framework significantly com-
plicates solving the optimization problem.

The rest of the paper is organized as follows: we explain our sketch-
based interface and various data structures used to obtain the target
lighting specifications in Section 3. Section 4 discusses our for-
mulation and solution of the inverse lighting problem. Section 5
discusses implementation details. We discuss results in Section 6
and conclude in Section 7.

3 Sketching Interface

A wide range of user interfaces can be used in the context of inverse
lighting systems; Painting-with-light [1993] and the work done by
Poulin et al. [1997] are some good examples. Sketching strokes is
an intuitive way even for amateurs to specify lighting of a model in
an abstract way. Sketching can not only be used to illustrate lighting
in an abstract way, but also hint desired lighting. We call this the
“crayon coloring interface”.

Many inverse-rendering systems are based on a user interface in
which the user directly “paints” desired colors onto visible parts



of the model. As the user cannot be expected to exactly paint the
correct colors, the painted colors are regarded as “hints”. Such inac-
curate hints may be interpreted incorrectly as a target lighting field,
often misguiding the underlying optimization. To circumvent this
potential problem and to relieve the user from selecting the most
appropriate colors, our method works towards a more high-level
goal of brightening and darkening. Orange and blue strokes can be
used to specify bright and dark regions respectively. The user can
cross-hatch or even directly paint, as only the vertices the strokes
approximately cover are of importance. It is not necessary to stay
within the silhouettes. Strokes can be retraced to emphasize greater
brightness or darkness.

We refer to the vertices that the user sketches upon as “hit vertices”.
In order to identify these vertices, we enclose the model in a vol-
umetric grid Cray and use it for efficient ray-casting. We use the
fast voxel traversal algorithm proposed by Amanatides et al. [1987]
for this purpose. In our current implementation, we use a 2563 vol-
ume to achieve a reasonable trade-off between speed and memory
requirements. Although using the depth buffer to identify triangles
may be faster, our volumetric grid is useful for other purposes as
well, as explained in Section 4.3.

4 Lighting Design

Once the user has finished sketching highlighted and darkened re-
gions, a target lighting field is constructed from these hints. A non-
linear optimization is formulated that attempts to design lighting to
achieve this target lighting.

4.1 Quantifying the target lighting

The user’s hints merely indicate which regions should be made
brighter or darker. We now quantify this input by determining a
target light field,i.e. we assign a “desired final” intensity to every
vertex of the model that reflects the user’s input. We start from the
current vertex intensities, and then increment or decrement them
according to the input. Since triangles other than those sketched
upon may also be affected by the desired lighting parameters, we
need a target light field that gradually changes over the model.

A given light can affect vertices that are geodesically close quite
differently, depending on their normals, which can vary signifi-
cantly due to curvature inspite of the small geodesic distance be-
tween then. Thus, a good target light field should mimic this by
enhancing every vertex according to its geometric context, i.e. the
local gradient around it. We employ a scoring method to approxi-
mate the surface gradient around a vertex by pre-computing a score
kv for every vertex v in the mesh. We start with a default score of
0.1 for every vertex. For every edge e in the mesh, we increase the
score of its end vertices proportional to the gradient around it from
the (at most 2) triangles that share it. Thus, kv is an indicator of the
change in surface geometry around vertex v. We make increments
and decrements of vertex intensities linear functions of kv to obtain
their target intensities.

4.2 Optimization Formulation and Solution

We now explain how various lighting parameters are obtained,
given the target field generated as explained in the previous section.
The following notation is used in this section:

V : Set of all vertices of the model
Vh : Set of hit vertices
Vother: Vertices in V \ Vh to evaluate light field

Li : ith light

I(Li) : Intensity of ith light
X : Set of all unknowns (lighting parameters)
ci : Intensity of vertex i in candidate field
ti : Intensity of vertex i in target field

We construct a function that is to be minimized to achieve two main
objectives: (1) the function should capture the difference between
the target lighting field and a candidate lighting field in a particular
iteration for all hit vertices, and (2) for incremental lighting design
it is desired that the current setting of lights minimizes changes in
those set previously. Our minimizing function is given by

f(X) = w1 ∗ fchange + w2 ∗ fretain + w3 ∗ fbarrier (1)

