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Abstract
Objects in many programming languages are indexed by first-class
strings, not just first-order names. We define λob

S (“lambda sob”),
an object calculus for such languages, and prove its untyped sound-
ness using Coq. We then develop a type system for λob

S that is
built around string pattern types, which describe (possibly infi-
nite) collections of members. We define subtyping over such types,
extend them to handle inheritance, and discuss the relationship
between the two. We enrich the type system to recognize tests
for whether members are present, and briefly discuss exposed in-
heritance chains. The resulting language permits the ascription
of meaningful types to programs that exploit first-class member
names for object-relational mapping, sandboxing, dictionaries, etc.
We prove that well-typed programs never signal member-not-found
errors, even when they use reflection and first-class member names.
We briefly discuss the implementation of these types in a prototype
type-checker.

1. Introduction
In most statically-typed object-oriented languages, an object’s type
or class enumerates its member names and their types. In “script-
ing languages”, member names are first-class strings that can be
computed dynamically. In recent years, programmers using these
languages have employed first-class member names to create use-
ful abstractions that are applied broadly. Of course, this power also
leads to problems, especially when combined with other features
like inheritance.

This paper explores uses of first-class member names, a dy-
namic semantics of their runtime behavior, and a static semantics
with a traditional soundness theorem for these untraditional pro-
grams. In section 2, we present examples from several languages
that highlight uses of first-class members. These examples also
show how these languages differ from traditional object calculi. In
section 3 we present an object calculus, λob

S , which features the es-
sentials of objects in these languages. In section 4, we explore types
for λob

S . The challenge is to design types that can properly capture
the consequences of first-class member names. We especially focus
on the treatment of subtyping, inheritance, and their interaction, as
well as reflective features such as tests of member presence. Finally,
in section 5 we briefly discuss an implementation and its uses.

In summary, we make the following contributions:

1. extract the principle of first-class member names from existing
languages;

2. provide a dynamic semantics that distills this feature;

3. identify key problems for type-checking objects in programs
that employ first-class member names;

4. extend traditional record typing with sound types to describe
objects that use first-class member names; and,

5. briefly discuss a prototype implementation.

We build up our type system incrementally. All elided proofs and
definitions are available online:

http://www.cs.brown.edu/research/plt/dl/fcfn/v1/

2. Using First-Class Member Names
Most languages with objects, not only scripting languages, allow
programmers to use first-class strings to index members. The syn-
tactic overhead differs, as does the prevalence of the feature’s use
within the corpus of programs in the language. This section ex-
plores first-class member names in existing languages, and high-
lights several of their uses.

2.1 Objects with First-Class Member Names
In Lua and JavaScript, obj.x is merely syntactic sugar for obj["x"],
so any member can be indexed by a runtime string value:

obj = {};
obj["xy" + "z"] = 22;
obj["x" + "yz"]; // evaluates to 22 in both languages

Python and Ruby support this pattern with only minor syntactic
overhead. In Python:

class C(object):
pass

obj = C()
setattr(obj, "x" + "yz", 22)
getattr(obj, "xy" + "z") # evaluates to 22

and in Ruby:

class C; end
obj = C.new
class << obj
define_method(("x" + "yz").to_sym) do; return 22; end

end
obj.send(("xy" + "z").to_sym) # evaluates to 22

In fact, even in Java, programmers are not forced to use first-
order labels to refer to member names; it is merely a convenient
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default. Java, for example, has java.lang.Class.getMethod(),
which returns the method with a given name and parameter set.1

2.2 Leveraging First-Class Member Names
Once member names are merely strings, programmers can manip-
ulate them as mere data. The input to member lookup and update
can come by concatenating strings, from configuration files, from
reflected runtime values, via Math.random(), etc. This flexibility
has been used, quite creatively, in many contexts.

Django The Python Django ORM dynamically builds classes
based on database tables. In the following snippet, it adds a member
attr_name, that represents a database column, to a class new_class,
which it is constructing on-the-fly:2

attr_name = '%s_ptr' % base._meta.module_name
field = OneToOneField(base, name=attr_name,

auto_created=True, parent_link=True)
new_class.add_to_class(attr_name, field)

attr_name concatenates "_ptr" to base._meta.module_name. It
names a new member that is used in the resulting class as an ac-
cessor of another database table. For example, if the Paper table
referenced the Submittable table, Paper instances would have a
member submittable_ptr. Django has a number of pattern-based
rules for inserting new members into classes, carefully designed to
provide an expressive, object-based API to the client of the ORM.
Its implementation, which is in pure Python, requires no extra-
lingual metaprogramming tools.

Ruby on Rails When setting up a user-defined model, ActiveRe-
cord iterates over the members of an object and only processes
members that match certain patterns:3

attributes.each do |k, v|
if k.include?("(")
multi_parameter_attributes << [ k, v ]

elsif respond_to?("#{k}=")
send("#{k}=", v)

else
raise(UnknownAttributeError, "unknown attr: #{k}")

end
end

The first pattern, k.include?("("), checks the shape of the mem-
ber name k, and the second pattern checks if the object has a mem-
ber called k + "=". This is a Ruby convention for the setter of an
object attribute, so this block of code invokes a setter function for
each element in a key-value list. As with Django, ActiveRecord
is leveraging first-class member names in order to provide an API
implemented in pure Ruby that it couldn’t otherwise without richer
metaprogramming facilities.

Java Beans Java Beans provide a flexible component-based
mechanism for composing applications. The Beans API uses re-
flective reasoning on canonical naming patterns to construct classes
on-the-fly. For example, from java.beans.Introspector: “If we
don’t find explicit BeanInfo on a class, we use low-level reflec-
tion to study the methods of the class and apply standard design
patterns to identify property accessors, event sources, or public
methods.”4 Properties of Beans are not known statically, so the API

1 http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/
Class.html#getMethod(java.lang.String,java.lang.Class[])
2 https://github.com/django/django/blob/master/django/db/
models/base.py#L157
3 https://github.com/rails/rails/blob/master/
activerecord/lib/active_record/base.rb#L1717
4 http://download.oracle.com/javase/tutorial/javabeans/
introspection/index.html

var banned = { "caller": true, "arguments": true, ... };

function reject_name(name) {
return ((typeof name !== 'number' || name < 0)

&& (typeof name !== 'string'
|| name.charAt(0) === '_'
|| name.slice(-1) === '_'
|| name.charAt(0) === '-'))

|| banned[name];
}

Figure 1. Check for Banned Names in ADsafe

exposes a PropertyDescriptor class that provides methods includ-
ing getPropertyType and getReadMethod, which return reflective
descriptions of the types of properties of Beans.

