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Abstract

There has a been significant recent interest in using the
aggregated sentiment from social media sites to under-
stand and predict real-world phenomena, ranging from
the stock market to political polls to the box office
success of movies. However, the data from social me-
dia sites also offers a unique and—so far—unexplored
opportunity to study the impact of external factors on
aggregated sentiment, at the scale of a society. For ex-
ample, can well-studied disorders like seasonal affective
disorder be observed at large scale?

Using Twitter-specific sentiment extraction methodol-
ogy, we explore patterns of sentiment present in a cor-
pus of over 1.5 billion tweets. We focus primarily on
the effect of the weather and time on aggregate senti-
ment, evaluating how clearly the well-known individual
patterns translate into population-wide patterns. Using
machine learning techniques on the Twitter corpus cor-
related with the weather at the time and location of the
tweets, we find that aggregate sentiment follows dis-
tinct climate, temporal, and seasonal patterns. Overall,
we observe that aggregate sentiment can be predicted
as positive/negative with an ROC area of 0.78, indi-
cating high accuracy.

Introduction
There has been significant recent interest in using the
sentiment, in aggregate, of postings on online social
media sites like Twitter in order to measure and pre-
dict real-world events. For example, recent work has ex-
plored predicting the stock market (Eric Gilbert 2010;
Bollen, Mao, and Zeng 2010), forecasting the success of
movies at the box office (Asur and Huberman 2010),
and replacing traditional political polling (O’Connor et
al. 2010; Tumasjan et al. 2010) with data taken from
Twitter.
However, the data from social media sites also of-

fers a unique and—so far—unexplored opportunity to
study the impact of external factors on aggregated sen-
timent, at the scale of a society. For example, psychol-
ogists have studied the sentiment of individuals (hedo-
nic feelings of pleasantness; referred to in the psycho-
logical literature as “affect” (Barrett and Bliss-Moreau
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2009)) and found surprising daily (Stone et al. 1996),
weekly (Larsen and Kasimatis 1990), seasonal (Rohan
and Sigmon 2000), geographic (Mersch et al. 1999), and
climate-related (Mersch et al. 1999) patterns. Unfortu-
nately, these studies have been limited in scale by their
methodology; they often rely on repeated surveys, and
the largest of these studies examine only a few hun-
dred subjects. As a result, most studies are also lim-
ited to examining the effect of a single variable (e.g.,
temperature) on sentiment. Thus, it remains unclear
(a) whether the individual-level patterns translate into
population-wide trends, (b) if so, which of the variables
dominate the population-wide signal, and (c) how mul-
tiple variables interact to influence sentiment.1

In this paper, we take the first steps towards un-
derstanding the influence of weather and time on the
aggregated sentiment from Twitter. We first use a
Twitter-specific methodology for inferring the senti-
ment of Twitter messages (tweets) that is able to handle
the unique grammar, syntax, abbreviations, and con-
ventions of Twitter. Due to the massive scalability re-
quired to process such large data sets in near-realtime,
most existing approaches measure sentiment using lists
of positive/negative words and phrases; we do as well.
Using a corpus of over 1.5 billion messages, we automat-
ically create a sentiment-scored word list for a large set
of tokens based on the co-occurence of each token with
emoticons (Read 2005; Pak and Paroubek 2010). We
demonstrate that our resulting list has high accuracy,
based on a comparison to manually rated messages from
Amazon Mechanical Turk.
We then examine whether known patterns of indi-

vidual sentiment result in population-wide patterns of
aggregate sentiment. Specifically, we treat the detection
of patterns as a machine learning problem, with a goal
of trying to predict the aggregate sentiment given in-
put variables such as time of day, season, and weather.
Using machine learning (rather than simply looking at
variable correlations) allows us to capture potentially
complex, non-linear interactions between different vari-

1Recent work (Dodds et al. 2011) has observed that pat-
terns of aggregate sentiment do appear to exist in online
social networking services, but focuses only on temporal pat-
terns.