X is the set of various lighting parameters. We use [w1, w2, w3] =
[0.7, 0.1, 0.2] for all results in this paper. We consider seven light-
ing parameters as degrees of freedom (DOFs): position (in polar co-
ordinates) (θ, φ), direction (in polar coordinates)(θdir, φdir), dif-
fuse (kd) and specular (ks) intensities and spot angle ψ.

fchange =

∑

vi∈Vh

|ci − ti|

|Vh|

fretain =

∑

vi∈Vother

|ci − ti|

|Vother|
fbarrier =

∑

lightsLi

max(0,−I(Li)) +max(0, I(Li) − 1)

fchange minimizes the sum of differences between the candidate
and target intensities of vertices in Vh. This term is similar to that
in Lighting-with-paint [2007]. fretain minimizes the change of in-
tensities of vertices in Vother . fbarrier prevents light intensities
from falling below 0 and going above 1.

The problem is to minimize f(X) parameterized by the various
DOF’s mentioned above. The generality of such a function makes
its solution difficult in many aspects. Firstly, as f(X) is discon-
tinuous (because of fbarrier and spot angle cutoffs), conventional
optimization methods, if used directly, may not converge prop-
erly. Secondly, as global minimization methods like genetic meth-
ods may be infeasible for interactive solutions, locally minimizing
methods must be used. A good initial guess is critical for such
methods to work correctly. Thirdly, when darkening or shadowing
is desired, none of the DOFs have a continuous and direct rela-
tionship with shadowing effects, especially those concerning self-
shadowing. The fourth and most critical difficulty is that not only
are the various DOFs unknown for each light, but also the number
of lights (thus the number of variables itself is unknown). Devising
an optimizing function that automatically adds/removes variables is
very difficult. Lastly, the goals of interactivity and good quality of
solution in general may appear contradictory in practice.

We address the above problems in two ways. First, we devise a
novel method to initialize lighting parameters of all newly added
lights that works well in practice towards converging to the correct
minima. We use this method to also add or delete lights from the



system, thereby automating this choice. We take into account self-
shadowing effects while initializing lighting configurations. Sec-
ondly, we delegate evaluation of f(X) to the GPU to facilitate
faster computations.

4.3 Lighting Setup

We surround the model with a sphere of lights Slights. We assume
that any new lights lie on this sphere; the position of every light
source L can thus be described in polar coordinates (θL, φL). This
sphere is centered at the center of the model with a radius equal to
the body diagonal of its enclosing volume Cray (Section 3). We
discretize the sphere into quadrilateral bins. Let v ∈ Vh be a vertex
with normal ~n. Let ~q be a vector from v to the center of a quadri-
lateral Q on Slights. If v is to be highlighted, then the score of
every quadrilateral Q is increased by w ∗ (~n · ~q), while if v is to
be darkened, it is increased by (1 − w) ∗ (1 − ~n · ~q) (in the ad-
joining illustrating figure, whiter quads have greater scores). The
weight w = (0, 1) is a visibility term that encodes whether Q
is visible from v along ~n, and accounts for shadowing. We tried
two different implementations to get w: ray casting using Cray and
hardware-based occlusion queries. Surprisingly we found that ray
casting performed comparably to the occlusion queries. We believe
this is because there are a large number of small occlusion queries
(one per (v,Q) pair). Occlusion queries are inefficient in such sce-
narios because they cause blocking calls from the driver between
the CPU and the GPU.

When all the vertices in Vh are processed this way, Slights encodes
a per-light probability of it being added to the system. In addition,
every bin encodes the complete initial configuration of the light:
initial position (on the sphere), direction (towards the center), de-
fault intensity (0.5) and spot angle (10◦). Our experiments have
shown that discretizing Cray into 400 quadrilaterals gives satisfac-
tory results; making it finer increases the potential number of light
sources that the program adds in response to a series of inputs.

4.4 Solving the optimization

In order to achieve automatic light addition/deletion and to keep the
problem tractable, we perform the optimization in several stages.
At any stage, if f(X) falls below a certain threshold Tf(X) (0.2
for all the results shown in the paper), the system declares success.
In the first stage, only the positions and intensities of all existing
lights are used to minimize f(X). If this succeeds (the value of
f(X) falls below Tf(X)), the system declares success.