Sandboxes JavaScript sandboxes like ADsafe [10] and Caja [24]
use a combination of static and dynamic checks to ensure that
untrusted programs do not access banned fields that may contain
dangerous capabilities. To enforce this dynamically, all member-
lookup expressions (obj[name]) in untrusted code are rewritten to
check whether name is banned. Figure 1 is ADsafe’s check; it uses a
collection of ad hoc tests and also ensures that name is not the name
of any member in the banned object, which is effectively used as a
set of names. Caja goes further: it employs eight different patterns
for encoding information related to members.5 For example, the
Caja runtime adds a boolean-flagged member named s + "_w__"

for each member s in an object, to denote whether it is writable or
not. This lets Caja emulate a number of features that aren’t found
in its target language, JavaScript.

Objects as Arrays In Lua and JavaScript, built-in operations like
splitting and sorting, and simple indexed for loops, work with any
object that has numeric members. For example, in the following
program, JavaScript’s built-in Array.prototype.sort can be used
on obj:

var obj = {length: 3, 0: 'def', 1: 'abc', 2: 'hij'};
// Array.prototype holds built-in methods
Array.prototype.sort.call(obj);
// evaluates to true
obj[0] == 'abc' && obj[1] == 'def' && obj[2] == 'hij'

In fact, the JavaScript specification states that a string P is a valid
array index “if and only if ToString(ToUint32(P)) is equal to P and
ToUint32(P) is not equal to 232 − 1.”6

2.3 The Perils of First-Class Member Names
Along with their great flexibility, first-class member names bring
their own set of subtle error cases. First, developers must program
defensively against the possibility that dereferenced members are
not present (we see an example of this in the Ruby example from
the last section, which explicitly uses respond_to? to check that the
setter is present before using it). These sorts of reflective checks
are common in programs that use first-class member names; a
summary of such reflective operators across languages is included
in figure 2. In other words, first-class member names put developers
back in the era before type systems could guard against run-time
member not found errors. Our type system (section 4) restores them
to the happy state of finding these errors statically.

Second, programmers also make mistakes because they some-
times fail to respect that objects truly are objects, which means

5 Personal communication with Jasvir Nagra, technical lead of Google Caja.
6 http://es5.github.com/#x15.4
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Structural
Ruby o.respond_to?(p) o.methods

Python hasattr(o, p) dir(o)

JavaScript o.hasOwnProperty(p) for (x in o)

Lua o[p] == nil

Nominal
Ruby o.is_a?(c)

Python isinstance(o, c)

JavaScript o instanceof c

Lua getmetatable(o) == c

Figure 2. Reflection APIs

they inherit members.7 When member names are computed at run-
time, this can lead to subtle errors. For instance, Google Docs uses
an object as a dictionary-like data structure internally, which uses
strings from the user’s document as keys in the dictionary. Since (in
most major browsers) JavaScript exposes its inheritance chain via a
member called "__proto__", the simple act of typing "__proto__"

would cause Google Docs to lock up due to a misassignment to this
member.8 In shared documents, this enables a denial-of-service at-
tack. The patch of concatenating the lookup string with an unam-
biguous prefix or suffix itself requires careful reasoning (for in-
stance, "_" would be a bad choice). Broadly, such examples are a
case of a member should not be found error. Our type system pro-
tects against these, too.

The rest of this paper presents a semantics that allows these
patterns and their associated problems, types that describe these
objects and their uses, and a type system that explores verifying
their safe use statically.

3. A Scripting Language Object Calculus
The preceding section illustrates how objects with first-class mem-
ber names are used in several scripting languages. In this section,
we distill the essentials of first-class member names into an ob-
ject calculus called λob

S . λob
S has an entirely conventional account

of higher-order functions and state (figure 4). However, it has an
unusual object system that faithfully models the characteristic fea-
tures of objects in scripting langauges (figure 3). We also note some
of the key differences between λob

S and some popular scripting lan-
guages below.

• In member lookup e1[e2], the member name e2 is not a static
string but an arbitrary expression that evaluates to a string. A
programmer can thus dynamically pick the member name, as
demonstrated in section 2.2. While it is possible to do this in
languages like Java, it requires the use of cumbersome reflec-
tion APIs. Object calculi for Java thus do not bother modeling
reflection. In contrast, scripting languages make dynamic mem-
ber lookup easy.

• The expression e1[e2 = e3] has two meanings. If the member
e2 does not exist, it creates a new member (E-Create). If e2
does exist, it updates its value. Therefore, members need not be
declared and different instances of the same class or prototype
can have different sets of members.

7 Arguably, the real flaw is in using the same data structure to associate both
a fixed, statically-known collection of names and a dynamic, unbounded
collection. Many scripting languages, however, provide only one data struc-
ture for both purposes, forcing this identification on programmers. We re-
frain here from moral judgment.
8 http://www.google.com/support/forum/p/Google+Docs/
thread?tid=0cd4a00bd4aef9e4

• When a member is not found, λob
S looks for the member in

the parent object, which is the subscripted vp part of the object
value (E-Inherit). In Ruby and Lua this member is not directly
accessible. In JavaScript and Python, it is an actual member of
the object ("__proto__" in JavaScript, "__class__" in Python).

• The o hasfield str expression checks if the object o has a mem-
ber str anywhere on its inheritance chain. This is a basic form
of reflection.

• The str matches P expression returns true if the string matches
the pattern P , and false otherwise. Scripting language programs
employ a plethora of operators to pattern match and decompose
strings, as shown in section 2.2. We abstract these to a single
string-matching operator and representation of string patterns.
The representation of patterns P is irrelevent to our core calcu-
lus. We only require that P represent some class of string-sets
with decidable membership.

Given the lack of syntactic restrictions on object lookup, we can
easily write a program that looks up a member that is not defined
anywhere on the inheritance chain. In such cases, λob

S signals an
error (E-NotFound). Naturally, our type system will follow the
classical goal of avoiding such errors.

Soundness We mechanize λob
S with the Coq Proof Assistant, and

prove a simple untyped progress theorem.

THEOREM 1 (Progress). If σe is a closed, well-formed configura-
tion, then either:

• e ∈ v,
• e = E〈err〉, or
• σe→ σ′e′, where σ′e′ is a closed, well-formed configuration.

This property requires additional evaluation rules for runtime er-
rors, which we elide from the paper.

4. Types for Objects in Scripting Languages
The rest of this paper explores typing the object calculus presented
in section 3. This section addresses the structure and meaning of
object types, followed by the associated type system and details of
subtyping.

