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Abstract

The concept of a “unique” object arises in many emerging programming languages such as Clean, CQual, Cyclone,
TAL, and Vault. In each of these systems, unique objects make it possible to perform operations that would otherwise
be prohibited (e.g., deallocating an object) or to ensure that some obligation will be met (e.g., an opened file will be
closed). However, different languages provide different interpretations of “uniqueness” and have different rules regarding
how unique objects interact with the rest of the language.

Our goal is to establish a common model that supports each of these languages, by allowing us to encode and study
the interactions of the different forms of uniqueness. The model we provide is based on a substructural variant of the
polymorphic A-calculus, augmented with four kinds of mutable references: unrestricted, relevant, affine, and linear. The
language has a natural operational semantics that supports deallocation of references, strong (type-varying) updates, and
storage of unique objects in shared references. We establish the strong soundness of the type system by constructing a
novel, semantic interpretation of the types.

This technical report is really two documents in one: The first part is a paper appearing in the Tenth ACM SIGPLAN
International Conference on Functional Programming (ICFP’05). The second part is a formal development of the
language, step-indexed model, and soundness proof referenced in the first part. If you have already read a version of
“A Step-Indexed Model of Substructural State”, then you should proceed directly to the appendices.

1. Introduction

Consider the following imperative code fragment, written with SML syntax:

1. fun f(rl:int ref, r2:int ref):int =

2. (r1 := true ;

3. 1r2 + 42)
At line 1, we assume ref cells r1 and r2 whose contents are integers. At line 2, we update the first cell with a boolean.
Then, at line 3, we read the second cell, using the contents in a context expecting an integer. If the function is called with
actual arguments that are different ref cells, then there is nothing in the function that will cause a run-time type error.! Yet,
if the same ref cell is passed for each formal argument, then the update on line 2 will change the contents of both r1 and
r2, causing a run-time type error to occur at line 3.

SML (and most imperative languages) reject the above program, because references are unrestricted, that is, they may
be freely aliased. In general, reasoning about unrestricted references is hard because we need additional information to
understand what other values are affected by an update. In the absence of this information, we must be conservative.
For instance, in SML, we must assume that an update to an int ref could affect any other int ref. To ensure type
soundness, we must therefore require the type of the ref’s contents be preserved by the update. In other words, most type
systems can only track invariants on refs, instead of program-point-specific properties. As a result, we are forced to weaken
the type of the ref to cover all possible program points. In the example above, we must weaken r1’s type to “(int + bool)
ref” and pay the costs of tagging values, and checking those tags when the pointer is dereferenced.

Unfortunately, in many settings, this weakened invariant is insufficient. Hence, researchers have turned to more powerful
systems that do provide a means of ensuring exclusive access to state. In particular, many projects have introduced some
form of linearity to “tame” state. Linear logic [15] and other substructural logics give rise to more expressive type systems,
because they are designed to precisely account for resources.

* This material is based upon work supported by the Air Force Office of Scientific Research under Award No. F49620-03-1-0156 and Award No. F49620-
01-1-0298 and by the Office of Naval Research under Award No. N00014-01-1-0968. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and do not necessarily reflect the views of these organizations or the U.S. Government.

' We assume that values are represented uniformly so that, for instance, unit, booleans, and integers all take up one word of storage.
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For instance, the Clean programming language [26] relies upon a form of uniqueness to ensure equational reasoning
in the presence of mutable data structures. The Cyclone programming language [17] uses unique pointers to allow fine-
grained memory management. For example, a unique pointer may be updated from uninitialized to initialized, and its
contents may also be deallocated:

1. x = malloc(4); // x: ——— *‘U
2. *x = 3; // x: int *‘U
3. free(x); // x: undefined

In both of these languages, a unique object may be implicitly discarded, yielding a weak form of uniqueness called affinity.
The Vault programming language [13] uses tracked keys to enforce resource management protocols. For example, the

following interface specifies that opening a file returns a new tracked key, which must be present when reading the file,
and which is consumed when closing the file:

1. interface I0 {

2. type FILE;

3. tracked($F) FILE open(string) [ +$F ];

4. char read (tracked($F) FILE) [ $F 1;

5. void close (tracked($F) FILE) [ -$F 1; }
Because tracked keys may be neither duplicated nor discarded, Vault supports a strong form of uniqueness technically
termed linearity, which ensures that an opened file must be closed exactly once. Other projects [32, 12] have also
incorporated linearity to ensure that memory is reclaimed.

Both forms of uniqueness (linearity and affinity) support strong updates, whereby the type of a stateful object is
changed in response to stateful operations. For example, the Cyclone code fragment above demonstrates the type of
the unique pointer changing from uninitialized to initialized (with an integer) in response to the assignment. The intuitive
understanding is that a unique object cannot be duplicated, and thus there are no aliases to the object; hence, no other
portion of the program may observe the change in the object’s type, so it is safe to perform a strong update.

Yet, programming in a language with only unique (i.e., linear or affine) objects is much too painful. In such a setting,
one can only construct tree-like data structures. Hence, it is not surprising that both Cyclone and Vault allow a programmer
to put unique objects in shared objects, with a variety of restrictions to ensure that these mixed objects behave in a safe
manner. In fact, understanding the various mechanisms by which unique objects (with strong updates) may safely coexist
and mix with shared objects is currently an active area of research [5], though much of it has focused on high-level
programming features, often without a complete formal account.

Therefore, it is natural to study a core language with mutable references of all sorts mentioned above: linear, affine, and
unrestricted. The study of substructural logics immediately suggests one more sort — relevant, which describes data that
may be duplicated but not implicitly discarded. Having made these distinctions, a number of design questions arise: What
does it mean to duplicate or to discard a reference? What operations may be safely performed with the different sorts of
references? What combinations of sorts for a reference and its contents are safe?

A major contribution of this paper is to answer these questions, giving an integrated design of references for all of these
substructural sorts (Section 3). Our design allows unique (linear and affine) values to be stored in shared (unrestricted and
relevant) references, while preserving the desirable feature that resources are tracked accurately. Our language extends a
core A-calculus with a straightforward type system that provides data of each of the substructural sorts mentioned above
(Section 2). The key idea, present in other substructural type systems, is to break out the substructural sorts as type
“qualifiers.” Rather than prove soundness via a syntactic subject-reduction proof, we adopt an approach compatible with
that used in Foundational Proof Carrying Code [6, 7]. We construct a step-indexed model (Section 4) where types are
interpreted as sets of store description / value pairs, which are further refined using an index representing the number of
steps available for future evaluation. We believe this model improves on previous models of mutable state, contributing
a compositional notion of aliasing and ownership that directly addresses the subtleties of allowing unique values to be
stored in shared references. Furthermore, we achieve a simple model, in comparison to denotational and domain-theoretic
approaches, that easily extends to impredicative polymorphism and first-class references. Constructing a (well-founded)
set-theoretic model means that our soundness and safety proofs are amenable to formalization in the higher-order logic
of Foundational PCC. Hence, our work provides a useful foundation for future extensions of Foundational PCC, which
currently only supports unrestricted references, but is an attractive target for source languages wishing to carry high-level
security guarantees, enforced by type states and linear resources, through to machine code.

2. \URAL: A Substructural \-Calculus

Advanced type systems for state rely upon limiting the ordering and number of uses of data and operations to ensure that
state is handled in a safe manner. For example, (safely) deallocating a data structure requires that the data structure is never
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Kind Level:

Kinds Kk u= QUAL|*|%*

Type Level:

Constant Qualifiers  q € Quals = {U,R,A, L}

Qualifiers & = algq

PreTypes T = allg|m1®m |17 —omn|Vauk. T
Types T ou= alfF

Type-level Terms ¢ o= LT T

Expression Level:
Values
Expressions e

z | ()| (vi,v2) | Az.e | A.e
v|let () =e1 in ey | let {(x1,22) =e1 inez | e1e2 | €]

Figure 1. \URAL Syntax

used in the future. In order to establish this property, a type system may ensure that the data structure is used at most once;
after one use, the data structure may be safely deallocated, since there can be no further uses.

A substructural type system provides the core mechanisms necessary to restrict the number and order of uses of data and
operations. A conventional type system, such as that employed by the simply-typed A-calculus, with a typing judgement
like I' - e : 7, satisfies three structural properties:

Exchange [fT'1,x:7,y:7y, T2 e: 7, thenT1,y:my,x:72, T2 Fe: 7.
Contraction [fT'1,z:7.,y:7., Ta b e: 7, then'v, 272, T2 - elz/z][2/y] : T.

Weakening IfT'Fe: 7, thenl,z:1x e : 7.

In contrast, a substructural type system is designed so that one or more of these structural properties do not hold in
general. Among the most widely studied substructural type systems are the linear type systems [29, 24], derived from
Girard’s linear logic [15], in which all variables satisfy Exchange, but linearly typed variables satisfy neither Contraction
nor Weakening.

In this section, we present a substructural polymorphic A-calculus, similar in spirit to Walker’s linear lambda calcu-
lus [30]. In our calculus, types and variables are qualified as unrestricted (U), relevant (R), affine (A), or linear (L). All
variables will satisfy Exchange, while only unrestricted variables will satisfy both Contraction and Weakening, allowing
such variables to be used an arbitrary number of times. We will require

e linear variables to satisfy neither Contraction nor Weakening, ensuring that such variables are used exactly once,
e affine variables to satisfy Weakening (but not Contraction), ensuring that such variables are used at most once, and
e relevant variables to satisfy Contraction (but not Weakening), ensuring that such variables are used at least once.”

The diagram below demonstrates the relationship between these qualifiers, inducing a lattice ordering <.
linear (L)

/N

affine (A)  relevant (R)

NS

unrestricted (U)

2.1 Syntax

Figure 1 presents the syntax for our core calculus, dubbed the
are based on a traditional polymorphic A-calculus.

AURAL_calculus. Most of the types, expressions, and values

Kind and Type Levels We structure our types 7 as a qualifier £ applied to a pre-type 7, yielding the four sorts of types
noted above. The qualifier of a type dictates the structural operations that may be applied to values of the type, while the
pre-type dictates the introduction and elimination forms. The pre-types 1g, 71 ® T2, and 73 —o 75 correspond to the unit,
pair, and function types of the polymorphic A-calculus.

Polymorphism over qualifiers, pre-types, and types is provided by a single pre-type Va:x. 7; we introduce a kind level
to distinguish among the type-level terms that may be used to instantiate a polymorphic pre-type (with kinds QUAL, %,
and « for qualifiers, pre-types, and types, respectively).

2In the logic community, it is perhaps more accurate to use the qualifier “strict” for such variables. However, “strict” is already an overloaded term in
the functional programming community; so, like Walker [30], we use “relevant.”
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In the appendicies, we also include additive unit (1), additive pair (73 ® 72), void (0), sum (71 @ 72), existential
(Ja:k. 7), and recursive (pack. T) pre-types and recursive functions in the calculus, though we elide such constructs in this
expository development.

This structuring of types as a qualifier applied to a pre-type follows that of Walker [30], but differs from other
presentations of linear lambda calculi that use exactly one modality (!7) to distinguish unrestricted from linear types.
It seems possible to introduce alternative modalities (e.g, —7 for affine and 47 for relevant), but then we would have
to consider their interaction (e.g., what does —!47 denote?). Also, with four distinct qualifiers, it is natural to introduce
qualfier polymorphism, which is best formulated by separating qualifiers from pre-types.

Expression Level FEach pre-type has an associated value introduction form. The pattern matching expression forms
let () = ey in e and let (z1,x2) = e; in ey are used to eliminate units (1) and pairs (®), respectively. As usual, a
function with pre-type 71 —o 79 is eliminated via application e; ey, while a type-level abstraction Va:k. 7 is eliminated via
instantiation e [].

Note that expressions are not decorated with type-level terms. This simplifies the semantic model presented in Section 4,
where soundness is with respect to typing derivations, and is appropriate for an expressive “internal” language. We leave
as an open problem the formulation of appropriate inference and elaboration algorithms yielding derivations in the type
system of the next section, which would likely require some type-level annotations on expressions in a “surface” language.

2.2 Static Semantics

The goal of the type system for A\YRAL is to approximate the requirements of languages like Vault and Cyclone, which
ensure that linear values are used exactly once, affine values are used at most once, and relevant values are used at least
once. Dually, the type system should ensure that only unrestricted and relevant values are duplicated and only unrestricted
and affine values are discarded. To prevent values from being implicitly copied or dropped when their containing value
is duplicated or discarded, the type system must also ensure that a (functional) value with a qualifier lower in the lattice
may not contain values with qualifiers higher in the lattice. For example, an affine (A) pair may not contain linear (L)
components, since we could end up dropping the linear components by dropping the pair, so the type sytem must rule out
expressions of type A (-7 @ L75).

Despite these requirements, the type system is relatively simple. \YRAL typing judgements have the form A;T' F e : 7

where the contexts A and I are defined as follows:
Type-level Term Context A == o | A ik

Value Context I == |l a7
Thus, A is used to track the set of type-level variables in scope (along with their kinds), whereas I, as usual, is used to
track the set of (expression-level) variables in scope (along with their types). There may be at most one occurrence of a
type-level variable « in A and, similarly, at most one occurrence of a variable x in T".

Figure 2 presents the \YRAL kinding rules and Figure 3 presents the A\YRAL typing rules. In order to ensure the correct
relationship between a data structure and its components, we extend the lattice ordering on constant qualifiers to types
and contexts (see Figure 4). In the presence of qualifier and type polymorphism, we include the rules A - U < « and
A F «a <L, a conservative extension, since U and L are the bottom and top of the lattice. A more general approach would
incorporate bounded qualifier constraints, which we believe is straightforward, but doing so does not add to the discussion
at hand.

As is usual in a substructural setting, our type system relies upon a judgement A + I' ~» T'y B I'y that splits the
assumptions in I" between the contexts I'; and I'y (see Figure 5). Splitting the context is necessary to ensure that variables
are used appropriately by sub-expressions. Note that B ensures that an A or L assumption appears in exactly one sub-
context. On the other hand, U and R assumptions may appear in both sub-contexts, corresponding to implicit duplication
of the variables.

The rule (MPair) is representative: the context is split by B to type each of the pair components, and the types of
each component are bounded by the qualifier assigned to the pair. Intuitively, the L and A assumptions in the context are
exclusively “owned” by exactly one of the two components. Likewise, in the rule (Fn), the free variables of I", which
constitute the closure of the function, must be bounded by the qualifier assigned to the function. Note that the qualifier
assigned to a function type is unrelated to the types of the argument and result; rather, it is related to the abstracted
components that are used when the function is executed.

The rule (Weak) splits the context into a sub-context used to type the expression e and a discardable sub-context,
consisting of U and A variables, that are not required to type the expression. Note that the rule (Weak) acts as a strengthened
Weakening property, allowing an arbitrary number of U and A variables to be dropped at once. The corresponding
strengthened Contraction property is incorporated into the judgement A - I' ~» T'; H I'y, which allows an arbitrary
number of U and R variables to be copied at once.
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ak € A AF¢: QUAL AFT: %
VarKn) —— N— T
(Varkn) o s (Qual) S QUAL (Type) N
. . AFT% AFTo:% AFT % Al 79 % Ak bET0%
(MUnitPTy) ———— (MPairPTy) — (FnPTy) — (AIPTY) ———
AFlg:% AFT1Q®m % AFT —o10:% AFVYak.T:%

Figure 2. \YRAL Statics (Kinding Rules)

AFT~ T, H, AR £: QUAL
ATy Fopem AbFT X¢
AbFT:% Ak €¢: QUAL A;ToFog:mo AT <€

Var)—— MUnit) —M——— MPair
( )A;O,x:T'—x:T ( )A;ol—(>:51® ( ) A;Fl‘<’l}1,1}2>:£(7’1®7’2)
(F )AI—{:QUAL AFT < JAND I S e o) (A”)AI—E:QUAL AFT <¢ Ayak;'Fe: T
n
A;TH Az e: €(m —o 1) AT HAe:Vak. T
AFT~T1HIs AFT~ T HIy
ATy F €1 A; T2 F : AT 2 € A; T, x1:71,x2:72 :
(Let—MUnit) ylirmer (=] 2 €2: T (Let—MPair) 1-e1 (71®72) 2,T1:T1,T2:To Fea : T
A;THlet () =e1 inex: T A;TFlet (z1,22) =e1 ineg: 7
(A )AI—FMFlEBFQ A;Fl)—elzg(ﬁ—ow) A;TobFex:m a t)A;FI—e:§Va:n.T AFi:k
ns
PP A;Therex:m AT el :ml/a]

AFI~T1HIy ATy ke T AFTy <A

Weak
(Weak) AT e T

Figure 3. \YRAL Static Semantics (Typing Rules)

A a:QUAL q =2 Q2 A a:QUAL AF¢:QUAL A& =€ ARE <&

AFU=a Abq 2 g AFa=xL AFE=E AF& 2&
sz

AFa:x ART % AR¢ <¢ AF¢:QUAL AFT ¢ AFT=¢E

AFa=xL A|—5/?’j§ AFe=<¢ AFT,z:T

Figure 4. \YRAL Statics (Sub-Qual Rules)

AFT~T1 8T,

AFT~T1HIs AFT:% AFT~T1HIs AbFT:% AFT~T1HIs AFT<R
Ao~ eHe AT, 27~ Iy, z:7 HIo AFT,z:7~ Ty B, 7 AFD,z:7~ Ty, o7 By, o7

Figure 5. \URAL Statics (Context Split Rules)
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Store s = {li—vi,...,ln— vn}

let-munit) (s,let () =()ine) r— (s,e)

let-mpair)  (s,1let (z1,z2) = (v1,v2) ine) +— (s,e[vi/z1][v2/z2])

( (

( (

(ap) (5,02 €)v) —  (s,elv/a])

(inst) 50 — (s

(new) (s,newv) +—— (sW{l— v},

(free) (sW{l— v} freel) +— (s,v)

(read) (sw{l—v}rdl) +— (sW{l— v}, {,v))
(write) (sW{l—vi},wrlvy) +—— (sW{l— v2},l)
(swap) (sW{l—vi},swlvy) +—— (sW{l— va},{l,v1))

(s,e) — (s',€)
(s, Ele]) — (s, E[€'])

Figure 6. \"fURAL Operational Semantics

3. \refURAL: A Substructural \-Calculus with References

Languages like Vault and Cyclone include objects that change state (e.g., file descriptors), so it is natural to include some
stateful values. We consider the difficult case of references, which can serve as mutable containers for both functional
values and stateful values. Hence, we extend the A\VRAL_calculus with mutable references, to yield the AfURAL_calculus.
The reference pre-type ref 7 may be combined with a qualifier £ to yield the four sorts (U, R, A, L) of references discussed
earlier. We also introduce operations to allocate (new,) and deallocate (free) references, as well as to read (rd), write
(wr), and swap (sw) their contents. Not all of these operations can be safely performed with all sorts of references, as we
discuss in Section 3.2. The syntactic extensions to support references are as follows:

Type Level:

PreTypes T o ou= ... |refr
Expression Level:

Locations Il € Locs
Values v ou= ..

Expressions e ... | newge | freee | rde | wrej ez | swey ez

3.1 Operational Semantics

Figure 6 gives the small-step operational semantics for \™fURAL a5 a relation between configurations of the form (s, €),

where s is a global store mapping locations to qualifiers and values.® The notation s; & sy denotes the disjoint union of
the stores s; and so; the operation is undefined if the domains of s; and s, are not disjoint. We use evaluation contexts
E (omitted in this presentation) to lift the primitive rewriting rules to a standard, left-to-right, innermost-to-outermost,
call-by-value interpretation of the language.

Most of the rules are standard, so we highlight only those involving references. The expressions new, e and freee
perform the complementary actions of allocating and deallocating mutable references in the global store. Specifically, the
expression new, e evaluates e to a value v, allocates a fresh (unallocated) location [ to store the qualifier ¢ and value v,
and returns [. The expression free e performs the reverse: it evaluates e to a location [, deallocates [, and returns the value
previously stored at [.

The expressions for reading and writing a mutable reference implicitly duplicate and discard (respectively) the contents
of the reference. The expression rd e evaluates e to a location [, duplicates the value v stored at [, and returns (I, v), leaving
the value stored at [ unchanged. Meanwhile, wr e; e5 evaluates e; to a location [ and es to value vs, stores vs at location [,
discards the value previously stored at [, and returns .

In languages with only unrestricted (ML-style) references, it is customary for rd to return only the contents of [ and for
wr to return (). However, we do not wish to consider reading or writing a linear (resp. affine) reference as the exactly-one-
use (resp. at-least-one-use) of the value. Therefore, the rd and wr (and sw) operations return the location [ that was read
or written, which remains available for future use. The behavior of ML-style references may be recovered by implicitly
discarding the returned location.

3 We write 5942 (1) and s¥2'(1) for the respective projections of s(1).

6 2005/7/8



Ref Ops Contents and Ops
U|[R|A|L
( rd
newy wr
U wr | X X
(weak updates) SW
sW
shared 1
r
newr rd | wr
R wr sw
(weak updates) SW | sw
L sW
newa rd
wr
A free wr | X X
sw
. (strong updates) SwW
unique
q new rd
rd | wr
L free wr sw
SW | sw
\ (strong updates) sSwW

Figure 7. Operations for Substructural State

The expression swej es combines the operations of dereferencing and updating a mutable reference, but has the
attractive property that it neither duplicates nor discards a value. Notice that performing a write or swap operation on
a location may change the type of the location’s contents. The static semantics will permit weak (type-invariant) updates
on all references (with some additional caveats), but will restrict strong (type-varying) updates to unique references.

The reader may well wonder why each reference is “stamped” with a qualifier at its allocation when the remainder
of the operational rules are entirely agnostic with respect to a reference’s qualifier. Essentially, the qualifier is a form
of instrumentation, which, when combined with the semantic model presented in Section 4, allows us to guarantee that
linear and relevant references cannot be implicitly discarded. Such a property is difficult to capture exclusively in the
operational semantics (i.e., by ensuring that the abstract machine “gets stuck” when a linear or relevant reference is
implicitly dropped). On the other hand, the abstract machine does “get stuck” when attempting to access a reference
after it has been deallocated.

3.2 Static Semantics

As with the type system for AYRAL we would like the type system for A\"fURAL o ensure the property that no linear or

affine value is implicitly duplicated and no linear or relevant value is implicitly discarded. With that in mind — and noting
that only unrestricted and relevant references may be implicitly copied (by the A F I" ~» T'; H I's judgement), while only
unrestricted and affine references may be implicitly dropped (by the (Weak) rule) — we now answer the questions we laid
out in Section 1: What operations may be safely performed with the different sorts of references? What combinations of
sorts for a reference and its contents are safe? These answers are summarized in Figure 7.

First, consider what it means to duplicate a reference. Operationally, a reference is a location in the global store.
Therefore, duplicating an unrestricted or relevant reference [/, simply yields two copies of [ — while the value stored at [ is
not duplicated. Since duplicating a shared reference does not alter the uniqueness of its contents, it is not only reasonable
but also extremely useful to allow shared references to store unique values. In particular, it permits the sharing of (large)
unique data structures without expensive copying.

On the other hand, dropping an unrestricted or affine reference [ effectively drops its contents, since this reference may
(must, in the case of affine) have been the only copy of . If the contents were a linear or relevant value, then the exactly-
one-use and at-least-one-use invariants (respectively) would be violated. Hence, we cannot allow linear and relevant values
(which cannot be discarded) to be stored in unrestricted or affine references (which can be discarded).

Considering yet another axis, we note that linear and affine references must be unique. Hence, we can free unique
references, and also perform strong updates on them. Shared references, on the other hand, can never be deallocated and
can only support weak updates.

As we noted above, the rd operator induces an implicit copy while the wr operator induces an implicit drop. Therefore,
whether we can read from or write to a reference depends entirely on the qualifier of its contents: rd is permitted if
the contents are unrestricted or relevant (i.e., duplicable), wr is permitted if the contents are unrestricted or affine (i.e.,
discardable). The operation sw is permitted on any sort of reference, regardless of the qualifier of its contents. As noted
above, strong writes and strong swaps, which change the type of the contents of the location, are only permitted on unique
references.
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Al k

(RefPTy) AbFT:x
ey Abrefr:%
<A AT ke AFT=<A R < AT e
(New(U,A)) L= °r T= (New(R,L)) =1 °r
A;T Fnewg e : Iref 7 A;T' F newg e : Iref 7
AThHe:Srefr AFAS<E ATke:érefr  AFT=<R
(Free) (Read) T
A;T+ freee: 7 A;THrde: HCrefr @)
AFT~ T HIg AFT~T1HIg
A;F1F6115r6f71 AF7m <A AFA=<E A;F1!—e1:§ref‘r AFT<A
A;ToFeg: Ak 1< A;To b eg:
(Write(Strong)) 272 3¢ (Write(Weak)) 2T
A;F)—wrelegzgref'rg A;Fl—queg:&ref’r
AFT~ T HIg AT~ T By
A;I‘l)—elsgrefn AFA=<E A;F1|_€1Z§ref7'
A;To Feg: AN o A;To Feg:
(Swap(Strong)) 2T 3¢ (Swap(Weak)) 2ree T

A;T Fsweypeo: L(gref To ® T1)

A;T Fsweyeo: L(Eref7®7)

Figure 8. \"fURAL Static Semantics (Kinding and Typing Rules)

Figure 8 gives the additional typing rules for A\"fURALWe note that the typing rules for core AURAL terms remain
unchanged. There is no rule for locations, as locations are not allowed in the external language. Also note that the (New)
and (Free) rules act as the introduction and elimination rules for “ref 7 types, while the (Read), (Write), and (Swap) rules
maintain an exactly-one-use invariant on references by consuming a value of type ¢ref 7; and by producing a value of type
Sref o (possibly with 71 = 7).

Finally, we note that wr may be encoded using an explicit sw and an implicit drop:*

AFT~ T B,
ATy Fep:Srefr AFT=<A

A;ToFeg:
(Write(Weak)) 2rer T def
A;TFwrejes: Sref 1

let (r,x) = swei ez in // using (Swap(Weak))
/I drop x, noting A 7 <A
r

However, rd may not be encoded using an explicit sw and an implicit copy, as a suitable (discardable) dummy value

cannot in general be synthesized.

AT Fe:Sref A+T=<R
(Read) e:>ref T T dgf

T let (r,z) =swe? in // where A;T'F 7: 7
A;THrde: “Cref r @ 7)

/I copy z,noting A -7 <R
let (r,y) =swra in // using (Swap(Weak))
/I drop y, but not necessarily A - 7 < A

(r,z)

4. A Step-Indexed Model

We prove the type soundness of A\"fURAL in a manner similar to that employed by Appel’s Foundational PCC project [6].

The technique uses syntactic logical relations (that is, relations based on the operational semantics) where relations are
further refined by an index that, intuitively, records the number of steps available for future evaluation. This stratification
is essential for modeling the recursive functions (available via backpatching unrestricted references) and impredicative
polymorphism present in the language.

4.1 Background: A Model of Unrestricted References

Our model is based on the indexed model of ML-style references by Ahmed, Appel, and Virga [1, 4], henceforth AAV.
In their model, the semantic interpretation 7 [7] of a (closed) type T is a set of triples of the form (k, ¥, v), where, k
is a natural number (called the approximation index or step index), ¥ is a (global) store typing that maps locations to
(the interpretation of) their designated types, and v is a (closed) value. Intuitively, (k, ¥,v) € 7T [7] says that in any

4 The encoding of a wr typed by the (Write(Strong)) rule makes use of the same term, but an alternate typing derivation.
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Figure 9. Unique References in Shared References: Aliased or Owned?

computation running for no more than & steps, v cannot be distinguished from values of type 7. Furthermore, since
dereferencing a location consumes an execution step, in order to determine whether v has type 7 for k steps it suffices to
know the type of each store location for £ — 1 steps; hence, ¥ need only specify each location’s type to approximation
k—1. We use a similar indexing approach which is key to ensuring that our model is well-founded (as we shall demonstrate
in Section 4.3).

