
Measurement and Analysis of
Automated Certificate Reissuance

Olamide Omolola1?, Richard Roberts2, Md. Ishtiaq Ashiq3,
Taejoong Chung3, Dave Levin2, and Alan Mislove4

1 University of Vienna
2 University of Maryland

3 Virginia Tech
4 Northeastern University

Abstract. The Transport Layer Security (TLS) Public Key Infrastruc-
ture (PKI) is essential to the security and privacy of users on the Inter-
net. Despite its importance, prior work from the mid-2010s has shown
that mismanagement of the TLS PKI often led to weakened security
guarantees, such as compromised certificates going unrevoked and many
internet devices generating self-signed certificates. Many of these prob-
lems can be traced to manual processes that were the only option at
the time. However, in the intervening years, the TLS PKI has undergone
several changes: once-expensive TLS certificates are now freely available,
and they can be obtained and reissued via automated programs.
In this paper, we examine whether these changes to the TLS PKI have
led to improvements in the PKI’s management. We collect data on all
certificates issued by Let’s Encrypt (now the largest certificate author-
ity by far) over the past four years. Our analysis focuses on two key
questions: First, are administrators making proper use of the automa-
tion that modern CAs provide for certificate reissuance? We find that
for certificates with a sufficiently long history of being reissued, 80% of
them did reissue their certificates on a predictable schedule, suggesting
that the remaining 20% may use manual processes to reissue, despite nu-
merous automated tools for doing so. Second, do administrators that use
automated CAs react to large-scale compromises more responsibly? To
answer this, we use a recent Let’s Encrypt misissuance bug as a natural
experiment, and find that a significantly larger fraction of administrators
reissued their certificates in a timely fashion compared to previous bugs.

1 Introduction

The Transport Layer Security (TLS) public key infrastructure (PKI) is an essen-
tial component of the modern Internet: it allows users to communicate over the
Internet in a trusted and confidential manner. However, previous work [8,21,13,2,3]
has demonstrated that despite its importance, the management of the TLS PKI
is often not compliant with recommended security practices. For example, sys-
tems administrators often fail to revoke or even reissue certificates when private

? Corresponding author

keys are compromised [20], many internet-of-things devices generate self-signed
certificates (sometimes even with identical keys) [13], and domains sometimes
share private keys with third parties due to limitations in the PKI itself [2].

Many of these management issues can be traced to inadequate tools for sys-
tem administrators. For example, in the wake of the Heartbleed [11] bug in 2014,
a significant fraction of web servers potentially had their private keys exposed;
as a result, administrators should have revoked their old certificates and reissue
new ones. At the time, doing so was a largely manual process: because certificates
were typically valid for up to 5 years, many administrators presumably eschewed
automating the infrequent process of obtaining and installing new certificates.
As a result, it took over a week before even 10% of the vulnerable web servers
had reissued their certificates [21]. Similarly, in the DNSSEC PKI, it has been
observed that inadequate tools—in the case of DNSSEC, a manual process of
uploading DS records—has lead to poor adoption of secure protocols [4].

However, the TLS PKI has changed dramatically since 2014. While previously
expensive, TLS certificates are now free with the advent of certificate authori-
ties such as Let’s Encrypt [14] (which is now, by far, the most popular CA [16]).
More importantly, these free CAs often have much shorter certificate lifetimes
(90 days for Let’s Encrypt), encouraging the automation of the process of certifi-
cate reissuance and installation (as it happens every three months, rather than
every five years). Open-source protocols (e.g., ACME) and tools (e.g., certbot,
acme.sh, cPanel) now allow administrators to automate the entire process.

In this paper, we examine whether the presence of these tools and services has
led to better TLS certificate reissuance. To understand the effects of automated
tools in certificate reissuance, we focus on certificates issued by Let’s Encrypt.
We chose Let’s Encrypt as it is by far the largest ACME-based CA [16], and it
has the longest history of operation (and hence, the highest likelihood of having
domain sets that have a long history of reissues). We use Certificate Transparency
(CT) [12] logs to obtain a list of all 1.03B certificates Let’s Encrypt issued over
the past four years. We group certificates in this list by the set of domains they
contain (similar to prior work [21], we refer to this as a domain set), enabling us
to measure how often certificates are reissued.