Typed λob
S has explicit type annotations on variables bound by

functions:
func(x:T) { e }

Type inference is beyond the scope of this paper, so λob
S is explic-

itly typed. Figure 5 specifies the full core type language. We in-
crementally present its significant elements, object types and string
types, in the following subsections. The type language is otherwise
conventional: types include base types, function types, and types
for references; these are necessary to type ordinary imperative pro-
grams. We employ a top type, equirecursive µ-types, and bounded
universal types to type-check object-oriented programs.

4.1 Basic Object Types
We adopt a structural type system, and begin our presentation with
canonical record types, which map strings to types:

T = · · · | {str1 : T1 · · · strn : Tn}
Record types are conventional and can type simple λob

S programs:
let objWithToStr = ref {

toStr: func(this:µα.Ref {"toStr": α→ Str}) { "hello" } }
in (deref objWithToStr)["toStr"](objWithToStr)

We need to work a little harder to express types for the programs
in section 2. We do so in a principled way—all of our additions are
conservative extensions to classical record types.
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String patterns P = · · · patterns are abstract, but must have decidable membership, str ∈ P
Constants c = bool | str | null
Values v = c

| { str1 : v1 · · · strn : vn}v object, where str1 · · · strn must be unique
Expressions e = v

| { str1 : e1 · · · strn : en }e object expression
| e[e] lookup member in object, or in prototype
| e[e = e] update member, or create new member if needed
| e hasfield e test if member is present
| e matches P match a string against a pattern
| err runtime error

e ↪→ e

E-GetField { · · · str: v · · · }vp[str] ↪→ v
E-Inherit { str : v · · · }lp[strx] ↪→ (deref lp)[strx], if strx /∈ (str · · · )
E-NotFound { str : v · · · }null[strx] ↪→ err, if strx /∈ (str · · · )
E-Update { str1: v1 · · · stri: vi · · · strn: vn }vp[stri = v] ↪→ { str1: v1 · · · stri: v · · · strn: vn }vp
E-Create { str1: v1 · · · }vp[strx = vx] ↪→ { strx: vx, str1: v1 · · · }vpwhen strx 6∈ (str1 · · · )
E-Hasfield {· · · str:v · · · }vp hasfield str ↪→ true
E-HasFieldProto {· · · str:v · · · }vp hasfield str ↪→ vp hasfield str, when str′ /∈ (str · · · )
E-HasNotField null hasfield str ↪→ false
E-Matches str matches P ↪→ true, str ∈ P
E-NoMatch str matches P ↪→ false, str /∈ P

Figure 3. Semantics of Objects and String Patterns in λob
S

Locations l = · · · heap addresses
Heaps σ = · | (l, v)σ
Values v = · · · | l | func(x) { e }

Expressions e = · · ·
| x identifiers
| e(e) function application
| e := e update heap
| ref e initialize a new heap location
| deref e heap lookup
| if (e1) e2 else e3 branching

Evaluation Contexts E = · · · left-to-right, call-by-value evaluation

e ↪→ e

βv (func(x) { e })(v) ↪→ e[x/v]
E-IfTrue if (true) e2 else e3 ↪→ e2
E-IfFalse if (false) e2 else e3 ↪→ e3

σe→ σe

E-Cxt σE〈e1〉 → σE〈e2〉, when e1 ↪→ e2
E-Ref σE〈ref v〉 → σ(l, v)E〈l〉, when l 6∈ dom(σ)
E-Deref σE〈deref l〉 → σE〈σ(l)〉
E-SetRef σE〈l := v〉 → σ[l := v]E〈v〉, when l ∈ dom(σ)

Figure 4. Conventional Features of λob
S

4.2 Dynamic Member Lookups: String Patterns
The previous example is uninteresting because all member names
are statically specified. Consider a Beans-inspired example, where
there are potentially many members defined as "get.*" and
"set.*". Beans libraries construct actual calls to methods by get-
ting property names from reflection or configuration files, and
appending them to the strings "get" and "set" before invoking.
Beans also inherit useful built-in functions, like "toString" and
"hashCode".

We need some way to represent all the potential get and set
members on the object. Rather than a collection of singleton names,
we need families of member names. To tackle this, we begin by
introducing string patterns, rather than first-order labels, into our
object types:

String patterns L = P
String and object types T = · · · | L | {L1 : T1 · · ·Ln : Tn}

Patterns, P , represent sets of strings. String literals type to
singleton string sets, and subsumption is defined by set inclusion.
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String patterns L = P extended in figure 11
Base types b = Bool | Null
Type variables α = · · ·
Types T = b

| T1 → T2 function types
| µα.T recursive types
| Ref T type of heap locations
| > top type
| L string types
| {Lp1

1 : T1, · · · , Lpn
n : Tn, LA : abs} object types

Member presence p = ↓ definitely present
| ◦ possibly absent

Type Environments Γ = · | Γ, x : T

Γ ` T

WF-Object

Γ ` T1 · · ·Γ ` Tn

∀i.Li ∩ LA = ∅ and ∀j 6= i.Li ∩ Lj = ∅
Γ ` {Lp1

1 : T1 · · ·Lpn
n : Tn, LA : abs}

The well-formedness relation for types is mostly conventional. We require that string patterns in an object must not overlap (WF-Object).

Figure 5. Types for λob
S

Our theory is parametric over the representation of patterns, as
long as pattern containment, P1 ⊆ P2 is decidable, and the pattern
language is closed over the following operators:

P1 ∩ P2 P1 ∪ P2 P P1 ⊆ P2 P = ∅

With this notation, we can write an expressive type for our
Bean-like objects, assuming Int-typed getters and setters:9

IntBean = { ("get".*) :→ Int,
("set".*) : Int→ Null, "toString" :→ Str }

(where .* is the regular expression pattern of all strings, so "get".*

is the set of all strings prefixed by get). Note, however, that IntBean
seems to promise the presence of an infinite number of members,
which no real object has. This type must therefore be interpreted to
mean that a getter, say, will have Int if it is present. Since it may be
absent, we can get the very “member not found” error that the type
system was trying to prevent, resulting in a failure to conservatively
extend simple record types.

In order to model members that we know are safe to look up,
we add annotations to members that indicate whether they are
definitely or possibly present:

Member presence p = ↓ | ◦
Object types T = · · · | {Lp1

1 : T1 · · ·Lpn
n : Tn}

The notation L↓ : T means that for each string str ∈ L, a member
with name str must be present on the object, and the value of the
member has type T . This is the traditional meaning of a member’s
annotation in simple record types. In contrast, L◦ : T means that
for each string str ∈ L, if there is a member named str on the
object, then the member’s value has type T . We would therefore
write the above type as:

IntBean = { ("get".*)◦ :→ Int, ("set".*)◦ : Int→ Null,
"toString"

↓ :→ Str }
As a matter of well-formedness, it does not make sense to place

a definitely-present annotation (↓) on an infinite set of strings, only
on finite ones (such as the singleton set consisting of "toString"

9 Adding type abstraction at the member level gives more general setters
and getters, but is orthogonal to our goals in this example.

above). In contrast, possibly-present annotations can be placed even
on finite sets: writing "toString"

◦ would indicate that the toString
member does not need to be present.