ables. Overall, we find that our machine learning tech-
niques can predict the aggregate sentiment with an
ROC area over 0.78, indicating high accuracy.
Additionally, using machine learning allows us to ex-

plore the dependence between variables that is used
to make predictions. For example, we find strong in-
terdependence on the predicted sentiment between the
temperature and humidity, matching common intuition.
Our results can inform existing algorithms that make
predictions using aggregate sentiment, and suggest that
many of the previously-observed variations in aggregate
sentiment are part of repetitive patterns, rather than
unique, new information.

Background

Twitter is a “micro-blogging” service that allows users
to multicast short messages (called tweets). Each user
has a set of other users (called followers) who receive
their messages. The follow relationship in Twitter is
directed, and requires authorization from the followee
only when the followee has elected to make their ac-
count private. Each tweet can only be up to 140 char-
acters in length. The default setting in Twitter is to al-
low all tweets to be publicly visible; at the time of our
data collection, we found that only 8% of users elected
to make their account private.

Twitter data

We obtained data from Twitter using the Twitter API
from August 15–September 1, 2009 (Cha et al. 2010).
Using a cluster of 58 whitelisted machines, we itera-
tively requested information about each user, including
their profile, their followers, and their tweets.2 In total,
we obtained information on 54,981,152 in-use accounts
connected together by 1,963,263,821 follow links, and a
total of 1,516,115,233 tweets.3

Because the number of tweets grew dramatically as
Twitter became more popular, for the remainder of this
paper, we focus only on tweets issued between January
1, 2009 through September 1, 2009. Doing so allows us
to ensure that we have a sufficient number of tweets per
location and time period. Using only tweets issued in
2009 leaves us with 1,369,833,417 tweets (90.3% of the
entire data set).

Geographic data

To determine geographic information about users, we
use the self-reported location field in the user profile.
The location is an optional self-reported string; we
found that 75.3% of the publicly visible users listed a
location. In order to turn the user-provided string into
a mappable location, we use the Google Maps API. Be-
ginning with the most popular location strings (i.e, the
strings provided by the most users), we query Google

2Twitter’s userids are numerically assigned, allowing us
to enumerate each user.

3This study was conducted under Northeastern Univer-
sity Institutional Review Board protocol #10-03-26.

Maps with each location string. If Google Maps is able
to interpret a string as a location, we receive a latitude
and longitude as a response. We restrict our scope to
users in the U.S. by only considering response latitudes
and longitudes that are within the U.S.. In total, we find
mappings to a U.S. longitude and latitude for 246,015
unique strings, covering 3,279,425 users (representing
8.8% of the users who list a location).
To correlate our Twitter data with weather infor-

mation, we aggregate the users into U.S. metropoli-
tan areas. Using data from the U.S. National Atlas
and the U.S. Geological Survey, we map each of the
246,015 latitudes and longitudes into their respective
U.S. county. We then consider only the counties that are
part of the 20 largest U.S. metropolitan areas as defined
by the U.S. Census Bureau (U.S. Census Metropoli-
tan Areas and Components ). Unless otherwise stated,
our analysis for the remainder of this paper is at the
metropolitan-area level.

Weather data

In order to collect weather data, we use Mathemat-
ica’s WeatherData package (Mathematica Weather-
Data Package ). In brief, the WeatherData package ag-
gregates weather data from the National Oceanic and
Atmospheric Administration, the U.S. National Cli-
matic Data Center, and the Citizen Weather Observer
Program. For each of the 20 metropolitan areas, we col-
lected the cloud cover percentage, humidity, tempera-
ture, precipitation, and wind speed for every hour pe-
riod from 00:00:00 on January 1, 2009 until 00:00:00
on September 1, 2009 (the same period as our tweets
cover).