4.2 Towards a Model of \"<fURAL

Aliasing and Ownership Though our model is similar to AAV, the presence of shared and unique references places very
different demands on the model, which we illustrate by considering the interpretation of product types in various settings.
In a language with only unrestricted references (e.g. AAV), one would say (k, U, (vy,v2)) € 7T [11 ® 72] if and only if
(k,W,v1) € T [r1] and (k, U, vq) € T [72], where the store typing ¥ describes every location allocated by the program
thus far. In this setting, every location (in W) may be aliased; hence, the model allows v; and v to point to data structures
that overlap in the heap.

In a language with only linear references [23, 2], however, one must ensure that the set of (linear) locations reachable
from v; is disjoint from the set of locations reachable from vy. This mirrors the fact that we can only construct tree-like
data structures in this setting. Furthermore, it guarantees the safety of strong updates by providing a notion of exclusive
ownership. Hence, to model a language with only linear references, it is useful to replace the global store description ¥ with
a description of only the accessible (reachable) locations in the store, say Q2. Intuitively, when we write (k, Q,v) € T [7],
we intend for €2 to describe only the subset of store locations that are accessible from, and hence, “owned” by v. Thus, one
would say (k,Q, (vi,v2)) € T [11 ® 72] if and only if (k,Q1,v1) € T [r1] and (k, Q2,v2) € T [12], where the Q2 is the
disjoint union of 2; and Q5.

For the \"fURAL_calculus, we tried to build a model that supports both aliasing and ownership as follows. We defined
the semantic interpretation of a type 7 [7] as the set of tuples of the form (k, ¥, 2, v) where ¥ describes every U and R
location allocated by the program and €2 describes only those A and L locations that are reachable from (and owned by) v.
The interpretation of 7y ® 75 then naturally yields: (k, ¥, Q, (v1,v2)) € T [11 ® 72] if and only if (k, ¥,Qq,v1) € T [71]
and (k, U, Qy,v2) € T [12], where the € is the disjoint union of ; and Q5.

Unfortunately, the above model did not suffice for AfURAL since it assumes that every unique location reachable from
v is exclusively owned by v, which is not the case when unique references may be stored in shared references.

Unique References in Shared References: Aliased or Owned? Consider the situation depicted in Figure 9(a) where x
maps to /1 and locations /; through /5 are reachable from x. Locations “owned” by x are shaded. Notice that /; and [, are
unique locations owned by x, while /4 and /5 are unique locations that  must consider aliased, since they can be reached
(from other program subexpressions) via the unrestricted location [3. Figure 9(b) depicts such a subexpression, y. Note
that y maps to lg whose contents alias /3, making [, and /5 reachable from y.
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In \¢fURAL we may safely construct the pair (z,y) (shown in Figure 9(c)), but the interpretation of 7; ® 75 that we

proposed above prohibits such a pair since locations /4 and I5 occur in both §2; and 29, violating the requirement that their
domains be disjoint.

To model the A\"*fURAL_calculus, we tried to further refine our model so that the interpretation of a type 7 [7] is a set of
tuples of the form (k, ¥, Q, ©,v) where W is as before, but now 2 describes unique owned locations, (i.e., those reachable
from v without indirecting through a shared reference), while © describes unique aliased locations, (i.e., those that cannot
be reached without indirecting through a shared cell). The intuition is that the interpretation of 71 ® 74 splits €2 into disjoint
pieces for each component of the pair, but allows each component to use ¥ and © unchanged.

This proposal, however, is fraught with complications. In particular, whether a unique location belongs in Q2 or ©
depends on the configuration of the entire program, rather than just the type of the location. This limits the compositionality
of the model. For instance, consider /5 in Figure 9(c). Clearly /5 must appear in © as it is reachable from an unrestricted
location. However, if locations Iy, lo, I3, and [g did not exist, then 5 could appear in 2. In the next section, we propose a
far simpler solution that we consider one of the main technical contributions of our work.

4.3 A Model with Local Store Descriptions

In our model of the A"FURAL_calculus, the semantic interpretation of a type 7 [7] is a set of tuples of the form (k, ¢, 1, v),
where the local store description 1) describes only a part of the global store. Intuitively, v is the set of “beliefs” about the
locations that appear as sub-expressions of the value v. Such locations are said to be directly accessible from the value v.
Conversely, locations that are indirectly accessible from the value v are those locations that are reachable from v only by
indirecting through one (or more) references. The local store description v says nothing about these indirectly-accessible
locations. This enhances the compositionality of our model, making it straightforward to combine local store descriptions
with one another.

4.3.1 Definitions

We use the meta-variable x to denote sets of tuples of the form (k,¢,,v) and the meta-variable v to denote partial
maps from locations [ to tuples of the form (g, x).> When Y corresponds to the semantic interpretation of a type and
(k,q,v,v) € x, we intend that ¢ is the qualifier of v, 1 is the local store description of v, and v is a closed value. When
1 corresponds to a local store description and (1) = (g, x), we intend that ¢ is the qualifier of the reference and x is the
semantic interpretation of the type of its contents.

Well-Founded & Well-Behaved Interpretations 1f we attempt to naively construct a set-theoretic model based on these
intentions, we are led to specify:
Type — 2N>< Quals X LocalStoreDesc x CValues
LocalStoreDesc = Locs — Quals x Type
However, there is a problem with this specification: a simple diagonalization argument will show that the set Type of type
interpretations has an inconsistent cardinality (i.e., it’s an ill-founded recursive definition).

We can eliminate the inconsistency by stratifying our definitions, making essential use of the approximation index. To
simplify the development, we first construct candidate sets, which are well-founded sets of our intended form. Next, we
define some useful functions and predicates on these candidate sets. Finally, we construct our semantic interpretations
by filtering the candidate sets, making use of the functions and predicates defined in the previous step. Our semantic
interpretations impose a number of constraints (e.g., relating the qualifier of a reference to the qualifier of its contents) that
are ignored in the construction of the candidate sets.

Figure 10(b) defines our candidate sets by (strong) induction on k. Note that elements of CandAtom are tuples with
approximation index j strictly less than k. Hence, our definitions are well-defined at &k = 0:

CandAtomo = 0
CandUberType, = {0}
CandLocalStoreDesco = Locs — Quals x {0}

While our candidate sets establish the existence of sets of our intended form, our semantic interpretations will need to be
well-behaved in other ways. There are key constraints associated with atoms, pre-types, types, and local store descriptions
that will be enforced in our final definitions. Functions and predicates supporting these constraints are given in Figure 10(c).

For any set x, we define the k-approximation of the set (written | x|x) as the subset of its elements whose indices
are less than k; we extend the notion pointwise to local store descriptions ) (written | |x). Note that | x| and 9]
necessarily yield elements of CandUberType,, and CandLocalStoreDescy,.

3 We write 192 (1) and 1/%Pe (1) for the respective projections of 1) (1).
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(a) PreType/Type Interpretation (Notation) — x {(k,q,v,v),...}
Local Store Description (Notation) P {l—(g,%),-..}
(b) CandAtomy, def {(,a,9,v) € N x Quals x |J;_,, CandLocalStoreDesc; x CValues |

j < kAt € CandLocalStoreDesc; }
Cand UberTypek dgf QCandAtomk

CandLocalStoreDescy, dgf Locs — Quals x CandUberType,,
def
CandAtom, = Ukzo CandAtomy,
CandUberType,, def 9 CandAtom., o Ukzo CandUberType,,

CandLocalStoreDesc,, dgf Locs — Quals x CandUberType, 2 Ukzo CandLocalStoreDescy,

def . . .
© e = AU ¢0) [ §<kAG,q9,v) €x}
€  CandUberType, — CandUberType,
def
[Wle = Al (a, [x]e) [ 1€ dom(y) Ay(l) = (q,x)}
€  CandLocalStoreDesc,, — CandLocalStoreDescy.
def qual
Plg,y) = Vi€ dom(y). ¥9(1) X q

€  Quals x CandLocalStoreDesc,, — P

R) = Ve dom(w). @™(1) 2 A=>V(,q,..) €. ¢ <A)
€  CandLocalStoreDesc,, — P

(d) Atomy, def {(J,q,%,v) € CandAtomy, | ¢ € LocalStoreDesc; AP(q,v)} C CandAtomy,
PreType, def {x € 24%°™k | Y(j,q,,v) € x. Vi < §. (i,q, |[¥]:,v) € X} C  CandUberType,
Type,, def {x € PreType;, | 3¢’ € Quals.V(_,q,-,-) EXx.q=4q'} C  CandUberType,
LocalStoreDescy, def {¢ € Locs — Quals x Type, | R()} C  CandLocalStoreDescy,
PreType def {x € CandUberType,, | Vk > 0. |x|x € PreType,} 2 Ujso PreType,
Type def {x € CandUberType, | Vk > 0. |x]x € Type,} 2 Uso Typey

Figure 10. \"fURAL Model (Definitions)

Figure 10(c) defines our semantic interpretations, again by (strong) induction on k. Note that our semantic interpreta-
tions can be seen as filtering their corresponding candidate sets. Next, we examine each of these filtering constraints.

Recall that we intend for Atomy, to define tuples of the form (3, ¢, v, v) where ¢ is the qualifier of v and ¢ is the local
store description of v. Filtering CandAtom, by the predicate P(q, 1)) enforces the requirement that if v is a value with
qualifier ¢, then each location directly accessible from v must have a qualifier ¢’ such that ¢’ < q. We further require the
local store description ) to be a member of LocalStoreDesc;.

We define PreType,, as those x € 24%™r C CandUberType, that are closed with respect to a decreasing step-
index. We define Type,, by further requiring that all values in y share the same qualifier. Looking ahead, we will need
to extend our semantic interpretations to a predicate Comp(k, 1, e, 7 [r]), where e is a (closed) expression. Intuitively,
an expression e that is indistinguishable from a value of type 7 for k& steps must also be indistinguishable for j < k
steps. Since we will define the predicate Comp(+, -, -, -) on elements of Type, we incorporate this closure property into the
definition of PreType,,.
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K[QUAL] = Quals K[*] = PreType K[x] = Type

T[AFa:k]6 = 6(a)
T[AFq:QUAL]d = ¢
T[AF1g:%x]6 = {(kq{}, O}
TAFni@m: %6 = {(kq,(vi,v2)) | ¥ = (Y1 Ok P2) A
(k,ql,z,l)l,vl) ET[A"T1 :*]]5Aq1 <qgA
(k,q2,02,v2) ET[AF T2 : x| 6 ANg2 < ¢}
T[AFT — %6 = {(k,gc, e, \x.€) | Y € LocalStoreDescy N P(qe,he) A
V] < kvqav'l/]avvw
(j7 QGawaava) S T[[A (e T1 *:H 6 AN (1/}(' @j 'l/}a) defined =
Comp(j, (Ve ©j Ya), e[va/z], T [AF 72 : %] )}
T[AFYak.7:%]6 = {(k,q,%,A.e)| ¥ € LocalStoreDescy, A P(q,v) A
Vi <k,ZeK[x].
Comp(j, [¥];,e, T [A,auk b 7 : %] 0] — Z]) }
T[Abrefr 35 = {(ha{lm @0hD) | x= TIAF7: 415k A
(=2A=V(,d,,)exqd 2A)}
T[ART:4]6 = {(hath0)| a=T[AF€: QUALLS A
(k,q,¢,v) e T[A T :%] 6}
def .
Comp(kﬂ/)s’es,X) = V.] < k7337¢r73f:€f-
8s ik (Vs Ok Pr) A (85, €5) —7 (sg,e5) Ndrred(sg, ef) =
Jqy, ¥y

st k—j (V5 Ok—j Ur) Nk —3F,qr,%r,e5) € X

Figure 11. \"*fURAL Model (Interpretations)

Finally, we define LocalStoreDescy, using the predicate R (), which requires that every unrestricted or affine location
in ¢ is mapped to a type with only unrestricted and affine values. The predicate R(v)) disallows relevant or linear values
as the contents of unrestricted or affine locations (recall Figure 7).

4.3.2 Semantic Interpretations

Figure 11 gives our semantic interpretation of kinds K [x], qualifiers 7 [q], pre-types 7 [7], and types 7 [7].5 The
interpretation of the kinds * and « are the semantic interpretations PreType and Type respectively, while the interpretation
of the kind QUAL is the set of (constant) qualifiers Quals.

Units: No Location Beliefs Consider the interpretation of the pre-type lg. Clearly, no locations appear as sub-
expressions of the value (); hence, the interpretation of 1g demands an empty local store description {}. Furthermore,
the value () may be ascribed any qualifier q.

References: Single Location Beliefs Next, consider the interpretation of the pre-type ref 7. From the value [, the only
directly-accessible location is [ itself. Hence, the local store description 1 for the location [ in the interpretation of ref 7
must take the form {I — (g, x)}. Furthermore, , the semantic interpretation of the type of I’s contents, must match 7 [7].

Figure 12 graphically depicts the local store description t» = {l — (q, T [7])} (slightly abusing notation in the interest
of brevity). Our intention is to express the idea that ¢ “believes” that [ is allocated with qualifier ¢ and contents of type 7,
but ¢ “believes” nothing about any other location in the store, represented by “?”.

6 Since our language supports polymorphic types, we must give the interpretations of type-level terms with free variables. While, technically, we should
write 7 [A b ¢ : kK] 8, where the substitution § is in the interpretation of the term context A (see D [A] in Figure 16), we will use the more concise
notation 7 [¢] in the text.
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(k, 0,9 ={l—= (¢, T [7D)}, 1) € T [ref 7]

¥

? ? ?

ST ¢

? ? ?

Figure 12. A Local Store Description in 7 [ref 7]

Note that the definition of 7 [ref 7] requires that if [ is an unrestricted or affine location, then x should never contain
local store descriptions that include relevant or linear locations; i.e., the definition of 7 [[ref 7] incorporates the predicate
R(-) specialized to {l — (q, x)}

Pairs: Compatible Location Beliefs A pair (v1,vs) (such that (k, ¢1,v1,v1) € 7 [n1] and (k, g2, 12, v2) € T [12]) is
in the interpretation of 7; ® 7 if and only if the pair is ascribed a qualifier greater than that of its components and the two
sets of beliefs about the store, 1)1 and 12, can be combined into a single set of beliefs sufficient for safely executing k steps
(written 11 O 12, see Figure 13). Informally, local store descriptions can be combined only if they are compatible; that
is, if the beliefs in one local store description do not contradict the beliefs in the other store description.

{l—= [¥1]x() | 1 € dom(¢p1) N dom(¢h2)} it vl € dom(ip1) N dom (). [v1]k(l) = [¥2]k(l)
dof W{l — [¥1]e(l) | L € dom(1) \ dom(v2)}  and VI € dom(ep1). A < 3°'(1) = I ¢ dom(i2)
V1Ot = Wl [Y2]u(l) |1 € dom(¢p2) \ dom(¥1)}  and Vi € dom(ih2). A < 3 (1) = | ¢ dom(¢)

undefined otherwise

Figure 13. \"fURAL Model (Join Partial Function)

Clearly, if 1/, and 5 have disjoint sets of beliefs about the store, then 1y ® - is defined and equal to the union of
their beliefs:
(k,q1,v1 ={li — (a1, 7 [m])}, 1) € T [T2ref 7]
(k,g2,¢2 = {l2 = (92,7 [r2])},l2) € T [92ref 72]

v P2 P1 O 2 S — -
? e @ T o ’ ? = ’ o (e Tl
? ? Ezjjqizﬂfgﬂ)] ? Ezli(q;f[[;z]])j ?

In the more general case, where the same location may be found in the domain of both v; and s, there are two
requirements enforced by the definition of ¥1 O 1)s.
First, we require that for any location [ that is described by both 1), and 15, it must be the case that ¢); and 15 have
identical beliefs about [ to approximation k. Note that )1 and o must agree on both the qualifier of the location as well
as the type of the location’s contents:

(k,U, 91 = {l— (U, T [r])},1) € T [Uref 7]

(k,U, 92 = {l— (R, T [*'D},1) € T [Rref ']
v Y1 o YooYy
PUmUTED) o 7 1ImUTED) - 7 1= T,
? ? ? ? ? ?
v Y2
P - OTE)) @ 7 e RTID
? ? ? ?

The second requirement is more subtle, having to do with the notion of directly-accessible locations. Suppose that I3
is a linear or affine location mapped by ;. Therefore, a value v, with local store description 1, must contain /3 as a
sub-expression. Since I3 is linear or affine, this occurrence of /3 in the value v, must be the one (and only) occurrence of I3
in the entire program state. Now, suppose that /3 is also in the domain of a local store description .. As before, a value v,
with local store description . must contain I3 as a sub-expression. If we were to attempt to form the value (v, v.), then

13 2005/7/8



we would have a value with two distinct occurrences of /3, violating the uniqueness of the location /3. Hence, we consider
1y and 1., to represent incompatible (contradictory) beliefs about the current store:
(k, L, = {l1 — (U, T [11]),l2 — (L, T [2]),va = (l1,12)) € T [-(Vref 71 ® Lref 12)]
(k, Ly = {l1 — (U, T [11]), 13 — (L, T [73]), 05 = (l1,13)) € T [H(Vref 71 @ Lref 13)]
(k,Lye = {l3 — (L, T [73]),ve = {I3,{())) € T [[L(Lref T3 Q@ Ul@)]]

Ya B - %r****j Ya © Py S -
? Lo OTnDy o 7 b OTND), ? Lo U TIn),
b LTIRD) P e T (e GTRD b (LT ()
P A e
? |_ll = (_U:Z [[:ﬂ])_l 0} ? ? = undefined
0Tyt D LT

Functions & Abstractions: Closure Location Beliefs Since functions and abstractions are suspended computations,
their interpretations are given in terms of the interpretation of types as computations (see below). A function Ax. e with
qualifier g, and local store description v, (where 1. describes the locations directly accessible from the function’s closure
and, hence, must satisfy P(q., 1.)) is in the interpretation of 71 —o 75 for k steps if, at some point in the future, when there
are j < k steps left to execute, and there is an argument v, such that (4, _, ¥4, v) € 7 [71] and the beliefs . and v, are
compatible, then e[v, /2] looks like a computation of type 5 for j steps. The interpretation of V. 7 is analogous, except
that we quantify over (type-level term) interpretations Z € K [«].

Store Satisfaction: Tracing Location Beliefs The interpretation of types as computations (Comp) makes use of an
auxiliary relation s :; 1 (given in Figure 14), which says that the store s satisfies local store description v (to
approximation k). We motivate the definition of s :; ¥ by drawing an analogy with the specification of a tracing garbage
collector (see Figure 15). As described above, ¢ corresponds to (beliefs about) the portion of the store directly accessible
from a value (or multiple values, when 1) corresponds to ®-ed store descriptions). Hence, we can consider dom (1)) as
a set of root locations. In the definition of s : 1, S corresponds to the set of reachable (root and non-root) locations in
the store that would be discovered by the garbage collector. The function F, maps each location in S to a local store
description, while the function F; maps each location to a qualifier. It is our intention that, for each location I, F,(I) is
an appropriate qualifier and F,, (1) is an appropriate local store description for the value 5*2(1). Hence, we can consider
dom(Fy (1)) as the set of child locations traced from the contents of [.

Having chosen the set S and the functions F, and F,, we require that they satisfy three criteria. The congruity criteria
ensures that our choices are both internally consistent and consistent with the store s. The “global” store description ).
combines the local store descriptions of the roots with the local store descriptions of the contents of every reachable
location; the implicit requirement that v, is defined ensures that the local beliefs of the roots and individual store contents
are all compatible. The clause dom (1) = S requires that S and F,, are chosen such that S includes all the reachable
locations (and not just some of the reachable locations), while the clause dom(s) 2 S requires that all of the reachable
locations are actually in the store. Finally, (4, 7, [ Fy(1)];, s (1)) € |1¥P(1)]1 ensures that the contents of I, with the
qualifier assigned by F, and local store description assigned by F, is in the type assigned by the global store description
1, (for j < k steps).

The minimality criteria ensures that our choice for the set S does not contain any locations not reachable from the
roots. For example, in Figure 15, including /17 in S would not violate congruity, but would violate minimality. Finally, the
reachability criteria ensures that every linear and relevant location is reachable from the roots (and, hence, has not been
implicitly discarded).

Computations: Relating Current to Future Beliefs Informally, the interpretation of types as computations
Comp(k, 1, es,x) (see Figure 11) says that if the expression e, (with beliefs 1), again, corresponding to the loca-
tions appearing as sub-expressions of e;) reaches an irreducible state in less than £ steps, then it must have reduced to
a value vy (with beliefs 1) ¢) that belongs to the type interpretation x. More precisely, we pick a starting store s, such that
ss ik (s Ok ¥.), where 1), is the set of beliefs about the store held by the rest of the computation (alternatively, the set of
beliefs held by e,’s continuation). If (s, e,) steps to an irreducible configuration (sf,ef) in j < k steps, then the follow-
ing conditions hold. First, e; must be a value with a qualifier ¢; and a set of beliefs ¢ such that (k — 7, qf,¥¢,ef) € x.
Second, the following two sets of beliefs must be compatible: 1) (what e ¢ believes) and 1),. (what the rest of the computa-
tion believes — note that these beliefs remain unchanged). Third, the final store sy must satisfy the combined set of these
beliefs.
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def

sy = 3S: gloes
3Fy : S — LocalStoreDesc.
IFq: S — Quals.
let . = (¥ Ox Q) Fy (1)) in
dom () =S A dom(s) D S A
VieSs. congruity
Vi < k. (3, Fo (), | Fp() 15,8 (1) € (027 (1) ]k A
(1) = ()
vs'Cs. minimalit
dom(1p) C ST A (VI € ST, dom(Fy(1)) CST) = 8 =8" y
Vi € dom(s). ..
R < Squg|()l) ~les }reachablhty
Figure 14. \"<fURAL Model (Store Satisfaction)
S v
lo — (go,v0) ls — (q4,v4) lz — (q7,v7) l11 = (q11,v11) Eo — (qo0,7 [[To]]) ? ? ?
l1 — (q1,v1) s — (g5,vs5) lg — (gs,vs) li2 — (q12,v12) \_51;_(%_7 7?[[7'_11]) ? ? ?
’Y :
/ —————
l2 — (g2,v2) lg — (g9, v9) l13 — (q13,v13) le — (q277'[[7'2]]) ? ? ?
N 7
[ :
Y/ A
I3 = (g3,v3) ——l6 — (g6, v6) l10 + (q10,v10) l14 — (q14,v14) laf_(qi 7;[[T_5]]) ? ? ?
s
_lo_Hﬁqo;vo— Z[[:oﬂ) |_l4'_—>£tJ4lv4_ Zﬂﬂf]])_ E7_ £q7;v7_ 7_'ﬂ7;7]]) i — (q11,v11)
SR TR (G TR G T e G
)
_— - = = = = = = ,_ ______ /
= ll2+— (q2,v2: T[[TQH) l_lg — (qo,v9 : T[[Tg]]) l13 — (q13,v13)
(] ﬁ
_l ______ FTR = T - N
3+ (g3,v3: T[[Tsﬂ) >l (g6,v6 : TUTG]]) Lo — (q10,v10 : T[[Tm]])J l14 — (v14,v14)
dom (i)
dom(Y«) =S
where
]-—w(h) _____ ]:’lZJ(IS) ,,,,,
7 e T ? ? v e T 2
| [
? ? ? ? ? ? ? ?
etc.
? ? ? ? ? ? ? ?
? ? ? 7 (e Tln), 2 ? ?
Figure 15. s : ¢ Example
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Dle] = {0}

D[A,a:k] = {dla—1T]| € D[A]AT € K [«]}
Glate]s = {(kq{},0)}
GglAFT, 2:r]0 = {(k, ¢, vz =) | ¥ = (Yr Ok ¥z) A

(kyqriyr,y) € GIAFT]oAgr 2gA
(k:qza"(/)amv) ET[[AI_T:*H‘;/\QZ jq}

[A;THe: 7] def VEk > 0.V9,qr, ¥r, .

Comp(k, y¥r,v(e), T [AF 7 :%]6)

Figure 16. \"*fURAL Model (Additional Interpretations)

Note that since v, is an arbitrary set of beliefs compatible with 1)5, one instantiation of 1),. is the local store description
that includes all of the shared locations of 1. By requiring that 1)y and sy are compatible with 1),., we ensure that the
types and qualifiers and allocation status of shared locations are preserved.

Judgements: Type Soundness Finally, the semantic interpretation of a typing judgement [A; T e : 7] (see Figure 16)
asserts that for all £ > 0, if § is a mapping from type-level variables to an element of the appropriate kind interpretation,
and ~y is a mapping from variables to closed values, and v r is a local store description for the values in the range of ~, then
(k,r,y(e)) is in the interpretation of 7 as a computation (Comp(k, 1, v(e), T [7])).

The appendicies give the proof of the following theorem which shows the soundness of the A"*fURAL typing rules with
respect to the model.

THEOREM 1. (A'fURAL Soundness)
IfA;TEe:r, then [A;T e 7]

An immediate corollary is type-safety of \"*fURAL - Another interesting corollary is that if we evaluate a closed, well-
typed term of base type (e.g., 91g) to a value, then the resulting store will have no linear or relevant references.

COROLLARY 2. (\"¢fURAL Safety)

Ife;eey:7and ({},e1) —™* (s2,e3), then either Jva. e3 = vg or Js3, €3. (S2,€2) — (83, €3).
COROLLARY 3. (\'fURAL Collection)

Ife;eber: g and ({},e1) —* (s2,v2), then¥Vl € dom(ssy). s3"'(1) < A.
Proof (A"<URAL Safety)

Suppose e; 8 - ¢; : 7 and ({},e1) —" (s2,€2).
If —irred(sq, e2), then 3ss, es. (s2,€2) — (s3,€3).
If irred(sq, e2), then Ji. ({},e1) — (52, e2).
Theorem 1 applied to e; @ - e : 7 yields [e; @ - eq : 7].
[o; @ - €1 : 7] instantiated with i +1 > 0,0 € D [e], and (i + 1,U,{},0) € G [o] 0
yields Comp(i + 1,{},e1,7 [o 7 : %] ).
Comp(i +1,{},e1,7 [o - 7 : %] 0) instantiated with i < i + 1, s1 ;1 ({} ®iz1 {}), ({},e1) —* (52, €2),
and irred(sq, e3)
yields go and 15 such that so 11 (2 ®1 {}) and (1,q2,%2,e2) € T o 7 : %] (.
Recall that 7 [e - 7 : x] ) € Type and Type C CandUberType,, = 2CendAtom.
Hence, (1, q2,%2,e2) € CandAtom, = |J,,~, CandAtomy,,
which implies that e; € C'Values and Jvy. eo = vo. O

Proof (\"¢fURAL Collection)
Suppose o; @ - e : 11g and ({},e1) —* (82, v2).
By the reasoning above, (1, g2, %2, v2) € T [@ F 91g : x| @, which implies that g2 = g, ¥2 = {}, and vo = ().
Recall that S9 1 ({} ®1 {}) = S92 1 {} = E'S,]:w,fq. e
The minimality criteria of s, :; {} instantiated with ) C S, dom({}) C 0, and (VI € 0. dom(Fy,(1)) C 0)
yields S = 0.
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The reachability criteria of s, 11 {} yields VI € dom(s3). R =< s3?(1) = 1 € 0),
which implies VI € dom(sy). s?*®'(1) < A. O

4.4 Discussion

A key difference in the model presented here, as compared to previous models of mutable state, is the localization of
the store description. Recall that we identify the local store description of a value with those locations that are directly
accessible from the value. This is in contrast to the AAV model of unrestricted references [1, 4], where the global store
description of any value describes every location that has been allocated. It is also in contrast to our previous model of
linear references [23, 2], where the store description of a value describes the reachable locations from that value.