Definitely-present members allow us to recover simple record
types. However, we still cannot guarantee safe lookup within an
infinite set of member names. We will return to this problem in
section 4.6.

4.3 Subtyping
Once we introduce record types with string pattern names, it is nat-
ural to ask how pairs of types relate. This relationship is important
in determining, for instance, when an actual argument may safely
be passed to a formal parameter. This requires the definition of a
subtyping relationship.

There are two well-known kinds of subsumption rules for record
types, popularly called width and depth subtyping [1]. Depth sub-
typing allows for specialization, while width subtyping hides infor-
mation. Both are useful in our setting, and we would like to under-
stand them in the context of first-class member names. String pat-
terns and possibly-present members introduce more cases to con-
sider, and we must account for them all.

When determining whether one object type can be subsumed by
another, we must consider whether each member can be subsumed.
We will therefore treat each member name individually, iterating
over all strings. Later, we will see how we can avoid iterating over
this infinite set.

Figure 6 presents the initial version of our subtyping relation.
For each member s, it considers the member’s annotation in each
of the subtype and supertype. Each member name can have one of
three relationships with a type T : definitely present in T , possibly
present in T , or not mentioned at all (indicated by a dash, −). This
naturally results in nine combinations to consider.

The column labeled Antecedent describes what further proof
is needed to show subsumption. We use ok to indicate axiomatic
base cases of the subtyping relation, A to indicate cases where
subsumption is undefined (resulting in a “subtyping” error), and
S <: T to indicate what is needed to show that the two members
subsume. In the explanation below, we refer to table rows by the
annotations on the members: e.g., s↓s↓ refers to the first row and
s◦s- to the sixth.
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Subtype Supertype Antecedent

s↓ : S s↓ : T S <: T
s↓ : S s◦ : T S <: T
s↓ : S s : − ok

s◦ : S s↓ : T A
s◦ : S s◦ : T S <: T
s◦ : S s : − ok

s : − s↓ : Tp A
s : − s◦ : Tp A
s : − s : − ok

Figure 6. Per-String Subsumption (incomplete, see figure 7)

Depth Subtyping All the cases where further proof that S <: T is
needed are instances of depth subtyping: s↓s↓, s↓s◦, and s◦s◦. The
s◦s↓ case is an error because a possibly-present member cannot
automatically become definitely-present: e.g., substituting a value
of type {"x"◦ : Int} where {"x"↓ : Int} is expected is unsound
because the member may fail to exist at run-time. However, a
member’s presence can gain in strength through an operation that
checks for the existence of the named member; we return to this
point in section 4.6.

Width subtyping In the first two ok cases, s↓s- and s◦s-, a
member is “dropped” by being left unspecified in the supertype.
This corresponds to information hiding.

The Other Three Cases We have discussed six of the cases
above. Of the remaining three, s-s- is the simple reflexive case.
The other two, s-s↓ and s-s◦, must be errors because the sub-
type has failed to name a member (which may in fact be present),
thereby attempting information hiding; if the supertype reveals this
member, it would leak that information.

4.3.1 A Subtyping Parable
For a moment, let us consider the classical object type world with
fixed sets of members and no presence annotations [1]. We will use
patterns purely as a syntactic convenience, i.e., they will represent
only a finite set of strings (which we could have written out by
hand). Consider the following neutered array of booleans, which
has only ten legal indices:

DigitArray ≡ {([0-9]) : Bool}

Clearly, this type can be subsumed to an even smaller one of just
three indices:

{([0-9]) : Bool} <: {([1-3]) : Bool}

Now consider the following object, with a proposed type that would
be ascribed by a classical type rule for object literals:

obj = {"0": false, "1": true}null

obj : {[0-1] : Bool}
obj clearly does not have type DigitArray, since it lacks eight re-
quired members. Suppose, using the more liberal type system of
this paper, which permits possibly-present members, we define the
following more permissive array:

DigitArrayMaybe ≡ {([0-9])◦ : Bool}

Subtype Supertype Antecedent

s↓ : S s↓ : T S <: T
s↓ : S s◦ : T S <: T
s↓ : S s : − ok

→ s↓ : S s : abs A

s◦ : S s↓ : T A
s◦ : S s◦ : T S <: T
s◦ : S s : − ok

→ s◦ : S s : abs A

s : − s↓ : Tp A
s : − s◦ : Tp A
s : − s : − ok

→ s : − s : abs A

→ s : abs s↓ : T A
→ s : abs s◦ : T ok
→ s : abs s : − ok
→ s : abs s : abs ok

Figure 7. Per-String Subsumption (with Absent Fields)

By the s-s◦ case, obj’s type doesn’t subsume to DigitArrayMaybe,
either, with good reason: something of its type could be hiding
the member "2" containing a string, which if dereferenced (as
DigitArrayMaybe permits) would result in a type error at run-time.
(Of course, this does not tarnish the utility of maybe-present an-
notations, which we introduced to handle infinite sets of member
names.)

However, there is information about obj that we have not cap-
tured in its type: namely that the members not listed truly are ab-
sent. Thus, though obj still cannot satisfy DigitArray (or, equiva-
lently in our notation, {([0-9])↓ : Bool}), it is reasonable to per-
mit the value obj to inhabit the type DigitArrayMaybe, whose client
understands that some members may fail to be present at run-time.
We now extend our type language to permit this flexibility.

4.3.2 Absent Fields
To model absent members, we augment our object types one step
further to describe the set of member names that are definitely
absent on an object:

p = ↓ | ◦
T = · · · | {Lp1

1 : T1 · · ·Lpn
n : Tn, LA : abs}

With this addition, there is now a fourth kind of relationship a string
can have with an object type: it can be known to be absent. We must
update our specification of subtyping accordingly. Figure 7 has the
complete specification, where the new rows are marked with an
arrow→.

Nothing subsumes to abs except for abs itself, so supertypes
have a (non-strict) subset of the absent members of their subtypes.
This is enforced by cases s↓sa, s◦sa, and s-sa (where we use sa as
the abbreviation for an s : abs entry).

If a string is absent on the subtype, the supertype cannot claim
it is definitely present (sas↓). In the last three cases (sas◦, sas-,
or sasa), an absent member in the subtype can be absent, not
mentioned, or possibly-present with any type in the supertype,
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Child Parent Result

s↓ : Tc s↓ : Tp s↓ : Tc

s↓ : Tc s◦ : Tp s↓ : Tc

s↓ : Tc s : − s↓ : Tc

s↓ : Tc s : abs s↓ : Tc

s◦ : Tc s↓ : Tp s↓ : Tc t Tp

s◦ : Tc s◦ : Tp s◦ : Tc t Tp

s◦ : Tc s : − s : −
s◦ : Tc s : abs s◦ : Tc

s : − s↓ : Tp s : −
s : − s◦ : Tp s : −
s : − s : − s : −
s : − s : abs s : −

s : abs s↓ : Tp s↓ : Tp

s : abs s◦ : Tp s◦ : Tp

s : abs s : abs s : abs
s : abs s : − s : −

Figure 8. Per-String Flattening

which even allows subsumption to introduce types for members
that may be added in the future. To illustrate our final notion of
subsumption, we use a more complex version of the earlier example
(overline indicates set complement):

BoolArray ≡ {([0-9]+)◦ : Bool, "length"↓ : Num}
arr ≡ {"0": false, "1": true, "length":2}null

Suppose we ascribe the following type to arr:

arr : { [0-1]
↓ : Bool, "length"↓ : Num,

{[0-1], "length"} : abs }
This subsumes to BoolArray thus:

• The member "length" is subsumed using s↓s↓, with Num <:
Num.

• The members "0" and "1" subsume using s↓s◦, with Bool <:
Bool.

• The members made of digits other than "0" and "1" (as a regex,
[0-9][0-9]

+ ∪ [2-9]), subsume using sas◦, where T is Bool.
• The remaning members—those that aren’t "length" and whose

names aren’t strings of digits—such as "iwishiwereml" are
hidden by sas-.

Absent members let us bootstrap from simple object types into the
domain of infinite-sized collections of possibly-present members.
Further, we recover simple record types when LA = ∅.

4.3.3 Algorithmic Subtyping
Figure 7 gives a declarative specification of the per-string subtyping
rules. This is clearly not an algorithm, since it iterates over pairs of
an infinite number of strings. In contrast, our object types contain
string patterns, which are finite representations of infinite sets. By
considering the pairwise intersections of patterns between the two
object types, an algorithmic approach presents itself. The algorith-
mic typing judgments must contain clauses that work at the level of

Child Parent Antecedent

s↓ : Tc s↓ : Tp Tc <: Tp

s↓ : Tc s◦ : Tp Tc <: Tp

s↓ : Tc s : − ok

s↓ : Tc s : abs A

s◦ : Tc s↓ : Tp Tc t Tp <: Tp

(= Tc <: Tp)
s◦ : Tc s◦ : Tp Tc t Tp <: Tp

(= Tc <: Tp)
s◦ : Tc s : − ok

s◦ : Tc s : abs A

s : − s↓ : Tp A
s : − s◦ : Tp A
s : − s : − ok

s : − s : abs A

s : abs s↓ : Tp Tp <: Tp

(= ok)
s : abs s◦ : Tp Tp <: Tp

(= ok)
s : abs s : − ok
s : abs s : abs ok

Figure 9. Subtyping after Flattening

patterns. Thus, in deciding subtyping for

{Lp1
1 : S1, · · · , LA : abs} <:
{Mq1

1 : T1, · · · ,MA : abs}
one of several antecedents intersects all the definitely-present pat-
terns, and checks that they are subtypes:

∀i, j.(Li ∩Mj 6= ∅) ∧ (pi = qj =↓) =⇒ Si <: Ti

A series of rules like these specify an algorithm for subtyping that
is naturally derived from figure 7. The full definition of algorithmic
subtyping is available online.

4.4 Inheritance
Conventional structural object types do not expose the position of
members on the inheritance chain; types are “flattened” to include
inherited members. A member lower in the chain “shadows” one of
the same name higher in the chain, with only the lower member’s
type present in the resulting record.

The same principle applies to first-class member names but, as
with subtyping, we must be careful to account for all the cases.
For subtyping, we related subtypes and supertypes to the proof
obligation needed for their subsumption. For flattening, we will
define a function that constructs a new object type out of two
existing ones:

flatten ∈ T × T → T

As with subtyping, it suffices to specify what should happen for a
given member s. Figure 8 shows this specification.

• When the child has a definitely present member, it overrides the
parent (s↓s↓, s↓s◦, s↓s-, and s↓sa).
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• In the cases s◦s↓ and s◦s◦, the child specifies a member as pos-
sibly present and the parent also specifies a type for the member,
so a lookup may produce a value of either type. Therefore, we
must join the two types (the t operator).10 In case s◦s-, the
parent doesn’t specify the member; it cannot be safely overrid-
den with only a possibly-present member, so we must leave it
hidden in the result. In case s◦sa, since the member is absent on
the parent, it is left possibly-present in the result.

• If the child doesn’t specify a member, it hides the corresponding
member in the parent (s-s↓, s-s◦, s-s-, s-sa).

• If a member is absent on the child, the corresponding member
on the parent is used (sas↓, sas◦, sas-, sasa).

The online material includes a flattening algorithm.

Inheritance and Subtyping It is well-known that inheritance and
subtyping are different, yet not completely orthogonal concepts [9].
Figures 7 and 8 help us identify when an object inheriting from a
parent is a subtype of that parent. Figure 9 presents this with three
columns. The first two show the presence and type in the child
and parent, respectively. In the third column, we apply flatten to
that row’s child and parent; then look up the result and the parent’s
type in the figure 7; and copy the resulting Antecedent entry. This
column thus explains under exactly what condition a child that
extends a parent is a subtype of it. Consider some examples:

• If a child overrides a parent’s member (e.g., s↓s↓), it must
override the member with a subtype.

• When the child hides a parent’s definitely-present member
(s-s↓), it is not a subtype of its parent.

• Suppose a parent has a definitely-present member s, which is
explicitly not present in the child. This corresponds to the sas↓

entry. Applying flatten to these results in s↓ : Tp. Looking
up and substituting s↓ : Tp for both subtype and supertype
in figure 7 yields the condition Tp <: Tp, which is always
true. Indeed, at run-time the parent’s s would be accessible
through the child, and (for this member) inheritance would
indeed correspond to subtyping.

By relating pairs of types, this table could, for instance, determine
whether a mixin—which would be represented here as an object-
to-object function that constructs objects relative to a parameterized
parent—obeys subtyping.