If this is not the case, the system iteratively checks Slights for “hot
spots”, i.e bins that have a clearly large probability over others. To
do this, it monitors the maximum, mean and standard deviations of
probabilities in Slights. If the ratio of standard and maximum de-
viations rises above a certain threshold K(40%), it concludes that
there are no more clear choices of new lights. If it finds hot-spots,
it greedily selects the one with maximum probability and adds the
corresponding light to the system, with all its DOF’s enabled. It

then attenuates the probabilities in Slights by a function that in-
creases as one moves away from the selected light on Slights. The
intuition is to prevent selection of a neighboring light in the very
next iteration. Then it solves the minimization problem using pre-
vious lights (position modification disabled) and the newly added
light (with all its DOFs enabled). If f(X) falls below Tf(X), it
declares success. If f(X) increases in value because of addition
of this light, it deletes it from the system. If f(X) has decreased
but is above the threshold, it disables all the DOFs of the newly
added light except its intensity for the next iteration. It then looks
for another hot-spot in Slights and continues this until a maximum
of 5 new lights are added, f(X) goes below Tf(X) or the ratio of
standard and maximum deviations in Slights exceeds K.

We use the conjugate gradient method to solve the actual optimiza-
tion at any stage. This method requires calculation of the gradient
of f(X) for which we use partial central differences. fbarrier pro-
duces a discontinuity for all intensities I < 0 or I > 1. Since these
cases are easily detectable (an unusually large derivative component
in the forward/backward difference but a normal component in the
other), we set it to the lesser of the two to “guide” the optimization
away from the discontinuity. If the gradient using forward differ-
ence is positive and backward difference is negative (implying that
the function is minimum at this point along the particular variable
domain), we set the gradient to 0 to preclude it from further opti-
mization steps. Thus, we use the conventional conjugate gradient
minimization method in various stages with greedy initialization
and light retention.

5 Implementation and System Features

In this section we include implementation details that make our sys-
tem interactive. This tool has been implemented with OpenGL and
GLSL for graphics on a desktop machine with a 3.0GHz Pentium
4 processor with 1GB RAM and an NVIDIA GeForce FX-6600 on
the Windows XP platform. Tablet input and output is provided by
an external Wacom Cintiq PL-550 tablet device.

5.1 Calculating the minimization function

The most computationally expensive operation in each iteration of
the optimization is calculating f(X) at a given X , whose bottle-
necks in turn are fchange and fretain. We implement their eval-
uation fully on the GPU. This technique is inspired by the work
by Windsheimer et al. [2004], who implement a visual difference
metric in hardware.

It can be observed that both fchange and fretain are linear functions
over (intensities of) sets of vertices Vh and Vother respectively. We
map these vertex sets to texture memory and evaluate fchange and
fretain as texture operations.

Consider a set V of vertices over which a linear function f has to
be calculated. We first arrange all vertices in V in a vertex quad. If
|V | = n then this quad is

√
n×√

n pixels in dimensions. We pass
the position of each vertex in this quad as its texture coordinate. In a
vertex shader, we perform per-vertex lighting computations and set
the target location of the vertex to its texture coordinate. We render
this quad as a texture T1 and use it as input to render the vertices
in V again, this time with the target vertex intensities and no light-
ing. In this pass, we compute in a fragment shader the difference
|ci − ti| and store it in the target render texture DT , where ci is
the current pixel intensity and ti is the value of this pixel in T1. We
thus obtain a “difference texture” where every texel represents the
difference between the target and candidate light field at a vertex.
For calculating fchange, V = Vh and for fretain, V = Vother .