Measuring Sentiment
Sentiment analysis is a well-studied topic, with much
recent work focusing on leveraging sentiment expressed
on Twitter to predict real-world phenomena. In this
section, we detail our sentiment inference methodology
and present an evaluation of its accuracy.

Background

In order to estimate the sentiment of users on Twit-
ter, we examine the content of their tweets. Ideally,
we would like to use existing sentiment analysis tech-
niques (Turney 2002; Pang, Lee, and Vaithyanathan
2002; Liu 2006). However, there are a few unique char-
acteristics of Twitter that make natural language pro-
cessing (NLP)-based techniques not directly applicable.
First, the amount of data we have (multiple terabytes,
when uncompressed) requires an extremely efficient ap-
proach. Unfortunately, many NLP techniques are sim-
ply not fast enough to make the analysis feasible. Sec-
ond, due to the strict length requirement on tweets (140
characters), most Twitter messages often contain ab-
breviations and do not use proper spelling, grammar,
or punctuation. As a result, NLP algorithms trained on
proper English text do not work as well when applied
to Twitter messages.



As a result, most prior Twitter sentiment analy-
sis work has focused on token lists, containing a set
of tokens (words) with a sentiment score attached to
each (Bradley and Lang 1999; Wilson, Wiebe, and Hoff-
mann 2005; Hu and Liu 2004). Unfortunately, exist-
ing lists present a number of challenges when used on
Twitter data: First, Twitter messages are limited to
140 characters, causing users to often abbreviate words;
these lists rarely include such abbreviations. Second,
Twitter users often use nelogisms and acronyms (e.g.,
OMG, LOL) and Twitter-specific syntax (e.g., hashtags
like #fail) when expressing sentiment. Existing lists do
not include or account for such acronyms. Third, due
to the limited size of existing lists (to the best of our
knowledge, the largest list contains only 6,800 tokens),
the fraction of tweets that contain at least one listed
token is often small.

Methodology

In order to address the challenges above, we construct
a Twitter-specific token list by using the tweets them-
selves (Read 2005; Pak and Paroubek 2010). In brief,
we consider only tweets that contain exactly one of
the emoticons :), :-), :(, :-(, as the emoticons of-
ten represent the true sentiment of the tweet (Vogel
and Janssen 2009) and often match the underlying sen-
timent of the writer (Derks, Bos, and von Grumbkow
1997). We then look at the tokens that occur in these
tweets, and calculate the fraction of time each token ap-
pears with one of the positive emoticons. This results
in a token list with a weighting for each token, where
the weighting indicates the propensity for the token to
appear in positive-emoticon-tagged tweets.
In more detail, we start with the collection of all

tweets. We first narrow ourselves to English tweets by
only considering tweets that have at least 75% of the
tokens (delimited by spaces) appearing in the Linux
wamerican-small English dictionary.4 This narrows
our tweet collection to 591,406,152 tweets, which are
the tweets we wish to infer the sentiment for.
In order to construct our token list, we derive an ini-

tial set of clearly positive and negative tweets by ex-
tracting the tweets with exactly one of the four emoti-
cons above; this results in 15,668,367 tweets with a
positive emoticon and 5,237,512 tweets with a nega-
tive emoticon (a ratio almost 3-to-1). We then tokenize
the tweets on spaces (ignoring hashtags, usernames, and
URLs) resulting in 277,137,071 occurrences of 937,905
unique tokens. We ignore any token that did not appear
at least 20 times, giving us 275,193,529 occurrences of
75,065 unique tokens. To create our token list, we calcu-
late the relative fraction of times the token occurs with
a positive emoticon and use this as the token’s score.
For example, the token relaxing occurred in 39,584
tweets with positive emoticons and 3,439 tweets with
negative emoticons, giving relaxing a score of 0.9201.

4The is a standard list of 50,252 words that is used by
spell-checking programs on the Linux platform.

Similar to previous lists, we calculate the sentiment
of a tweet by looking for occurrences of listed tokens,
taking the average on the individual token sentiment
scores to be the sentiment score of the entire tweet.
In more detail, if a tweet contains n tokens that are
present in the token list and their sentiment scores are
{v1, v2, . . . , vn} and the frequency of each of these to-
kens in the tweet is {f1, f2, . . . , fn}, the sentiment score
of the tweet is calculated by the weighted mean of the
scores

Vtweet =

∑n

i
vifi∑n

i
fi

(1)

Evaluation

We now examine the accuracy of inferring the senti-
ment of tweets with our token list. To do so, we create
a list of manually, human-rated tweets using Amazon
Mechanical Turk (AMT) by paying Turk users $0.10 to
rate the sentiment of 10 tweets. The text and response
input used in the HIT was modeled after surveys from
previously used (Bradley and Lang 1999) lists.
We create a test set consisting of 1,000 tweets. Each

tweet was rated by 10 distinct individuals physically
located in the United States, for a total of 10,000 indi-
vidual ratings. We find that the AMT results showed a
strong inter-respondent Pearson correlation of 0.784,5

which is in line with the results from other studies us-
ing AMT respondents (Peng and Park 2011). Based on
these 10 ratings, we calculate an average AMT senti-
ment score for each tweet. We then examine the Pear-
son correlation between the average of the human rat-
ings and our token list rating for our 1,000 tweets. We
find the two to have a correlation coefficient of 0.651,
demonstrating that our sentiment inference methodol-
ogy is close to human ratings.
We make this resulting token list, as well as the code

necessary to generate a similar list from a different set
of input tweets, available to the research community at
http://socialnetworks.ccs.neu.edu.

Sentiment Patterns

With our Twitter-specific word list in hand, we now
turn to examine the patterns of sentiment that exist.
To do so, we treat the problem as a machine learning
problem, with the goal of predicting aggregate senti-
ment. Doing so has the advantages of capturing po-
tentially complex, non-linear interactions between in-
put variables that would be missed if we simply looked
for pairwise variable correlations. Below, we first detail
our machine learning approach before evaluating the ef-
fectiveness of sentiment prediction and examining the
relative importance of input variables.

Decision trees

To convert our problem to one that is amenable for
machine learning, it is necessary to aggregate tweets

5This represents the correlation between each rating and
the average of the other nine ratings for the same tweet.



together (since predicting the sentiment of an individ-
ual tweet without any knowledge of the tweet content is
remarkably hard). Thus, we aggregate the tweets into
hour-long buckets for each of the metropolitan areas. In
more detail, for each of the 20 metropolitan areas we
consider, we aggregate tweets from January 1, 2009–
September 1, 2009 into hourly buckets, taking the av-
erage of the sentiment of all tweets to be the sentiment
score for the bucket. This results in 5,832 hour-long
buckets for each metropolitan area.
We chose to use bagged decision trees (Breiman 1996)

as our machine learning algorithm for several reasons.
First, trees can handle all attribute types and missing
values. Second, the split predicates in tree nodes pro-
vide an explanation why the tree made a certain predic-
tion for a given input. Third, bagged trees are among
the very best prediction models for both classification
and regression problems (Caruana and Niculescu-Mizil
2006). Fourth, they are perfectly suited for explanatory
analysis because they work well with fairly little tuning.
Fifth, bagged trees can be easily trained in parallel, and
querying the trees for predictions can be parallelized as
well.
For each experiment, we first create a training set

consisting of 66% of the input data, and reserve the
remainder of the input data as a test set. For each pre-
dictor, we build 1,000 decision trees, each on an inde-
pendent bootstrap sample, and take the overall average
prediction of these 1,000 trees to be the overall predic-
tion. For each tree, we generate a training set for that
tree by selecting randomly from the training set with re-
placement (Dietterich 2000). This is a common method
in machine learning that results in better predictions
and excludes the appearance of random variables as im-
portant ones.
To simplify the creation of trees, the input sentiment

score for the training and test set is reduced from a ra-
tional number (the average of all tweet sentiments) to
a binary positive (1) or negative (0) value. The cutoff
for the positive/negative division for each experiment
is chosen to be the median of the union of the train-
ing and test sets, meaning an equal number of input
data points are labeled with 1 and 0. It is worth noting
that this approach can easily work with other positive-
versus-negative thresholds, or even use multiple levels
on the scale from negative to positive. However, a full
exploration is beyond the scope of this paper.

Measuring prediction accuracy

In order to measure the accuracy of sentiment predic-
tion, we require a way to compute the likelihood that
the predictor ranks time periods with more positive
sentiment higher than time periods with more nega-
tive sentiment. To do so, we use the metric Area under
the Receiver Operating Characteristic (ROC) curve or
A′. In brief, this metric represents the probability that
our predictor ranks two periods in their true relative
order (Fogarty, Baker, and Hudson 2005). Therefore,
the A′ metric takes on values between 0 and 1: A value

Variable class Area Under ROC Curve

Season (S) 0.5998
Geography (G) 0.6555

Time (T) 0.7274
Weather (W) 0.7378

Table 1: Area under the ROC curve for different classes
of input variables. The climate-based variables (cap-
tured by W) and periodic variations (captured by T)
show the strongest predictive value, while the other
variables all provide useful predictions.

of 0.5 represents a random ranking, with higher values
indicating a better ranking and 1 representing a perfect
ordering of the sentiment scores. Values below 0.5 indi-
cate an inverse ranking, or one where periods with more
positive sentiment tend to be ranked lower than periods
with more negative sentiment. A very useful property of
this metric is that it is defined independent of the func-
tional shape of the distribution of the true sentiment
scores, so it is comparable across different experimental
setups and schemes. In general, an A′ of 0.7 or higher
is viewed as providing good predictive value.

Input variables

In order to predict the sentiment on Twitter, we ex-
amine four different classes of input variables. First, we
examine geography (G) by considering the metropolitan
area. Thus, the G input variable takes on one of 20 val-
ues, one for each metropolitan area. Second, we examine
the season (S) by considering the month. This variable
is intended to capture any long-term season variable in
sentiment, and can take on one of nine values (since our
input data only covers January–September). Third, we
examine the time (T) by considering the day-of-month,
day-of-week, and hour-of-day. These variables together
are intended to capture short-term periodicity in senti-
ment.
Fourth, we examine the effect of climate by examining

weather (W). The weather variables we include consist
of humidity, cloud cover, precipitation, temperature,
and wind speed. Additionally, because weather may
have compounding effects, we include historic weather
information by providing the average of each weather
variable for the past 1, 2, 3, 6, 12, 24, 48, 72, and 96
hours. Thus, there are 45 distinct weather variables (five
variables, each averaged over nine time periods).

Results

We now turn to examine the effectiveness of bagged
decision trees when trying to predict sentiment. We be-
gin by examining each of the four input data variables
classes separately, before examining trees built using
combinations of the variables. Doing so allows us to un-
derstand the relative contribution of each of the variable
classes.

Prediction performance We construct bagged
trees with each of the input variable classes indepen-



dently, and measured their performance on the test set.
As before, we measure performance using the A′ metric,
which can be interpreted as capturing the probability
that the tree correctly orders each pair of test records.
The results of this experiment are presented in Table 1.
We note two interesting observations from this exper-

iment. First, all four variable classes show a ROC area
significantly greater than 0.5. This indicates that all
four have predictive value, even when viewed indepen-
dently of other variables, when predicting the aggregate
sentiment of tweets. Second, the relative magnitude of
the ROC area provides guidance as to the predictive
power of each of the variable classes. Clearly, the time
and weather variables provide the greatest amount of
information, suggesting that daily/weekly and climate-
based patterns exist.
Next, we examine the performance of trees produced

by combinations of variable classes. Presented in Ta-
ble 2, the results demonstrate that, as expected, the pre-
dictive performance of the trees increases as more vari-
ables are added. In particular, once all variable classes
are used when training the tree, the A′ value of the
resulting tree is 0.7857—substantially higher than 0.5.
This result indicates that the well-studied patterns of
individual sentiment do indeed result in trends of ag-
gregate sentiment, and can even be predicted with high
accuracy.

Complex interactions Recall that our motivation
for using a machine learning approach was to be able
to capture potentially complex, non-linear prediction
dependencies between input variables. For example, hu-
midity may serve as a useful predictor of sentiment, but
only if the temperature is above a certain threshold. To
better explore such trends, we now take a closer look
into the bagged tree built using all input variables.
It is generally challenging to visualize a multidi-

mensional function, including those encoded by a ma-
chine learning model. A popular way of doing so
are partial dependence plots (Panda, Riedewald, and
Fink 2010; Hastie, Tibshirani, and Friedman 2009;
Hochachka 2006; Friedman 2001; Hooker 2004; Linton
and Nielsen 1995), which visualize partial dependence
functions. A partial dependence function for a given
multi-dimensional function f(X) (where X is a vector

Variable classes Area Under ROC Curve

G, S 0.6585
W, S 0.7427
T, S 0.7450
W, G 0.7561
T, W 0.7724
G, T 0.7753

W, G, T, S 0.7857

Table 2: Area under the ROC curve for different com-
binations classes of input variables. All variables show
an increase in predictive power, peaking at an ROC of
0.7857 for the combination of all four variable classes.
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Figure 1: Partial dependence plot of predicted senti-
ment score from the all-variable bagged tree, based on
different combinations of humidity and temperature. As
humidity increases the predicted sentiment score de-
creases (with a more pronounced effect at higher tem-
peratures), matching intuition.

of multiple input variables) represents the effect of some
of the input variables on f(X) after accounting for the
average effects of all the other input variables on f(X).
Partial dependence plots on appropriately chosen vari-
able combinations can also be used for visualizing vari-
able interactions captured by a model.
In brief, the method works as follows: suppose we

are interested in studying the interaction of input vari-
ables im and in, among the entire set of input variables
{i1, i2, ...ik}. For each element (a, b) in the cross prod-
uct of all values of im and in, we create a new input
data set with every value of im replaced with a and ev-
ery value of in replaced with b. We feed this data set
into the predictor, and take the average predicted ag-
gregate sentiment of all data points to be the predicted
aggregate sentiment at im = a and in = b. Repeating
this method for all values of im and in provides a high-
level overview of how im and in interact to affect the
resulting aggregate sentiment prediction.
Figures 1 and 2 examine different pairwise combi-

nations of variables, examining the interaction of hu-
midity and temperature, and day of week and hour of
day, respectively. Many of the trends observed match
intuition about the effect of external variables on sen-
timent: For example, in Figure 1, as the humidity in-
creases, the predicted sentiment score decreases for all
values of temperature. However, this decrease is espe-
cially pronounced at higher temperatures, suggesting
the humidity has a much more profound effect on sen-
timent when the temperature is higher. Moreover, Fig-
ure 2 shows clear diurnal and weekly patterns of sen-
timent which match strongly with previously observed
patterns (Stone et al. 1996; Larsen and Kasimatis 1990;
Dodds et al. 2011; Macy 2010).

Important variables Next, we explore the relative
importance of individual input variables in predicting
aggregate sentiment. We previously explored the rela-
tive predictive power of variables classes (e.g., weather
and time), but we now take a closer look at the variables
within the classes. To do so, we use the common back-
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Figure 2: Partial dependence plot of predicted senti-
ment score based on combinations of day and hour.
Note that all times are UTC, so the trough corresponds
to 2:00am (EST) and 11:00pm (PST).

wards variable elimination method (Kohavi and John
1997), which starts with the all-variable tree and sim-
ply greedily removes the variable that causes the lowest
drop in predictive power. The last few remaining vari-
ables are the most important.
Table 3 presents the results of this experiment. The

table shows that there is not a significant drop in the
prediction accuracy while eliminating the first 45 vari-
ables (the overall drop in performance is less than 1%).
This is likely due to the non-independence of the vari-
ables (e.g., dropping the 3-hour humidity still leaves the
2-hour humidity and 6-hour humidity variables). How-
ever, the last five remaining variables all demonstrate
significant drops in predictive power, suggesting that
short-term temporal patterns (hour-of-day and day-of-
week), geographic patterns (city), and climate-based
patterns (72-hour temperature) dominate.

Predictions for individual users As a final point
of evaluation, we examine whether the predictability of
sentiment applies to individual users as well (as opposed
to only users in aggregate). In other words, can we build
a custom predictor for certain individual users and ob-
tain high ROC area for the sentiment of those users’ in-
dividual tweets? In order to have sufficient data points
for an individual, we consider only users who have at
least 2,000 tweets in our data set. This leaves us with
11,920 users; to make the analysis below feasible, we
select a random sample of 500 of these users.

Step Variable Area Under ROC Curve

0 All 0.7857
...

...
...

46 Day of month 0.7806
47 Temp. (72h) 0.7751
48 Day of week 0.7532
49 City 0.7376
50 Hour of day 0.6581

Table 3: Order of elimination of variables, showing the
five most important variables and A′ value before re-
moval.
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Figure 3: Area under the ROC curve for sentiment pre-
dictors built for each of the 500 users we consider. The
users are ordered by area under the ROC curve.

We repeat the same methodology as above, splitting
each users’ tweets into a test and training set and cre-
ating a bagged tree predictor for each user. Note that
instead of predicting the sentiment value of aggregated
tweets, we are instead predicting the sentiment value of
individual tweets. Also note that we do not include the
geography (G) variable, as each user only has a single
value for this variable. We then calculate the area un-
der the ROC curve for each user when using all weather
(W), time (T), and season (S) variables.
The distribution of the area under the ROC curve

for our 500 users is shown in Figure 3. We observe
that, on average, the predictability is close to random;
the median of the area under the ROC curve values is
0.543. The relatively poor predictability is not surpris-
ing, given that we are training our predictor on a much
smaller data set with correspondingly much higher vari-
ance than the aggregated case. However, there are a few
users who show more predictable sentiment: 2.0% of the
users possess an area under the ROC curve of 0.7. As
future work, we plan on exploring the characteristics of
the few users who do show significant sentiment pre-
dictability.

Discussion

We now turn to examine a few points of discussion
brought up by our analysis in this section.

Not all variables independent As we observed
above, there is a high degree of inter-correlation among
the variables we consider. For example, knowing the
geographic area provides significant information about
the weather, and knowing the weather provides sig-
nificant information about the season. As a result, it
is non-trivial to produce variable-specific patterns, as
such patterns are very likely to be influenced by other
variables. We continue to explore the minimal set of
variables that provides the strongest predictive power,
looking to see whether an “orthogonal basis” of vari-
ables exists.

Using other input variables In our analysis so far,
we have focused on input variables including time, sea-
son, geography, and climate, primarily due to data



availability. However, our approach can easily be ex-
tended to include other variables into the machine
learning predictor, such as stock market prices, unem-
ployment rates, and the outcome of sporting events. In-
cluding such variables has the potential to aid psychol-
ogists and sociologists in the study of population-wide
patterns of sentiment.

Related Work
We now detail related work in sentiment analysis, the
factors that affect sentiment, and the use of sentiment
on Twitter.

Sentiment Analysis

With the emergence of online activities and the growth
of virtual communities, determining the sentiment
of users is becoming a more attractive mechanism
for predicting real-world phenomena. The most com-
mon sentiment analysis methods can be divided into
two main categories: lexicon-based methods and ma-
chine learning-based methods. Lexicon-based meth-
ods, such as (Wilson, Wiebe, and Hoffmann 2005;
Bradley and Lang 1999; Hu and Liu 2004; Kim and
Hovy 2004), calculate the sentiment of the text using
a list of words with predefined sentiment scores. Ma-
chine learning-based methods unsurprisingly use vari-
ous machine learning techniques do the classification.
Usually, the machine learning algorithm is trained on
manually labeled training sets (Turney 2002; Pang,
Lee, and Vaithyanathan 2002; Barbosa and Feng 2010;
Pang and Lee 2005; Dave, Lawrence, and Pennock
2003), but there have also been approaches to labeling
data based on emoticons (Pak and Paroubek 2010). Our
approach is one of the first to combine the two types of
methods, which enables us to create a larger, more ac-
curate and more comprehensive word list that is better
suited to the characteristics of online communication
(e.g. the use of emoticons, common abbreviations like
LOL, etc).

Effects on sentiment

The effect of weather on sentiment is a well studied
topic in psychology. The change of seasons (and specif-
ically the lack of sunshine) can be the cause of dif-
ferent symptoms of depression (Mersch et al. 1999).
There have also been studies looking at both positive
and negative effects of weather (Denissen et al. 2008;
Keller et al. 2005; Rohan and Sigmon 2000). In addi-
tion to the known effect of climate on sentiment, re-
searchers found daily (Stone et al. 1996), weekly (Larsen
and Kasimatis 1990) and seasonal (Rohan and Sigmon
2000) patterns in the variation of sentiment. We are the
first to examine all of these factors in combination.
Leveraging data from a microblogging site like Twit-

ter provides additional benefits. For example, the short
status updates on Twitter makes users more likely to
frequently report on their status. This results in a
broader sample of text, both in the number of sub-
jects and the frequency of measurements, than the small

sample research designs that are commonly used in psy-
chology.

Applying Twitter data

The evolution of sentiment analysis has made it possi-
ble to examine many aspects of Twitter that are related
to sentiment. For example, it has enabled researchers
to do studies regarding political sentiment (Tumas-
jan et al. 2010) and public health (Paul and Dredze
2011), as well as to compare sentiment on Twitter to
data gathered from polls (O’Connor et al. 2010). Sev-
eral works use sentiment analysis to make predictions
about the stock market (Bollen, Mao, and Zeng 2010;
Eric Gilbert 2010), box-office success (Asur and Hu-
berman 2010), and election outcomes (Tumasjan et al.
2010). Because so many results build on sentiment anal-
ysis, it is important to examine the predictability of
sentiment itself by studying the effect of hidden factors
that are known to influence sentiment in real life.

Conclusion

There has been significant recent interest in using the
aggregate sentiment from social media sites like Twitter
to try to predict real-world phenomena. However, the
aggregated sentiment also offers a unique and—so far—
unexplored opportunity to study the effect of external
factors on aggregate sentiment, at the scale of a soci-
ety. In this paper, we took steps in this direction. We
first demonstrated that by leveraging the tweets them-
selves, we can automatically create a token list that is
tailored to the peculiarities of Twitter. We make this
list and necessary code available to the community, al-
lowing other algorithms to take advantage of these im-
provements in their predictions.
We then examined the patterns of sentiment that re-

sult when using this new list. We found that the well-
studied dependence on time of day, season, location,
and climate appear as population-wide trends, allowing
the aggregate sentiment itself to be predicted with an
ROC area of 0.78, indicating high prediction accuracy.
These results can inform existing algorithms, and sug-
gest that many of the previously observed variations
in aggregate sentiment are part of repetitive patterns,
rather than unique, new information.
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