4.5 Typing Objects
Now that we are equipped with flatten and a notion of subsumption,
we can address typing λob

S in full. Figure 10 contains the rules for
typing strings, objects, member lookup, and member update.

T-Str is straightforward: literal strings have a singleton string set
L-type. T-Object is more interesting. In a literal object expression,
all the members in the expression are definitely present, and have
the type of the corresponding member expression; these are the
pairs str↓i : Si. Fields not listed are definitely absent, represented
by ? : abs.11 In addition, object expressions have an explicit parent
subexpression (ep). Using flatten, the type of the new object is
combined with that of the parent, Tp.

A member lookup expression has the type of the member cor-
responding to the lookup member pattern. T-GetField ensures that

10 A type U is the join of S and T if S <: U and T <: U .
11 In our type language, we use ? to represent “all members not named
in the rest of the object type”. Since string patterns are closed over union
and negation, ? can be expressed directly as the complement of the union
of the other patterns in the object type. Therefore ? is purely a syntactic
convenience, and does not need to appear in the theory.

the type of the expression in lookup position is a set of definitely-
present members on the object, Li, and yields the corresponding
type, Si.

The general rule for member update, T-Update, similarly re-
quires that the entire pattern Li be on the object, and ensures in-
variance of the object type under update (T is the type of eo and the
type of the whole expression). In contrast to T-GetField, the mem-
ber does not need to be definitely-present: assigning into possibly-
present members is allowed, and maintains the object’s type.

Since simple record types allow strong update by extension, our
type system admits one additional form of update expression, T-
UpdateStr. If the pattern in lookup position has a singleton string
type strf , then the resulting type has strf definitely present with
the type of the update argument, and removes strf from each
existing pattern.

4.6 Typing Membership Tests
Thus far, it is a type error to lookup a member that is possibly
absent all along the inheritance chain: T-GetField requires that the
accessed member is definitely present. For example, if obj is a
dictionary mapping member names to numbers:

{(.*)◦ : Num, ∅ : abs}
then obj["10"] is untypable. We can of course relax this restriction
and admit a runtime error, but it would be better to give a guarantee
that such an error cannot occur. A programmer might implement a
lookup wrapper with a guard:

if (obj hasfield x) obj[x] else false

Our type system must account for such guards and if-split—it must
narrow the types of obj and x appropriately in at least the then-
branch. We present an single if-splitting rule that exactly matches
this pattern:12

if (xobj hasfield xfld) e2 else e3

A special case is when the type of xobj is {· · ·L◦ : T · · · } and the
type of xfld is a singleton string str ∈ L. In such a case, we can
narrow the type of xobj to:

{· · · {str}↓ : T,L ∩ {str}
◦

: T · · · }
A lookup on this type with the string str would then be typable with
type T . However, the second argument to hasfield won’t always
type to a singleton string. In this case, we need to use a bounded
type variable to represent it. We enrich string types to represent
this, shown in the if-splitting rule in figure 11.13 For example, let
P = (.*). If x : P and obj : {P ◦ : Num, ∅ : abs}, then the
narrowed environment in the true branch is:

Γ′ = Γ, α <: P, x : α, obj : {α↓ : Num, P ∩ α◦ : Num, ∅ : abs}
This new environment says that x is bound to a value that types
to some subset of P , and that subset is definitely present (α↓) on
the object obj. Thus, a lookup obj[x] is guaranteed to succeed with
type Num.

Object subtyping must now work with the extended string pat-
terns of figure 11, introducing a dependency on the environment Γ.
Instead of statements such as L1 ⊆ L2, we must now discharge
Γ ` L1 ⊆ L2. We interpret these as propositions with set variables
that can be discharged by existing string solvers [19].

12 There are various if-splitting techniques for typing complex conditionals
and control [8, 16, 34]. We regard the details of these techniques as orthog-
onal.
13 This single typing rule is adequate for type-checking, but the proof of
preservation requires auxiliary rules in the style of Typed Scheme [33].
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T-Str
Σ; Γ ` str : {str}

T-Object
Σ; Γ ` e1 : S1 · · · Σ; Γ ` ep : Ref Tp T = flatten({str↓1 : S1 · · · ? : abs}, Tp)

Σ; Γ ` { str1: e1 · · · }ep : T

T-GetField
Σ; Γ ` eo : {Lp1

1 : S1, · · · , L↓i : Si, · · · , Lpn
n : Sn, LA : abs} Σ; Γ ` ef : Li

Σ; Γ ` eo[ef] : Si

T-Update
Σ; Γ ` eo : T Σ; Γ ` ef : Li Σ; Γ ` ev : Si T = {Lp1

1 : S1, · · · , Lpi
i : Si, · · ·Lpn

n : Sn, LA : abs}
Σ; Γ ` eo[ef = ev] : T

T-UpdateStr
Σ; Γ ` ef : {strf} Σ; Γ ` ev : S Σ; Γ ` eo : {Lp1

1 : S1, · · · , LA : abs}
Σ; Γ ` eo[ef = ev] : {str↓f : S, (L1 − strf )p1 : S1, · · · , LA − strf : abs}

Figure 10. Typing Objects

String patterns L = P | α | L ∩ L | L ∪ L | L
Types T = · · · | ∀α <: S.T bounded quantification
Type Environments Γ = · · · | Γ, α <: T

Γ(o) = {· · ·L◦ : S · · · } Γ(f) = L Σ; Γ, α <: L, f : α, o : {· · ·α↓ : S,L′◦ : S · · · } ` e2 : T L′ = L ∩ α Γ ` e3 : T

Σ; Γ ` if (o hasfield f) e2 else e3 : T

Figure 11. Typing Membership Tests

4.7 Accessing the Inheritance Chain
In λob

S , the inheritance chain of an object is present in the model
but not provided explicitly to the programmer. Some scripting lan-
guages, however, expose the inheritance chain through members:
"__proto__" in JavaScript and "__class__" in Python (section 2).
Reflecting this in the model introduces significant complexity into
the type system and semantics, which need to reason about lookups
and updates that conflict with this explicit parent member. We have
therefore elided this feature from the presentation in this paper. In
the appendix, however, we present a version of λob

S where a mem-
ber "parent" is explicitly used for inheritance. All our proofs work
over this richer language.

4.8 Object Types as Intersections of Dependent Refinements
An alternate scripting semantics might encode objects as functions,
with application as member lookup. Thus an object of type:

{L↓1 : T1, L
↓
2 : T2, ∅ : abs}

could be encoded as a function of type:

({s : Str|s ∈ L1} → T1) ∧ ({s : Str|s ∈ L2} → T2)

Standard techniques for typing intersections and dependent refine-
ments would then apply.