To calculate fchange and fretain we have to find the sum of all
texels in its difference texture. We use a multi-pass approach to
achieve this. We create two float buffers and render DT in one of
them. We use them alternately as the rendering context and input
texture in various passes as follows: we start from s0 =

√
n and at

the ith iteration, we render a quad of size si = s0

2i+1 . The quad in

the (i − 1)th iteration of size si−1 is used as an input texture T in

the ith iteration. In a fragment shader, every pixel P (x, y) reads the
texture locations T (2x, 2y), T (2x+1, 2y), T (2x, 2y+1), T (2x+
1, 2y + 1) and stores their sum as the color of P (x, y). As we use
float buffers, fragment colors are not clamped. In this way, the size
si goes on decreasing to 1, when we simply read out a single pixel
value from one of the buffers. This operation takes log4 n passes
(on the GPU using a pixel shader) and involves reading only one
pixel from the GPU into the CPU.

For this algorithm to work, the initial difference texture DT must
be a square texture of power-of-two dimensions. If |Vh| or |Vother|
do not satisfy this condition, DT is padded with 0’s.

5.2 Sampling vertices

The set of vertices Vh ∪ Vother used to calculate f(X) can sim-
ply be all the vertices in the mesh. Considering all vertices in the
mesh causes two problems. First, calculation of fretain and hence
f(X) becomes expensive. Secondly, if fretain is a function of a
large number of vertices, then it causes the optimization to always
converge to the trivial local minimum (the previous lighting config-
uration). Thus some sampling scheme must be devised to select a
subset of V \Vh as Vother . It is desirable that this sampling be fairly
representative of the whole mesh, so that minimizing the difference
between target and candidate lighting intensities over Vother retains
the overall look of parts of the model not in Vh.

A sampling of vertices such that those near the hit triangles have a
greater probability of being selected than the distant ones is desir-
able, so that only these samples are included in Vother instead of all
the vertices. We achieve this by a Sampling-By-Random-Number
(SRN) method as follows (please refer to Figure (a) above): we
generate a random number ri for every vertex vi in the mesh (red
numbers). We then compute a score for each vertex (blue numbers)
that varies directly with its distance from the hit region (orange dot)
(in practice we consider the centroid of a contiguous hit region for
this purpose). If this score is less than ri, the vertex is selected (yel-
low), else it is rejected (black). Figures (b-c) illustrate this sampling
on an actual model. In Figure (b) the input strokes are drawn to fo-
cus on a region. The corresponding hit vertices are shown in red and
the sampled vertices are shown in yellow in (c). Notice how sam-
pling is sparser in regions distant from the marked region in (b).
Similar random sampling methods have been used in the context
of non-photorealistic rendering [Nguyen et al. 2003], volume ren-
dering [Yuan and Chen 2004] and point-based rendering [Qu et al.

(a)

(b) (c)

2006].

5.3 Added Benefits and Features

Our implementation choices lead to some minor but useful fea-
tures that make user experience more convenient. The user can
enable/disable individual DOFs of lights to facilitate better results
or to exclude features that he/she does not need.

If the result looks to conform with the input in quality but not in
quantity (e.g. looks brighter but not bright enough), the user can
choose to repeat the previous input without sketching anything. It
can be observed that Slights not only stores configurations of lights
to be added, but also those that are already added. Thus, if the
user wishes to minimize the number of lights while relaxing the
constraint on their intensity ranges, lights can be trivially clustered
together using Slights. This can be useful if the external application
supports only a fixed maximum number of lights.

6 Results

Figures 1, 2, 3, 4 and 5 show results on some models. All of these
results were produced by a computer science professional (not one
of the authors) who does not primarily work in computer graphics.
In general several inputs could be required progressively to arrive
at the desired result. Each figure shows lights in the form of arrows;
the base of the arrow indicates its position and the direction shows
its direction. Figure 1(a) shows an example of the medical model
of a hip with 40,000 triangles, lit with default lighting. Figure 1(b)
shows the user input. The aim of the user input was to shift focus
to the cavity in the model while receding the remaining model into
shadow. Figure 1(c) shows the result produced by our system in 5
seconds, in which a light is added to create the highlight and the
existing one is shifted to darken the part marked in the input with
the blue pen. Figure 1(d) shows the final result produced by an
anti-aliased ray tracer. It can be seen how the light placement has
included self-shadowing aspects.