The transition from a global store description to a local store description is motivated by the insight that storing a
unique object in a shared reference “hides” the unique object in some way. Note that the shared reference must mediate
all access to the unique object. The authors have found it hard to construct a model where the store description of a value
(in the interpretation of a type) describes the entire store or even the store reachable from the value. When one attempts to
describe the entire store, there is a difficulty identifying where the “real” occurrence of a unique location is to be found.
When one attempts to describe the reachable store, there is a difficulty defining the © relation; it cannot be defined point-
wise, and one is required to formally introduce the notions of directly- and indirectly-accessible locations. Furthermore,
the reachable store is a property of the actual store, not of the type; hence, it seems better to confine reachability to the
store satisfaction relation. We further note that the model of mutable references given in this paper subsumes the models
of mutable references cited above. Hence, the technique of localizing the store description subsumes the techniques used
by previous approaches.

Although our model of substructural references is different from the previous model of unrestricted references, our
model retains the spirit of the step-indexed approach used in Foundational PCC [6, 7] and may be applicable in future
extensions of FPCC. This approach, in which the model mixes denotational and operational semantics, offers a number
of distinct advantages over a purely syntactic approach to type soundness. One obvious advantage of this approach is
that it gives rise to a simpler set of typing rules; note that our typing judgement requires neither a store description
component nor a rule for locations. A less obvious advantage of this approach is that it gives rise to stronger meta-
theoretic results. For example, the impredicative polymorphism of A\"*fURAL implies a strong parametricity theorem: an
element of 7 [Va: * . 7] behaves uniformly on all elements of Type, which includes elements that do not correspond
to the interpretation of any syntactic type. This approach also naturally extends to union and intersection types and to an
inclusion interpretation of subtyping. Finally, a (well-founded) set-theoretic model means that soundness and safety proofs
are amenable to formalization in the higher-order logic of FPCC.

While we are partial to the step-indexed approach, we acknowledge that there is no fundamental difficulty in adopting a
purely syntactic approach to proving the type soundness of substructural state. However, we believe that any proof of type
soundness must adopt many of the insights presented here. For example, we conjecture that the typing rule for well-typed
configurations would naturally take the form:

v =10 () Fu)
dom(.) =8 dom(s) 2 S
VieS. 55 Fu(l)F s () v¥() A
Squal(l) — wiual(l)
s savbkerT
F(s,e): 7

Note that the judgement - s : ¢/ mirrors the store satisfaction predicate given in Figure 14. The store typing component
complicates the judgement A; ;4 F e : 7, which must further rely upon an operator ¥; ® 12 = ¥ to split the locations
in 1 between the store typings v and 1o. Splitting the store typing is necessary to ensure that a given unique location
is used by at most one sub-expression. The ® operator in the syntactic approach would need to satisfy many of the same
properties as the Oy operator in the step-indexed approach (e.g., identical beliefs about locations in the common domain
and no unique locations in the common domain).

5. Related Work

Our AURAL is most directly influenced by the presentation of substructural type systems by Walker [30], which in turn
draws upon the work of Wansbrough and Peyton-Jones [33] and Walker and Watkins [32]. Relative to that work, we
have added both relevant and affine qualifiers, which is necessary to account for the varied forms of linearity found in
higher-level programming-language proposals.
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A related body of work is that on type systems used to track resource usage [28, 22, 33, 21, 16, 19]. We note that the
usage subsumption found in these systems (e.g., a “possibly used many times” variable may be subsumed to appear in a
context requiring a “used exactly once” value) is not applicable in our setting (e.g., it is clearly unsound to subsume Yref 7
to Lref 1), due to differences in the interpretation of type qualifiers.

Section 1 noted a number of projects that have introduced some form of linearity to “tame” state. An underlying theme
is that linearity and strong updates can be used to provide more effective memory management (c.f. [10, 18, 9, 8]).

More recent research has explored other ways in which unique and shared data may be mixed. For example, Cyclone’s
alias construct [17] takes a unique pointer and returns a shared pointer to the same object, which is available for a limited
lexical scope. Vault’s focus and CQuals’s restrict constructs [14, 5] provide the opposite behavior: temporarily giving
a linear view of an object of shared type. Both behaviors are of great practical significance.

Our model’s semantic interpretations seem strongly related to the logic of Bunched Implications (BI) [20] and
Reynolds’ separation logic [25]. In particular, our interpretation of ® and —o resemble the resource semantics for the
* and — connectives in BL.

Finally, Boyland and Retert have recently proved the soundness of a variation of Vault by giving an operational
semantics of “adoption” [11]. The authors note that adoption may be used to embed a unique pointer within another
object; their notion of uniqueness most closely resembles our affine references, as access keys may be dropped.

6. Conclusion and Future Work

We have presented the \"*"URAL_calculus, a substructural polymorphic A-calculus with mutable references of unrestricted,
relevant, affine, and linear sorts. We motivated the design decisions, gave a type system, and constructed a step-indexed
model of A*fURAL "where types are interpreted as sets of store description / value pairs, which are further refined using an
index representing the number of steps available for future evaluation.

In previous work [23, 2], we separated the typing components of a mutable object into two pieces: an unrestricted
pointer to the object and a linear capability for accessing the contents of the object. We believe that we can extend the
current language and model in the same way. The advantage of this approach is that separating the name of a reference
from what it currently holds gives us a model of alias types [27, 31].

As noted in the previous section, allowing a unique pointer to be temporarily treated as shared (and vice versa) can be
useful in practice. Understanding how to model these advanced features is a long-term goal of this research. A promising
aproach is to model regions as a linear capability to access objects in the region and allow changes in reference qualifiers
to be mediated by this capability.
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Appendix: Formal Development

The following appendices present a formal development of the language, step-indexed model, and soundness proof
described in the main body of this technical report.

Previous research has suggested that linearity and, by extension, the other substructural sorts have been and will
continue to be a powerful means of “taming” state and effects in programming languages and type systems. With this
in mind, we propose a framework comprised of a core substructural polymorphic A-calculus and type system, step-
indexed model, and proof of soundness. The entire development of this core language is done with respect to an abstract
global stateful world, additional abstract expression forms that interact with the world, and abstract world descriptions,
which impart semantic meaning to worlds. Having held these components abstract, the proof establishing the soundness
of our step-indexed model is itself parameterized by a collection of requirements that must satisfied by these abstract
components. Hence, our methodology is to instantiate the framework by choosing concrete worlds, expression forms, and
world descriptions, showing that these concrete components meet the requirements, and discharge any additional proof
cases introduced by the new components.

In Appendix A, we use shaded boxes to indicated abstracted components, requirements, and proof cases that depend
upon the particular concrete instantiation. In Appendix B, we show a simple instantiation that adds recursive types to the
core language. In Appendix C, we show the instantiation for mutable references.
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A Core Language

A.1 Syntax
Kind Level:
Kinds £ == QUAL | PRETYPE | TYPE | kx
FExtended Kinds KX = ...
Type Level:
L
VRN
Constant Qualifiers qg € Quals = {U,R /A L} A R
N/
U
Qualifiers £ = algq
PreTypes T = a|ln—om|lyg | n®n|le | m®m |0 ||
Voek. T | Jovk. T | Tx
FExtended PreTypes TX = o0
Types T ou= altF
Terms vou= T T x
FExtended Terms i =

Expression Level:
Values v ou= x| Aze| )] (vi,v2) | () | {e1,e2)) | inlwy | inrvs
Ace| ™7 | vx

Ezxtended Values vx
FEzxpressions e

ol

€1 €2 |

let () = e1 in ez | let (w1,22) = €1 in e2 |
fste | snde |

aborte | case e of inlwy = e || inrazs = e |
el] | let Ta" =e; ineg |

copye | drope |

€x

Ezxtended Ezpressions ex =

Figure 1: Core Language — Syntax
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A.2 Operational Semantics

World

Evaluation Contexts E == ]|

E82|

U1E2|

let () = F in ey |

let (x1,x2) = E in ey |
fst £ | snd F

abort F | case E of inlxzi = €1 || intx2 = e

ET |

let "z =FE ines |
copy F | drop E |
Ex

Extended Evaluation Contexts Ex =

app)
let-munit)
let-mpair)
fst)

snd)
case-inl)
case-inr)
inst)
let-pack)

copy)
drop)

(
(
(
(
(sn
(
(
(
(
(
(
(

extended)

(ctxt)

(w,(Az.e)v) +— (w

(wlet = ine) — (w,

(w,let (z1,z2) = (v1,v2) ine) +— (w

(w,fst ((e1,€2))) +— (w,

(w,snd ((e1,e2))) — (w,

(w,case inlwv of inlzy = e1 || inrze = e2) — (w,
(w,case inrv of inlzy = e1 || inrze = e2) — (w,
(w,(Ae)[)) —  (w,

(w,let "Tz7="v"ine) — (w,

(w,copyv) +— (w,

(w,dropv) +— (w,

(w,e) — (w',e’)

(w, Ele]) +— (w', E[¢'])

Figure 2: Core Language — Operational Semantics
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A.3 Static Semantics

Term Context A == o | A ak
Ak

(VARKN)
ak €A

AFa:k

(Quar)
AF q: QUAL

(FNPTY)
A+ 1 : TYPE A+ 1 : TYPE
AF 71 — 1 : PRETYPE

(MPAIRPTY)
(MUNITPTY)

AF 71 : TYPE A+ 1 : TYPE
AF 1g : PRETYPE AF 71 ®7m: PRETYPE
(APAIRPTY)
(AUNITPTY) A7 :TYPE A :TYPE
AF 1g : PRETYPE At 1 ®7: PRETYPE
(SuMPTY)
(VoIPTY) AFm :TYPE Ak m:TYPE
A+ 0:PRETYPE At 1 &7 : PRETYPE
(ALLPTY) (ExPTY)
A,a:x b 7:TYPE A,k 7: TYPE
At VYa:k.7: PRETYPE A F Ja:k. 7 : PRETYPE
(UserPTy) ...
(TYPE)
AF€: QUAL AFT7T:PRETYPE
A7 : TYPE
(UserTerm) ...

Figure 3: Core Language — Static Semantics (I)
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AFT

AFT~T, 81,

r

Value Context o | T z:7

AFT AF7:TYPE

AT, x:r

Al e

Figure 4: Core Language — Static Semantics (II)

A"ngUAL qu(]Q A"leUAL
AFU=E AbFq =g A& =L
AR €: QUAL A& =E  ARE <&

AFE=¢E A& 26
AF7:TYPE AF7 : PRETYPE AFE <€
AFT=L AFEF <¢

AF¢: QUAL AFT <6 AbFr<¢

AF-e=x¢ AFT,z:7

Figure 5: Core Language — Static Semantics (III)

AI—F«»IHEEFQ A}_TTYPE A}_F'\»FlEBFQ

AFe~reHe

Ak T:TYPE

AFT zir~ T, B

AFF'\»F1EE|F2 AF’TjR
AFT,z:r~ Ty, 7B, 2

Figure 6: Core Language — Static Semantics (IV)
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(VAR) (FN)
AF7:TYPE AF€£:QUAL AFT <¢ AT e bFe:m
Ajezrhx:T AT F Az e: S(1 — )

(MUNIT)

A €: QUAL

(MPAIR)
AFT~ T HI, AFE&: QUAL AsTiForim AT ¢ A;ToF o7 AbF7 <€

AT (v, v2) E(71 ® T2)

(AUNIT) (APAIR)
AF ¢ QUAL AFT <¢ AFE&: QUAL AFT <¢ A;THer:m A;TFes:m
ATH () : f1e AT (er,e2)) : S(m @ m2)
(INL)

AFE&:QUAL  ATFov:m AFm <& AFm:TYPE
A;Fl—inlvzg(ﬁ@m)

(INR)
AF€: QUAL AF T : TYPE AT A1 =€

AT Finrv: S(m @ )

(ALL)
AF¢: QUAL AFT ¢ Aok THe:r
A;THAe: Vak. T

(PACK)
At ¢ QUAL AFu:k AT Ro: T/ AbFT[/a] <€
AT S3aik. T

(UserVal). ..

Figure 7: Core Language — Static Semantics (Va)
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(App)
AFT~T BTy ADibe :5(n—om) ATikes
A;PF€162172

L T1

(LET-MUNIT)
AFT~TiBTy  ATikFe :%1lg  ATober:T
A;T'Hlet () =erinex: 7

(LET-MPAIR)

AFT~T1 8T, A;F1F6125(71®T2) A;To, x1:m, x0T Fea: T

A;TF let (z1,22) =e1 ines: T

(FsT) (SND)
A;I‘}—ezg(Tl@TQ) A;F"@Zg(’H@Tz)
A;THfste: 1

(ABORT)
A;THe:%0 Ab7:TYPE
A;T'F aborte: 7

A;T'F snde: 12

(CasE)

AFT~T1HTL, A;Fﬂ—e:&(neam) Ao, 2111 :€e1 0 T AT, 20:m2 €20 T

A;T' k- case e of inlxy = e ||inrze = ex: 7

(INST)
A;TFe: Vak. T Ak
AT el :7[/a]

(LET-PACK)

AT ~T1 BT AT Fer: 5304:,%47'1 AFTs A+ 1 : TYPE A,k Do, e Fea:mo

A;T'Hlet "z =e1 ines : T2

(Cory) (DroP) (WEAK)
A;THe:T AF7T=<R A;THe: T AFT=<A AFT~T1HT, AsThbke: T AFTy <A
A;TF copye: " (T®7) A;T F drope: "1g AsTkRe:T

(UserExp). ..

Figure 8: Core Language — Static Semantics (Vb)
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A.4 Model

PreType/Type Interpretation (Notation) — x {(k,q, W,v),...}

World Description (Notation) W =

CandAtom,

{(,a,W,v) € N x Quals x |J; ), CandWorldDesc; x CValues |
Jj<kAW € CandWorldDesc;}

X € CandUberType,, 9 CandAtomy,

W € CandWorldDesc, = ... (may use CandAtom; and CandUber Type,; for j < k)
CandAtom, = Ukzo CandAtomy,
X €  CandUberType, = 2C¢mdAtoms
Ukzo CandUberType,, <  CandUberType,,
W € CandWorldDesc, = ... (may use CandAtom. and CandUberType,,)
UkZO CandWorldDesci, C  CandWorldDesc,,
def ; . .
Ixle = AGa W) | j<kA(qWv)ex}
']k € CandUberType, — CandUberType,
def
W = (may use [x];)

W] € CandWorldDesc, — CandWorldDescy,

Plk,g,w) %

P(k,q,W) € N x Quals x CandWorldDesc., — P

Figure 9: Core Language — Semantic Interpretations (Ia)
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X

X

w

€

S

€

Atomr = {(J,q, W,v) € CandAtom | W € WorldDesc; NP(k,q, W)} C CandAtomy
PreType, = {x¢€ 24tk | (j g, W,v) € x. Vi < j. (i,q, |W]i,v) € x} C  CandUberType,
Type, = {x € PreType, | 3¢’ € Quals. V(_,q,_,_) € x. ¢ =q'} C  CandUberType,,
WorldDescy, = ... (may use Atom; and PreType; and Type; for j < k) C  CandWorldDescy

X € PreType
Ukzo PreType,,

X € Type
Ukzo Type,,

W € WorldDesc
Uy>o WorldDescy,

N1l 1Nl

Nl

{x € CandUberType,, | Vk > 0. | x|k € PreType,}
PreType C  CandUberType,,

{x € CandUberType,, | Vk > 0. |x]x € Type,}
Type C  CandUberType,,

{W € CandWorldDesc., | Yk > 0. |W ], € WorldDescy, }
WorldDesc C  CandWorldDesc,,

'] € PreType — PreType,

€ Type — Type,

|W|r € WorldDesc — WorldDescy,

Wi Or Wa
W1 Or Wa

w e W
w:kW
w: W
w: W

U
U

N x WorldDesc x WorldDesc — WorldDescy,

N x World x WorldDesc — P

Vk>0. w: W
World x WorldDesc — IP

WorldDesc

Figure 10: Core Language — Semantic Interpretations (Ib)
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K[QUAL] = Quals
K[PRETYPE] = PreType
K[TYPE] = Type
’C Hﬂxﬂ = -
Dle] = {0] True}
DA, k] = {dla—Z]| §€ D[A]AZ € K[x]}

Figure 11: Core Language — Semantic Interpretations (IT)
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g

g

|
|

: Al
T [HAS
AFa:k

7|
|[Al—q:QUAL

AF7 :TYPE  AF 7 : TYPE]

AF 71 — 1 : PRETYPE

T
|[A F1g : PRETYPE
AF7:TYPE A+ 1 :TYPE

A+ 71 ®m: PRETYPE

T
|[A F1g : PRETYPE
A1 : TYPE A+ 1 : TYPE

AF 71 ®m: PRETYPE

T
A+ 0:PRETYPE
AFT:TYPE AF 1 : TYPE

At 71 &7 : PRETYPE

T A,a:x b 7:TYPE
A FVYoa:k.7: PRETYPE

A a:k B 7: TYPE
At Ja:k. 7 : PRETYPE

7T [(UserPTy)...] 6

{(k,ge, We, Ax.e) | We € WorldDescy, A P(k, qe, We) A
Vi < k,Qa, Wa,va.
(4,qa, Wa,va) € T[AF 71 : TYPE]S A
(W ®; W,) defined =
Comp(i, (We ©; Wa), e[ve/z], T [AF 12 : TYPE]S)}

{(k, g, W, 0) | We |[Uo Jx}

{(k,q, W, (v1,02)) |
(k,q17W1,v1) ET[[Al—Tl :TYPE}](S/\
(k,q2,Wa,v2) € T[AF 12 : TYPE] S A
Q@1 2gNANGg 2 gA
(W1 O Wa =W)}

{(k, ¢, W, {)) | W € WorldDescy AP (k,q, W)}

{(k,q, W, {e1,e2))) | W € WorldDesci, AP(k,q, W) A
Vi < k.
Comp(z, |[W s, e1, T [AF 11 : TYPE]J) A
Comp(i, I_WJ“ 62,7 [[A oo TYPE]] 5)}

{4

{(k,q,W,inlv1) |
(k,q1,W,v1) € T[AF 7 : TYPE]§ A
@ 2 qpuU

{(k,q, W, inrvs) |
(k,q2, W,v2) € T[AF 2 : TYPE]§ A
g2 = q}

{(k,q, W,A.e) | W € WorldDescy, AP(k,q, W) A
VZ.
I eK[k] =
Vi < k.
Comp(i, |[W s, e, 7 [A,a:k =7 : TYPE] §[a — T])}

{(k,q, W,"v7) | W € WorldDesci, A\ P(k,q, W) A
37,q.
ZeK[&]A
¢ 2qN
Vi < k.
(i,¢', |W|i,v) € T [A, ek b 7 : TYPE] 8 — I}

Figure 12: Core Language — Semantic Interpretations (I11a)

30



{(k.q, W, ) |
g=T[AFE&:QUAL]S A
(k,q,W,v) € T [A F 7 : PRETYPE] 6}

s |AF€:QUAL  AFT:PRETYPE]
AF 7 TYPE

7 [(UserTerm)...]6 =
Comp(k, Ws, es, x) Vi < k,Wr,ws,wy,ey.
(Ws ©r W,.) defined A
Ws kg (Ws @k Wr) N
(wsves) —’ (wfvef) A
irred(wy, ef) =
IWy, q5.
(Wf Ok—j Wr) defined A
W ik—j (Wf Ok—j WT) A
(k—j.ar, Wy, er) € x

Figure 13: Core Language — Semantic Interpretations (IIIb)
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Ak e
AFT  AF7:TYPE
AFT, o7 = {(k,q, Wz —v]) |
o (k,qr,Wr,7) € G[AFT]d A
(k, g, We,v) € T[AF 7 : TYPE] S A
ar 2qNge 2 gA
(Wr O Wo = W)}
[A;TRe:7] = Vk>0.V6qr, Wr,y.

§ € D[A] A
(k,qr,Wr,~) € G[AFT] S =
Comp(k, Wr,~(e), T [A+ 7 : TYPE[6)

Figure 14: Core Language — Semantic Interpretations (IV)
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A.5 Trivial Facts
Fact 1
Vx € CandUberType,,. Yk > 0. | x|k C x.
Proof
Immediate from the definition of |- |x.
Fact 2
Vx € CandUberType,,. Yki,k2 > 0. [[X]ko)ts = [ X min(ks k)
Proof
Immediate from the definition of |-].
Fact 3
Type C PreType.
Proof
Let x € Type.
Note that x € CandUberType,, and Vk > 0. | x|r € Type,,, which follows from the definition of Type.
Note that Vk > 0. | x]x € PreType,,, which follows from Type,, C PreType,,.

Hence, x € CandUberType,, and Yk > 0. |x|r € PreType,,.
Thus, x € PreType, which follows from the definition of PreType.

Fact 4

PreType;, = {x € CandUberType,, |
V(j,q,W,v) € x. W € WorldDesc; NP(j,q, W) AVi < j. (i,q, |[W];,v) € x}.

Proof

Let
x € PreType,.

Hence,
x € 2% and  V(j,q, W,v) € x. Vi < j. (i,q, |W]i,v) € X,
which follows from the definition of PreType,,.
Note that
x € 284%™k AY(5,q, W, v) € x. Vi < 4. (i,q, |[W]i,v) € X
< V(4,9 W,v) € x. (J,q, W,v) € Atomy, A
V(j,q, W,v) € x. Vi < 4. (4,q, [W]i,v) € x
which follows from the definition of powerset
< V(4,9 W,v) € x. (4,q, W,v) € CandAtomi, AW € WorldDesc; A P(j,q, W) A
V(4 q, W,v) € x. Vi < 4. (4,q, [W]i,v) € x
which follows from the definition of Atomy
< V(4,9 W,v) € x. (4,q, W,v) € CandAtoms, A
Y(j,q, W,v) € x. W € WorldDesc; ANP(j,q, W) A
Y(j,q,W,v) € x. Vi <j. (i,q, |[W]i,v) € x
< V(4,9 W,v) € x. (4,q, W,v) € CandAtom, A
Y(j,q, W,v) € x. W € WorldDesc; ANP(j,q, W) AVi < j. (i,q,|W]i,v) € x
& x € 20endAtomi AY(5 g, W,v) € x. W € WorldDesc; ANP(j,q, W) AVi < 4. (5,q, [W]si,v) € x
which follows from the definition of powerset
& x € CandUberType, AY(j,q,W,v) € x. W € WorldDesc; ANP(j,q, W) AVi < j. (i,q, |W]s:,v) € x
which follows from the definition of CandUberType,,.
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Hence,
X € CandUberType,, and V(j,q, W,v) € x. W € WorldDesc; AP (j,q, W) AVi < j. (i,q, |[W]i,v) € x.

Thus

X € {x € CandUberType,, | V(j,q, W,v) € x. W € WorldDesc; NP (j,q, W) AVi < j. (i,q, |W]i,v) € x}
and
PreType,, C {x € CandUberType, | Y(j,q, W,v) € x. W € WorldDesc; NP(j,q, W)AVi < j. (i,q, |W ]s,v) € x}.

Let
X € {x € CandUberType,, | V(j,q, W,v) € x. W € WorldDesc; AN P(j,q, W) AVi < j. (i,q, |W]i,v) € x}.

Hence,
X € CandUberType,, and V(j,q, W,v) € x. W € WorldDesc; AP (j,q, W) AVi < j. (i,q, [W]i,v) € x.

Note that
X € CandUberType, AY(j,q, W,v) € x. W € WorldDesc; AN'P(j,q, W) AVi < j. (i,q, |W]si,v) € x
& x € 20endAtomi AY(5 g, W,v) € x. W € WorldDesc; AP(5,q, W) AV < 4. (3,q, [W]i,v) € x
which follows from the definition of CandUberType,
& V(j,q, W,v) € x. (4, ¢, W,v) € CandAtoms, A
Y(4,q, W,v) € x. W € WorldDesc; NP (j,q, W) AVi < j. (i,q, [W]:i,v) € X
which follows from the definition of powerset
< V(4,9 W,v) € x. (4,q, W,v) € CandAtomi AW € WorldDesc; A P(j,q, W) A
v(.77 q>VV7U) € X- Vi < J- (iaq> \_WJ’HU) €X
& V(j,q, W,v) € x. (J,q, W,v) € Atomy, AV(j,q,W,v) € x. Vi < j. (4,9, [W]i,v) € x
which follows from the definition of Atomy
& x € 2™k AY(4,q, W,v) € x. Vi < 4. (i,q, |[W]:,v) € x
which follows from the definition of powerset.
Hence,
x €2 and  V(j,q,W,v) € x. Vi <j. (i,q, [W]i,v) € x.
Thus
x € PreType,,
which follows from the definition of PreType,,, and

{x € CandUberType,, | V(j,q, W,v) € x. W € WorldDesc; ANP(j,q, W)AVi < j. (i,q, |W]i,v) € x} C PreType,,.
Fact 5

If (4,49, W,v) € x € PreType, then W € WorldDesc; and P(j,q, W) and Vi < j. (i,q, |W];,v) € x.
Proof

Let (j,q,W,v) € x € PreType.

Note that x € CandUberType, and Vk > 0. |x|x € PreType,, which follows from the definition of
PreType.

Note that (j,q, W, v) € |x], +1, which follows from the definition of |-]4.

Hence, (j,q, W,v) € |x]j+1 € PreType; ;.

By Fact 4, we conclude that W € WorldDesc; and P(j,q, W) and Vi < j.(4,¢, |W ];,v) € [|x]j+1]:-
By Fact 1, we conclude that Vi < j.(i,q, |[W];,v) € x.

Fact 6

34



If (j,q,W,v) € x € Type, then W € WorldDesc; and P(j,q, W) and ¥i < j. (i,q, |W];,v) € x.
Proof

Immediate from Fact 3 and Fact 5.
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A.6 Requirements

1. aprx-idem

H_WJIWJM = I_WJmin(klykz)'
2. models-closed

if j <k and w:x W, then w :; W.
3. models-aprx

w L W iff'LU k LWJk
4. join-closed

lf_] S k and (Wl @k; W2 = Wg), then (Wl @j W2 = LWgJ])
5. join-aprx

(W1 O Wa = Wa) iff (|[Wh]k Ox Wa = Wa) iff (W1 Ok |War = Wa) iff (|[Wi]k Ok [Walr = Wa).
6. join-commut

if (Wh O Wa = W3), then (Wa @ W1 = W3).

7. join-assocl
if (Wa ©r W3 = Wa3) and (W1 O Waz = Wha3),
then there exists Wiz such that (W1 ©r Wa = Wiz) and (Wiz ©Or W3 = Wias).

8. join-assocr
if (W1 @k W1 = Wh2) and (Wiz Ok W3 = Whas),
then there exists Was such that (We @ W3 = Was) and (Wi O Wag = Wias).

9. join-unit-left
Uo Ok W = [W k).

10. qualpred-closed
if j <k and P(k,q, W), then P(j,q, W).

11. qualpred-aprx
P(k,q, W) iff P(k,q, [W]x).

12. qualpred-join
if P(k,q,W1) and P(k,q, W2) and (W1 O Wa = W3), then P(k,q, W3).

13. qualpred-qualsub
if P(k,q, W) and q < ¢', then P(k,q',W).

14. qualpred-unr-unit
P(kv Ua“@)‘

15. qualpred-rel-join
if P(k,R,W), then (W ©r W) = |W |&).

16. qualpred-aff-models

if P(k,A,W1) and (W1 Ox W2 = W3) and w : W3, then w :x Wa.
17. qualpred-lin

Pk, L, W).

Figure 15: Core Language — Requirements

36



A.7 Proofs
A.7.1 Miscellaneous
Lemma 7 (Core Language: Type-level substitution)
Let AJA' 1yt Kg.
If Ak, A" F ok, then A A" F iy /] : k.
If A ik, A" T, then A A" FTee/al.
If A ik, A" F & <&, then A A F & ia/a) = Efta/ql.
If A ke, A'E 1 <& then A A F Tlig/a 2 €[a/al.
If Ajacka, A'ET 2 &, then A, A" F T /a] = ElLa/ql.
If Ak, AT e 7, then A, AT o /o] b elia/a] : Tlia/al.

