
Web API Verification: Results and Challenges
Arjun Guha

Brown University
Providence, RI

arjun@cs.brown.edu

Benjamin Lerner
Brown University
Providence, RI

blerner@cs.brown.edu

Joe Gibbs Politz
Brown University
Providence, RI

joe@cs.brown.edu
Shriram Krishnamurthi

Brown University
Providence, RI

sk@cs.brown.edu

Modern Web applications use several APIs to build rich features. For example, the W3C
Geolocation API provides access to a user’s physical location for location-based personalization,
Facebook Connect provides a single sign-on service and access to a user’s social graph, Local
Storage is a per-domain cache that enables offline access, and the Google Maps API allows
applications to embed customized maps. Some of these APIs, such as Geolocation and Local
Storage, are built into Web browsers, whereas others, such as Facebook Connect and Google
Maps, are provided by Web services. These APIs are carefully crafted, since they give applica-
tions access to sensitive information. However, security bugs are constantly found that affect
API providers, Web applications, and end users.

Some APIs are security-specific. For instance, ADsafe [2] and Caja [6] are systems designed
to securely sandbox content combined from non-mutually-trusting authors on a single Web
page. Through a combination of static and runtime checks, these systems aim to provide
certain security guarantees to the content and/or the hosting page. In such cases, where the
authors may be actively malicious, verifying the APIs is critical.

Other APIs were not designed with security in mind, but security concerns arose as they
became widely implemented and programmers understood their full potential. Consider the
XMLHttpRequest API, which allows JavaScript programs to send HTTP requests to Web
servers. When first released, a malicious JavaScript program using XMLHttpRequest could
trivially set special HTTP headers that caused Web servers to misinterpret requests. Web
browsers now blacklist several headers. Mozilla Firefox has an Extension API, which third-
party extensions use with great effect. However, third-party extensions run with the same
privileges as Firefox’s code. Mozilla thus has an arduous, error-prone review process to vet
extensions.

In principle, these APIs are reference monitors, which should be small and verifiable. In
practice, these APIs have several entry points with complex static and runtime checks, resulting
in a large attack surface that a large attack surface, complex runtime checks, and several entry
points that could be compromised. For example, the Firefox extension API has over 1, 000
types, some of which allow access to sensitive resources such as local files. ADsafe has only
1, 800 lines of code, but 95 runtime security checks. A missing or misused security check
could compromise the safety of the entire system. Moreover, these APIs do not crisply state
their security goals, which makes verification difficult. Designing and implementing these APIs
securely, and verifying that this has been done, is hence an important challenge.

Summary of Prior and Current Work

Client-side Web APIs are invariably provided for JavaScript, the lingua franca of the browser.
Verifying these reference monitors therefore requires being able to encode assumptions about
the environment and to use these to check properties of JavaScript code. This need has been
noted in the form of identifying a shortcoming: the external security review [1] of Caja stated,

1

arjun@cs.brown.edu
blerner@cs.brown.edu
joe@cs.brown.edu
sk@cs.brown.edu


Web APIs Verification: Results and Challenges Guha, Lerner, Politz, and Krishnamurthi

“[Caja is] hard to review. No map states invariants and points to where they are enforced,
which hurts maintainability and security.”

Naturally, static type systems address these needs very nicely. In particular, we have been
working on adapting our existing JavaScript type checker [3, 4] to serve as a verification engine.
This has especially required relaxing the notion of progress provided by the type system, since
(in this context) termination through error is generally harmless—a halted component cannot
further leak information or attack another component.

In previous work we verified ADsafe, a reference monitor that makes it safe to embed
untrusted, third-party content on Web pages [7]. Our current work focuses on verifying that
Firefox extensions do not misuse security-sensitive APIs in private browsing mode.

The completed and ongoing projects use a JavaScript type-checker as a verification tool.
Type-checking JavaScript presents two challenges. First, JavaScript is a dynamic, untyped
scripting language. Programmers freely use reflection, control-flow, and state to reason infor-
mally about types [4]. Although JavaScript only supports prototype-based objects, program-
mers use them to encode modules, classes, and other high-level features [3]. Second, different
security APIs admit different classes of errors. For example, the ADsafe widgets should never
use local storage, but Firefox extensions can use local storage when they are not in private
browsing mode. Thus, a JavaScript type-checker that wants to support such a diversity of uses
must be flexible enough to admit varied programming patterns and different error conditions.