We also use a recent bug discovered by Let’s Encrypt as a natural experiment.
In brief, in early 2020, Let’s Encrypt discovered that over 3M certificates had
been issued improperly, as they had failed to check for Certificate Authority
Authorization (CAA) [19] records properly before issuance [5]. Because they
were improperly issued, Let’s Encrypt announced that they planned to revoke
the certificates one week later, informing all system administrators that they
needed to reissue their certificates. This serves as a natural experiment, as we can
examine whether administrators took the necessarily manual action of reissuing
their certificates, rather than simply relying on their automated reissuance.

Our paper makes two contributions: First, we examine the behavior of sys-
tem administrators reissuing TLS certificates with the advent of free CAs such as
Let’s Encrypt. We find that approximately 80% of domain sets with a sufficiently
long history of being reissued, did reissue their certificates on a predictable sched-

ule. In addition, 60% of all domain sets show a median reissuance period of 60
days (the default recommended by Let’s Encrypt [14] and used by many ACME
tools [23,6] for automated certificate reissuance).

Second, we use the Let’s Encrypt bug mentioned above to explore whether
system administrators now respond more quickly and completely when manual
intervention is required. We focus on the subset of the 2M domain sets with a
misissued certificate, and identify 98,652 domain sets that show a regular period
of reissuance with at least one new certificate issued after the bug was discovered
on February 29, 2020.5 We demonstrate that, of these domain sets, at least 28%
appear to have taken the manual steps necessary to reissue their certificates
within a week, suggesting that, indeed, system administrators are better able to
reissue certificates securely today when compared to previous incidents requiring
certificate reissuance.

2 Background

We begin with an overview of the TLS certificate ecosystem and related work.

2.1 Certificates

TLS is based on certificates, which are bindings between identities (typically
domain names) and public keys. Certificates are signed by certificate authorities
(CAs), who verify the identity of the requestor. Certificates have a well-defined
validity period, which is expressed as NotBefore and NotAfter fields in the
certificate; clients will refuse to accept certificates outside of their validity period.
As a result, certificate owners have to periodically reissue their certificate by
contacting their CA (or another CA) and obtaining a new certificate.

While certificates originally only contained a single identity (domain name),
this often made the administration difficult for web servers that served multiple
domains. Today, certificates can carry multiple identities (domain names) via a
Subject Alternate Names list. In essence, the owner of the certificate’s public
key has been verified by the CA to control all of the identities (domains).

Finally, domain owners may wish to limit the set of CAs who are authorized to
issue certificates for a given domain. They can now do so by publishing Certificate
Authority Authorization (CAA) records, which are DNS records that specify a
list of CAs that are/are not allowed to issue certificates (if no such record exist,
all CAs are implicitly authorized). CAs today are required to check for the CAA
records for domains before issuing certificates.

2.2 Let’s Encrypt

For a long time, TLS certificates were relatively expensive to obtain (typically
$50 or more) and were valid for multiple years (typically 3–5) [13]. The cost and

5 Because of the way the bug manifested itself, the misissued certificates are not a
random sample of all certificates. We explore this in Section 3.

extended validity ended up having two effects: the overall adoption of HTTPS
was relatively low (as administrators had to spend significant money to obtain
the necessary certificates), and the system administrators who did purchase cer-
tificates were not incentivized to automate the infrequent reissuance process.
Additionally, the certificate issuance and renewal processes were manual, ad-
ministratively burdensome, and technically cumbersome.

In 2015, Let’s Encrypt disrupted the TLS certificate business model by of-
fering free certificates that were valid for 90 days. Other free CAs have also
been created such as ZeroSSL6 and Buypass7, and the TLS ecosystem has since
changed dramatically: the fraction of web connections using HTTPS has in-
creased from ∼27% in early 2014 to ∼85% in 2020 [16], and Let’s Encrypt is
now the largest CA, with over 1B certificates issued and over 35% of the Alexa
top 1M sites using Let’s Encrypt certificates [1]. Importantly, while prior CAs
often required certificates to be requested/reissued via web forms, Let’s Encrypt
is entirely automated via the ACME protocol; several popular ACME clients
exist, including certbot, acme4j, and acme.sh.