This trivial encoding precludes precisely typing the inheritance
chain and member presence checking in general. In contrast, the
extensionality of records makes reflection much easier. However,
we believe that a typable encoding of objects as functions is re-
lated to the problem of typing object proxies (which are present in
Ruby and Python and will soon be part of JavaScript), which are
collections of functions that behave like objects but are not objects
themselves [11]. Proxies are beyond the scope of this paper, but we
note their relationship to dependent types.

4.9 Guarantees
The full typing rules and formal definition of subtyping are avail-
able online. The elided typing rules are a standard account of func-
tions, mutable references, and bounded quantification. Subtyping is
interpreted co-inductively, since it includes equirecursive µ-types.
We prove the following properties of λob

S :

LEMMA 1 (Decidability of Subtyping). If the functions and pred-
icates on string patterns are decidable, then the subtype relation is
finite-state.

THEOREM 2 (Preservation). If:

• Σ ` σ,
• Σ; · ` e : T , and
• σe→ σ′e′,

then there exists a Σ′, such that:

• Σ ⊆ Σ′,
• Σ′ ` σ′, and
• Σ′; · ` e′ : T .

THEOREM 3 (Typed Progress). If Σ ` σ and Σ; · ` e : T then
either e ∈ v or there exist σ′ and e′ such that σe→ σ′e′.

Unlike the untyped progress theorem of section 3, this typed
progress theorem does not admit runtime errors.

5. Implementation and Uses
Though our main contribution is intended to be foundational, we
have built a working type-checker around these ideas, which we
now discuss briefly.

Our type checker uses two representations for string patterns.
In both cases, a type is represented a set of pairs, where each pair
is a set of member names and their type. The difference is in the
representation of member names:
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type Array =
typrec array :: * => * .
typlambda a :: * . {
/(([0-9])+|("+Infinity"|("-Infinity"|"NaN")))/ : 'a,
length : Int,
* : _,
__proto__: {
__proto__: Object,
* : _,
// Note how the type of "this" is array<'a>. If
// these are applied as methods, arr.map(...), then
// the inner 'a and outer 'a will be the same.
map: forall a . forall b . ['array<'a>] ('a -> 'b)

-> 'array<'b>,
slice: forall a . ['array<'a>] Int * Int + Undef

-> 'array<'a>,
concat: forall a . ['array<'a>] 'array<'a>

-> 'array<'a>,
forEach: forall a . ['array<'a>] ('a -> Any)

-> Undef,
filter: forall a . ['array<'a>] ('a -> Bool)

-> 'array<'a>,
every: forall a . ['array<'a>] ('a -> Bool)

-> Bool,
some: forall a . ['array<'a>] ('a -> Bool)

-> Bool,
push: forall a . ['array<'a>] 'a -> Undef,
pop: forall a . ['array<'a>] -> 'a,
/* and several more methods */

}
}

Figure 12. JavaScript Array Type (Fragment)

1. The set of member names is a finite enumeration of strings rep-
resenting either a collection of members or their complement.

2. The set of member names is represented as an automaton whose
language is that set of names.

The first representation is natural when objects contain constant
strings for member names. When given infinite patterns, however,
our implementation parses their regular expressions and constructs
automata from them.

The subtyping algorithms require us to calculate several inter-
sections and complements. This means we might, for instance, need
to compute the intersection of a finite set of strings with an automa-
ton. In all such cases, we simply construct an automaton out of the
finite set of strings and delegate the computation to the automaton
representation.

For finite automata, we use the representation and decision
procedure of Hooimeijer and Weimer [20]. Their implementation
is fast and based on mechanically proven principles. Because our
type checker internally converts between the two representations,
the treatment of patterns is thus completely hidden from the user.14

Of course, a practical type checker must address more issues
than just the core algorithms. We have therefore embedded these
ideas in the existing prototype JavaScript type-checker of Guha,
et al. [15, 16]. Their checker already handles various details of
JavaScript source programs and control flow, including a rich treat-
ment of if-splitting [16], which we can exploit. In contrast, their
(undocumented) object types use simple record types that can only
type trivial programs. Prior applications of that type-checker to
most real-world JavaScript programs has depended on the theory
in this paper.

We have applied this type system in several contexts:

14 Our actual type-checker is a functor over a signature of patterns.

• We can type variants of the examples in this paper; because we
lack parsers for the different input languages, they are imple-
mented in λob

S . These examples are all available in our open
source implementation as test cases.15

• Our type system is rich enough to provide an accurate type for
complex built-in objects such as JavaScript’s arrays (an excerpt
from the actual code is shown in figure 12; the top of this type
uses standard type system features that we don’t address in this
paper). Note that patterns enable us to accurately capture not
only numeric indices but also JavaScript oddities such as the
Infinity that arises from overflow.

• We have applied the system to type-check ADsafe [27]. This
was impossible with the trivial object system in prior work [16],
and thus used an intermediate version of the system described
here. However, this work was incomplete at the time of that
publication, so that published result had two weaknesses that
this work addresses:

1. We were unable to type an important function, reject name,
which requires the pattern-handling we demonstrate in this
paper.16

2. More subtly but perhaps equally important, the types we
used in that verification had to hard-code collections of
member names, and as such were not future-proof. In the
rapidly changing world of browsers, where implementations
are constantly adding new operations against which sand-
box authors must remain vigilant, it is critical to instead
have pattern-based whitelists and blacklists, as shown here.

Despite the use of sophisticated patterns, our type-checker is
fast. It runs various examples in approximately one second on
an Intel Core i5 processor laptop; even ADsafe verifies in under
twenty seconds. Therefore, despite being a prototype tool, it is still
practical enough to run on real systems.

6. Related Work
Our work builds on the long history of semantics and types for
objects and recent work on semantics and types for scripting lan-
guages.

Semantics of Scripting Languages There are semantics for
JavaScript, Ruby, and Python that model each language in detail.
This paper focuses on objects, eliding many other features and de-
tails of individual scripting languages. We discuss the account of
objects in various scripting semantics below.