(a) (b) (c) (d)

Figure 2: Results: Pelvis. (a) a pelvis model with 50,000 triangles with default lighting. (b) A slightly contrived input is given to switch the
contrast between oppositely lit lower cavities. (c) the system realizes this input by adding two lights and moving the existing one. Notice how
one lower cavity is highlighted while the other remains dark. (d) the final ray-traced output.

Figure 2(a) shows a pelvis model1 with a slightly contrived user
input. The aim is to switch the opposing lighting conditions on the
two lower cavities of the pelvis. Figure 2(b) shows how the system
accordingly complies with this input. Although the rendering of
the upper cavities seems unsatisfactory in the OpenGL rendering of
this figure, the ray-traced result in (c) shows compliance with the
input. In particular it can be seen that the lighting has produced a
dark region in the upper left region through shadowing.

Figure 3 shows results on the ball joint model having 35,000 trian-
gles. The goal of the input in Figure 3(a) is to highlight the ball
region. The result of this input is shown in Figure 3(b-c). This
result took 4.16 seconds.

Figure 42 shows how lights can be obtained by progressively trans-
forming a model and sketching on it. Figure 4(a) shows the filigree
model having 177,000 triangles with default lighting. The goal is
to contrast facets facing in opposite directions to arrive at a bet-
ter lighting that enhances the structure of the model. The object
is rotated and sketched upon in Figure 4(b) to obtain the lighting
of Figure 4(c-d). Again, the object is rotated and some more hints
are sketched (Figure 4(e)) to increase the contrast, as shown in Fig-
ure 4(f-h).

Figure 5 exemplifies an interesting application of our system. Fig-
ure 5(a) shows a pre-existing image of an NPR rendering of the
same model that shows lit and darkened regions3. We estimated the
view point by trial and error and then attempted to reproduce the
lighting effects in this image by progressively sketching highlights
and dark spots corresponding to the dark and light regions of the
image (Figure 5(b) shows one such input). Figures 5(c-d) show the
result in which most of the effects in Figure 5(b) have been repro-
duced. Thus, our system can be used to reverse-engineer lighting
of a model, given an example image of its rendering.

7 Discussion and Future Work

Crayon lighting is a tool that performs inverse lighting given a
sketchy input in which the user sketches bright and dark regions di-
rectly on the model. We envision this tool being used by modelers
or researchers in computer graphics and visualization as a simple
tool that outputs the necessary lighting parameters for good model
visualization. With some modification it can even be used in an edu-
cational setting to teach the primary physics of light in introductory
graphics courses. Our system is easy to use, works at interactive
rates and restricts user input to drawing highlights and shadows.

1model obtained courtesy of VCG-ISTI by the AIM@SHAPE Shape repository
2model obtained courtesy of SensAble Technologies inc. by the AIM@SHAPE

Shape repository
3both model and image were obtained from the Suggestive Contour Gallery

(http://www.cs.princeton.edu/gfx/proj/sugcon/models/)

While using this tool, we encountered some issues that an imple-
mentor or user should be aware of:

Error detection mechanism: There is currently no built-in error
detection mechanism–if the user chooses to specify an invalid input
(e.g. highlighted and darkened regions very close to each other), the
system will still try to solve for the lighting and may come up with
an unsatisfactory or degenerate result. Besides the user refraining
from specifying such inputs, an undoing mechanism can be easily
incorporated into the system to revert to the previous stable lighting.

Choice of parameters: Discretization of Cray simply affects the
speed vs. memory ratio of the ray casting (Section 4.1) and not
the quality of the final result. If Slights (Section 4.3) is finely dis-
cretized, the likelihood of a new light source being added for an
input is greater. Hence, if the desired number of light sources is
limited, a coarser discretization may be more suitable. Optimiza-
tion threshold Tf(X) and K were obtained empirically after testing
on various 3D models for various inputs. Changing K results in
more or less lights to be added. However we discovered that after
some iterations, the program starts to “thrash”, i.e. it adds a new
light and upon realizing that the value of the objective function ac-
tually increased , it deletes the light. Thus increasing the number of
added lights does not necessarily result in a better quality output.