In February 2020, Let’s Encrypt announced that they discovered a bug in
the Boulder software they used to issue certificates [5]. Specifically, the software
failed to properly check for CAA records in requested certificates if (a) a certifi-
cate was requested for multiple domains, and (b) Let’s Encrypt had previously
checked the domain control validations (DCV) for these domains in the preceed-
ing 30 days. While Let’s Encrypt was supposed to re-check the CAA record for
all domain names included in the certificate within 8 hours of issuing the cer-
tificate, under these circumstances, it only picked one domain name among the
multiple domains in the certificate and ran the CAA check n times (equivalent
to the number of domains in the certificate). Let’s Encrypt originally announced
on February 29, 2020 that it planned to revoke all these certificates on March
5, 2020, and it emailed all affected domain administrators. On March 5, 2020,
Let’s Encrypt reversed their decision and decided to not revoke en-masse [15].

2.3 Related work

Improvements in the ability to scan the Internet [10] in 2013 have led to a better
understanding of the entire TLS ecosystem [9]. Researchers have unfortunately
found that TLS clients and servers are often incorrectly managed [13], leading
to reduced security for internet users. In the aftermath of the Heartbleed bug, it
became evident that manual revocation and reissuance of certificates is a major
security problem: most administrators failed to revoke or even reissue, and those
that did sometimes reissued using the same key pair [21,8]. Similar behavior had
been observed years prior when a bug in Debian caused many domains the need
to reissue certificates [20]. Some domains have chosen to outsource certificate
management to third-parties such as content delivery networks (CDNs); while
this improves certificate management, it often requires sharing private keys [2].

6 https://zerossl.com/features/certificates/
7 https://www.buypass.com/ssl/products/acme

To the best of our knowledge, there has not been significant study of auto-
mated certificate reissuance in the TLS PKI. Previous work by Matsumoto et
al. proposed a decentralized audit-based system: Instant Karma PKI (IPK) to
promote automation among HTTPS domains [18]. The recent development of
CAA records also provides a useful tool for automation as the domain name
holders or DNS operators can use CAA records to control which CAs that they
would like to get a certificate from [19].

3 Methodology

We now describe the datasets we collected and our methodology to determine a
set of certificates that have been reissued.

3.1 Certificates

Our goal is to see how certificates have been (re)issued by the system adminis-
trators. We focus on Let’s Encrypt as it is the largest free CA, and it has the
longest history of operation. To this end, we obtain all certificates issued by Let’s
Encrypt by leveraging the Certificate Transparency (CT) logs; when issuing a
certificate, Let’s Encrypt publishes the certificate to one of the CT logs managed
by Google.8 Thus, to obtain a nearly complete view of the certificates issued by
Let’s Encrypt, we first fetch all certificates from all of the CT log servers man-
aged by Google,9 obtaining 5.3B certificates in total from September 9, 2014 to
May 18, 2020. We then identify the certificates issued by Let’s Encrypt according
to their Issuer field, which leaves us with 1.03B certificates.10

3.2 Let’s Encrypt CAA bug list

On February 29th, 2020, Let’s Encrypt announced the CAA issuance bug in their
certificate issuance process (see § 2.2). Let’s Encrypt publicly released a list of
the certificates impacted by this bug [5] containing serial numbers of 3,048,289
certificates, some of which were potentially misissued (i.e., the CAA records for
some of domains in the certificate may have not permitted Let’s Encrypt to issue
a certificate, even though they did). We use this list to study how the impacted
certificates have been reissued by administrators.

8 In order for a certificate to be “CT qualified” in modern browsers such as Chrome,
it has to be logged on multiple CT log servers and one of them has to be from a
Google log [7].

9 aviator, icarus, argon2018∼2023, xenon2019∼2023, pilot, rocketeer, skydiver
10 We intentionally exclude pre-certificates from the analysis (which Let’s Encrypt has

published as well since 2018 [17]) as they do not guarantee the issuance of their
actual (final) certificates.