We present an overview of the security architecture of ADsafe and Firefox Extensions, two
Web APIs that we’ve studied in detail. We show how types can succinctly express the security
invariants of these APIs. We highlight the novel features of our JavaScript type-checker that
make type-based verification possible.

Challenges

Validating JavaScript Sub-Languages Unfettered JavaScript is not amenable to rich rea-
soning. Therefore, various industrial groups have developed other techniques, such as linting [2],
cajoling [6], and SES [5] to restrict JavaScript. Cajoling and linting are complex techniques
that do not come with any proofs or specifications, but are instead defined by their implemen-
tations. Since these processes effectively place syntactic restrictions on programs, we advocate
expressing them as type systems. In prior work [7] we showed how to do this for ADsafe’s
linting. It remains to be seen whether cajoling, SES, and other techniques can be tackled in
the same way.

From Programs to Pages to Sites Authors of Web APIs wish to reason about sophis-
ticated safety properties that are beyond the scope of our type-checker and other tools for
Web programs. For example, Web sandboxes such as ADsafe and Google Caja try to ensure
that untrusted code can only read and draw to a single region (an HTML <div>) of a Web
page. To verify that an implementation meets this specification, we must reason not only about
JavaScript code, but also HTML markup, CSS stylesheets and even server-side content. Ver-
ifying realistic programs that contain both code and markup, and doing so in the context of
server-side behavior, is beyond the scope of most existing tools.

Shrinking Attack Surfaces Web APIs support a plethora of features, have a large number
of entrypoints, and thus have very large attack surfaces. For example, the Web browser DOM
API has over 100 interfaces, while the Firefox Extension API has over 1, 000 interfaces. Security

2



Web APIs Verification: Results and Challenges Guha, Lerner, Politz, and Krishnamurthi

vulnerabilities could lurk in the design or implementation of any of these interfaces. Shrinking
the size of these APIs would mitigate the threat of attacks; the challenge is to do so without
losing essential features. Another challenge is to make security and privacy behavior better
manifest. For instance, Firefox expects extensions to check a global flag to determine whether
they are in private browsing mode, and alter their behavior accordingly. A better design might
be to use a capability-based approach [6] that provides the right capabilities in the first place,
instead of expecting API users to make checks they are likely to (and, in practice, do) forget.

Establishing Non-Interference Web API designers are often interested in properties akin
to non-interference of information flows. For example, ADsafe’s author is interested in “restric-
tions required to prevent unintended collusion” between multiple programs. We found that a
pair of untrusted, embedded widgets can communicate by simply reading and writing to shared
state. The Web browser environment has several shared, mutable data structures, and restrict-
ing access to them would require a complete redesign of ADsafe. Such design problems would
be caught much earlier were Web APIs built with security in mind.

Verifying Mixed-Language Implementations Some Web APIs, such as ADsafe, are fully
implemented in JavaScript, whereas others, such as the Firefox extension API, are built with a
mix of C++ and JavaScript code. Thus, understanding their behavior requires cross-language
reasoning. Often, this is latent in the model of the environment: for instance, in verifying ADsafe
we had to assume we knew all the APIs that could lead to eval-like behavior. We encoded our
understanding by mining the knowledge of experts, but the ground truth is contained in the
C++ code of the browser.

References

[1] Ihab Awad, Tyler Close, Adrienne Felt, Collin Jackson, Ben Laurie, Felix Lee, Ka-Ping
Lee, David-Sarah Hopwood, Jasvir Nagra, Eric Sachs, Mike Samuel, Mike Stay, and David
Wagner. Caja external security review. Technical report, Google Inc., 2008. http://

google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf.

[2] Douglas Crockford. ADSafe. www.adsafe.org, 2011.

[3] Arjun Guha, Joe Gibbs Politz, and Shriram Krishnamurthi. Fluid object types. Technical
Report CS-11-04, Brown University, 10 2011. Under review.

[4] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state
using flow analysis. In European Symposium on Programming, 2011.

[5] Mark M. Miller. Secure EcmaScript. http://code.google.com/p/es-lab/wiki/

SecureEcmaScript, 2011.

[6] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja: Safe active
content in sanitized JavaScript. Technical report, Google Inc., 2008. http://google-caja.
googlecode.com/files/caja-spec-2008-06-07.pdf.

[7] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram Krishnamurthi.
ADsafety: Type-based verification of JavaScript sandboxing. In USENIX Security Sympo-
sium, 2011.

3

http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf
http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf
www.adsafe.org
http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf

