Tweetin' in the Rain: Exploring societal-scale effects of weather on mood

Motivation

Significant interest in using sentiment of postings on OSNs Predicting the stock market [ICWSM'10] Forecasting movie success [WI'10] Traditional polls replaced by Twitter data [ICWSM'10]

Most methods for sentiment analysis use scored word lists Affective Norms of English Words (ANEW) Wilson, Wiebe and Hoffmann (WWH) Hu and Liu (HL)

Can we construct a more accurate, tailored word list?

Previous psychological studies on patterns of sentiment Daily, weekly, seasonal

Geographic Climate-related

To what extent do these translate to population-wide patterns? To what extent is aggregate sentiment itself predictable?

Data

Use data collected from Twitter

User profiles, tweets and their timestamps January - August 2009 ~40 M users and ~1.3 B tweets

Map users to their geographical location Self-reported location in users' profiles Interpret location using Google Maps API Only use locations in 20 largest US metropolitan areas

Correlate tweets with weather at corresponding location Mathematica's WeatherData package Uses National Weather Service data For each of the 20 metropolitan areas, every hour: Cloud cover, Humidity, Precipitation, Temperature, Wind speed

V	VeatherData
	WeatherData[loc, "property"] gives the most recent measurement for the specified weather property at the location corresponding to loc.
	WeatherData[loc, "property", date] gives all measurements during the specified date.
	<pre>WeatherData[loc, "property", {start, end}] gives a list of dates and measurements for the time interval start to end.</pre>
	<pre>WeatherData[loc, "property", {start, end, step}] gives measurements aggregated over the time period represented by step.</pre>
	WeatherData[<i>loc</i> , " <i>property</i> ", { <i>start</i> , <i>end</i> , <i>step</i> }] gives measurements aggregated over the time period represented by <i>step</i> .

Aniko Hannak[†] Eric Anderson[†] Lisa Feldman Barrett[†] Sune Lehmann[‡] Alan Mislove[†] Mirek Riedewald[†]

^{$\uparrow}Northeastern University$ [‡]Technical University of Denmark</sup></sup>

Measuring Sentiment

Limitations of existing sentiment inference techniques:

Word list-based techniques:	Natura
Not Twitter-specific, often ignore:	Unic
Abbreviations (e.g. OMG, LOL)	Ν
Nelogisms (e.g. truthiness) Hashtags (e.g. #fail) Expensive to create (manual process)	Ir N
Creating EMOT word list Consider subset of tweets containing emoticons :) :-) :(:-(For each token, measure relative frac- tion of co-occurance with emoticons	H It O H
Advantages of the EMOT list Automatically created Captures Twitter-specific syntax Much larger than existing lists Easily extends to other languages	

Location	Season	Time			eason Time Weather						Mood
		Date	Weekday	Hour	Cloud Cover	Humidity	Precip.	Temp.	Wind		
Boston	May	28	Friday	11	0.25	0.2	0.01	11 C	13 k/h	•••	
••• Chicago	October	18	Monday	02	0.15	0.1	0.02	5 C	45 k/h		
Seattle	August	02	Saturday	17	0.5	0.15	0.12	17 C	12 k/h		
New York	August	15	Tuesday	15	0.75	0.17	0.07	15 C	15 k/h	•••	
D5 L.A.	March	23	Tuesday	04	0.3	0.56	0.12	7 C	24 k/h	•••	
San Diego	October	03	Sunday	23	0.25	0.40	0.22	13 C	23 k/h	••	
••• L.A.	July	04	Friday	12	0.8	0.75	0.05	12 C	18 k/h		
New York	May	30	Thursday	17	0.75	0.48	0	22 C	33 k/h	••	
👓 Boston	January	28	Tuesday	12	0.1	0.3	0.3	15 C	5 k/h		

How to capture non-linear correlations? How to see the effect of combined variables?

Treat sentiment prediction as machine learning probl Goal: Predict sentiment from the other variables Ability to predict implies correlation

Methodology: Bagged decision trees

Can handle all attribute types (even missing values Easy to analyze effect of variables from tree structu Works well with fairly little tuning

- al language processing:
- hniques don't scale to Twitter corpus
- que use of language on Twitter
- Many misspellings
- ncorrect grammar
- Aissing punctuation

Happy Bday OBAMA!!! :) t's Obama's bday . . . :-(**D**bama is the best**!!!** :-))h no, it's raining again<mark>!!!</mark> :(lappy <mark>Bday</mark> @Anna <mark>!!!</mark> :) http://youtube...

Observe signific All variables: Most useful

Can predict sen significant accuracy

As humidity increases, affect scores increase (with more pronounced effect at higher temperatures)

Predicting Sentiment

					Irair	ling Set					
	Location	Season		Time			Weather				Mood
			Date	Weekday	Hour	Cloud Cover	Humidity	Precip.	Temp.	Wind	
D1	Boston	May	28	Friday	11	0.25	0.2	0.01	11 C	13 k/h	
D2	Chicago	October	18	Monday	02	0.15	0.1	0.02	5 C	45 k/h	
D3	Seattle	August	02	Saturday	17	0.5	0.15	0.12	17 C	12 k/h	
D4	New York	August	15	Tuesday	15	0.75	0.17	0.07	15 C	15 k/h	•••
D5	L.A.	March	23	Tuesday	04	0.3	0.56	0.12	7 C	24 k/h	••

Testing Set										
Location	Season		Time			Weather				Mood
		Date	Weekday	Hour	Cloud Cover	Humidity	Precip.	Temp.	Wind	
🗣 San Diego	October	03	Sunday	23	0.25	0.40	0.22	13 C	23 k/h	?
D7 L.A.	July	04	Friday	12	0.8	0.75	0.05	12 C	18 k/h	?
🛯 New York	May	30	Thursday	17	0.75	0.48	0	22 C	33 k/h	?
💀 Boston	January	28	Tuesday	12	0.1	0.3	0.3	15 C	5 k/h	?

lem	Input variables	
	Geography (G): the metropolitan area	2.
	Season (S): the month-of-year	
	Time (T): day-of-month, day-of-week and	2
	hour-of-day	3.
s)	Weather (W): five weather variables and	
ture	historic data	4.

Results

cant correlation	Variable classes	Area Under ROC Curve			
	G, S	0.6585			
: 0.79 ROC area	W, S	0.7427			
variables N/T	T, S	0.7450			
variables. vv, i	W, G	0.7561			
	T, W	0.7724			
atimont with	G, T	0.7753			
	W, G, T, S	0.7857			
IRACV					

Partial dependence plots Can ask predictor for relationships between variables Closely match intuition

1. Split input data into training and testing sets Training: 67%, Testing: 33%

- Sentiment score simplified to happy/sad (1/0) Data points aggregated into hour-long city buckets
- Train our machine learning algorithm Build bagged decision trees (1,000)
- Run testing set on decision trees Obtain predicted mood scores for testing set

Compare predictions with actual data

Measure accuracy with Area under the ROC curve