The work described in this paper is mainly for the purposes of vi-
sualizing a model by setting the lighting in an intuitive manner.
However, the larger problem of inverse lighting has a variety of
applications. Architectural lighting design and cinematic lighting
use complex and realistic illumination models and diverse sources
of lights, like colored lights, spot lights, point and linear lights, etc.
A second requirement is the ability to have fine control over the
lighting conditions (i.e, in cinematic lighting, directors need pre-
cise control over how and where shadows fall, to make the set look
as appropriate to the mood of the scene as possible). Accordingly, a
method to solve the interactive inverse lighting problem that allows
usage of complex illumination models, and offers fine control over
the produced lighting conditions can be useful in many ways to a
large number of applications. We are currently investigating solv-
ing the interactive inverse lighting for more common, real-world
but complex applications like architectural and cinematic lighting
design. There has been recent work in the area of interactive global
illumination [Ng et al. 2003; Hašan et al. 2007], some of which is
even targeted towards real-time lighting design [Kristensen et al.
2005]. Many of these alleviate the costs of performing global il-
lumination by using approximation methods like wavelets or smart
matrix approximations. Our interest lies in investigating whether
such methods that make rendering efficient can also be leveraged to
design lighting based on intuitive sketch-based input.



(a) (b) (c) (d)

Figure 3: Results: Ball joint. (a) the ball joint model with 35,000 triangles with default lighting. (b) user input. (c) output produced by our
tool showing the resulting lighting focusing on the ball. (d) ray-traced rendering using the same lighting conditions as (b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Progressive inverse lighting. Figures show a filigree model having 177,000 triangles. The aim is to contrast opposite faces with
light and darkness. (a) the model with default lighting. (b) the model is rotated and some input is given. (c) result of input from (b). (d) the
lighting seen from the original view point. Some faces are better lit than in the default lighting in (a). (e) model is rotated again and more
strokes are sketched. (f) result of input from (e). (g) the lighting seen from the original view point. (h) the lighting from a new view point to
show the light positions better. All images have been rendering using conventional OpenGL rendering.



(a) (b) (c) (d)

Figure 5: Results: Heptoroid. (a) pre-existing NPR rendering of the heptoroid showing areas of highlights and shadows. (b) we progressively
sketched highlights and dark regions on the model to replicate the darker and lighter regions in the image. (c-d) the result showing most of
the light effects reproduced. In this way our system can be used to reverse engineer lighting, given a model and a pre-rendered image.
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PELLACINI, F., VIDIMČE, K., LEFOHN, A., MOHR, A., LEONE,
M., AND WARREN, J. 2005. Lpics: a hybrid hardware-
accelerated relighting engine for computer cinematography. In
Proc. SIGGRAPH, 464–470.

PELLACINI, F., BATTAGLIA, F., MORLEY, R. K., AND FINKEL-
STEIN, A. 2007. Lighting with paint. ACM Trans. Graph. 26, 2,
9.

POULIN, P., AND FOURNIER, A. 1992. Lights from highlights and
shadows. In Proc. SI3D, 31–38.

POULIN, P., AND FOURNIER, A. 1995. Painting surface charac-
teristics. In Proc. EGSR, 160–169.

POULIN, P., RATIB, K., AND JACQUES, M. 1997. Sketching
shadows and highlights to position lights. In Proc. CGI, 56.

QU, L., YUAN, X., NGUYEN, M. X., MEYER, G., AND CHEN,
B. 2006. Perceptually guided texture mapping on points. In
Proc. IEEE/Eurographics Sym. Point-based Graphics, 95–102.

SCHOENEMAN, C., DORSEY, J., SMITS, B., ARVO, J., AND

GREENBURG, D. 1993. Painting with light. In Proc. SIG-
GRAPH, 143–146.

SHACKED, R., AND LISCHINSKI, D. 2001. Automatic lighting
design using a perceptual quality metric. Computer Graphics
Forum 20, 3.

WINDSHEIMER, J. E., AND MEYER, G. W. 2004. Implemen-
tation of a visual difference metric using commodity graphics
hardware. In Human Vision and Electronic Imaging IX, Pro-
ceedings of the SPIE, vol. 5292, 150–161.

YUAN, X., AND CHEN, B. 2004. Illustrating surfaces in volume.
In Proc. IEEE/EG VisSym, 9–16.