3.3 Defining Certificate Reissuances

While it is easy to identify when certificates are issued, there is a bit of subtlety
to determining when they are reissued. In particular, we face two challenges:
First, CT logs do not contain any identifier of the client such as IP address
that sent a Certificate Signing Request (CSR), thus making it hard to identify
if the certificate has been reissued from the same client; thus, we first link the
certificates that share the same Subject Alternate Name (SAN) list.11 We refer
to this set of domains in the SAN list as the domain set. Second, we do not know
when the client has replaced the old certificate with the new one; thus, we use
the logging timestamp on the CT log server as a proxy.

In summary, we group certificates by their domain set and order them based
on their timestamp on the CT logs; we refer to any certificates other than the
first as reissued certificates. Using this, methodology we obtain 188M unique
domain sets and 1.03B corresponding certificates issued during our measurement
period. Out of the 188M domain sets, we find that 67M (35.7%) domain sets have
no reissued certificates, 23M (12.2%) domain sets have reissued once and, 14M
(7.8%) domain sets have reissued twice. One limitation of relying on CT logs
alone worth noting is that we are unable to quantify how domain sets change,
as we would need a way to “link” domain sets which is unavailable to us [2]. In
these cases, the modified domain set would be considered a separate domain set
in our analysis.

4 Results

We analyze the reissuance behaviors of certificates issued by Let’s Encrypt. We
aim to understand reissuance behavior of two types: reissuance that is likely done
automatically (e.g., via a cron job) and reissuance that is likely done manually
(e.g., directly invoked by a system administrator). We begin by describing how
we distinguish these two cases.

4.1 Automated Reissuance

One of Let’s Encrypt’s key principles is that it makes it possible to automate
obtaining and reissuing certificates. A new user of Let’s Encrypt need only set
up the first certificate issuing process with any ACME client of choice, then
they can create a cron job to continually check if the certificate is still valid and
request a new certificate once the current certificate nears expiry.

We first need to identify when we believe a certificate has been reissued via an
automated process. As discussed previously we are not privy to Let’s Encrypt’s
internal logs, so we can only rely on publicly available data from the CT logs.
To do so, we group all Let’s Encrypt certificates by the domain set present in

11 Thus, if the same client adds or removes one domain, it changes the SAN list.
Therefore, ACME processes it as a separate certificate request, not a reissuance,
thereby supporting our methodology of grouping by domain sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

C
D

F

Median of Re-issuance Periods per Domain Set (Days)

all LE certs
LE certs < 2 years

> 2 years
misissued LE certs

cPanel
Sectigo

Other CAs

Fig. 1. Distribution of median reissuance period per domain set for all Let’s Encrypt
certificates with or without lifetimes and misissued certificates. For comparison, we
also include the median reissuance period per domain set for a few other CAs: Sectigo,
cPanel, and other top 10 CAs (we plot cPanel and Sectigo separately as they show
different behavior than the others).

them, and then sort these lists by the time in the CT log timestamp. We then
examine the amount of time that passes between each pair of successive reissues.

In Figure 1, we plot the cumulative distribution of the median of these reissue
time lists in the line labeled “all LE certs.” We immediately observe a large
“spike” around 60 days, and observe that over 55% of domain sets have a median
reissue time between 55 and 65 days. This lines up with the reissuance policy
recommended by Let’s Encrypt, which recommends reissuing certificates that are
within 30 days of their expiry (i.e., are at least 60 days old) [14]. Moreover, this
timing lines up well as the default policies of many ACME clients: cerbot [6]
and acme.sh [23] both default to renewing within 30 days of expiry. We also
observe that the “spike” does not happen entirely at the 60 day mark; this is
likely because the renewal occurs the first time the cron job runs after reaching
the mark. Finally, we observe a much smaller spike around 30 days, which is
likely the behavior of a different ACME client or a system administrator who
manually changed their client’s behavior.

Next, we examine whether this median reissue period of 60 days is only
present in domain sets that have a long history of being reissued (i.e., that have
been around a long time) or if it is also present in newer domain sets. To do so,
we divide the “all LE certs” line into those first issued greater than two years
ago, and those first issued within the past two years; these are both plotted in
Figure 1. We can observe the shapes of these curves are quite similar, suggesting
that the behavior is relatively consistent between these two groups.

We also discover that roughly 10% of Let’s Encrypt domain sets in all cat-
egories had a median re-issuance period of greater than 90 days, meaning the
certificates were more often than not renewed after expiry. This behavior could
occur if the administrator did not set up a cron job, incorrectly set up a cron

job to run very infrequently, or if the system was not always online. We leave a
deeper exploration of these domain sets to future work.

 0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0 0.5 1 1.5 2
C

D
F

CoV

second level domains

all LE certs

misissued certs

Fig. 2. Distribution of coefficient of variation (CoV) for all Let’s Encrypt domain sets,
second level domains, and the misissued certificates.

Finally, we also briefly compare the Let’s Encrypt domain set behavior to
that of other CAs. To do so, we extract the domain sets in the same manner from
the CT logs for the top 10 CAs (other than Let’s Encrypt), and compute the
median reissuance periods in the same manner per CA. We plot these as well in
Figure 1 under the lines “cPanel”, “Sectigo”, and “Other CAs”; we separate out
cPanel and Sectigo as they show different behavior than the others. In brief, we
see that most of the other top CAs show very long median reissuance periods,
while cPanel shows a “spike” at 75 days and Sectigo at 60, 90, and 120 days.

Coefficient of Variation (CoV) While the median of the reissue time periods
being so clearly at 60 days is suggestive that the administrators use automated
software to reissue their certificates, it is not entirely definitive. Thus, we look for
further evidence of automation by looking at how similar the reissuance periods
of a given domain set are to each other. In other words, if a given domain set
was using an automated process to reissue certificates, we would expect that the
period between reissues would be highly consistent.

To do so, we calculate the coefficient of variation (CoV)—which is simply
the standard deviation of a distribution over its mean—of the amounts of time
between each successive reissuance. Automated reissuance would often lead to a
consistent period between reissues, meaning that the CoV would be low i.e., 0.1
or smaller. We choose the CoV threshold of 0.1 as a cut-off as would allow, for
example, a domain set with a mean reissuance time of 60 days to be classified
as automated if the variance is less than 6 days (roughly one week). For this
analysis, we only keep the domain sets where we have a sufficient reissue history
of at least five reissues. Figure 2 plots the distribution of CoVs for the reissue
time periods for each domain set under the “all LE certs” line. We can observe
that many domain sets do show evidence of automation: 30.3% of domain sets
have a CoV of less than 0.1.

We were concerned that particular domains with unusual patterns of reis-
suance may end up artificially shaping this curve, as our analysis is at the domain
set level, rather than at the system administrator level. Thus, we additionally

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180
C

D
F

Median of Re-issuance Periods per FQDNs (Days)

CoV < 0.001

0.001 <= CoV < 0.01

0.01 <= CoV < 0.1

 0.1 <= CoV <1

CoV >= 1

Fig. 3. Distribution of all Let’s Encrypt domain set reissuances, divided across different
CoV groups. We can see the groups with lower CoV tend to have a median reissuance
period of 60 days.

perform an aggregation to the second-level domain to see whether particular
domains are skewing the results.

We aggregate domain sets into second-level domain through a weighted aver-
age: for each second-level domain S, we compute the average CoV for all domain
sets that have at least one domain name from S. For domain sets that include
domains from multiple second-level domains, we simply weigh the domain set’s
CoV by the fraction of domains that belong to S. The resulting cumulative dis-
tribution is also shown in Figure 2, and we can observe that the distribution is
quite similar to the analysis at the domain set level. Thus, we have some con-
fidence that the (potentially odd) behavior of a small number of second-level
domain sets is not dramatically altering the results.