Furr, et al. [14] tackle the complexity of Ruby programs by
desugaring to an intermediate language (RIL); we follow the same
approach. RIL is not accompanied by a formal semantics, but its
syntax suggests a class-based semantics, unlike the record-based
objects of λob

S . Smeding’s Python semantics [30] details multiple
inheritance, which our semantics elides. However, it also omits cer-
tain reflective operators (e.g., hasattr) that we do model in λob

S .
Maffeis, et al. [22] account for JavaScript objects in detail. How-
ever, their semantics is for an abstract machine, unlike our syn-
tactic semantics. Our semantics is closest to the JavaScript seman-
tics of Guha, et al. [15]. Not only do we omit unnecessary details,
but we also abstract the plethora of string-matching operators and

15 https://github.com/brownplt/strobe/tree/master/tests/
typable and https://github.com/brownplt/strobe/tree/
master/tests/strobe-typable have examples of objects as arrays,
field-presence checks, and more.
16 Typing reject name requires more than string patterns to capture the
numeric checks and the combination of predicates, but string patterns let
us reason about the charAt checks that it requires.
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make object membership checking manifest. These features were
not presented in their work, but buried in their implementation of
desugaring.

Extensible Records The representation of objects in λob
S is de-

rived from extensible records, surveyed by Fisher and Mitchell [12]
and Bruce, et al. [7]. We share similarities with ML-Art [29], which
also types records with explicitly absent members. Unlike these
systems, member names in λob

S are first-class strings; λob
S includes

operators to enumerate over members and test for the presence of
members. First-class member names also force us to deal with a
notion of infinite-sized patterns in member names, which existing
object systems don’t address. ML-Art has a notion of “all the rest”
of the members, but we tackle types with an arbitrary number of
such patterns.

Nishimura [25] presents a type system for an object calculus
where messages can be dynamically selected. In that system, the
kind of a dynamic message specifies the finite set of messages it
may resolve to at runtime. In contrast, our string types can de-
scribe potentially-infinite sets of member names. This generaliza-
tion is necessary to type-check the programs in this paper where ob-
jects’ members are dynamically computed from strings (section 2).
Our object types can also specify a wider class of invariants with
presence annotations, which allow us to also type-check common
scripting patterns that employ reflection.

Types and Contracts for Untyped Languages There are various
type systems retrofitted onto untyped languages. Those that support
objects are discussed below.

Strongtalk [6] is a typed dialect of Smalltalk that uses proto-
cols to describe objects. String patterns can describe more ad hoc
objects than the protocols of Strongtalk, which are a finite enumer-
ation of fixed names. Strongtalk protocols may include a brand;
they are thus a mix of nominal and structural types. In contrast, our
types are purely structural, though we do not anticipate any diffi-
culty incorporating brands.

Our work shares features with various JavaScript type systems.
In Anderson, et al. [5]’s type system, objects’ members may be
potentially present; it employs strong updates to turn these into
definitely present members. Recency types [17] are more flexible,
support member type-changes during initialization, and account for
additional features such as prototypes. Zhao’s type system [36] also
allows unrestricted object extension, but omits prototypes. In con-
trast to these works, our object types do not support strong updates
via mutation. We instead allow possibly-absent members to turn
into definitely-present members via member presence checking,
which they do not support. Strong updates are useful for typing
initialization patterns. In these type systems, member names are
first-order labels. Thiemann’s [32] type system for JavaScript al-
lows first-class strings as member names, which we generalize to
member patterns.

RPython [3] compiles Python programs to efficient byte-code
for the CLI and the JVM. Dynamically updating Python objects
cannot be compiled. Thus, RPython stages evaluation into an inter-
preted initialization phase, where dynamic features are permitted,
and a compiled running phase, where dynamic features are disal-
lowed. Our types introduce no such staging restrictions.

DRuby [13] does not account for member presence checking
in general. However, as a special case, An, et al. [2] build a type-
checker for Rails-based Web applications that partially-evaluates
dynamic operations, producing a program that DRuby can verify.
In contrast, our types tackle membership presence testing directly.

System D [8] uses dependent refinements to type dynamic dic-
tionaries. System D is a purely functional language, whereas λob

S

also accounts for inheritance and state. The authors of System D
suggest integrating a string decision procedure to reason about dic-

tionary keys. We use DPRLE [20] to support exactly this style of
reasoning.

Heidegger, et al. [18] present dynamically-checked contracts
for JavaScript that use regular expressions to describe objects. Our
implementation uses regular expressions for static checking.

Extensions to Class-based Objects In scripting languages, the
shape on an object is not fully determined by its class (section 4.1).
Our object types are therefore structural, but an alternative class-
based system would require additional features to admit scripts. For
example, Unity adds structural constraints to Java’s classes [23];
class-based reasoning is employed by scripting languages but not
fully investigated in this paper. Expanders in eJava [35] allow
classes to be augmented, affecting all objects; scripting also allows
individual objects to be customized, which structural typing admits.
F ickle allows objects to change their class at runtime [4]; our
types do admit class-changing (assigning to "parent"), but they
do not have a direct notion of class. J& allows packages of related
classes to be composed [26]. The scripting languages we consider
do not support the runtime semantics of J&, but do support related
mechanisms such as mixins, which we can easily model and type.

Regular Expression Types Regular tree types and regular ex-
pressions can describe the structure of XML documents (e.g.,
XDuce [21]) and strings (e.g., XPerl [31]). These languages verify
XML-manipulating and string-processing programs. Our type sys-
tem uses patterns not to describe trees of objects like XDuce, but
to describe objects’ member names. Our string patterns thus allow
individual objects to have semi-determinate shapes. Like XPerl,
member names are simply strings, but our strings are used to index
objects, which are not modeled by XPerl.

7. Conclusion
We present a semantics for objects with first-class member names,
which are a characteristic feature of popular scripting languages.
In these languages, objects’ member names are first-class strings.
A program can dynamically construct new names and reflect on
the dynamic set of member names in an object. We show by ex-
ample how programmers use first-class member names to build
several frameworks, such as ADsafe (JavaScript), Ruby on Rails,
Django (Python), and even Java Beans. Unfortunately, existing type
systems cannot type-check programs that use first-class member
names. Even in a typed language, such as Java, misusing first-class
member names causes runtime errors.

We present a type system in which well-typed programs do not
signal “member not found” errors, even when they use first-class
member names. Our type system uses string patterns to describe
sets of members names and presence annotations to describe their
position on the inheritance chain. We parameterize the type system
over the representation of patterns. We only require that pattern
containment is decidable and that patterns are closed over union,
intersection, and negation. Our implementation represents patterns
as regular expressions and (co-)finite sets, seamlessly converting
between the two.

Our work leaves several problems open. Our object calculus
models a common core of scripting languages. Individual scripting
languages have additional features that deserve consideration. The
dynamic semantics of some features, such as getters, setters, and
eval, has been investigated [28]. We leave investigating more of
these features (such as proxies), and extending our type system to
account for them, as future work. We validate our work with an
implementation for JavaScript, but have not built type-checkers for
other scripting languages. A more fruitful endeavor might be to
build a common type-checking backend for all these languages, if
it is possible to reconcile their differences.
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