Noticing that many domain sets tend to have a high CoVs, we next examine
how well the CoV methodology identifies domain sets with regular reissuance
patterns. We do so by dividing up domain sets by their CoV, and plotting the
cumulative distribution of their median reissuance time in Figure 3. We can
immediately observed that the median reissuance time of certificates varies dra-
matically by CoV: we find that the median reissuance period of domain sets
with a very low CoV (0.1 or smaller) is 60 days, while domain sets with a CoV
greater than 1 are much less predictable. Further, Figure 3 reveals that over 88%
of domain sets with highly automated reissuance (CoV < 0.001) have a median
reissue period of between 59 and 61 days (consistent with the reissue occurring
during the first cron job to run after the 60 day period).

Initial renewal setup Moving on, we hypothesize that the initial setup and use of
ACME clients may result in multiple, irregular requests, which would affect our
CoV calculation. To understand the effects, we focus on certificates that have
at least five reissues, and make the assumption that most administrators would
be comfortable with operating ACME clients after a year. Out of 188M unique
domain sets, only 60M unique domain certificates have at least five reissues;
these form the basis of the following analysis.

Roughly 48.2% of domain sets with at least five reissues have a CoV less than
0.1. However, if we also look at subsequences of reissues, ignoring the first set
of reissues as long as at least five reissues remain, we can identify an additional
29.9% domain sets that have a subsequence of reissues with a CoV less than 0.1.
In other words, 78% of domain sets with a subsequence of at least five reissues
have a regular reissue cycle that begins at some point in their lifetimes. Thus, we
have identified a limitation of the CoV metric, as it may be too conservative in
cases where administrators have an irregular initial reissunce cycle before fully
debugging their ACME client setup.

4.2 Manual Reissuance

Having a good understanding on domain sets with likely automated reissuance
infrastructure, we now turn to examine what happens for these domains when
manual intervention is required. To do so, we use the Let’s Encrypt misissuance
bug as a natural experiment: because all of these certificates need to be reissued,
we have a collection of domain sets where we can study whether the system
administrator did, in fact, reissue their certificate.

We first need to examine the set of certificates affected by the bug, which was
announced on February 29, 2020. Let’s Encrypt reported that over 3M certifi-
cates were affected; we collected all of these certificates and plotted their issue
time in Figure 4. We can see that these certificates went as far back as December
2, 2019, which would be expected given Let’s Encrypt 90-day certificate lifetime.
Importantly, the certificates appear to have been issued uniformly throughout
the prior 90 days.

However, there are multiple reasons why these misissued certificates are not
a random sample of all Let’s Encrypt certificates. First, the bug only affected
certificates with multiple domains in them, meaning any certificates with a sin-
gle domain were not misissued. Second, and more importantly, it only affected
domains where the CAA record had been verified within the past 30 days. As we
observed previously, most certificates are reissued after 60 days, this means that
the only certificates that were affected were ones that were either (a) not on a
regular schedule to begin with, or (b) were on a regular schedule, but happened to
be reissued in late 2019/early 2020 for another reason. This observation explains
why the misissued certificates behave quite differently from all Let’s Encrypt
certificates in Figures 1 and 2: due to the nature of the bug, domain sets that
had regular, 60-day reissue periods were much less likely affected. In fact, such
domain sets would only have been affected if one of the domains in the domain
set happened to be in another domain set whose certificate was reissued in the
previous 30-day time period, or where the administrator had manually reissued
that domain set during that period.

Nevertheless, we need to identify when we believe a certificate was manually
reissued from among the misissued certificates. Recall that we do not have access
to Let’s Encrypt’s logs, so we can only rely on the timestamps public CT logs.
We want to see how certificates affected by the bug were automatically reissued
before the bug, but manually issued a new certificate in response to the bug.

 0

 0.2

 0.4

 0.6

 0.8

 1

12/2019 01/2020 02/2020 03/2020
C

D
F

Issuance time

Affected Certificates

Fig. 4. Distribution of when the misissued certificates were issued.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

F
ra

c
.
o

f
S

u
rv

iv
in

g
 C

e
rt

s

Days after February 29th, 2020

bug, manual reissue
bug, auto reissue

Fig. 5. Graph showing how long certificates “survived” after Let’s Encrypt bug was
announced. We plot (a) the 33,099 certificates that we inferred were manually reis-
sued, and (b) the 66,553 certificates that we inferred were automatically reissued. We
can see the manually reissued certificates we largely reissued quickly after the bug
announcement.

We therefore focus on those domain sets that (a) were affected by the Let’s
Encrypt bug, (b) were on a regular cycle prior to February 29, 2020, and (c) had
at least one new certificate issued after February 29, 2020 (to see if the regular
cycle continued). To see if a domain set was on a regular reissue cycle prior to
February 29, 2020, we see if the five certificate reissues prior to the bug date had
a CoV less than 0.1. In total, 98,652 domain sets satisfy these three criteria.

Next, we calculate the CoV of the five reissues before the bug date and the
first reissue after the bug date. If the CoV including the new certificate is high,
then the first certificate after the Let’s Encrypt bug could not have been auto-
matically reissued; some form of manual intervention disrupted the issue cycle
and caused the previously low CoV to increase. If the CoV including the new
certificate remains low (<0.1), then the new certificate was likely issued on its ex-
pected regular schedule. It is also possible, though unlikely, that a new certificate
was manually issued at the same time we would expect the next automatically
reissued certificate. Of the 98,652 domain sets, 33,099 saw a significant CoV
increase (i.e., likely had manual intervention) in the first reissue after the Let’s
Encrypt bug, and 65,553 likely did not.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
C

D
F

Days after February 29th, 2020

manually reissued certificates

Fig. 6. Cumulative distribution of the manual reissues (CoV less than 0.1) after the
announcement of the Let’s Encrypt bug.

We now examine how quickly these 33,099 certificates were manually reissued
after Let’s Encrypt announced the bug, and emailed all administrators to tell
them to reissue their certificates manually. Figure 5 plots the number of these
certificates that survive in the line labeled “bug, manual reissue”. We can ob-
serve that most certificates that are manually reissued are reissued quite quickly:
within a week, over 84% of all certificates that we believe are manually reissued
have been reissued. For comparison, we plot the same graph for the 66,553 cer-
tificates that were reissued close to their next reissue in the line labeled “bug,
auto reissue”. This group shows less-prompt reissuing than the manual reissues,
as only 42% of likely-automatic reissues occurred in the 7 days following the bug
announcement.

Recall from Section 2 that Let’s Encrypt rescinded its decision to revoke cer-
tificates on March 5, 2020 (five days after the initial email stating they would be
revoking certificates on March 5, 2020). Thus, there may be system administra-
tors who intended to reissue but who delayed reissuing their certificates, only to
decide it was no longer necessary after receiving the second message. While we
cannot measure how large this group is, we believe it is likely small as Let’s En-
crypt decided sent out the second message on the day they originally announced
as the deadline to reissue. Regardless, our results still serve as a lower bound on
the number of system administrators who did take action.

Finally, we plot the same data as in Figure 5, but do so as a fraction of
all misissued domain sets with a CoV less than 0.1 before the bug date. This
graph is presented in Figure 6, and it shows that among all the domain sets
with a CoV less than 0.1 (those on a regular schedule before Feb. 29, 2020),
at least 28% had reissued their certificate manually within a week of the bug
announcement. This result is a significant improvement over prior incidents;
with the Heartbleed bug, after a week, barely 10% of affected certificates had
been reissued (and even fewer revoked) [22]. Even though circumstances between
the two bugs differ significantly (such as notification of revocation), they both
provide opportunities for natural experiments to see how the PKI is evolving
over time, and the comparison suggests that system administrators may now be
better managing the PKI.

5 Concluding discussion

Over the past five years, the TLS PKI ecosystem has changed dramatically:
largely due to new CAs such as Let’s Encrypt, we have moved from primarily
expensive, long-lived certificates to primarily free, short-lived certificates. In this
paper, we examined whether this change in the nature of the certificate ecosys-
tem has also improved the management of the TLS PKI, as it has been previously
been observed that system administrators often fail to properly manage their cer-
tificates. Though we find significant evidence that most clients of Let’s Encrypt
have indeed set up automated processes for reissuing and installing their certifi-
cates using over four years of CT logs, a surprising fraction (20%) of clients with
a sufficiently long history of being reissued still appear to use manual processes.
Moreover, we find evidence that even when manual intervention is required, sys-
tem administrators are more prompt in doing so when compared to studies from
the 2014 Heartbleed bug and the 2009 Debian PRNG bug. Taken together, our
results underscore the importance of reducing the burden of management of the
TLS PKI, and how changes in the infrastructure and tools available to system
administrators can lead to significant management improvements.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Cecilia Testart, for their
helpful comments. This research was supported in part by NSF grants CNS-
1900879 and CNS-1901325.

References

1. J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-López, J. A.
Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla, S. Schoen, and a. B.
Warren. Let’s Encrypt: An Automated Certificate: Authority to Encrypt the Entire
Web. CCS, 2019.

2. F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson. Measurement and Analysis of Private Key Sharing in the HTTPS
Ecosystem. CCS, 2016.

3. T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson.
Measuring and Applying Invalid SSL Certificates: The Silent Majority. IMC, 2016.

4. T. Chung, R. van Rijswijk-Deij, D. Choffnes, A. Mislove, C. Wilson, D. Levin,
and B. M. Maggs. Understanding the Role of Registrars in DNSSEC Deployment.
IMC, 2017.

5. CAA Rechecking Bug. https://community.letsencrypt.org/t/

2020-02-29-caa-rechecking-bug/114591.
6. Certbot User Guide. https://certbot.eff.org/docs/using.html.
7. Certificate Transparency in Chrome. 2019. https://github.com/chromium/

ct-policy/blob/master/ct_policy.md.
8. Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver,

J. Amann, J. Beekman, M. Payer, and V. Paxson. The Matter of Heartbleed. IMC,
2014.

9. Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS
Certificate Ecosystem. IMC, 2013.

10. Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-Wide
Scanning and its Security Applications. USENIX Security, 2013.

11. Heartbleed Bug. http://heartbleed.com.
12. B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962, IETF,

2013. http://www.ietf.org/rfc/rfc6962.txt.
13. Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, A.

Schulman, and C. Wilson. An End-to-End Measurement of Certificate Revocation
in the Web’s PKI. IMC, 2015.

14. Let’s Encrypt. https://letsencrypt.org.
15. Let’s Encrypt Community Support: 2020.02.29 CAA Rechecking Bug. https:

//community.letsencrypt.org/t/2020-02-29-caa-rechecking-bug/114591/3.
16. Let’s Encrypt Stats. https://letsencrypt.org/stats/.
17. LetsEncrypt: Submit final certs to CT logs (#3640). https://github.com/

letsencrypt/boulder/commit/1271a15be79b9717ee5b98e707b76e7ac86a9a0e.
18. S. Matsumoto and R. M. Reischuk. IKP: Turning a PKI Around with Decentralized

Automated Incentives. IEEE S&P, 2017.
19. Q. Scheitle, T. Chung, J. Hiller, O. Gasser, J. Naab, R. van Rijswijk-Deij, O.

Hohlfeld, R. Holz, D. Choffnes, A. Mislove, and G. Carle. A First Look at Certifi-
cation Authority Authorization (CAA). CCR, 48(2), 2018.

20. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When Private Keys
Are Public: Results from the 2008 Debian OpenSSL Vulnerability. IMC, 2009.

21. L. Zhang, D. Choffnes, T. Dumitraş, D. Levin, A. Mislove, A. Schulman, and
C. Wilson. Analysis of SSL certificate reissues and revocations in the wake of
Heartbleed. IMC, 2014.

22. L. Zhang, D. Choffnes, T. Dumitraş, D. Levin, A. Mislove, A. Schulman,
and C. Wilson. Analysis of SSL Certificate Reissues and Revocations in the
Wake of Heartbleed. CACM, 61(3), https://cacm.acm.org/magazines/2018/3/
225489-analysis-of-ssl-certificate-reissues-and-revocations-in-the-wake-of-heartbleed/

fulltext, 2018.
23. acme.sh. https://github.com/acmesh-official/acme.sh.