S vt o oo~

Proof (Core Language: Type-level substitution)
Let AA'F 1y @ Kq-

1. Proceed by induction on the derivation A, A’ ¢ : k.
Case (UserPTy)... :
Case (UserTerm)... :
End Case

2. Proceed by induction on the derivation A, A’ T

3. Proceed by induction on the derivation A, A’ & < &.
Case A, ke, A FE:QUAL A aikg, A FE:QUAL A, aikg, A FE: QUAL.
A ke, FU=<E ' Aaka, A'FELL T Ajaike, AFE<E
Applying Lemma 7.1 to A, a:kq, A’ F € : QUAL, we conclude that A, A’ F £ /a] : QUAL.

Hence,
AA F€a/a) : QUAL  AA'F €[ia/a) : QUAL  AJA' - €ia/a) : QUAL
AN FU <€ e /a) AN F e /a) 2L AA"F Eea/a) 2 Elta /]
Case n3e : Immediate.

A aka, A q1 < g2
A, ko, A€ 2 € A aka, AFE <&

Ak, A€ 2 & '
Applying the induction hypothesis to A, a:kqe, A’ F & =< &, we conclude that A, A’ +
&ilta/0] 2 ta/al.
Applying the induction hypothesis to A, a:kq, A’ F & =< &, we conclude that A, A’ +
{ea/a] 2 &fta/al.

Hence

Case

A A Féfa/a] 2€a/a] A A FE /] X alia/o]
AN F & ia/a] X E2lta/0]

End Case

4. Proceed by induction on the derivation A F 7 < &.
A, a:kq, AN F71: TYPE
Case ; :
A, ko, A"FT <L
Applying Lemma 7.1 to A, a:kq, A’ F 7 : TYPE, we conclude that A, A" F [ /a] : TYPE.
Hence,

A A" Tea/a] : TYPE
AN F Tl /o] <L
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A, a:kq, N 7 : PRETYPE A, ko, A FE < £
A, kg, A F & <& .

Applying Lemma 7.1 to A, a:kq, A" = 7 : PRETYPE, we conclude that A, A’ - 7'[1,/a] :

PRETYPE.

Applying Lemma 7.3 to A, aikg, A’ F & < €, we conclude that AJ A" F &'vy/a) = &[La/al.

Note that &7 [tq/a] = &le/oF 1, /al.

Hence,

Case

A, A" -7 [1a/a] : PRETYPE AA o)) = Ea/ ]
AA FEF 1o /o] = E[ta/a]

End Case
5. Proceed by induction on the derivation A FT' < €.
6. Proceed by induction on the derivation A;T' Fe: 7.
Case (Userval)... :

Case (UserExp)... :
End Case
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A.7.2 Validity of Kinding Rules
Lemma 8 (Core Language: 7 [AF ¢:x]d € K[x])

Let § e D[A] and Ak ¢ : k.
Then T [AFv: k] 6 € K[k].

Proof (Core Language: 7 [AF ¢t: k] € K[k])

Recall that K [QUAL] = Quals = {U, R, A, L}; hence, for kK = QUAL, it suffices to prove the following:
T[AFEE:QUAL]S € Quals.

Recall that I [PRETYPE] = PreType; hence, for k = PRETYPE, it suffices to prove the following;:
T[A+F7:PRETYPE]§ € PreType.

By the definition of PreType, it suffices to prove the following:

T [AFT:PRETYPE] ¢ € CandUberType,, N
Vk > 0. |T[AF7: PRETYPE] 6], € PreType, .

By Fact 4, it suffices to prove the following:

T [AF7:PRETYPE] 6 € CandUberType,, N
Vk > 0. |T[AFT:PRETYPE]S|r € CandUberType, A
V(j,q, W,v) € |T [A+T:PRETYPE] . W € WorldDescj AP(j,q, W) A
Vi <. (i,q,|W]i,v) € [T [AF7: PRETYPE] 4.
By the fact that Vk > 0. |-|x € CandUberType,, — CandUberType,, it suffices to prove the following:
T [AF7T:PRETYPE] 6 € CandUberType,, N

Vk > 0.V(j,q,W,v) € |T[A+T:PRETYPE]d]|x. W € WorldDesc; AP (j,q, W) A
Vi < j. (i,q, [W]i,v) € |T[AF 7 : PRETYPE] 6.

By the definition of |-], it suffices to prove the following:

T [AF7T:PRETYPE]§ € CandUberType,, N
Y(j,q,W,v) € T[A+7T:PRETYPE] . W € WorldDesc; A P(j,q, W) A
Vi < 3. (i,q, |[W]i,v) € T[AF 7 : PRETYPE] 6.

By the definition of CandUberType,,, it suffices to prove the following:

T [AF7: PRETYPE] § € 2CamdAtome A
Y(j,q,W,v) € T[A+7T:PRETYPE] . W € WorldDesc; A P(j,q, W) A
Vi < j. (i,q, |[W]i,v) € T [A 7 : PRETYPE]§.

By the definition of powerset, it suffices to prove the following:

Y(j,q,W,v) € T [A+7: PRETYPE]S. (4,q, W,v) € CandAtom., A
Y(j,q,W,v) € T[A+7T:PRETYPE] . W € WorldDesc; A P(j,q, W) A
Vi <. (i,q, |[W]i,v) € T[AF 7 : PRETYPE] 6.

By the definition of CandAtom,,, it suffices to prove the following;:

Y(j,q,W,v) € T[A+7:PRETYPE] . 3k > 0. (j, q, W,v) € CandAtomy A
V(j,q,W,v) € T[A+7T:PRETYPE] . W € WorldDesc; AP(j,q, W) A
Vi < j. (i,q, |W]i,v) € T [A 7 : PRETYPE] 4.

By the definition of CandAtomy, it suffices to prove the following:

V(j,q,W,v) € T[AF7:PRETYPE]S. 3k > 0. j e NAJ < kAq€ Quals A
W e Ui<k CandWorldDesc; NW € CandWorldDesc; A
v € CValues N\
Y(j,q,W,v) € T[A+ T :PRETYPE] 6. W € WorldDesc; A P(j,q, W) A
Vi < j. (i,q, |W]i,v) € T[AFT: PRETYPE] 6.
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By logical equivalence, it suffices to prove the following;:

V(j,q,W,v) € T[AF7:PRETYPE]6. j € NAg € Quals Nv € CValues N\W € CandWorldDesc; A
dk>0.j<kAW € U¢<k CandWorldDesc; N\

V(j,q,W,v) € T[A+7:PRETYPE] 6. W € WorldDesc; AP(j,q, W) A
Vi < j. (i,q, |[W]i,v) € T[AF 7 : PRETYPE] 6.

Taking k = j + 1, it suffices to prove the following;:

V(j,q,W,v) € T[AF+7:PRETYPE]6. j € NAg € Quals Nv € CValues N\W € CandWorldDesc; A
J<ji+1IAW e Ui<j+1 CandWorldDesc; A

V(j,q,W,v) € T[A +7: PRETYPE] 6. W € WorldDesc; A P(j, q, W) A
Vi <j. (4,9, [W]i,v) € T[AFT: PRETYPE]S.

Since CandWorldDesc; C Ui<j+1 CandWorldDesc; and j < j + 1, it suffices to prove the following:

V(j,q,W,v) € T[A+7T:PRETYPE]J. j € NA g € Quals Nv € CValues NW € CandWorldDesc; N
V(j,q,W,v) € T[A+7T:PRETYPE] 6. W € WorldDesc; AP(j,q, W) A
Vi < j. (i,q, |W]i,v) € T [A 7 : PRETYPE] 6.
By logical equivalence, it suffices to prove the following:
V(j,q,W,v) € T[A+7:PRETYPE]S. j € NA g € Quals Nv € CValues N\W € CandWorldDesc; A
W € WorldDesc; AP (j,q, W) A
Vi < j. (i,q, |W]i,v) € T[A+7: PRETYPE] 4.
Since WorldDesc; € CandWorldDesc;, it suffices to prove the following:
Y(j,q,W,v) € T[A+7T:PRETYPE] 4. j € NA g € Quals Av € CValues A
W € WorldDesc; AP (j,q, W) A
Vi < j. (i,q, |W]i,v) € T [A 7 : PRETYPE] 4.
By change of variables, it suffices to prove the following:
V(k,q,W,v) € T[AF7T:PRETYPE] 4. k € NA q € Quals Av € CValues A
W € WorldDesc,, A P(k,q, W) A
Vi <k. (j,q,|W];,v) € T[AF7: PRETYPE]S.
Since k € N, ¢ € Quals, and v € CValues is obvious in all cases, it suffices to prove the following:

V(k,q,W,v) € T [A+7: PRETYPE]S. W € WorldDescy A P(k,q, W) A
Vj <k. (j,q,|W|;,v) € T[A+7: PRETYPE].

Recall that K [TYPE] = Type; hence, for k = TYPE, it suffices to prove the following:
T[AF7:TYPE] O € Type.

By the definition of Type, it suffices to prove the following:
T[AF 7:TYPE]S € CandUberType,, A
Vk > 0. [T [AF 7:TYPE]S]|x € Type,.
By the definition of Type,, it suffices to prove the following:
T[AF7:TYPE]S € CandUberType,, A
Vk>0. |T[AF7:TYPE] S|k € PreType, A
3¢ € Quals. (., q,-,-) € |T[A+7:TYPE]d]k. ¢g=¢'.
By logical equivalence, it suffices to prove the following:

T[AF7:TYPE]S € CandUberType,, A
Vk > 0. |T[AF 7:TYPE]d]|r € PreType, A
Vk > 0. 3¢ € Quals. V(.,q,-,-) € |T[A+7:TYPE]S]|r. ¢q=¢'.

By the definition of PreType, it suffices to prove the following:
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T[AF 7:TYPE]S € PreType A
Vk > 0.3q¢ € Quals. V(_,q,-,-) € |T[AF7:TYPE]§x. g=¢ .
By the definition of | -], it suffices to prove the following:
T[AFT:TYPE]6 € PreType A
3¢" € Quals. V(_,q,-,-) e T[A+T:TYPE]S. q=¢'.
By logical equivalence, it suffices to prove the following;:

3¢’ € Quals. T[A '+ 7: TYPE] S € PreType A
Y(.,q,--) ET[AF7:TYPE]S. g =4’

By the reasoning above for 7 [A 7 : PRETYPE] é € PreType, it suffices to prove the following:
3¢ € Quals. Y(k,q,W,v) € T[AF 1 :TYPE]S. W € WorldDescy A P(k,q, W) A
Vi < k. (j,q,[W];,v) € T [A+7: PRETYPE]§ A
V(,q, ) €T[AFT:TYPE]S qg=¢q'.
By logical equivalence, it suffices to prove the following:
3¢’ € Quals. V(k,q,W,v) € T[AF 7:TYPE]S. W € WorldDesci, A P(k,q, W) A
Vi <k (G,q,|[W];,v) € T[AF7T: PRETYPE]S A
a=q.
Proceed by induction on the derivation A+ ¢ : k.
(VARKN)
ak € A )
Ata:r’
Note that §(a) € K [x], which follows from a:x € A and § € D [A].
Hence, 7 [AF o : TYPE] 6 = §(a) € K [«].
(QuaL)
At q:QUAL
Hence, 7 [AF ¢ : QUAL] 6 = g € Quals.
(FNPTY)
A+ 71 : TYPE A+ 1 :TYPE
Case :
A7 —o1y: PRETYPE
Recall that

Case

Case

AF 71 : TYPE A+ 1 : TYPE
T 6=

AF 71 — 1 : PRETYPE
{(k,gc, We,Az.€) | We € WorldDescy, A P(k,qe, We) A
Vi <k, qa, Wa, Va.

(%, Ga, Wa,va) €T [AF 11 : TYPE]S A

(We ®; W,) defined =

Comp(t, (We ©; Wa), e[va/z], T [AF 12 : TYPE] §)}
Consider arbitrary (k,q, W,v) € T [AF 1 — 7 : PRETYPE] 6.
Hence, v = Az.e and W € WorldDescy, and P(k,q, W).
We are required to show that

o W € WorldDescy, which follows from above, and
e P(k,q, W), which follows from above.
Consider arbitrary j < k.

We are required to show that (j,q, |[W|;,Az.e) € T [AF 1 — 75 : PRETYPE] 6.
Note that |W]; € WorldDesc;, which follows from |-|; € WorldDesc — WorldDesc;.

Note that P(j, ¢, |W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).

Consider arbitrary i, q,, W, and v, such that
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o i < 7,

o (i,qq, Wa,va) € T[AF 71 : TYPE] S, and,

o ([W]; ® W,) defined.
We are required to show that Comp(i, (|[W]; ®; W), e[va/z], T [AF 12 : TYPE] 9).
Instantiate (k,q, W, Az.e) € T [A+ 11 — 7o : PRETYPE] ¢ with 4, ¢,, W,, and v,. Note that

e | < k, which follows from ¢ < j and j < k,

o (i,Ga, Wa,ve) € T [AF 71 : TYPE] 0, which follows from above, and

o (W ®; W,) defined, which follows from Req 5 (join-aprx) and Req 1 (aprx-idem) and ¢ < j

and (|[W]; ®; W,) defined, which in turn follows from above.
Hence, Comp(i, (W ©; W,), e[ve/x], T [A F 72 : TYPE]9).
Note that (|[W],; @; W,) = (W ®; W,), which follows from Req 5 (join-aprx) and Req 1 (aprx-idem)
and ¢ < j and (|W]; ®; W,) defined, which in turn follows from above.
Hence, Comp(%, (|W]; ©; Wa), e[ve/z], T [A F 72 : TYPE] ).
(MUNITPTY)

AF 1g : PRETYPE
Recall that

Case

Consider arbitrary (k,q, W,v) € T [A+ 1g : PRETYPE] 4.
Hence, v = () and W = |Ug | k.-
We are required to show that

e W € WorldDescy, which follows from Uz € WorldDesc and |-|, € WorldDesc —
WorldDescy,

e P(k,q, |Us k), which follows from Req 14 (qualpred-unr-unit), Req 13 (qualpred-qualsub) and
U =< ¢, and Req 11 (qualpred-aprx).

Consider arbitrary j < k.
We are required to show that (j,q, [W|;,()) € T [A+ 1g : PRETYPE] §. Note that

e |W]; = |Us];, which follows from Req 1 (aprx-idem) and j < k and W = |Ug |1, which in
turn follows from above.
(MPAIRPTY)
AFT1 : TYPE A}_TQZTYPE.
At 7 ® 12 : PRETYPE ’
Recall that
I[A Frn:TYPE  Ab7: TYPEH

AT Q®T: PRETYPE

Case

6= {(k7q7W7 <’l)1,’l)2>)|
(k,qi,W1r,v1) € T[AF 11 : TYPE]S A
(k,q2, W2,v2) € T[AF 75 : TYPE] S A
g1 2gqAgq2 =X gA
(W1 O W2 =W)}

Consider arbitrary (k,q, W,v) € T [A+ 71 @ 72 : PRETYPE] 4.

Hence, v = (vi,v9) and (k,q1,Wy,v1) € T[AF 7 :TYPE]S and (k,q2, Wa,v3) €
T[AF 72 : TYPE]é and ¢1 = g and ¢2 < g and (W O Wo = W).

Applying the induction hypothesis to A F 71 : TYPE, we conclude that 7 [A+ 7 : TYPE] S €
Type.
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Applying Fact 6 to (k,q1,Wi,v1) € T[AF 7 :TYPE]§ € Type, we conclude that Wy €
WorldDescy, and P(k,q1, W) and Vi < k. (j,q1, [W1];,v1) € T[AF 7 : TYPE] 4.
Note that P(k, g, W7 ), which follows from Req 13 (qualpred-qualsub) and ¢; < q.
Applying the induction hypothesis to A F 75 : TYPE, we conclude that 7 [A+ 7 : TYPE] S €
Type.
Applying Fact 6 to (k,q2,Wa,v2) € T[AF 7 :TYPE]§ € Type, we conclude that Wy €
WorldDescy, and P(k, g2, W2) and Vi < k. (j, g2, [Wa];,v2) € T [AF 72 : TYPE] 4.
Note that P(k, g, Wa), which follows from Req 13 (qualpred-qualsub) and ¢ < q.
We are required to show that

o W € WorldDescy,, which follows from Wy € WorldDescy, and Wy € WorldDescy, and (-®y ) €

WorldDesc x WorldDesc — WorldDescy,, and
o P(k,q, W), which follows from Req 12 (qualpred-join).

Consider arbitrary j < k.
We are required to show that (j,q, [W];, (vi,v2)) € T [AF 7 ® 72 : PRETYPE] 6. Note that
o (jyq1, [Wh]j,v1) € T[AF 7 : TYPE] 4, which follows from above, noting that j <k,
® (4,q2, [Wa]j,v2) € T[AF 7 : TYPE] 6, which follows from above, noting that j < k,
* ¢ =g,
® g2 X ¢, and
o (|W1];0;|Wa]; = |W];), which follows from Req 5 (join-aprx) and (W1 ©r Wy = W), which
in turn follows from above.
(AUNITPTY)
AF 1g : PRETYPE
Recall that

Case

T ={(k ldD k
|[AI—1®:PRETYPEH6 (k.. W, () | W € WorldDesci. A P(k,q, W)}

Consider arbitrary (k,q, W,v) € T [AF 1g : PRETYPE] 6.
Hence, v = (()) and W € WorldDescy, and P(k,q, W)
We are required to show that

o W € WorldDescy, which follows from above, and
e P(k,q, W), which follows from above.
Consider arbitrary j < k.
We are required to show that (j,q, [W];, ())) € 7 [AF 1g : PRETYPE] 4. Note that
e |W|; € WorldDesc;, which follows from |-]; € WorldDesc — WorldDesc;, and
e P(j,q,|W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).

(APAIRPTY)
A1 : TYPE A)—TQ:TYPE_

AF T ® 7 : PRETYPE
Recall that
|[A Fr:TYPE AbF1: TYPE]]

Case

0 ={(k,q, W, {(e1,e2))) | W € WorldDesci, AP (k,q, W) A
Vi < k.
Comp(i, |[W i, e, T [AF 71 : TYPE]O) A
Comp(i, [W]i,e2, T [AF 12 : TYPE]§)}

At 71 ®7m: PRETYPE
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Consider arbitrary (k,q, W,v) € T [A+ 71 & 72 : PRETYPE] 6.
Hence, v = (e, e2)) and W € WorldDescy, and P(k,q, W).
We are required to show that

o W € WorldDescy, which follows from above, and
e P(k,q, W), which follows from above.

Consider arbitrary j < k.
We are required to show that (j,q, [W];, (e1,e2))) € T [AF 7 &5 : PRETYPE] 4.
Note that |W|; € WorldDescj, which follows from |-|; € WorldDesc — WorldDesc;.
Note that P(j, ¢, |W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).
Consider arbitrary ¢ such that
o ;< J.
We are required to show that  Comp(i, |[[W];li,e1, T [AF 7 : TYPE]S) and
Comp(i, | |[W];]i,e2,T [AF 75 : TYPE] ).
Instantiate (k,q, W, {(e1,e2))) € T [AF 71 & 72 : PRETYPE] § with 1.
Note that
e i < k, which follows from i < j and j < k.
Hence, Comp(i, |[W |;,e1, T [AF 71 : TYPE]§) and Comp(i, |[W s, e, 7 [A F 7o : TYPE]§).
Note that ||[W];]; = |[W];, which follows from Req 1 (aprx-idem) and i < j.
Hence, Comp(%, | [W ;i e1, T [AF 7 : TYPE]S) and Comp(i, [ |[W|;]4,e2,7 [AF 72 : TYPE] ).
(VoipPTY)

AF0:PRETYPE'
Recall that

Case

T 0={}
A+ O0:PRETYPE

Vacuous, as there does not exist (k,q, W,v) € T [A+ 0: PRETYPE]é.

(SumMPTY)
AT :TYPE A+ 7o : TYPE
AF 7@ : PRETYPE
Recall that
|[A Fr:TYPE Ab7: TYPE]‘

AFT® 71 : PRETYPE

Case

0 ={(k,q,W,inlvy) |
(k,q1,W,v1) € T[AF 7 : TYPE]dAqu < g} U
{(k,q, W, inrv) |
(kyq2, W,v2) € T[AF 12 : TYPE]S A g2 < q}

Consider arbitrary (k,q, W,v) € T [A+ 71 & 72 : PRETYPE] 6.
Hence, v = inl vy or v = inrvs.

Case v = inlw;:
Hence, (k,q1,W,v1) € T[AF 71 : TYPE]§ and ¢; < q.
Applying the induction hypothesis to A F 7 : TYPE, we conclude that 7 [A F 7, : TYPE]§ €
Type.
Applying Fact 6 to (k,q1,W,v1) € T[AF 7 : TYPE]J € Type, we conclude that W €
WorldDescy, and P(k,q1, W) and Vj < k. (j,q1, |[W];,v1) € T[AF 7 : TYPE] 6.
Note that P(k, ¢, W), which follows from Req 13 (qualpred-qualsub) and ¢1 < g.
We are required to show that

o W € WorldDescy,, which follows from above, and
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e P(k,q, W), which follows from above.
Consider arbitrary j < k.
We are required to show that (j,q,|W|;,inlvi) € 7 [AF 7 & 7 : PRETYPE] 6. Note that
e (4,q1, [ W]j,v1) € T[AF 7 : TYPE] S, which follows from above, noting that j < k, and
® g1 =q.
Case v = inr vs:
Symmetric.
End Case
(ALLPTY)
A,a:k F7:TYPE
AF Va7 : PRETYPE'
Recall that
T A a:kE7: TYPE
I[A FYak. T PRETYPEH

Case

0 ={(k,q,W,A.e) | W € WorldDesci, AP (k,q, W) A
VI.
T eK[x] =
Vi < k.
Comp(i, |[W s, e, T [A,a:k =7 : TYPE] §[ae — I])}
Consider arbitrary (k,q, W,v) € T [A F Vo:s. 7 : PRETYPE] 4.
Hence, v = A.e and W € WorldDescy, and P(k,q, W).

We are required to show that

e W € WorldDescy,, which follows from above, and
e P(k,q, W), which follows from above.

Consider arbitrary j < k.

We are required to show that (j,q, [W|;,A.e) € T [A+ Va:k. 7 : PRETYPE] 6.

Note that |W]; € WorldDesc;, which follows from |-|; € WorldDesc — WorldDesc;.

Note that P(j,q, |W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).
Consider arbitrary Z and ¢ such that

o 7 € K[k], and

o | < j.
We are required to show that Comp(i, [|[W],]i,e, T [A, a:k = 7 : TYPE] §[ae — T}).
Instantiate (k,q, W,A.e) € T [A F Va:k. 7 : PRETYPE] § with Z and ¢. Note that

e 7 € K[x], which follows from above, and
e i < k, which follows from i < j and j < k.

Hence, Comp(i, |[W |;,e, T [A, a:k = 7 : TYPE] [ — Z]).
Note that |W]; = [[W];]i, which follows from Req 1 (aprx-idem) and i < j.
Hence, Comp(s, | [W ;i e, T [A,a:k F 7 : TYPE] 0[a — Z]).
(ExPTY)

A,a:k F7: TYPE )
A F Joa:k. 7 : PRETYPE
Recall that

T|[ A,a:xE7:TYPE ]]
A F Jazk. 7 : PRETYPE

Case

0 ={(k,q,W,"07) | W € WorldDesci, A P(k,q, W) A
I7,q.
ZeK[k]A
¢ =2qn
Vi <k. (i,q, [Wli,v) € T[A,a:k 7 : TYPE] §[a — ]}
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Consider arbitrary (k,q, W,v) € T [A F Jo:k. 7 : PRETYPE] 4.
Hence, v = "v, " and W € WorldDescy, and P(k,q, W) and there exists Z, and ¢/, such that

e 7, € K[x],

e ¢/, < ¢, and

o Vi<k. (i,¢,, [ W]i,va) €T [A,c:k b 7 : TYPE] §[a — Z,].
We are required to show that

o W € WorldDescy, which follows from above, and
e P(k,q, W), which follows from above.

Consider j < k.

We are required to show that (j,q, [W|;,"v.") € T [A F 3azk. 7 : PRETYPE] 6.

Note that |W|; € WorldDesc;, which follows from |-|; € WorldDesc — WorldDesc;.

Note that P(j,q, |W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).
Take Z =7, and ¢’ = ¢/,. Note that

e TeK[r] = Z, € K[x], which follows from above,
e ¢ <q = ¢, = q, which follows from above, and
o Vi< j. (4,¢, [[W];li,va) € T[A,cck 7 : TYPE] §la — TI:
Consider arbitrary i < j.
We are required to show that (¢,¢,, [[W];]i,va) € T [A, kb 7: TYPE] §jac — Z,].
Instantiate Vi < k. (i,q), |W]i,va) € T [A, ik F 7 : TYPE] 0] — Z,,] with ¢, noting that
i < k, which follows from i < j and j < k.
Hence, (i,4.,, |W i, va) € T [A,czk = 7 : TYPE] §[a — T,
Note that |W]; = ||W];];, which follows from Req 1 (aprx-idem) and i < j.
Hence, (i,q., [ [W];]i,va) € T [A,a:k F 7 : TYPE] §[av — Z].
Case (UserPTy)... :
(TYPE)
AF¢: QUAL A+ 7T :PRETYPE
AFS7:TYPE :
Recall that
. |[A FE:QUAL  AbT: PRETYPE]‘
A7 TYPE

Case

6 ={(k,q,W,v) |

g=T[AF&:QUAL]S A

(k,q,W,v) € T [A F 7 : PRETYPE] 6}
Applying the induction hypothesis to A + & : QUAL, we conclude that 7 [AF £ : QUAL]S €
Quals.
Take ¢ =T [AF & : QUAL] 6.
Consider arbitrary (k,q,W,v) € T [AF 7 : TYPE] 6.
Hence, ¢ = T [AF & : QUAL] ¢ and (k,q, W,v) € T [A+ 7T : PRETYPE] 4.
Applying the induction hypothesis to A F 7 : PRETYPE, we conclude that
T[AF7T:PRETYPE] S € PreType.

Applying Fact 5 to (k,q,W,v) € T[AF7:PRETYPE]d € PreType, we conclude that W €
WorldDescy, and P(k,q, W) and ¥ < k. (j,q, [W];,v) € T [A+7: PRETYPE]J.

We are required to show that

o W € WorldDescy, which follows from above,
e P(k,q,W), which follows from above,
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o V<k. (jq |[W];,v)€eT[AFT:PRETYPE]S, which follows from above, and
e ¢ =T][AF &:QUAL]J, which follows from above.

Case (UserTerm)... :
End Case
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Lemma 9

Let 6 € D[A] and AFT.
Then forall (k,q,W,~) € G[AFT]3,
W € WorldDescy, and P(k,q, W) and if j < k, then (j,q, |[W];,v) € G[AFT]o6.

Proof
Proceed by induction on the derivation A +T'.

Case

Recall that

gﬂwﬂh{(k?q,mwn W= Lo Ju)

Consider arbitrary (k,q, W,v) € G[A |- o] 4.
Hence, W = |Ug | and v = 0.
We are required to show that

o |Up|r € WorldDescy, which follows from Uz € WorldDesc and |-]r, € WorldDesc —
WorldDescy,

e P(k,q, |Us k), which follows from Req 14 (qualpred-unr-unit), Req 13 (qualpred-qualsub) and
U =< ¢, and Req 11 (qualpred-aprx).

Consider arbitrary j < k.
We are required to show that (j,q, [W];,0) € G[AF e] 4. Note that
e |W],; = [Us],;, which follows from Req 1 (aprx-idem) and j < k and W = |Ug |, which in
turn follows from above.

AFT AFT: TYPE.
AFT,z:71 '
Recall that

Case

6 ={(k,q, W,y[z — v]) |
(k,qr,WF,'y) € g[[A = F]]5/\
(ky o, Wa,v) € T[AF 7: TYPE] 6 A
ar 2qN g 2gA
(Wr Ok Wy = W)}
Consider arbitrary (k,q, W,v) € G[A T, z:7] 6.
Hence, v = m[z — v] and (k,q1,W1,71) € G[AFT] ¢ and (k, gy, Wy,v) € T[AF 7:TYPE]S
and ¢; < q and ¢, =< g and (W O W, = W).
Applying the induction hypothesis to A + T" and (k,q1, W1,71) € G[A FT] 4, we conclude that
W1 € WorldDescy, and P(k,q1, W) and Vj < k. (4,q1, |[W1]j,m) € G[AFT]6.
Note that P(k, g, W1), which follows from Req 13 (qualpred-qualsub) and ¢; < ¢.
Applying Lemma 8 to A + 7 : TYPE, we conclude that 7 [A F 7: TYPE] ¢ € Type.
Applying Fact 6 to (k,qu, We,v) € T[AF7T:TYPE]d € Type, we conclude that W, €
WorldDescy, and P(k, q,, W,) and Vj < k. (§, ¢z, [Wz]j,v) € T [AF7: TYPE] 6.
Note that P(k, ¢., W), which follows from Req 13 (qualpred-qualsub) and ¢, =< g.
We are required to show that
o W € WorldDescy,, which follows from Wy € WorldDescy, and W,, € WorldDescy, and (-© ) €
WorldDesc x WorldDesc — WorldDescy,, and
e P(k,q,W), which follows from Req 12 (qualpred-join).

AT A 71:TYPE
AFT,z:1
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Consider arbitrary j < k.
We are required to show that (j,q, [W];, 7]z — v]) € G[AF T, z:7] . Note that
e (4,q1,[Wh]j,m) € G[A T4, which follows from above, noting that j < k,
(4,9, [ Wa)j,v) € T[AF 7: TYPE] 4, which follows from above, noting that j < k,
* ¢1 =g,
q2 = q, and
(|W1];©; |Wy]; = |W];), which follows from Req 5 (join-aprx) and (W1 ©, W, = W), which
in turn follows from above.

End Case
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Lemma 10 (Core Language: 7 [AF ¢: k] d (type-level substitution))

Let A;A"F 1yt ko and § € DA, A].
Then T [A, ko, A'F oK) 0[a— T[AA F iy ko] 0] =T [A A"+ ifea/a] : K] 6.

Proof (Core Language: 7 [AF ¢: k] ¢ (type-level substitution))
Let AJA"F 1y ko and 6 € DA, A'].

Proceed by induction on the derivation A, a:kq, A’ o : k.
Case (UserPTy)... :

Case (UserTerm)... :
End Case
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A.7.3 =< Properties
Fact 11

IfAFEE& <&, then AF & : QUAL and A+ & : QUAL.
Proof

Proceed by induction on the derivation A F & < &.

Lemma 12 (Core Language: Qual sub-qual)

Let § € D[A].
IFAFE & and u =T [AF & : QUAL]S and go =T [AF & : QUAL] S , then ¢1 < ¢o.

Proof

Proceed by induction on the derivation A F & =< &.
AF & QUAL
AFUZ&
Hence, g =T [AF U: QUAL]o = U.
Applying Lemma 8 to A F & : QUAL,
we conclude that g2 = 7 [A F & : QUAL] § € K [QUAL] = Quals.
Note that U < g2 (for any g2 € Quals).

Case

=
Abqp <qp
Hence, ¢ =T [AF g1 : QUAL] 6 = ¢} and g2 = T [A F ¢} : QUAL] 6 = 5.
Note that ¢; = g2, which follows from ¢] < ¢ and ¢; = ¢} and g2 = ¢5.
Ak €& : QUAL
AFe& <L
Hence, g2 = T [AFL: QUAL]J = L.
Applying Lemma 8 to A + &; : QUAL,
we conclude that 3 = 7 [A F & : QUAL] § € K [QUAL] = Quals.
Note that ¢; < L (for any ¢1 € Quals).
Ak ¢ : QUAL
AFESE
Applying Lemma 8 to A - £ : QUAL,
we conclude that ¢ = ¢ = ¢ =7 [AF £ : QUAL] S € K [QUAL] = Quals.
Note that ¢ < ¢ (for any ¢ € Quals).
AF& ¢ Arg <&
A& X6 '
Let ¢ =T [AF & : QUAL] .
Applying the induction hypothesis to A & < £, instantiated with ¢; and ¢’, we conclude that
@ =q.
Applying the induction hypothesis to A &' < &, instantiated with ¢’ and g2, we conclude that
7 = q.
Hence, g1 =< g2, which follows from ¢; < ¢’ and ¢’ < ¢o.
End Case

Case

Case

Case

Case

Corollary 13 (Core Language: Qual sub-qual)
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Let § € D[A].
IfAFE & and n =T [AF & : QUAL]S and o = T [AF & : QUAL] 6 and P(k, 1, W),
then P(k,qa, W).

Proof

Applying Lemma 12 to A & <& and g1 =T [AF & : QUAL] S and go = T [AF & : QUAL] 6 , we
conclude that ¢; < ¢o.

Hence, P(k, g2, W), which follows from Req 13 (qualpred-qualsub) applied to P(k, q1, W) and g2 < 2.
Fact 14

IfAFRT=XE, then A7 :TYPE and A ¢ : QUAL.
Proof

Proceed by induction on the derivation A -7 < ¢,

Lemma 15 (Core Language: Type sub-qual)

Let § € D[A].
IfAFT=¢ and (k,q,W,v) € T[AF7:TYPE]S and ¢ =T [AF & : QUAL] G, then ¢ = ¢'.

Proof (Core Language: Value context sub-qual)

Proceed by cases on the derivation A -7 < &.
AF7:TYPE
TAFT<L
Applying Lemma 8 to A+ 7 : TYPE, we conclude that 7 [A F 7: TYPE]§ € Type.
Hence, ¢ € Quals, which follows from (k,q, W,v) € T [AF 7: TYPE]§ € Type.
Note that ¢ < L (for any g € Quals).
AF7:PRETYPE AFe=<¢
AF&r<é :

Case

Case

Note that
(k,q,W,v) € T [A+ 7 : TYPE] §
={(k,q,W,0) |
q=T[AF&: QUALJS A
(k,q,W,v) € T [A+7: PRETYPE] 6}

Hence ¢ =7 [AF & : QUALJ 6.
Applying Lemma 12 to A F £ < &', instantiated with ¢ and ¢’, we conclude that ¢ < ¢'.
End Case

Corollary 16 (Core Language: Type sub-qual)

Let 6 e D[A].
IFAFT=¢E and (k,q,W,v) € T[AF 7:TYPE]S and ¢ =T [A+ & : QUAL] S, then P(k,q',W).

Proof

Applying Fact 14 to A -7 < ¢, we conclude that A+ 7: TYPE.

Applying Lemma 8 to A+ 7 : TYPE, we conclude that 7 [A + 7: TYPE] § € Type.

Applying Fact 6 to (k,q,W,v) € T [A+ 7: TYPE]§ € Type, we conclude that P(k,q, W).
Applying Lemma 15 to A+ 7 < ¢ and (k,q, W,v) and ¢, we conclude that ¢ < ¢'.

Hence, P(k,q’, W), which follows from Req 13 (qualpred-qualsub) applied to P(k,q, W) and ¢ < ¢'.
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Fact 17

IFAFT <€, then AFT and A+ ¢ : QUAL.

Proof

Proceed by induction on the derivation A FT' < &',

Lemma 18 (Core Language: Value context sub-qual)

Let 6 € D[A].
IfAFT <€ and (k,q,W,7) € G[AFT]d and ¢ =T [AF £ : QUAL] S, then P(k, ¢, W).

Proof (Core Language: Value context sub-qual)

Proceed by induction on the derivation AFT < ¢

Case

Case

Ak ¢ QUAL
TAFexé
Note that
(kyq,W,~v) € G[A o] §
={(k,q,W,0) | W = |Uo &}

Hence, W = |Ug | and v = 0.
Applying Lemma 8 to A+ ¢ : QUAL,
we conclude that ¢ = T [AF & : QUAL] 6 € K [QUAL] = Quals.
Note that P(k,q¢’,W), which follows from W = |Ug]r (which follows from above) and
Pk,q¢, |Us k), which follows from Req 13 (qualpred-qualsub) applied to U =< ¢ and
P(k,U, |Us |k), which in turn follows from Req 11 (qualpred-aprx) applied to P(k,U,Us ), which
in turn follows from Req 14 (qualpred-unr-unit).
AFT=¢  AbT=¢

AFT,x:T :
Note that

(k,q,W,v) e G[AFT,z:7] §
={(k,q, W, 5[z —v]) |

(k,qr,Wr,v) e G[AFT]0 A

(k, qw, Wa,v) € T[AF 7: TYPE]§ A

qr 2N Gz g A

(Wr Ok Wy = W)}
Hence, v = v1[z — v] and (k,q1,W1,71) € G[AFT]6 and (k, gy, Wy,v) € T[AF 7: TYPE]S
and q; = ¢ and ¢, < q and (W, O W, = W).
Applying the induction hypothesis to A FT' < ¢, instantiated with (k, g1, W1,v1) € G[AFT] o
and ¢ =7 [AF ¢ : QUAL] S, we conclude that P(k,q’, W1).
Applying Corollary 16 to A F 7 < £, instantiated with (k, g, Wy,v) € T[AF 7: TYPE]J and
¢ =T[AF ¢ : QUAL] S, we conclude that P(k,q’, Wy).
Note that P(k,q’, W), which follows from Req 12 (qualpred-join) and (W7 ©p W, = W) (which
follows from above) and P(k,q’', W1) and P(k, ¢', W), which in turn follows from above.

End Case
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A.7.4 ™ Properties
Fact 19

IfAFT ~ Ty BT, then AFTy and A Ts.
Proof
Proceed by induction on the derivation A +T'~» I’y H 5.

Lemma 20 (Core Language: B Properties)

Let § e D[A] and AFT ~ T'1 BTs.
If (k,q,W,v) € G[AFT]5,
then AT and A F Ty and there exists q1, W1, 1, g2, Wa, and 2 such that

° (k7q17W1771) S g[[A F Fl]] (57
b (kaQ27W17’72) € g[[A = FQ]] 6,

e v €y Hs, where

11 B2 = {y € Vars = CValues |
dom(7y) = dom(vy1) U dom(y2) A
Vz € dom(y1). ¥(2) = 1 (2) A
Vz € dom(y2). v(2) = 72(2)},

* q =g,
® g2 = q, and
[ (Wl@kWQZW)

Proof (Core Language: H Properties)

Let 6 €e D[A] and AT
Proceed by induction on the derivation A+ T ~» T'y BB 5.

Case AFeoels

Notethat ' = eand I'y = e and 'y = e.
Recall that

gHM.ﬂa—{w,q,W,wn W= (o )i}

Consider arbitrary (k,q, W,7v) € G[A + o] 6.
Hence, W = |Ug | and v = 0.

Note that

AR, = and AFT; =

Ak e Ake
Take ¢ Xq, Wi =W, v1 =0, go < ¢, Wo =W, and v, = 0.

We are required to show that
hd (k7Q17W17’Yl) S g [[A [ Fl]] 1)

= (k7Q17VV7®) € g[A = .]]53
which follows from

o W = |Up |k, which follows from above,
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(k7 q2, W2772) € g [[A H FQ]] 1)
= (k,q2,W,0) € G[AF o] 5,
which follows from

o W = |Up |k, which follows from above,

yEV By |
=0ecpHE?

which follows from
o dom(0) = dom(0) U dom(D),
o Vz € dom(0). 0(z) =
o Vz € dom(D). 0(z) =
*q1=g
g2 = ¢, and

W = (Wl ®k: Wg)
= W=WaorW)
which follows from

([Uo Jr =Us Ok Us)
which follows from Req 9 (join-unit-left)
= ([UoJk = |Uo Jr Ok [Us |x)
which follows from Req 5 (join-aprx)
=W=WopW)
which follows from W = |Ug | .
AFT ~ T BT, A+ T7:TYPE
ATz~ T,z BT
Note that I' = T", z:7 and T'; =T, z:7.
Recall that

Case

6 = {(k, ¢, W,v[z = v]) |
(k,qr,Wr,7) EGIAFT]6 A
(k,qz, Wa,v) € T[AF7: TYPE]J A
ar 2qNge 2 gA
(Wr 0 W = W)}
Consider arbitrary (k,q, W,v) € G[AF TV, 2:7] 6.
Hence, v = +/'[x — v] and (k,qr/, Wrr,y') € G[AFT'] 6 and (k, o, Wa,v) € T [AF 7: TYPE] 6
and ¢r = ¢ and ¢, <X ¢ and (W O W, = W).
Apply the induction hypothesis to A F T ~» Ty BTy with (k, gr, Wr/,v') € G[AFT'] 4.
We conclude that A F T and A+ T's and there exists ¢f, W{, 71, g2, Wa, and 75 such that
o (k,¢1,Wi,71) € G[AFTI]d,
L4 (k7q27W2772) € g [[A F FQ]] Ja
e 7 €71 He,
* q 2qr,
® ¢2 = gr, and
L] (Wll Ok W2 = WF/).
Note that

AT AF7:TYPE
AFT zr

AFT;  AF7:TYPE

AFFl = 7
AT, 7

and AFTs.

55



Note that there exists Wy such that (W] ©p W, = W;) and (W) @ Wo = W), which follows from
(W1 Ok Wo = W) A(Wrr O Wy = W)
which follows from above
= (We O Wi = Wr ) A(Wrr O Wy = W)
which follows from Req 6 (join-commut)
= JW;. (Wl/ O Wy = W1) AWy O Wi = W)
which follows from Req 8 (join-assocr)
= JW;. (Wll O Wy = W1) A (W1 O Wo = W)
which follows from Req 6 (join-commut).

P N

Take ¢1 = (¢} Ugz) and 1 = yi[z +— v].
We are required to show that
L4 (k7Q17W17’Yl) € g HA F Fl]] )
= (k (¢4 Ug2), Wi,z = v]) € G[A T, 2:7] 0,
which follows from
(k,q1, W1{,v1) € G[A FT%] J, which follows from above,
(k,qu, Wy,v) € T[AF 7: TYPE] 4, which follows from above,

¢} = (¢} U gz), which follows from the definition of L,

gz =< (¢} U qy), which follows from the definition of LI,
(W] & W, = Wi), which follows from above,
o (k,q2,Wa,v2) € G[A F T'5] 4, which follows from above,

e YEY 28] Y2
= Yz =] €yilz = v] B,
which follows from

o dom(vy'[x — v]) = dom(y1]x — v]) U dom(72), which follows from
dom (7' [x — v]) = dom(v1[z — v]) U dom(2)
= dom(y') U{z} = dom(y1) U {x} U dom(72)
= dom(y') U{z} = dom(y") U {z}

which follows from ' € 1 H 72,

o Vz € dom(vilx — v]). ¥[x — v](2) = iz — v](z), which follows from Vz €
dom(~}). v/ (2) = 71 (2), which follows from v € v By, and z ¢ domI”,
e Vz € dom(va). ¥ [z — v](2) = v2(2), which follows from Vz € dom(v2). ¥/ (2) = y2(2),
which follows from v € v By, and x ¢ domI”,
e 1 Xq = (¢ Uqgz) = ¢, which follows from ¢; = ¢r» and ¢r» = ¢ and ¢, =< ¢ and the
definition of L,
® ¢o = ¢, which follows from ¢ < gr» and ¢r < ¢, and
o (W1 ©r Wy = W), which follows from above.
AFT ~ T BT, AI—T:TYPE.
ATz~ Ty BT, 207 '
Symmetric.
AFT~T{@BI,  AFT=R
AFT xr ~ T o BT, or
Note that I' = TV, z:7 and T'y =T, z:7 and T'y = T, 2:7.
Recall that

Case

Case
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6= {(k,q, W,y[z — v]) |

(k,qr, Wr,v) € G[AFT]6 A

(ky o, Wa,v) € T[AF 7 : TYPE]S A

qr 2 qA gz 2gA

(Wr O Wy =W)}
Consider arbitrary (k,q,W,7) € G[AF TV, z:7] 4.
Hence, v = +/[z +— v] and (k, qr/, Wr+,7') € G[AFT'] 6 and (k, gz, We,v) € T [AF 7: TYPE]S
and qr» < ¢ and ¢, =< g and (W ©p W, = W).
Note that P(k, R, W), which follows from Corollary 16 applied to A -7 < R and (k, ¢z, W, v) €
T[AF7:TYPE]§ and R = T [A F R : QUAL] 4.
Apply the induction hypothesis to A + I with (k,qr/, Wr,7') € G[AFT']6 and A - TV ~
I BT,
We conclude that A FTY and A F T, and there exists ¢}, W1, 71, ¢4, W3, and ~4 such that
(k,q1, Wi,71) € G[AFT] 6,
(k, 43, W3,73) € G[AFT5] 4,

v €y B,

AT AF7:TYPE
AFT z:r

* ¢ 2qr,
® ¢ = qr/, and
[ ] (Wll @k WQ/ = WF/).
Note that
AFT) AFT:TYPE AFTY AFT7:TYPE
AFFl = 7 and AFFQ = 7 .
AT,z ATy, z:7

Note that there exists Wy and W5 such that (W] @ W, = W;) and (W4 o W, = W) and
(W1 © Wa = W), which follows from
(Wi Ok Wy = Wri) A (Wrr O Wo = W) AP(k, R, Wa)
which follows from above
= (W] 0 W3 = Wr) A (W @k Wa = W) A (W O We = [Walk)
which follows from Req 15 (qualpred-rel-join)
= (W] @x Wi = W) A (Wrr Ok [Wali = W) A (W O Wa = [Walr)
which follows from Req 5 (join-aprx)
= dW,. (Wé Ok I_Wa:Jk = Wz) A\ (Wll Or W, = W) A (Wm O Wy = I_Wka)
which follows from Req 7 (join-assocl)
= AW, W.. (W3 O Wa = Wa) A (W @ W = W) A (W] @ W = W)
which follows from Req 8 (join-assocr)
= IWq, Wo, W, (W5 O Wy = Wa) A (W] Ok Wy = Wi) A (W1 O W = W)
which follows from Req 7 (join-assocl)
= 3Wy, Wa. (W3 O We = Wa) A (W] O We = Wi) A (W1 O Wa = W)
which follows from logical equivalence.

Take q1 = (¢} Uda), 1 = 71[z — 0], @2 = (63 U ), and 72 = y3lz — v].
We are required to show that

d (kafh»le’Yl) S g HA = Fl]] 1)
which follows from

o (k,qy,W{,v1) € G[AFT}]d, which follows from above,
o (kyqu,W,,v) € T[AF 7:TYPE]4, which follows from above,
e ¢ < (¢} Ugs), which follows from the definition of L,
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e ¢, < (¢} Ugy), which follows from the definition of L,
o (W] ®r W, = W1), which follows from above,
d (kv q2, W2772) S g HA = FQ]] 1)

= (k,(¢hUqm), (W} O Wa),vhlz — v]) € G[A F Th, 2:7] 6,
which follows from

(k, g5, Wi,v%) € G[A FT%] 5, which follows from above,
(k, Gz, Wy,v) € T [AF 7: TYPE]J, which follows from above,
q5 =< (g5 U gz), which follows from the definition of L,

¢z = (¢4 U qy,), which follows from the definition of L,
(W3 O W, = W3), which follows from above,

e yeEm By
= [z~ v] €9z — v]BAsz — ],
which follows from
o dom(v'[x — v]) = dom(y1]x — v]) U dom(y2[x — v]), which follows from
dom (' [z — v]) = dom(v1[z — v]) U dom(s][z — v))
= dom(y') U {z} = dom(y1) U {z} U dom(y3) U {x}
= dom(y') U{z} = dom(y') U {z}
which follows from +' € 1 B 73,
o Vz € dom(¥i[x — v]). ¥[zx — v](z) = ¥i[r — v](z), which follows from Vz €
dom(¥1). 7' (2) = 1 (z), which follows from ' € v{ B2 and = ¢ domI”,
o Vz € dom(vhlx — v]). Y[ — v](z) = lx — v](z), which follows from Vz €
dom(~4). 7' (2) = v4(z), which follows from v € v B~4 and © ¢ domI”,

e g1 <q = (¢yUqz) = ¢, which follows from ¢; = ¢r» and ¢r» =< ¢ and ¢, =< ¢ and the
definition of L,

e g0 2 q = (¢5Uq.) =< g, which follows from ¢4 < ¢r and ¢r < ¢ and ¢, < ¢ and the
definition of LI,

o (W1 ©r Wy = W), which follows from above.
End Case
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A.7.5 Validity of Typing Rules

Theorem 21 (Core Language Soundness)
If AsTRe: T, then [A;T Fe: 7).
Proof

By induction on the derivation A;T'Fe: 7.

(VAR)
AFT7:TYPE )

Case ——————:
As;ex:ThHx:T
We are required to show [A;e x:7 F z : 7].

Consider arbitrary k, d, qr, Wr, and « such that
e k>0,
e § € D[A], and
o (k,qr,Wr,v) € G[AF o, z:7] 0.
Hence, v = y1[x +— v] and (k,q1,W1,7) € G[A+ o] d and (k,q, Wy,v) € T[AF 7: TYPE]S
and ¢1 = ¢r and ¢, < ¢qr and (W, O W, = Wr).
Hence, v1 = 0 and W1 = |Ug |-
Therefore, v = Oz — v] and Wr = (|Up |k O Wa).
Let es = y(x) = v and W = Wr.
We are required to show that Comp(k, W, es, T [AF 7: TYPE]0) =
Comp(k, Wpr,v, T [AF 7: TYPE] ).
Consider arbitrary j, W,, ws, wy, and ef such that

o j <Kk,
o wy i (Ws O W) = ws i, (Wr O W,.), noting that
ws ik (Wr O Wr)
=ws 1 (([Us |k Or Wa) Or W;)
which follows from above,
o (wsaes) = (ws,v) }_)j (wf7ef)’ and

o irred(wy,ey).

Since v is a value, we have irred(ws, v).
Hence, j = 0 and wy = w, and ey = v.

Note that ((|Ug |k O Wi) O W) = (W, O W,.), which follows from

(IUo Jr Ok Wa) Or Wr)
= ([Uo |k O (We O W)
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
= (Up Ok (W O W,))
which follows from Req 5 (join-aprx)
which follows from Req 9 (join-unit-left)
= (Wz Ok WT)
which follows from Req 4 (join-closed).

Let Wy = W, and qf = ¢.
We are required to show that
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® Wrip o (Wf Ok—0 WT)
= Ws ik (Wx ®k WT‘))
which follows from

ws 1k (([Uo |k Ok Wa) Ok Wi)
which follows from above

((Uo |k Or W) Ok Wr) = (We Ok Wr)
which follows from above,
o (k—O,qf,Wf,ef) S T[[A o TYPE]](S
= (k,qu,Wy,v) € T[AF 7:TYPE]S,
which follows from above.
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Case

(Fx)

AF¢: QUAL AFT <¢ A;F,m:lee:Tz'

A;FI—A:c.e:En —o T2

We are required to show [[A; I'FAz.e: ¢ —o 72]].

Consider arbitrary k, d, qr, Wr, and ~ such that

k>0,
0 € D[A], and
(k,qr,Wr,v) € G[AFT]4.

Let es = y(Az.e) = Az.v(e) and Wy = Wr.

We

are required to show that Comp(k, Wy, es,T [[A Fér —o 1yt TYPE]] 0)

Comp(k, Wr, Az.v(e), T [A+ 1y —o 75 : TYPE] §).
Consider arbitrary j, W;, ws, wy, and ey such that

J<k,

w i (Ws O W) = ws i (Wr O Wy),
(ws, e5) = (ws, Az.v(e)) —7 (wy,ef), and
irred(wy, ey).

Since Az.vy(e) is a value, we have irred(ws, Az. y(€)).

Hence, j = 0 and wy = w; and ey = Az.y(e).

Let Wy = Wr and ¢y =7 [A+ & : QUAL] 6.
We are required to show that

wy -0 (Wi ©k—0 W;)
= Ws 'k (WF ®k: WT)7
which follows from above,

(k—0,q7,Wyg,ef) €T [A Fér —omy: TYPE]] 0
= (b, T[A+&: QUALLS, W, Az.(e) € T [A 67y —o 7y : TYPE] 5
= (k,T[AF€: QUAL] S, Wi, Az v(e))
€ {(ka q, W, U) ‘
g=T[AFE&:QUAL]S A
(k,q, W,v) €e T[AF 1 — 15 : PRETYPE] 6}
(k, T [AF € : QUAL] S, W, Az v(e))
€ {(k,gc, We, Ax.e) | W, € WorldDesci, AP (k,qe, We) A
g=T[AFE&: QUAL]S A
Vi < k,qq, Wa, Vq.
(1, Gas Wa,ve) €T [AF 7 : TYPE]S A
(W, ©; W,) defined =
Comp(i, (W, ©; Wo),e[ve/x], T [AF 72 : TYPE]0)},
which follows from

e T[AFE&:QUAL] 6 =T [AF &: QUAL] S, which follows trivially,
e Wr € WorldDescy,, which follows from Lemma 9 applied to (k, gr, Wr,vy) € G[A F T] 4,

o P(k,T[AF &:QUALJ S, Wr), which follows from Lemma 18 applied to A +T' < ¢ and
(k,qr,Wr,y) € G[AFT] 6 and 7 [A F £ : QUAL] S,

o Vi <k,qu, Wa,vq. ...
Consider arbitrary i, q,, W, and v, such that

o | <k,
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o (i\qos Wa,va) € T[AF 71 : TYPE] S, and
o (Wr®; W,) defined.
We are required to show that Comp(i, (Wr ©; W,,),v(e)[va/z], T [A F 12 : TYPE]J).

Applying the induction hypothesis to A;T,z:7y F e : 7o, we conclude that
[A;T, x:m F et 7.
Instantiate this with 4, 6, (gr U q,), (Wr ®; W), and [z — v,]. Note that
e >0,
e 0 € D[A], and
e (i, (qr Uga), Wr ©; Wo),v[x — v,]) € G[A F T, z:71] 6, which follows from
e (i,qr,|Wr);,v) € G[AFI] 4, which follows from Lemma 9 applied to i < k
and (k,Wr,v) € G[AFT] 4,
e (i,qq, Wa,va) € T[AF 71 : TYPE]§, which follows from above,
e gr =< (gr Ugq,), which follows from the definition of L,
® gu = (gr Ugqq), which follows from the definition of L, and
o (Wr®; W,) = (Wr]; ®; Ws), which follows from Req 5 (join-aprx).
Hence, Comp(i, Wr ©; Wa), [z — va](e), T [A F 7o : TYPE]4).
Thus, Comp(z, (Wr ©; W,),v(e)[va/z], T [A + 72 : TYPE] ).
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(App)

AFT~T1HIs AT1Fer: 81 —om A;FQ}_CQITl.
A;THepes: ’

We are required to show [A;T F eg es : 12].

Case

Consider arbitrary k, 8, gr, Wr, and «y such that
e k>0,
e 5 € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]é and A+ T ~» T'y BT, we conclude that there
exist gr,, Wr,, 7, qry, Wr, and 2, such that
(k,qr,, Wr,,m1) € G[AFT1] 9,
(k,qry, Wr,,72) € G[AFT2] 6,
o vy B,
® gr, = qr,
® qr, = qr, and
(Wr, O Wp, = Wr).

Note that y(e1) = v1(e1) and y(ea) = va(e2).
Let es = vy(e1 ea) = v(e1) v(e2) = 11(e1) y2(e2) and Wy = Wr.

We are required to show that Comp(k, W, e5, T [AF 72 : TYPE] J)
Comp(k, Wr,~1(e1) v2(e2), T [A F 7o : TYPE] ).

Consider arbitrary j, W,, ws, wy, and ey such that

o j <k,
o wy i (Ws O W,) = ws i, (Wr ©r W,.), noting that
ws ik (Wr O Wr)

=ws ik (Wr, Ok Wr,) Ox Wr)
which follows from above,

(ws, e5) = (ws, 71(e1) 12(e2)) —7 (wy, ep), and
irred(wy, ef).

Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,miler)) =7 (wpy,e,),

o irred(wy, ey, ), and

[ ] jl S _]
Note that (Wr, ©r Wr,) Ok W;.) = (W, O (Wr, ©r W,.)), which follows from

(Wr, Ok Wry,) Or Wr)
= (Wr, O (Wr, Or W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;Ty F e €y — Ty, we conclude that
[[A;Fl Fe 81 — 7'2]].
Instantiate this with k, d, gr,, Wr,, and ;. Note that

e k>0,
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e 6 € D[A], and
L4 (kqul,Wfl,’Yl) €g[[A|_F1H5

Hence, Comp(k, Wr,,71(e1), 7 [AFé1 — 75 : TYPE] §).
Instantiate this with ji, (Wr, @k W;.), ws, wy,, and ey,. Note that

e j; < k, which follows from j; < j and j < k,

o w; i, (Wr, ©p (Wr, ©r W,.)), which follows from

ws % (Wr, Or Wry) O Wr)
which follows from above

((Wr, Ok Wr,) O W) = (Wr, Ox (Wr, Ok W)
which follows from above,

b (w8771(€1)) 1 (w.f17€f1)’
o irred(wy, ey, ).
Hence, there exists Wy, and gy, such that
o wp ih—jy Wy Op—jy (Wr, © Wr)), and
b (k _jl)qf17Wf176fl)
ET[[AFgﬁwTQ:TYPE]]é
= {(k,qc, We, Az €) | W, € WorldDescy AP (k, g, We) A
g=T[AFE&:QUAL]S A
Vi <k, qa, Wa,Va-
(i, qa, Wa,va) € T [A+ 71 : TYPE]S A
(W. ®; W,) defined =
Comp(i, (W, ©; Wy),e[vg/x], T [AF 7o : TYPE] 4)}.

Hence, ey, = Az.ep,, and g5, =7 [AF £ : QUAL]S.
Note that
(ws, €5) = (ws, 11(e1) y2(e2))

7 (wry s e, 2(e2))

= (Wfl_v (Az.ef,) 72(€2))

7" (wy, e)
and irred(wy, ey).
Hence, by inspection of the operational semantics, it follows that there exist ja, wy,, and ey, such
that

o (wp,72(e2) 7 (W, e5,),

o irred(wy,,ey,), and
® j2<Jj—J1

Note that (Wfl Ok—j (WFQ Ok WT)) = (LWFQJk_jl Ok—j (Wfl Ok—s, WT))a which follows from
(Wi, ©k—jy (Wr, Ok Wr))
= (Ws Oy [(Wry Ok W) Jk—j1)
which follows from Req 5 (join-aprx)
= (Wfl Ok—j1 (WF2 Ok—j1 WT))
which follows from Req 4 (join-closed)
= (Wry, O3 (Wy, Ok—jy Wr))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
= (IWrs Jk—51 Ok—sn (Wp Ok—jn Wr))
which follows from Req 5 (join-aprx).

64



Applying the induction hypothesis to A;T's - e : 71, we conclude that [A;Ts Fes : 7].
Instantiate this with & — j1, 0, ¢r,, |Wr, |k—j,, and 2. Note that

e k — j1 > 0, which follows from j; < k,
e § € D[A], and

o (k—j1,qry, [Wry ] k—j1,v2) € G [A F T3] §, which follows from Lemma 9 applied to k—j; < k
and (k7qF25 WszV?) € g [[A F F2]] 5

Hence, Comp(k — ji, v2(e2), [Wr, Jk—j1, 7 [A 7 : TYPE]6).
Instantiate this with jo, (Wy, Or—j, W,.), wy,, wy,, and ey,. Note that

e jo < k — j1, which follows from jo < j — j; and j < k,

o Wy k—jy, (IWr, k—jy Ok—jy Wy, Or—j, W,)), which follows from

wyy tk—jy Wy Ok—jy (Wr, Ok Wr))
which follows from above

(Wi ©k—ji (Wry, Ok W) = ([Wrg Jk—jy Ok—jy (Wi, Ok—jy Wr))
which follows from above,

o (wy,,72(e2)) —72 (wy,,ey,), and

o irred(wy,,ef,).

Hence, there exists Wy, and gy, such that
o Wy k—ji—jo (Wey Ok—ji—jo (Wp, Op—jy Wr)), and
[ ] (k 7]11 7j2,Qf2,Wf2,€f2) c T[[A F 71 - TYPEH (;

Hence, ey, = vy,.
Note that
(ws, €s) = (ws, 11(€1) y2(€2))

7 (wry s ep Y2(e2)
= (Wfla()‘m'efu)’m(e?)
72 (wp,, (Az.epy) ef,)
= (’lffzv()‘x'efn)vh)
e (wryyepy, [vrs/2])
7% (wy,er)

and irred(wy, ey), where j = ji + jo + 1+ js.

Note that [(Wp, Ok—ji—jp Wp Or—ji We)le—jijor = (Wp Ok—jija1
(Wi, lk—js—ja—1) Ok—j1—js—1 W), which follows from
I_(sz Ok—j1-j2 (Wfl Ok—j1 W""))Jk*jl —ja—1 = (sz Ok—j1-j2—1 (Wfl Ok—j1 W)
which follows from Req 4 (join-closed)
= (Wi, Ok—jy—ja—1 (W5 Ok—js W) Jk—j1—s2-1)
which follows from Req 5 (join-aprx)
= (Wi, Ok—ji—ja—1 (Wi Ok—ji—ja—1 Wr))
which follows from Req 4 (join-closed)
(Wi Ok—j1—joa—1 W) Ok—j1—jz—1 Wr)
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
(Wi Ok—jy—ja—1 [(Wra]k—js—52—1) Ok —j1—jp—1 Wr)
which follows from Req 5 (join-aprx).

Instantiate (k — ji,qz,, Wy, Az ep,,) € T [AF S —o 1 : TYPE] § with k — ji — ja — 1, qp,,
IW¢, | k—ji—ja—1, and vyg,. Note that

o k—j1—Jjo—1<k—ji,
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o (k—ji—Jjo—1,qp, [ Weh—ji—jo—1,v5,) € T [AF 7 : TYPE] 4, which follows from Lemma 8
and Fact 6 applied to k — j1 — jo — 1 < k — j1 — j2 and (k — j1 — Jjo2,qf., W, v5,) €
T[AF 7 : TYPE] S, and

o (Wy Ok—ji—ja—1 [IWy, k—ji—ja—1) defined, which follows from above.

Hence, Comp(k —Jj1—J2—1, (Wfl Ok—j1—ja—1 |_Wf2Jk*]i*j2*1)7 €fi [’Uf2/$], T [[A b TYPEH 5)
Instantiate this with jz, W,., wy,, wy, and ey. Note that
e j3 < k —j; — jo — 1, which follows from js =j—j1 —jo—1and j <k,
® Wfy tk—ji1—ja—1 ((Wfl Ok—j1—ja—1 LWfQJk_jl_jz—l) Ok—j1—ja—1 WT)’ which follows from
Wiy kg —jo (Wea Ok—ji—jo Wy Ok—jy Wr))
which follows from above
= Wfy k—jr—ja—1 (sz Ok—j1—42 (Wfl Ok—j1 WT))
which follows from Req 2 (models-closed)
S wpy h—ji—ja—1 [(Wr Ok—ji—jo Wi Or—jy Wr))Jk—js—jo—1
which follows from Req 3 (models-aprx)

LWy Ok—jr—ja Wiy Ok—jy We)) lk—ji—ja—1
= (W Ok—jr—jo—1 [Wea Jk—j1—ja—1) Ok—j1—ja—1 Wr)
which follows from above,
d (wfm €fi1 [va/xD 73 (wfa 6f)a and

o irred(wy,ey).
Hence, there exists Wy and g such that
o Wi ik—ji—jo—1—js (Wpr Ok—ji—js—1-45 Wr), and
o (k—j1—jo—1—js,qp,Wy,er) €T[AF 17o: TYPE]G.

Let Wy = Wy and g5 = gy/.
We are required to show that
o wi ik (W Op—j Wr)
= Wy kji—jo—1-j5 Wy Ok—ji—ja—1-55 W),
which follows from above,
o (k—j,q7,Wy,er) € T[AF 1o : TYPE]S
= (k—ji—jo—1—Js,qp,Wy,ep) € T[AF 1 : TYPE]S,
which follows from above.
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Case

(MUNIT)

AR ¢: QUAL

Aseb () ‘51® :

We are required to show [A;e+ () : $1g].
Consider arbitrary k, 8, gr, Wr, and ~ such that

e k>0,
e § € D[A], and
b (k7QF7WF77) Gg[[A}—O]]é

Hence, v = 0 and Wr = |Up | &-
Let es =v(()) = () and W = Wr.
We  are required to  show  that  Comp(k, W, es, T [[A Félg : TYPEH 0)
Comp(k, Wr, (), T [[A Félg : TYPE]] J).
Consider arbitrary j, W;., ws, wy, and ey such that
° j <k,
o wy i (Ws O Wp) = ws i, (Wr O W,.), noting that
ws i (Wr O Wr)
= Ws 'k (l_Z/{@Jk Ok Wr)
which follows from above,
o (ws,e5) = (ws, () —7 (wyg,er), and

o irred(wy,ef).

Since () is a value, we have irred(ws, ()).
Hence, j = 0 and wy = w, and ey = ().

Let Wy = [Ug |k and g =7 [AF £ : QUAL] 6.
We are required to show that

o wi ko Wy Or_o W)
= ws ik ([Us |k O Wr),
which follows from above,
o (k- O,qf,Wf,ef) eT [A - §1® : TYPE]] 6
= (K, T[AF€:QUAL] S, [Up |k, () €T [[A H 51@,]] 6
= (K, T[AF¢:QUAL] O, [Up |k, ()
e {(k,q,W,v) |
g=T[AFE&:QUAL]S A
(k,q,W,v) e T[AF 1g : PRETYPE] 6}
(k,T[AF &: QUAL]S, [Uo i, ()
€ {(k,q, W, () |
g=T[AFE&: QUAL]S A
W = Us |k},
which follows from

e T[AFE&:QUAL]0 =T [AF £ : QUAL] S, which follows trivially,
o |Up |k = |Us |k, which follows trivially.
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(LET-MUNIT)
AFT~T1HIs A;F1|—el:§1® A;Fgl—ezz'r_
A;T'Hlet () =e1 inez: T '

Case

We are required to show [A;T F1let () = e ineg : 7).
Consider arbitrary k, 8, gr, Wr, and «y such that

o k>0,

e 5 € D[A], and

o (kyqr,Wr,7) € G[AFT] 6.

Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]é and A+ T ~» T'y BT, we conclude that there
exist gr,, Wr,, 1, qr,, Wr,, and 2, such that

o (k,qr,,Wr,,m) € G[AFT1]4,
(k,qry, Wr,,72) € G[AF T3] 6,
e yEy B,

® gr; 2 qr,

® gqr, 2 qr, and

(Wr, O W, = Wr).

Note that y(e1) = v1(e1) and y(ea) = va(e2).
= let

Let es = y(let () = e; in e3) let () = 7y(e1) in v(e2) = let () = ~vi1(e1) in y2(e2) and
W, = Wr.

We are required to show that Comp(k,Ws,es, 7 [AF 7:TYPE]S) = Comp(k,Wr,let () =
’71(61) in 72(62),T[[A For: TYPE]] (5)
Consider arbitrary j, W,, ws, wy, and ey such that
° j <k,
o wy i (Ws O W,) = ws i, (Wr O W,.), noting that
Ws 'k (WF Ok Wr)
=ws ik (Wr, Ok Wr,) Ox Wr)
which follows from above,
o (ws,e5) = (ws,let () =71(e1) in y2(e2)) —7 (wy,ef), and
o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
hd (w3171(61)) —t (wf176f1)?

o irred(wy, , ey, ), and
* j1 <7

Note that (Wr, Or Wr,) O W) = (Wr, ©r (Wr, Or W,.)), which follows from

(Wr, Ok Wry,) Or Wr)
= (Wr, O Wr, O W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T; ey : $1g, we conclude that [[A; I'ikeqp: 51®]].
Instantiate this with k, d, gr,, Wr,, and ;. Note that

e k>0,
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e 6 € D[A], and
e (k,qr,,Wr,,m1) € G[AFT4]6.

Hence, Comp(k, Wr,,v1(e1), T [A+ ¢1g : TYPE] §).
Instantiate this with ji, (Wr, ©r W;), ws, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o w, i, (Wr, O (Wp, ©r W), which follows from

ws ik (W, Ok Wr,) O W)
which follows from above

((Wr, ©x Wr,) Ok Wr) = (Wr, Ox (Wr, Ok W)
which follows from above,

e (ws,71(e1)) 1 (wf1’6f1)7 and
o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that
® Wiy tk—ji (Wfl Ok—ji (Wr, @ Wy)), and
o (k—=Jian,Wren)
€T [AF%1g: TYPE] 6

={(k,q, W, () |
g=T[AFE:QUALJS AW = |Us |}

Hence, ey, = () and g, =7 [AF £ : QUAL] 0 and Wy, = U | k—j, -
Note that
(ws, €5) = (ws, et () = 7i(e1) in 72(e2))
7 (wyy, et () = efy in ya(e2))
= (wgy,let () = () in 72(e2))
! (wyy,72(e2))
7 (wy, ef)

and irred(wy, ey), where j = j1 + 1+ jo.

Note that [(Wy, Or—j, (Wr, O Wi)) |k—ji—1 = ([Wry)k—j1—1 @k—jr—1 Wy), which follows from
LWy, Ok—js (Wry Ok Wr)) sy 1
= [([Uo lk—j1 Ok—j1 Wry Ok W) k—ji—1
which follows from above
= [(Uo Ok—j; Wry Ok W) Jk—ji—1
which follows from Req 5 (join-aprx)
= [[(Wr, Ok We) kg J k511
which follows from Req 9 (join-unit-left)
= |(Wr, Ok—jy Wr)lk—j 1
which follows from Req 4 (join-closed)
= (WF2 Ok—j1-1 WT)
which follows from Req 4 (join-closed)
= ([Wrs k—j1 -1 Ok—jy—1 Wr)
which follows from Req 5 (join-aprx).

Applying the induction hypothesis to A;T's F es : 7, we conclude that [A; Ty e : 7].
Instantiate this with k& — j1 — 1, 8, qr,, [Wr, Jx—j,—1, and 72. Note that

e k— j1 — 1 >0, which follows from j; + 14 jo = j and j < k,
e 6 € D[A], and
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o (k—j1—1,qry, [Wr, lk—ji—1,72) € G[AF T3]0, which follows from Lemma 9 applied to
k‘—jl — 1<k and (k,sz,Wrz,’)/Q) S g[[A = FQ]] 0.
Hencea Comp(k - jl - 1a LWFQJk—j1—1772(62)?T [[A F T1 - TYPEH 6)
Instantiate this with ja, W,., wy,, wy, and ef. Note that
e jo < k — 71 — 1, which follows from j, = j —j; — 1 and j < k,

o wr k—j—1 ([Wr,yk—jr—1 Ok—j, -1 W,.), which follows from
wf, h—j; (Wr Or—jy (Wr, Ok W)
which follows from above
= wyp, kg1 (W Ok—jy (Wry O Wr))
which follows from Req 2 (models-closed)
S wpy kg1 [(Wh Ok—ji Wry Ok Wr))k—ji -1
which follows from Req 3 (models-aprx)

L(Wr Ok—jy (Wry Ok W) Jk—ji -1 = ([Wry Jk—j1 -1 Ok—jy—1 Wr)
which follows from above,

o (wy,,72(e2)) —72 (wy,ey), and

o irred(wy,ey).
Hence, there exists Wy, and gy, such that

o Wi th—j—1—js (Wp, Op—ji—1-j, Wr), and

o (k—ji1—1—ja,qp,,Wy,,ep) € T[AFT:TYPE]S.
Let Wy = Wy, and qf = qy,.
We are required to show that

o wy k- (WO Wr)

= Wf k—jr1—1—js (sz Ok—j1—1—j3 WT’)v
which follows from above,

o (k—j,qr,Wy,ef) eT[AF 7]
= (k—j1—1=j2,qp, Wy, ep) € T[AF 7] 4,
which follows from above.
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(MPAIR)
AFT~ T HIy AF¢:QUAL AT For AT <€ A;To Fwg o AFszﬁ‘

AT F (v1,02) 1511 @ 72

We are required to show [[A; I (v, v): 871 ® 7'2]].
Consider arbitrary k, d, qr, Wr, and v such that

e k>0,

e § € D[A], and

o (k,qr,Wp,v) € G[AFT]6.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]d and A+ T ~» T'y T3, we conclude that there
exist qr,, Wr,, 71, qr,, Wr, and -2, such that

e (k,qr,,Wr,,m) € G[AFT1]6,
(ksqr,, Wr,,72) € G[AFT2] 6,
o vy Hrs,
® gr, = qr,
® gr, = gr, and
(Wr, © Wr, = Wr).

Case

Note that v(v1) = v1 and v(v2) = vy2(v2).

Let e = y({v1,v2)) = (y(v1),7(v2)) = (11(v1),72(v2)) and W, = Wr.

We are required to show that Comp(k, W, es, T [[A i ® Tgﬂ 0)
Comp(k, Wp, (v1(v1),v2(v2)), T [[A Férm® 72]] d).

Consider arbitrary j, W, ws, wy, ey such that

* j <k,
o wy i (Ws O Wp) = ws i, (Wr O W,.), noting that
ws % (Wr O Wr)
=ws % (Wr, Or Wr,) Ox W,)
which follows from above,
o (ws,e5) = (ws, (11(v1),72(v2))) —7 (wy, ef), and
o irred(wy,ey).
Since (7y1(v1),72(v2)) is a value, we have irred(ws, (71 (v1), v2(v2)))-

Hence, j = 0 and wy = w; and ey = (y1(v1), y2(v2)).

Note that (Wr, Ox Wr,) Or W) = (Wp, ©r (Wr, Or W,.)), which follows from

((Wr, Ok Wr,) Or Wr)
= (Wr, ©r Wr, O Wy))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T'y F vy : 71, we conclude that [A; T F vy : 7].
Instantiate this with &, J, gr,, Wr,, and ;. Note that
e k>0,
e 6 € D[A], and
L4 (k7qF1?WF1?’Yl) € g [[A F Flﬂ J.
Hence, Comp(k, Wr,,y1(v1), 7 [AF 71 : TYPE] 9).
Instantiate this with 0, (W, O W,.), ws, ws, and 1 (vy). Note that
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e 0 < k, which follows from j =0 and j < k,

o wy i, (Wr, O (Wr, ©r W), which follows from

ws % (Wr, Or Wry) O Wr)
which follows from above

((Wr, Ok Wr,) O W) = (Wr, Ox (Wr, Ok W)
which follows from above,
b (wsa’}/l(vl)) —" (w3771(vl))a and
o irred(ws,y1(v1)), which follows from the fact that ;1 (v1) is a value.

Hence, there exists Wy, and gy, such that

o w i—o Wy, Op—o Wr, ©r W,)), and
[ (k — O,Qfl,Wfl,’}/l(’Ul)) S T[[A Force TYPEH 0.

Note that (W, ©r (W, Ok W) = (Wr, Ok (Wy, Or W;.)), which follows from

(W, Ok (Wr, O Wr))
= (Wr, Ok (Wy, 0k Wy))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T's - vy : 72, we conclude that [A;Ts F vy @ 7.
Instantiate this with k, §, gr,, Wr,, and 2. Note that
o k>0,
e 6 € D[A], and
L4 (k7 QF27WF2a’72) S g [[A = FQH d.
Hence, Comp(k, Wr,,v2(v2), 7 [A F 72 : TYPE] 9).
Instantiate this with 0, (Wy, ©r W), ws, ws, and ~y2(v2). Note that
e 0 < k, which follows from j =0 and j < k,

o w; i, (Wr, O (Wy, ©r W,.)), which follows from

ws i Wy O (Wr, O W2))
which follows from above

(Wi Ok (Wry, ©x W) = (Wr, Ok (Wi Ok W)
which follows from above,

b (wSaIYQ(U2)) —" (wsa’YQ(UQ))a and

o irred(ws,y2(v2)), which follows from the fact that v2(vs) is a value.
Hence, there exists Wy, and gy, such that

o ws i—g Wy, Op—o (Wy, ©r W,.)), and

o (k—0,qf,,Wg,y2(v2)) € T [AF 7o : TYPE]S.

Note that (sz Ok (Wfl Ok WT)) = ((Wﬁ Ok Wf2) Ok WT), which follows from

(Wi, Ok (Wy, ©x Wi))
= ((Wh Ok sz) Ok WT)
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Let Wy = (Wy, Ox Wy,) and g5 =T [A F & : QUAL]S.
We are required to show that
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® Wrip o (Wf Ok—0 WT)
= Ws 'k ((Wﬁ O sz) Ok WT)7
which follows from
ws ik Wy, O (W, O W)
which follows from above

(Wi, Ok (Wi, ©x Wi)) = (W, Ok Wiy) O Wr)
which follows from above,

o (k—0,q7,Wy,ep)eT [[A Fém®m: TYPE]] )
= (k’T [[A ¥ QUALH 9, (Wfl Ok sz)» <'71(v1);72(v2)>)
€ {(kquwv 7}) ‘
g=T[AFE&: QUAL]S A
(k,q,W,v) € T [A+ 1i(r, 2] 6}
= (k,T[AF £:QUAL]S, (Wy, @k Wy, ), (11(v1),72(v2)))
€ {(k,q, W, (v1,v2)) |
g=T[AFE&:QUAL]S A
(kyq1, Wi,v1) € T[AF 7 : TYPE]S A
(kyg2, Wa,v2) € T[AF 75 : TYPE] S A
@ 2gNg 2gA
(W1 O Wo = W)},
which follows from

e T[AFE&:QUAL] 0 =T [AF & : QUAL] S, which follows trivially,
o (k,qp , Wy ,v(v1)) € T[AF 7 : TYPE]J, which follows from above,
o (k,qf,,Wy,,v(v2)) € T[AF 5 : TYPE] 0, which follows from above,

e g5, = T[AF¢:QUAL]S, which follows from Lemma 15 applied to A F 7 < § and
(k.qp , Wy, v(v1)) € T[AF 7 : TYPE] S and 7 [A F & : QUAL],

e g5, = T[AFE&:QUAL]S, which follows from Lemma 15 applied to A - 7 < ¢ and
(kydqrys Wiy, v(v2)) € T[AF 19 : TYPE]§ and 7 [A F £ : QUAL], and

o (Wi, O Wy,) = (Wy, Or Wy, ), which follows trivially.
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(LET-MPAIR)
AFT~T1HIs A;F1I—el:§7'1®7'2 A;FQ,I11T17x21T2|_€217'.
A;T Flet (z1,22) =ep ineg: 7 ’

We are required to show [A;T' F let (r1,22) =1 in ey : 7].

Case

Consider arbitrary k, 8, gr, Wr, and ~y such that
e k>0,
e 5 € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]é and A+ T ~» T'y BT, we conclude that there
exist gr,, Wr,, 1, qr,, Wr,, and 2, such that
(k,qr,, Wr,,m1) € G[AFT1] 9,
(k,qry, Wr,,72) € G[AFT2] 6,
o vy B,
® gr, = qr,
® qr, = qr, and
(Wr, O Wp, = Wr).

Note that y(e1) = v1(e1) and y(ea) = va(e2).
Let e, = v(let (z1,m2) = e1 iney) = let (r1,x2) = ~(e1) iny(ex) = let (wy,z2) =
~v1(e1) in yo(ez2) and Wy = Wr.
We are required to show that Comp(k, Ws, es, 7 [AF 7: TYPE] §) = Comp(k, Wr, let (x1,x2) =
’71(61) in 72(62),T[[A For: TYPE]] (5)
Consider arbitrary j, W, ws, wy, and ey such that
° j <k,
o wy i (Ws O W,) = ws i, (Wr O W,.), noting that
Ws 'k (WF Ok Wr)
=ws ik (Wr, Ok Wr,) Ox Wr)
which follows from above,
o (ws,e5) = (ws, let (x1,72) = y1(e1) in Ya(e2)) —7 (wy, ef), and
o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
hd (w3171(61)) —t (wf176f1)?
o irred(wy, , ey, ), and
e j1 <.
Note that (Wr, Or Wr,) O W) = (Wr, ©r (Wr, Or W,.)), which follows from

(Wr, Ok Wry,) Or Wr)
= (Wr, O Wr, O W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;Ty +F e £ ® T, we conclude that

HA;Fl Fej:ém ®7'2]].
Instantiate this with k, 9, gr,, Wr,, and ;. Note that
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e k>0,
e 5 € D[A], and
L4 (kquuWFU’)ﬁ) €g|IA|_P1ﬂ5

Hence, Comp(k, Wr,,71(e1), 7 [AF 47 @ 75 : TYPE] 0).
Instantiate this with ji, (Wr, ©x W;), ws, wy,, and ey,. Note that

e j; < k, which follows from j; < j and j < k,

o wy i (Wr, @ (Wr, ©r W), which follows from

ws ik (Wr, ©Or Wry) O Wr)
which follows from above

((Wr, @k Wry,) ©r W) = (Wr, Ok (Wr, Ok W)
which follows from above,

b (w8771(61)) 1 (wf1’6f1)7 and
o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that
® Wi tk—ja (Wfl Ok—j (Wr, @ W,)), and
o (k—=ij1,q5, Wep)
€T[[A}—€T1 ®T22TYPE]]5
= {(k,(bVV, <1)1,U2>) |
g=T[AFE&:QUAL]S A
(k,q1,Wi,v1) € T[AF 71 : TYPE]S A
(k, g2, Wa,v9) € T[AF 75 : TYPE] S A
Q1 2qNG2 =g N
(W1 @ Wa = W)}

Hence, ey, = (vg,,vf,) and qf, = T[AF&:QUAL]G, and (k — ji,qp, Why,vp,) €
T[AF 7 : TYPE]S and (kK — ji1,qps Wiy Vi) € T[AF 7 : TYPE]S and ¢f, =< ¢p and
qdfio = qf, and (Wfll Gk—jl Wflz = Wfl)
Note that
(w0, ¢5) = (ws, 16t (21,22) = 71 (e1) im 2(e2))

71 (wyy, let (z1,72) = ey, in y2(e2))

= (’li)fulet <m171'2> = <Uf117Uf12> in 72(62))

— (wyy s y2(€2) v, /1] v, /72])

—72 (wy, er)

and irred(wy, er), where j = j; + 1+ jo.

Note that I.(Wfl Ok—j; (WF2 Ok WT))Jk*jlfl = (((WFZ Ok—j1-1 qu) Ok—j1-1 Wflz) Ok—j1-1 WT)?
which follows from
LW, ©k—jy (Wry Ok W) Jk—j1 -1
= L((an Ok—j1 Wf12) Ok—j1 (Wrz Ok WT))Jk—jl—l
which follows from Wy, = (Wy,, ©r Wyy,)
(Wi, Ok—js Wria) Ok—jy—1 (Wry Ok Wi))
which follows from Req 4 (join-closed)
(((WF2 Ok—j1-1 qu) Ok—j1-1 Wf12) Ok—j1-1 W’")
which follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;I's,z1:7,20:79 F ey : 7, we conclude that
[A; T, 71, x:m0 F eg i 7]

Instantiate this with k — j1 — 1, §, ((qr, M aqs,) M ar,), (Wr, Or—ji—1 Wi,) Or—jy—1 Wy,,), and
Yalx1 = vy, ][22 — vy,,]. Note that
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e k — j; —1 >0, which follows from j; + 1+ jo = j and j < k,
e § € D[A], which follows from above,

b (k -5 —1 ((QF2 M qfu) n qf12)7 ((WF2 Ok—j1 -1 an) Ok—j1—1 Wf12)7’72[x1 = Ufn][x? =
Vf,]) € GIA F Ty, 2171, x2:72] 6, which follows from

i (k -n—1 (qF2 l_quu)? (WF2 Ok—j1—1 Wf11)7'72[x1 i Ufn]) €g [[A - F27x1:71]] 9, which
follows from
o (k—j1— Logr,, (W, k—ji—1,72) € G[AFT5]d, which in turn follows from
Lemma 9 applied to k — j; — 1 < k and (k,qr,, Wr,,72) € G[A F T3] 6,
o (k—j1—Lqp,, [ Waylh—ji-1,v5,) € T[AF 7 : TYPE]S, which follows from
Fact 6 applied to (k — j1,497,, Wr,,vp,) € T[AF 7 : TYPE]S € Type (which
follows from Lemma 8) instantiated with k — j; — 1, noting that k—j; — 1 < k— jy,

gr, = (gr, Mqy,, ), which follows from the definition of M,

qf,, = (gr, Mqy,,), which follows from the definition of 1, and
(WF2 Ok—j1-1 qu = (|_Wr2jk*j1*1 Ok—j1-1 I_quJk*jl*l))? which follows from

(WF2 Ok—j1 -1 an)

= (LWF2J1€—J'1—1 Ok—j1-1 LquJk—]'l—l)

which follows from Req 5 (join-aprx), and

(k= j1— 1,455, (Wi lk—ji—1,v5,) € T [AF 7o : TYPE] S, which follows from Fact 6
applied to (k — j1,qf,, W, 05,,) € T[AF 1 : TYPE]S € Type (which follows from
Lemma 8) instantiated with k& — j — 1, noting that k — jo — 1 < k — ja,

(gr, Mgp,) = ((gr, Mayp,) Mgp,,), which follows from the definition of M,

qr, = ((gr, M qp,) M gyy,), which follows from the definition of M, and
(Wry Ok—ji—1 Wry) Ok—jio1 Wry = ([(Wry Ok—ji—1 We) k—ji—1 Ok—ji—1
[Wt,s ] k—j,—1)), which follows from

((WFQ Ok—j1 -1 an) Ok—j1 -1 Wf12)

= ([(Wry Ok—ji—1 W) Jb—j1 -1 Ok—ji—1 [Wrip Jk—ji—1)
which follows from Req 5 (join-aprx).

Hence, Comp(k - - 15((WF2 Ok—j1 -1 an) Ok—j1—1 qu)v’Y?[zl = Ufll][xZ =
VL], T [AF 7:TYPE]).

Instantiate this with ja, W,., wy,, wy, and e;. Note that
e jo < k — 71 — 1, which follows from j, = j —j; — 1 and j < k,
® Wp k—ji—1 (((sz Ok—j,—1 qu) Ok—j1—1 Wf12) Ok—j,—1 WT), which follows from
Wfy k—j1 (Wf1 Ok—j1 (WF2 Ok WT))
which follows from above
= wyy th—ji—1 (Wr Or—jy (Wry O Wi))
which follows from Req 2 (models-closed)
S wpy ki1 [(Wr Or—jy Wy Ok W) Jk—ji 1
which follows from Req 3 (models-aprx)

LWt Or—jy (Wry Ok W) k—ji—1 = (Wry Ok—jy—1 W) Ok—ji—1 Wiyy) O—jy -1 Wr)
which follows from above,

b (Wf1,72[$1 = ’Ufll][ajl = Ufm](e?)) = (wfl’72(62)[Ufu/xl][vflz/xﬂ) 72 (wf’ef)v
o irred(wy,ey).

Hence, there exists Wy, and gy, such that
o wiik—ji—1-jo (Wp, Or—jyi—1-5 Wr), and
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o (k—j1—1—jo,qp Wp,ep) €T [AF7: TYPE]S.

Let Wy = Wy, and qf = qy,.
We are required to show that
o wy k- (W Oy Wr)
= Wf ‘k—j1—1—js (Wf2 Ok—j1—1—j2 W),
which follows from above,
° (k:—j,q]c,Wf,ef) S T[[A"T]]5
= (kijl -1 7j23‘1f27Wf276f) € THA F7—]]5ﬂ
which follows from above.
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(AUNIT)
AFE:QUAL  AFT =€
AT H() :1g

We are required to show [A;T F () : ¢1g].
Consider arbitrary k, 8, gr, Wr, and ~ such that

o k>0,

e § € D[A], and

L4 (kquvva’Y) € g IIA + F]] J.
Let es = y({())) = () and W, = Wr.
We are required  to show that Comp(k, W, es, T [[A Félg : TYPEH d)
Comp(k, Wr, (), T [[A Félg : TYPE]] 0).
Consider arbitrary j, W;, ws, wy, and ey such that

Case

o j <k,
o wy i (Ws O Wy) = ws i, (Wr O W),

(w5aes) = (ws, <>) — (Wf,ef), and

irred(wy, ef).

Since (()) is a value, we have irred(ws, (())).
Hence, j = 0 and wy = w, and ey = (()).

Let Wy = Wrp and g5 =7 [AF £: QUAL] 6.
We are required to show that

o wy o (WyOr_oW;)
= ws i (Wr O W),
which follows from above,

o (k- O,qf,Wf,ef) eT [A = §1® : TYPE]] 6
(k, T[AF£: QUAL] S, W, () e T [[A Félg : TYPE] 1)
(k, T [AF&: QUAL] S, Wr, ()
€ {(kaQ7Wa U) ‘
g=T[AFE&:QUAL]S A
(k,q,W,v) €e T[AF 1g : PRETYPE] 6}
(k, T[AF &: QUAL] S, Wr, ()
e {(k,q, W, {())) | W € WorldDescy, A P(k,q, W) A
qg=TI[AF&: QUAL] G},
which follows from

e T[AFE&:QUAL] 0 =T [AF £ : QUAL] S, which follows trivially,
e Wr € WorldDescy,, which follows from Lemma 9 applied to (k, gr, Wr,vy) € G[A F T] 4,

o P(k,T[AF &:QUALJ S, Wr), which follows from Lemma 18 applied to A +T' < ¢ and
(k,qr,Wr,y) € G[AFT]é and 7 [A F £ : QUAL] 6.
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(APAIR)
AF¢: QUAL AFT <¢ AT e :m A;FF@Q:TQ'

AT F {(er,e2)) : E(Tl ® 72)

We are required to show [A;T F ((e1,e2) : $(m1 @ 12)].
Consider arbitrary k, 8, gr, Wr, and ~ such that

o k>0,

e § € D[A], and

d (k7QF7WF77) € g IIA F F]] d.
Let es = y({(e1, e2))) = {y(e1),v(e2)) and Wy = Wr.
We are required to show that Comp(k, Wy, es, T [[A Férm @7 : TYPE]] d)
Comp(k, Wr, {(v(e1),v(e2))), T [[A Fém @ TYPE]] 3).
Consider arbitrary j, W;, ws, wy, and ey such that

Case

o j <k,
o wy i (Ws O Wy) = ws 1 (Wr O Wi,

(s, €5) = (ws, {(y1(e1),72(€2))) —7 (wy, ef), and
irred(wy, ef).

Since ((y1(e1),v2(e2)) is a value, we have irred(ws, {(v1(e1),v2(e2)))-
Hence, j = 0 and wy = w, and ey = (y1(e1),72(€2)))-

Let Wy = Wrp and g5 =7 [AF £: QUAL] 6.
We are required to show that

o wy o (WyOr_oW;)
= ws i (Wr O W),
which follows from above,

o (k—0,q5,Wy,ef) €T [AFSmy @72 : TYPE] §
(k, T[AF&:QUAL] 6, Wr, (v(e1),v(e2))) € T [A S @ 7o : TYPE] &
(k’ T [[A & QUALH 6, Wr, <<’7(61)’7(e2)>>)
€ {(ka q, Wa U) ‘
g=T[AFE&:QUAL]S A
(k,q, W,v) e T[AF 1 &7 : PRETYPE] 0}
(k7 T [[A ¢ QUALH 6, Wr, <<’7(61)7’7(62)>>)
€ {(k,q, W, {e1,e2))) | W € WorldDescy, AN'P(k,q, W) A
g=T[AFE&: QUAL]S A
Vi < k.
Comp(i, |W i, e1, T [AF 7 : TYPE]J) A
Comp(i, |W |i,e2, T [AF 72 : TYPE] )},
which follows from

e T[AFE&:QUAL]6 =T [AF £: QUAL] S, which follows trivially,
e Wr € WorldDescy, which follows from Lemma 9 applied to (k, gr, Wr,7v) € G[AFT7] 4,

o P(k,T[AFE&:QUAL] S, Wr), which follows from Lemma 18 applied to A+ T < ¢ and
(k,qr,Wr,y) € G[AFT]d and 7 [AF £ : QUAL] 9,

o Vi<k. ...
Consider arbitrary ¢ such that

o i< k.
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We are required to show that Comp(i,|Wr];,v(e1), T [AF 7 : TYPE]S) and
Comp(i, |[Wr |, v(e2), T [A F 12 : TYPE] ).

Applying the induction hypothesis to A;T F ey : 71, we conclude that [A;T Feq : 71].
Instantiate this with 4, 6, gr, |[Wr];, and . Note that

e k>0,

e 6 € D[A], and

e (i,qr, |[Wrli,v) € G[AF T4, which follows from Lemma 9 applied to ¢ < k and
(k,qr,Wr,v) € G[AFT]6.

Hence, Comp(i, |Wr];,v(e1), 7 [A F 7 : TYPE]4).
Applying the induction hypothesis to A;T F ey : 75, we conclude that [A;T F ey : 2.
Instantiate this with 4, 6, gr, |[Wr];, and 7. Note that

e k>0,

e § € D[A], and

e (i,qr, |Wr|i,v) € G[A FT]J, which follows from Lemma 9 applied to i < k and
(k,qr,Wr,v) € G[AFT] 0.

Hence, Comp(i, |Wr]i,v(e2), 7 [A F 72 : TYPE]9).

Hence, Comp(i, | Wr|i,v(e1), T [AF 71 : TYPE]J) and
Comp(i, LWFJi,7(€2)7T [[A H T2 @ TYPE]] 6)
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(FsT)

AT 2 €
Case er:(n ®T2):
A;TF fstey i1

We are required to show [A;T' F fsteg : 7].
Consider arbitrary k, 8, gr, Wr, and ~y such that
e k>0,
e 5 € D[A], and
o (kyqr,Wr,7) € G[AFT] 6.
Let e; = y(fstey) = fsty(e1) and Wy = Wp.
We  are  required to  show  that = Comp(k, Wy, es, T [AF 71 : TYPE]J) =
Comp(k, Wr, fstv(e1), T [A+ 7 : TYPE]J).
Consider arbitrary j, W;., ws, wy, and ey such that

o j <k,

o wy i (Ws O Wy) = ws 1 (Wr O Wi,

o (ws,e5) = (ws,drop~y(e1)) —7 (wy,er), and

o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T' e, : $7; ® 12, we conclude that [[A; I'Fe:ém® 7'2]].
Instantiate this with k, d, ¢r, Wr, and . Note that

e k>0,

e 6 € D[A], and

o (kyqr,Wr,7) € G[AFT]6.
Hence, Comp(k, Wr,y(e1),7 [AF 7 ® 72 : TYPE] 6).
Instantiate this with ji, W,, w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

o wy k—j;, Wy Op—jy Wy), and

L4 (k_jlaquWfl?efl)
GT[[AFéTl @TQ:TYPE]]5
= {(k,q, W, {e1,e2)) | W € WorldDescy, ANP(k,q, W) A
g=TI[AF €:QUAL]4 A
Vi < k.
Comp(i, |[W]i,e1, T [AF 7 : TYPE]J) A
Comp(i, LWJi,GQ,THA F T2 TYPE]] 5)}
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Hence, ey, =

= <<€f117ef12>> and qf, = T[[A F¢e QUAL]] 0.
Note that

(wsyes) = (wsvat ’Y(el))
7t (wy,, Estey,)

= (wf17fSt <<ef1176f12>>)
— (wf1a€f11)

—7 (wy, e5)

and irred(wy, ef), where j = j1 + 1+ ja.

Note that |(Wy, ©Or—j, Wi)le—ji—1 = (W Jk—j1 -1 Ok—j,—1 Wr), which follows from
L(Wi Ok—jy Wr)]k—j1-1
= (Wfl Ok—j1—1 WT)
which follows from Req 4 (join-closed)
= (Whle—j1-1 Ok—ji—1 Wr)
which follows from Req 5 (join-aprx).

Instantiate (k— j1, g, Wy, (e, ep.) € T [AF 1y ® 72 : TYPE] § with k£ — j; — 1. Note that
o k—j1—1<k—j.
Hence, Comp(k: —jl — 1, LWfIJk_jl_l’ef117T[[A + T - TYPE]] (5)
Instantiate this with ja, W;., wy,, wy, and e;. Note that
e k— j1 — 1 < ja, which follows from j, = j — j; — 1 and j < k,

o wi —ji—1 ([We k—ji—1 @r—jr—1 Wy), which follows from
W tk—j1 (Wfl Ok—j1 WT)
which follows from above
= wyy h—jr—1 (Wr Ok—jy Wr)
which follows from Req 2 (models-closed)
S wp kg1 (W Ok—js W) k-1 -1
which follows from Req 3 (models-aprx)

LW Ok—js We)Jk—ji—1 = (Wi Jk—j1—1 Ok—jy -1 W)
which follows from above,
d (wflaefll) 72 (wfv ef)7 and
o irred(wy,ey).
Hence, there exists Wy and g such that
o wf h—j—1—j» Wy Or—jy—1-j, Wy), and
[ (k —Jj1—1 —jg,(]f/,Wf/,ef) S T[[A Frc TYPEH d.
Let Wy = Wy and qf = qy/.
We are required to show that
o wiip—j (W Op—; Wr)
= Wf tk—ji—1—j2 (Wf’ Ok—j1—1—j2 W),
which follows from above,
[ (k—j7qf,Wf,ef) S T[[A e TYPEH5
= (k‘ -1 —1 —jg,(]f/,Wf/7€f) S T[[A Frce TYPEH d,

which follows from above.
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(SnD)
AThep:t
Case — e i (n ®T2):
A;T F sndey : 7o

We are required to show [A;T' F snde; : 72].

Consider arbitrary k, 8, gr, Wr, and ~y such that
e k>0,
e 5 € D[A], and
o (kyqr,Wr,7) € G[AFT] 6.
Let e; = y(sndej) = sndy(e1) and Wy = Wp.
We  are  required to  show  that  Comp(k, Wy, es, T [AF 72 : TYPE]J) =
Comp(k, Wr,snd~(e1), T [A+ 7 : TYPE]J).
Consider arbitrary j, W;., ws, wy, and ey such that

o j <k,

o wy i (Ws O Wy) = ws 1 (Wr O Wi,

o (ws,e5) = (ws,drop~y(e1)) —7 (wy,er), and

o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T' e, : $7; ® 12, we conclude that [[A; I'Fe:ém® 7'2]].
Instantiate this with k, d, ¢r, Wr, and . Note that

e k>0,

e 6 € D[A], and

o (kyqr,Wr,7) € G[AFT]6.
Hence, Comp(k, Wr,y(e1),7 [AF 7 ® 72 : TYPE] 6).
Instantiate this with ji, W,, w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

o wy k—j;, Wy Op—jy Wy), and

L4 (k_jlaquWfl?efl)
GT[[AFéTl @TQ:TYPE]]5
= {(k,q, W, {e1,e2)) | W € WorldDescy, ANP(k,q, W) A
g=TI[AF €:QUAL]4 A
Vi < k.
Comp(i, |[W]i,e1, T [AF 7 : TYPE]J) A
Comp(i, LWJi,GQ,THA F T2 TYPE]] 5)}
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Hence, ey, =

= <<€f117ef12>> and qf, = T[[A F¢e QUAL]] 0.
Note that

(w57 65) = (wsv snd’y(e1))
1 (wy,,sndey, )

= (wflvsnd <<ef1176f12>>)
— (wyys€415)
7% (wy, er)

and irred(wy, ef), where j = j1 + 1+ ja.

Note that |(Wy, ©Or—j, Wi)le—ji—1 = (W Jk—j1 -1 Ok—j,—1 Wr), which follows from
L(Wi Ok—jy Wr)]k—j1-1
= (Wfl Ok—j1—1 WT)
which follows from Req 4 (join-closed)
= (Whle—j1-1 Ok—ji—1 Wr)
which follows from Req 5 (join-aprx).

Instantiate (k— j1, g, Wy, (e, ep.) € T [AF 1y ® 72 : TYPE] § with k£ — j; — 1. Note that
o k—j1—1<k—j.
Hence, Comp(k: —jl — 1, LWfIJk_jl_l,eflz,T[[A + To - TYPE]] (5)
Instantiate this with ja, W;., wy,, wy, and e;. Note that
e k— j1 — 1 < ja, which follows from j, = j — j; — 1 and j < k,

o wi —ji—1 ([We k—ji—1 @r—jr—1 Wy), which follows from
W tk—j1 (Wfl Ok—j1 WT)
which follows from above
= wyy h—jr—1 (Wr Ok—jy Wr)
which follows from Req 2 (models-closed)
S wp kg1 (W Ok—js W) k-1 -1
which follows from Req 3 (models-aprx)

LW Ok—js We)Jk—ji—1 = (Wi Jk—j1—1 Ok—jy -1 W)
which follows from above,
d (wflaefll) 72 (wfv ef)7 and
o irred(wy,ey).
Hence, there exists Wy and g such that
o wf h—j—1—j» Wy Or—jy—1-j, Wy), and
[ (k —Jj1—1 —jg,(]f/,Wf/,ef) S T[[A Fry TYPEH d.
Let Wy = Wy and qf = qy/.
We are required to show that
o wiip—j (W Op—; Wr)
= Wf tk—ji—1—j2 (Wf’ Ok—j1—1—j2 W),
which follows from above,
[ (k —j7qf,Wf,ef) S T[[A o TYPEH5
= (k‘ -1 —1 —jg,(]f/,Wf/7€f) S T[[A Fro TYPEH d,

which follows from above.
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(ABORT)
A;The :50  Ab7:TYPE
A;T + aborte; : 7 ’
We are required to show [A;T F aborte; : 7.

Case

Consider arbitrary k, d, qr, Wr, and ~ such that
« k>0,
e § € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Let es = y(abort e) = abort y(e1) and Wy = Wr.
We are required to show that Comp(k, Wy, es, T [AF 7: TYPE]9) =
Comp(k, Wr,aborty(e1),7 [A F 7: TYPE] ).
Consider arbitrary j, W,, ws, wy, and ef such that

o j <k,

o wy i (W O W) = ws i (Wr O W),

o (ws,es5) = (wg,aborty(ey)) —7 (wy,ef), and

o irred(wy, ey).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,7(er)) —t (wrseq),

o irred(wy, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T" I e; : €0, we conclude that [[A; F'kFe: 50].
Instantiate this with k, , ¢qr, Wr, and . Note that

e k>0,

e § € D[A], and

o (k,qr,Wr,7) € G[AFT]4.
Hence, Comp(k, Wr,v(e1),7 [A+%0: TYPE] §).
Instantiate this with ji, W,., w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,7(er)) —t (wyseq),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

o wiy ik—ji (Wp Op—j Wp), and

o (k—j1,qp,Wp.ep)
e T[AF¢0:TYPE]s
= {(k,q, W,v) |
g=T[AFE&:QUAL]S A
(k,q,W,v) € T[AF 0 : PRETYPE] 6}
= {(k,q, W,v) |
g=TI[AF€:QUAL]S A
(k,q,W,v) € {}}
{r
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Note that (k — ji,qf, Wy, ,ep) € {} implies False.
Hence, Comp(k, Wr, aborty(e1), 7T [A F 7: TYPE]J).
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(INL)
AF¢: QUAL AT oo AT <€ AFTQITYPE.
A;TFinlv : 61 ® 7 -

We are required to show [[A; CFinlo;:ém & 7'2]].
Consider arbitrary k, 8, gr, Wr, and ~ such that

e k>0,

e § € D[A], and

o (k,qr,Wr,y) € G[AFT]o0.
Let e; = y(inlwv) = inly(vy) and W5 = Wr.
We are required to show that Comp(k, Wy, es, T [[A Férm @ TYPE]] d)
Comp(k, Wr, (), 7 [AF 41 & 75 : TYPE] 9).
Consider arbitrary j, W;., ws, wy, and ey such that

Case

o j <k,

o wy i (Ws O Wy) = ws 1 (Wr O Wi,

o (ws,e5) = (ws,inly(v1)) —7 (wy,ef), and

o irred(wy,ef).
Since inl~y(vy) is a value, we have irred(ws, inly(v1)).
Hence, j = 0 and wy = w, and ey = inly(v1).
Applying the induction hypothesis to A;T' F vy : 71, we conclude that [A;T F vy : 7]
Instantiate this with k, d, qr, Wr, and . Note that

e k>0,

e 5 € D[A], and

o (kyqr,Wr,7) € G[AFT]6.
Hence, Comp(k, Wr,y(v1),7 [A F 7 : TYPE]9).
Instantiate this with 0, W,., ws, ws, and v(v1). Note that

e 0 < k, which follows from j =0 and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,y(v1)) —° (ws,7(v1)), and

o irred(ws,y(v1)), which follows from the fact that ~(v1) is a value.
Hence, there exists Wy, and gy, such that

o ws —o Wy, Or—o W), and

o (k—0,q,Wg,y(v1)) € T[AF 7 : TYPE]O.
Let Wy =Wy, and ¢y =7 [AF £ : QUAL] 4.
We are required to show that

o wy ko (Wy Ok—o W)
= w, ix (Wy, O W),
which follows from above, and
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o (k— O,qf,Wf,ef) eT [A Férm@m: TYPE]] )
= (k,T[AF&:QUAL] S, Wy,,inl y(v1))
€ {(kaQ7Wa U) ‘
g=T[AFE&:QUAL]S A
(k,q,W,v) e T[AF 11 & 72 : PRETYPE] 6}
= (k,7[AF&:QUAL] S, Wy, ,inl y(v1))
€ {(k,q,W,inlvy) |
g=T[AFE: QUAL]S A
(k,qi,W,v1) € T[AF 7 : TYPE]S A
@1 2 qtU
{(k,q,W,inrvs) |
g=T[AFE: QUAL]S A
(k,qa, W,v2) € T[AF 72 : TYPE[S A
g2 2 q}
which follows from

o T[AF€:QUAL]S = T [AF € : QUAL] S, which follows trivially,
o (k,qp, Wy ,v(v1)) € T[AF 7 : TYPE] 4, which follows from above, and

e g5, = T[AF &:QUAL]S, which follows from Lemma 15 applied to A F 7 < £ and
(kyqp, Wy, v(v1)) € T[AF 7 : TYPE]S and 7 [A - € : QUAL].
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Case

(INR)
AF¢: QUAL A7 : TYPE AT Hog 7o AF1g <€
A;Fl—inrvzzgn@m ’

We are required to show [[A; Tk inrvs:ém & 7'2]].
Consider arbitrary k, 8, gr, Wr, and ~ such that

e k>0,

e § € D[A], and

d (k7QF7WF77) € g IIA F F]] d.
Let e; = y(inrve) = inry(vy) and Wy = Wr.
We are required to show that Comp(k, Wy, es, T [[A Férm @ TYPE]] d)
Comp(k, Wr, (), 7 [AF 41 & 75 : TYPE] 9).
Consider arbitrary j, W;., ws, wy, and ey such that

o j<k,

o ws i (W O W) = ws i, (Wr O W),

o (ws,es) = (ws, inr y(v2)) —7 (wg,ey), and

o irred(wy,ef).
Since inr y(ve) is a value, we have irred(ws, inr y(v3)).
Hence, j = 0 and wy = w, and ey = inr y(v2).
Applying the induction hypothesis to A;T' F vg : 72, we conclude that [A;T F vy : 7]
Instantiate this with k, d, qr, Wr, and . Note that

« k>0,

e 5 € D[A], and

e (k,qr,Wr,v) €G[AFTT]6.
Hence, Comp(k, Wr,y(v2), 7 [A F 72 : TYPE]9).
Instantiate this with 0, W,., ws, ws, and v(vs). Note that

e 0 < k, which follows from j =0 and j < k,

o w; i (Wr ©r W,.), which follows from above,

L4 (wsa’y(’UQ)) —0 (wsa’Y(UQ))v and

o irred(ws,y(v2)), which follows from the fact that «(vs) is a value.
Hence, there exists Wy, and gy, such that

o wy ip—o (Wy, Op—o W), and

o (k—0,qf,,Wy,,v(v2)) € T [AF 75 : TYPE] 0.
Let Wy =Wy, and ¢y =7 [AF £ : QUAL] 6.
We are required to show that

o wy ko (Wy Ok—o W)
= w, ix (Wy, O W),
which follows from above, and
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o (k— O,qf,Wf,ef) eT [A Férm@m: TYPE]] )
= (k,T[AF&:QUAL] S, Wy,,inr y(v2))
€ {(kaQ7Wa U) ‘
g=T[AFE&:QUAL]S A
(k,q,W,v) e T[AF 11 & 72 : PRETYPE] 6}
= (k,7[AF&:QUAL] S, Wy,,inr y(ve))
€ {(k,q,W,inlvy) |
g=T[AFE: QUAL]S A
(k,qi,W,v1) € T[AF 7 : TYPE]S A
@1 2 qtU
{(k,q,W,inrvs) |
g=T[AFE: QUAL]S A
(k,qa, W,v2) € T[AF 72 : TYPE[S A
a2 =2 q}
which follows from

o T[AF€:QUAL]S = T [AF € : QUAL] S, which follows trivially,
o (k,qr,,Wy,,v(v2)) € T[AF 72 : TYPE] 4, which follows from above, and

e g5, = T[AF &:QUAL]S, which follows from Lemma 15 applied to A F 7 < £ and
(kyqpys Wiy, v(v2)) € T[AF 72 : TYPE]S and 7 [A - € : QUAL].
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Case

(CasE)
AFT~T1HIs AT Fep S @1 A;To,x1:11 tea1 = T A;To,xa:m0 1 €22 1 T
A;T - case e; of inlxy = e21 || inrze = e22: 7T '

We are required to show [A;T' F case e; of inlz; = eg || inrao = egn: 7].

Consider arbitrary k, d, qr, Wr, and ~ such that
« k>0,
e 5 € D[A], and
e (k,qr,Wr,y) € G[AFT]S6.

Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]d and A F T ~» T'; BTy, we conclude that there
exist gr,, Wr,, 1, qr,, Wr,, and 2, such that

o (k,qr,,Wr,,m) € G[AFT1]4,
(k,qry, Wr,,72) € G[AF T3] 6,
e yEy B,

® gr; 2 qr,

® gqr, 2 qr, and

o (Wr, O Wr, = Wr).

Note that y(e1) = v1(e1) and y(e21) = Y2(e21) and y(e22) = v2(ea2).

Let es = 7(case e; of inlx; = e9; || inrazy = eg3) = case y(e1) of inlxz; = (e21) ||
inrzy = 7y(ege) = case y1(e1) of inlwy = ~a(e2r) || inr s = 2(eg2) and W = Wr.
We are required to show that Comp(k, W, es, T [AF 7: TYPE]9)
Comp(k, Wp, case y1(e1) of inlxy = 72(e21) || inrzy = 72(eze), T [A F 7: TYPE] ).
Consider arbitrary j, W,, ws, wy, and ey such that

° j <k,
o wy i (Ws O W,) = ws i, (Wr O W,.), noting that
Ws 'k (WF Ok Wr)
=ws ik (Wr, Ok Wr,) Ox Wr)
which follows from above,
o (ws,e5) = (ws, case yi(er) of inlzy = 7o(e1) || inraa = Y2(e2n)) —7 (wy,er), and
o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
hd (wsa 71(61)) —t (wfl ) efl)?

o irred(wy, , ey, ), and
* j1 <7

Note that (Wr, Or Wr,) O W) = (Wr, ©r (Wr, Or W,.)), which follows from

(Wr, Ok Wry,) Or Wr)
= (Wr, O Wr, O W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;Ty +F e 1 @ 1, we conclude that

HA;Fl Fej:ém 697'2]].
Instantiate this with k, 9, gr,, Wr,, and ;. Note that
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e k>0,
e § € D[A], and
d (k7qF17W]__‘1,’71> EQ[[Al_Flﬂ(S

Hence, Comp(k, Wr,,71(e1), 7 [AF 47 @& 72 : TYPE] 0).
Instantiate this with ji, (Wr, ©x W;), ws, wy,, and ey,. Note that

e j1 < k, which follows from j; < j and j < k,

o wy i, (Wr, O (Wr, ©r W), which follows from

ws ik (Wr, ©Or Wry) O Wr)
which follows from above

((Wr, @k Wry,) O W) = (Wr, Ok (Wr, Ok W)
which follows from above,

hd (w3571(61)) st (wf176f1)? and

o irred(wy, , ey, ).
Hence, there exists Wy, and gy, such that
® Wiy tk—jy (Wfl Ok—j (Wr, © Wy)), and

b (k_jlaqf17Wf176f1)
ET[[A}—ng EBTQ:TYPE]]5
= {(k,q, W,inlw) |
g=T[AFE&:QUAL]S A
(k,q1,W,v1) e T[AF 71 : TYPE]S A
Q1 2 qpU
{(k,q, W, inr vq) |
g=T[AFE&:QUAL]S A
(kJ,QQ,W’Ug) (S T[[Al_TQ : TYPEH(S/\
g2 =< q}.

Hence, ey, = inlvy, or ey, = inrvyp,. and qr, =7 [AF & : QUAL] 6.

Case ey, = inluy;:
Hence, (k — ji,q5,, Wt,,vp,) € T[AF 7 : TYPE] S and gy, =< gy, .
Note that
(ws,es) = (ws,case ~vi(e1) of inlxy = 72(e21) || inrza = ~2(e22))

—71 (wy,, case ey, of inlz1 = v2(e21) || inrza = y2(e22))
= (wy,,case inlvy,, of inlxz; = 7y2(e21) || inrxzz = ~y2(e22))
'—>1 (wp,v2(e21) vy /71])
72 (wy, ef)

and irred(wy, ef), where j = j1 + 1+ ja.

Note that [(Wy, ©Or—j; (Wr, ©x We))]k—ji-1 = (Wry Ok—ji—1 Wp,) Ok—ji—1 Wp), which

follows from
L(Ws Ok—ji (Wry Ok Wr)) Jk—ji -1
= ((Wry, Ok—jy—1 Wiy) Or—jy—1 Wr)
which follows from Req 4 (join-closed) and Req 5 (join-aprx)

and Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T's,z1:7y F e9; : 7, we conclude that

[A;Ta,x1:m Foeaq o 7]
Instantiate this with k — 51 — 1, 6, (gr, Mgz, ), Wr, Or—ji—1 Wy,), and ya[z1 — vy, .
Note that
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e k —j; —1 >0, which follows from j; + 1+ jo = j and j < k,

e § € D[A], which follows from above,

o (k—j1—1,(qr, N qu)a (Wr, Ok—j;-1 Wfl)’,yQ[xl = 'Ufu]) € G[AFTa,21:71] 6, which
follows from

o (k—j1—1,qr,, IWr,]k—j,—1,72) € G [AF T's] 6, which in turn follows from Lemma 9
applied to k — j1 — 1 < k and (k, qr,, Wr,,72) € G [A FT2] 0,

o (k—ji—1,qp,, \Wsle—ji—1,v4,) €T [AF 1 : TYPE] S, which follows from Fact 6
applied to (k — j1,q5,, Wp,vp,) € T [AF 7 : TYPE] S € Type (which follows from
Lemma 8) instantiated with k — j; — 1, noting that k — j; — 1 < k — jy,

e gr, = (qr, Mgy, ), which follows from the definition of I,

® ¢f, = (qr, Mgy, ), which follows from the definition of M, and

o (Wr, Ok—ji—1 Wr) = (IWry Jk—js—1 Ok—js—1 [Wp, Jk—j, 1), which follows from

(Wry Ok—jy—1 Wp,)
= (W, Jk—j1 1 Ok—ji—1 (Wi Jk—j1-1)
which follows from Req 5 (join-aprx).
Hence, Comp(k — j1 — 1, (Wr, Ok—j, -1 Wp),y2lz1 — vp, [, T [A F 7 TYPE] ).
Instantiate this with jo, W;, wy,, wy, and ey. Note that
e jo < k — j; — 1, which follows from j, = j —j1 — 1 and j < k,
o wp k—ji—1 (Wry Ok—ji—1 Wp,) Ok—jy—1 W), which follows from
wyy tk—jy (Wp Or—jy (Wry Ok Wr))
which follows from above
= wpy h—jr1—1 (We Or—jy (W, O Wr))
which follows from Req 2 (models-closed)
S wpy hgi—1 [(Wr Ok—jy (Wry Ok We)) Jk—jy -1
which follows from Req 3 (models-aprx)

LWy Ok—jy (Wry @k W) lk—ji—1 = (Wr, Ok—jy—1 W) Ok—jy—1 Wr)
which follows from above,
o (wy,,y2lz1 = vpy,l(e21)) = (wy,, y2lean) vy, /21]) —7 (wy,ef),
o irred(wy,ey).
Hence, there exists Wy, and gy, such that
o Wi ih—ji—1—j, (Wp, Ok—ji—1-5, Wr), and
° (k‘ -5 —1 —jg,qf27Wf2,€f) € T[[A,}— T: TYPE]] 4.

Let Wy = Wy, and gy = qy,.
We are required to show that
o wy k- Wy O Wr)
= Wf ‘k—jr1—1—j2 (sz Ok—j1—1—j2 WT)’
which follows from above,
° (k—j,q)c,Wf,ef) S T[[A |—T]]5
= (k*jl — 1 7j2,(]f27Wf2,6f) S THA F T]]5,
which follows from above.
Case ey, = inruvy,:
Symmetric.
End Case

93



Case

(ALL)

AF¢: QUAL AFT <¢ A,a:H;FFe:T.

AT HAe: Vak. T

We are required to show [[A; I'FA.e:Vak. T]].
Consider arbitrary k, d, qr, Wr, and ~ such that

k>0,
0 € D[A], and
(k,qr,Wr,v) € G[AFT]4.

Let es = y(A.e) = A.y(e) and W, = Wr.

We

are required to show that Comp(k, W, es, T [[A F&Vaik. T TYPE]] 9) =

Comp(k, Wr,A.v(e), T [A+ *Vous. 7 : TYPE] 6).
Consider arbitrary j, W;, ws, wy, and ey such that

J<k,

ws ix (Ws Ox W) = ws i (Wp O Wi),
(ws, es) = (ws, A.v(e)) —7 (wy,ey), and
irred(wy, ey).

Since A.~y(e) is a value, we have irred(ws, A.y(e)).

Hence, j = 0 and wy = w, and ey = A.y(e).

Let Wy = Wr and ¢y =7 [A+ & : QUAL] 6.
We are required to show that

wy -0 (Wi ©k—0 W;)
= Ws 'k (WF ®k: WT)7
which follows from above,

(k—0,q7,Wyg,ef) €T [[A Fé&Voauk. T TYPE] )
= (k,T[AF&:QUALS, Wr, A v(e)) € T [A+ $¥ak. 7 : TYPE] 8
— (k,T[AF¢: QUAL] S, Wi, A.~(e))
€ {(ka q, W, U) ‘
g=T[AFE&:QUAL]S A
(k,q,W,v) € T [AF VYoa:k.7: PRETYPE] 6}
(k,T[AF € : QUAL] S, Wr, A. v(e))
e {(k,q,W,A.e) | W € WorldDesci, NP (k,q, W) A
g=T[AFE&: QUAL]S A
vZ.
I eK[x] =
Vi < k.
Comp(i, |[W|i,e, T [A,a:k =7 : TYPE] 0| — I)) },
which follows from

e T[AFE&:QUAL] 6 =T [AF &: QUAL] S, which follows trivially,
e Wr € WorldDescy,, which follows from Lemma 9 applied to (k, gr, Wr,vy) € G[A F T] 4,

o P(k,T[AF &:QUALJ S, Wr), which follows from Lemma 18 applied to A +T' < ¢ and
(k,qr,Wr,y) € G[AFT] 6 and 7 [A F £ : QUAL] S,

o VI. ...
Consider arbitrary Z and 7 such that

o 7 € K[k], and
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o 1 < k.
We are required to show that Comp(i, |Wr|;,v(e), T [A, kb 7 : TYPE] §[a — T]).

Applying the induction hypothesis to A ,a:k;I" F e : 7, we conclude that
[A kT Fe: 7]
Instantiate this with 4, 6[ac — Z], qr, |Wr |, and . Note that
e >0,
e fla— TI] € D[A, a:k], which follows from
e § € D[A], and
e 7 € K[x], and

e (i,qr, |[Wr]i,y) € G[A, ik F T] 6] — Z], which follows from (4, qr, |Wr]:,7) €
G[AFT]J, which follows from Lemma 9 applied to i < k and (k,qr, Wr,v) €
G[AFT]S.

Hence, Comp(i, |Wr];,v(e), T [A, a:k b 7 : TYPE] §|a — T]).
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(INsT)
A;F}—el:g‘v’a:ﬁ.T AI—L:N_
AT Eer [ :mle/a)

We are required to show [A;T ke[| : 7[¢/a]].
Consider arbitrary k, d, qr, Wr, and « such that

o k>0,

e § € D[A], and

d (k7QF7WF77> € g IIA F F]] d.
Let es = y(e1[]) = v(e1) || and Wy = Wrp.
We are required to show that  Comp(k, W, es, T [AF 7[t/a]: TYPE]J)
Comp(k, Wr,~(e1)[], T [AF 7[t/a] : TYPE] ).
Consider arbitrary j, W,, ws, wy, and ef such that

Case

o j<k,

® Ws 'k (Wé ®k W7) = Ws 'k (WF ®k Wr)v

o (ws,e5) = (ws,y(e1) []) —7 (wy,ey), and

o irred(wy,ey).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

hd (wsa 7(61)) —t (wfl’ ef1)7

o irred(wy,, ey, ), and

e j1<7.
Applying the induction hypothesis to A; T e; : $Va:k. 7, we conclude that [[A; I'Fe;: Yok, T]].
Instantiate this with k, 8, qr, Wr, and . Note that

« k>0,

e § € D[A], and

b (k7QF7WF77) € g[[A + F]]a
Hence, Comp(k, Wr,vy(e1),T [[A F&Vaik. T TYPE]] d).
Instantiate this with ji, W;., w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o wy i (Wr ®f W,.), which follows from above,

o (ws,y(er)) =7 (wyy,e,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

o wy i, (Wi Op—j, W), and

® (k_thIwaflveﬁ)
eT [[A F&ack. T TYPE]] 1)
={(k,q,W,A.e) | W € WorldDescy, ANP(k,q, W) A
g=T[AF&:QUAL]S A
VZ.
I eK[x] =
Vi < k.
Comp(i, |[W i e, T [A,a:k =7 : TYPE] §[a — Z])}.
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Hence, ef, = A.ey,, and qp, =T [A+ & : QUAL] 0.
Note that

(were2) = (wsr(en) )
—J1 (wfl » €1 [])

= (wfu (A' efn) H)
'—>1 (wyy ef,)
—72 (wy, er)

and irred(wy, ef), where j = j1 + 1+ ja.

Note that (W}, Ok—j, Wr)lk—ji—1 = (IWr Jk—j1—1 Ok—jr—1 W), which follows from
L(Wp Ok—jy Wr)Jk—ji—1
= (Wfl Ok—j1 -1 WT)
which follows from Req 4 (join-closed)
= (IWh Jk—j1 -1 Ok —jyi -1 Wr)
which follows from Req 5 (join-aprx).

Instantiate (k—j1,qr,, Wy, A.epy,) € T [AF Vo, 7: TYPE] 6 with k—j;—1and 7 [AF ¢ : K] 6.
Note that
o T[AFv:k]d € K[k], which follows from Lemma 8 applied to A F ¢ : k and § € D[A], and
° k*j171<k7]1
Hence, Comp(k — j1 — 1, |[Wy, lk—ji—1, €51, 7 [A,ak 7 : TYPE] [ —= T [A F o 2 k] 4)).
Instantiate this with ja, W;., wy,, wy, and e;. Note that
e k— j; —1 < jo, which follows from j, = j —j1 — 1 and j < k,
o Wi h—j—1 (IWh |k—ji—1 Ok—j,—1 W), which follows from
wyy gy Wy Ok—jy Wr)
which follows from above
= Wfy k—j1—1 (Wfl Ok—j1 WT)
which follows from Req 2 (models-closed)
S wiy k-1 [(Wr Or—jy Wr)|k—ji 1
which follows from Req 3 (models-aprx)

L(Wp Or—iy We)]k—jr—1 = ([We Je—ji—1 Or—ji—1 Wr)
which follows from above,
o (wy,ep,) —7 (wy,ey), and
o irred(wy, ey).
Hence, there exists Wy and g such that
o wy th—ji—1—j, Wy Op—ji—1-j, Wr), and
o (k—j1—1—jo,qp,Wp,ep) € T[A, kb7 : TYPE] S| — T [AF ¢ : k] 6.

Let Wy = Wy and qp = qy/.
We are required to show that

o wyk—j (W Oy Wr)
= wi h—ji-1-jo Wy Op—ji—1-4, Wr),
which follows from above,
o (k—3j,q5,Wy,ef) € T[AF T[t/a] : TYPE] 0
= (k—j1—1—Jo,qp,Wyr,ep) € T[AF7[/a] : TYPE]S,
which follows from (k—j1—1—j2,qp, Wy, ep) € T [A ik =7 : TYPE] §ja— T [AF v : k] 6]
and 7 [A, ek b7 : TYPE] 0o — T [AF ¢: k]0] = T [A+ 7[¢/a] : TYPE]§, which in turn
follows from Lemma 10 applied to A F ¢ : x and 6 € D[A].
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(Pack)
AFE&:QUAL Ak AT Fop i 7e/a) AbTl/a] €
A;TF o7 83k, 7 .
We are required to show [[A; I'F o783k, T]].
Consider arbitrary k, 8, gr, Wr, and ~ such that
o k>0,
e § € D[A], and
o (k,qr,Wr,y) € G[AFT]o0.
Let es = v(Tv1 ") = "y(v1)” and W, = Wr.
We are required to show that Comp(k, Ws,es, 7T [[A F&3ak. T TYPE]] J)
Comp(k, Wr, "y(v1)", T [A+ ¢3azk. 7 : TYPE] 6).
Consider arbitrary j, W;, ws, wy, and ey such that

Case

o j <k,

o wy i (Ws O Wy) = ws 1 (Wr O Wi,

o (ws,es5) = (ws, "y(v1)7) —7 (wy,ef), and

o irred(wy,ef).
Since Ty (v1)™ is a value, we have irred(ws,  y(v1)7).
Hence, j = 0 and wy = w, and ey = "y(v1) "
Applying the induction hypothesis to A;T' F vy : 7[¢/a], we conclude that [A;T F vy : 7[e/a]].
Instantiate this with k, d, ¢qr, Wr, and . Note that

e k>0,

e 5 € D[A], and

e (k,qr,Wr,7) € G[AFT]0.
Hence, Comp(k, Wr,v(v1),7 [A F 7[e/a] : TYPE]6).
Instantiate this with 0, W,., ws, ws, and v(v1). Note that

e 0 < k, which follows from j =0 and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,y(v1)) —° (ws,(v1)), and

o irred(ws,y(v1)), which follows from the fact that ~(v1) is a value.
Hence, there exists Wy, and gy, such that

o ws —o Wy, Or—o W), and

o (k—0,q,Wg,y(v1)) € T[AF 7[t/a] : TYPE]S.
Let Wy =Wy, and ¢y =7 [AF £ : QUAL]G.
We are required to show that

o wy ko (Wy Ok—o W)
= w, ix (Wy, O W),
which follows from above, and
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o (k—0,q7,Wyg,ef) €T [[A F &3k T TYPE] 0

= (k,

T[AFE&:QUAL] S, Wy, "y(v1)™)

€ {(ka q, Wa U) ‘

(k

g=T[AFE&:QUAL]S A
(k,q, W,v) € T [AF k.7 : PRETYPE] 6}
T[AFE&:QUAL] S, Wy, "y(v1)™)

€ {(k,q,W,"v") | W € WorldDescy, A P(k,q, W) A

g=T[AFE&:QUAL]S A
37,4
ZeK[x] A
¢ Zqn
Vi < k.
(i, ¢, |[W]i,v) € T[A,ack 7 : TYPE] d[a — T},

which follows from

e T[AFE&:QUAL] 0 =T [AF & : QUAL] S, which follows trivially,

e Wy € WorldDesci, which follows from Fact 6 to (k,qf, Wy ,y(v1)) €
T[AFT[t/a] : TYPE] 6 € Type,

o P(k,T[AF&:QUAL] G, Wy, ), which follows from Corollary 16 applied to A - 7[v/a] <
¢ and (k,qp,, Wy, v(v1)) € T[AF 7T[e/a] : TYPE] 6 and T [A & : QUAL] S, and

e d7,¢. ...
Take ¢’ =gy, and Z =7 [A F ¢: ] 6. Note that

(LET-PACK)

Case

e T[AF v:k]6 € K[r], which follows from Lemma 8 applied to 6 € D[A] and
Al g,

e gy, =T [AF&:QUAL] S, which follows from Lemma 15 applied to A - 7[c/a] < &
and (k,qp,, Wy, v(v1)) € T[AF 1[t/a] : TYPE] 6 and T [A + & : QUAL] 0, and
o Vi<k. ...
Consider arbitrary ¢ such that
o | < k.
We are required to show that (i,qy,, |[Wy, Ji,7(v1)) € T [A,ack =7 : TYPE] 6 —
T[AF ¢: K]0
Applying Lemma 8 to A + 7[t/a] : TYPE, we conclude that
T[AF T[t/a) : TYPE]§ € Type.
Applying Fact 6 to (k,qf,, Wy ,v(v1)) € T [AF 7[e/a] : TYPE]§ € Type instanti-
ated with 4, noting that
e ¢ < k, which follows from i < k,

we conclude that (4, qs,, [Wy, i, v(v1)) € T [AF 7[e/a] : TYPE] 6.

Applying Lemma 10 to A + ¢ : x and § € D[A], we conclude that
T[A, a:k b7 :TYPE]dla— T[AFv: k)6 =T [AF T[t/a) : TYPE]S.

Hence, we conclude that (4, qs,, Wy, ]i,v(v1)) € T[A, kb 7: TYPE]dla —
T[AF ¢: k]3]

AFT~T1HIs AT Fep 830k, T AFTo A+ 1 : TYPE A a:k; o,z - eg (T2

A;THlet "z7'=e1 ines : 12

We are required to show [A;T F let "z =e; in ey : 2.

Consider arbitrary k, 8, gr, Wr, and «y such that
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e k>0,
e 5 € D[A], and
° (k,qF,WF,’}/) €g [[A F F]] d.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]é and A FT ~ I'y HT9, we conclude that there
exist qr,, Wr,, 11, qr,, Wr,, and 2, such that
L4 (k7 QF17WF1a’Yl) S g [[A = Flﬂ 67
(k,qry; Wry,72) € G[AF 2] 6,
v €y By,
® qr, j qr,
® gr, = qr, and
(Wpl Ok Wp2 = Wp).
Note that y(e1) = vi(e1) and y(e2) = y2(e2).
Let e = y(let "27 = €1 in eg) = let "z = 7(e1) in y(e2) = let "z = 71(e1) in 12(e2) and
Ws = Wr.
We are required to show that Comp(k, W, e, 7 [AF 75 : TYPE] ) = Comp(k, Wr,1let "2 =
’71(61) in ’72(62),T[[A H T2 © TYPE]] (S)
Consider arbitrary j, W,, ws, wy, and ey such that

o j <k,
o wy i (Ws Ok Wp) = ws i, (Wr O W,.), noting that
ws ik (Wr O Wr)

= ws x (Wr, Or Wr,) O Wr)
which follows from above,

o (ws,es) = (ws,let "z = yi(e1) in 72(e2)) —7 (wy,ey), and

o irred(wy,ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,miler)) =7 (wye,),

o irred(wy,, ey, ), and

e j1 <j.
Note that (Wr, ©r Wr,) Ok W,.) = (W, Ok (Wr, ©r W,.)), which follows from

((Wr, Ok Wr,) Or Wr)

= (Wr, Ox Wr, ©r W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;I'y F e : $3ack.7, we conclude that
[[A; 'y ke :83ak. 7'1]].
Instantiate this with k, §, gr,, Wr,, and ;. Note that
o k>0,
e 6 € D[A], and
d (k7QF1»WF17’71) € g HA F Plﬂ d.
Hence, Comp(k, Wr,,71(e1), 7 [A F $3a:k. 71 : TYPE] §).
Instantiate this with ji, (Wr, ©r W;), ws, wy,, and ey, . Note that

100



e j; < k, which follows from j; < j and j < k,

o wy i, (Wr, O (Wr, ©r W), which follows from

ws ik (Wr, ©Or Wry) O Wr)
which follows from above

(Wr, Ok Wry,) O Wr) = (Wr, ©r (Wr, O W)
which follows from above,
b (w8771(€1)) 1 (wf17ef1)’
o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that
® Wiy tk—ja (Wfl Ok—j (Wr, ©x W;)), and
o (k—Ju,an,Wrep)
eT [[A F&3ack. 1 TYPE]] 1)
= {(k,q, W,"07) | W € WorldDescy, A P(k,q, W) A
g=T[AFE&:QUAL]S A
i7.q'.
T eK[&] A
¢ =qN
Vi < k.
(i,q',|W]i,v) € T [A, a6 b 7: TYPE] §[a — T}

Hence, ey, ="vy,, Tand ¢, =7 [AF € : QUAL] 6 and there exists 711 and g7, such that
e 711 € K[x],
* ¢y 2 gy, and
o Vi <k—ji. (4,¢11, Wy liyvp,) € T[A, ack 1 0 TYPE] Sl — Z44].

Note that

(ws,e5) = (w37let Tz =1(e1) in y2(e2))
—71 (wy,,let Tz = ep, in y2(e2))
= (wfulet Tz ="vp, " in '72(62))
— (wyy,v2(e2) gy, /2])
72 (wfvef)

and irred(wy, ey), where j = j; + 1+ jo.
Note that [(Wy, Or—j, (Wry Ok W) lk—jr—1 = (Wry, Ok—jr—1 Wy,) Ok—j,—1 W,.), which follows
from

LW ©r—jy (Wry Ok W) Jk—jy 1
= (Wp Ok—ji—1 (W, O W)
which follows from Req 4 (join-closed)
= ((Wr, ©k—jy -1 Wiy) Ok—jy -1 Wh)
which follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A, a:k;To, 2277 F ey : 7o, we conclude that
[A, a:k; Do,z Foeg : 1.

Instantiate this with k£ — j1 — 1, d[a — Z11], (¢r, M ¢11), (Wr, Ok—ji—1 Wy, ), and el — vy, ].
Note that

e k— j1 —1 >0, which follows from j; + 1+ j2 = j and j < k,
o o — I11] € DA, a:k], which follows from
e 6 € D[A], and
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e 711 € K[x], and

b (k - -1 (QF2 M qil)7 (WF2 Ok—j1—1 Wf1)772[x = Ufn]) €g [[Aa kb FQH 5[04 = I/L which
follows from

o (k—j1—1,qr,, IWr, lk—ji—1,72) € G[A, ik F T'g, 2271 ] §{ov — Z11], which follows from
(k=71 —1,qry, [Wr, k—ji—1,72) € G[AF T'3] 6, which in turn follows from Lemma 9
applied to k — j1 — 1 < k and (k, qr,, Wr,,v2) € G[A F T3] 4,
(k - - 1,(]/11, LWfIJk'—jl—l?vfll) € T[[Aaa:ﬁk’rl TYPE]] 5[0‘ = Ill}a which
follows from k — j1 — 1 < k —j1 and Vi < k — ji. (4,411, | Wglivp,) €
T[A,a:k 11 : TYPE] 8l — Z14],

qr, =< (gr, M q};), which follows from the definition of M,

¢i1 = (gr, Mq}q), which follows from the definition of M1, and

(Wr, Ok—js—1 Wr) = (IWr, k41 -1 Ok—js—1 [W, Je—jy—1), which follows from
(WF2 Ok—j1 -1 Wfl)
= (IWr, Jk—j1 -1 Ok —jr—1 [W Jk—j1 1)
which follows from Req 5 (join-aprx).
Hence, Comp(k — j1 — 1, (Wr, Ok—j,—1 Wp),v2le — vp, |, 7T [A,ack = 12 : TYPE] 6l — Z14]).
Instantiate this with ja, wy,, W;, wy, and ef. Note that

e jo < k — j; — 1, which follows from j, =j—j; — 1 and j < k,
o Wy k—j—1 (Wry Ok—ji—1 Wy,) Ok—jy—1 W), which follows from
wry kg1 (W Or—jy (Wry O Wr))
which follows from above
= wypy h—ji—1 (Wp Ok—jy (Wry O W)
which follows from Req 2 (models-closed)
S wyy tk—ji—1 [(Wr Or—ji (Wry Ok Wi)) Jk—ji—1
which follows from Req 3 (models-aprx)

LWy ©k—jy (Wry Ok Wr)) [k—ji—1 = (Wry Ok—ji—1 Wiy) Or—ji—1 Wr)
which follows from above,
d (wafYQ[x = Ufll](e2)) = (wf17’72(e2)[vf11/x]) —72 (wf’ ef>7
o irred(wy,ef).

Hence, there exists Wy, and gy, such that
o Wi ik—ji—1-jo (Wp, O—jy—1-5 Wr), and
o (k—ji—1—ja,qp,,Wp,er) € T[A kb1 TYPE] dla — Z44].

Let Wy = Wy, and g7 = qp,.
We are required to show that
o wy ik Wy Oy Wr)
= wy k—ji-1-jo (Wp, Or—ji—1-5 W),
which follows from above,
o (k—j,qr,Wy,ep) e T[AF 1] 0
= (k—j1—1—jo,qp,Wp,e5) € T[AF 1] 6,
which follows from (k — j1 — 1 — jo,qy,, Wy, ep) € T [A,a:k F 19 TYPE] 0[av — Z3;] and
AF 7 TYPE.
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(Copy)
AT e s T AFTjR.

Case -
A;T'F copyer: 7T®T

We are required to show [[A; ' copye; : b7 ® T]].
Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e 5 € D[A], and
o (kyqr,Wr,7) € G[AFT] 6.
Let es = y(copye1) = copyy(e1) and Wy = Wr.
We are required to show that  Comp(k, W, es, T [[A Flrer: TYPEH d)
Comp(k, Wr, copyv(e1),T [A+" T ® 7 : TYPE] §).
Consider arbitrary j, W;., ws, wy, and ey such that

o j <k,

® Ws ik (Ws Ok Wr) = Ws 'k (WF Ok WT)?

o (ws,es5) = (ws, copyy(e1)) —7 (wy,er), and

o irred(wy,ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wy,,ep,),

o irred(wy,, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T' F eq : 7, we conclude that [A; T F ey : 7].
Instantiate this with k, d, ¢r, Wr, and . Note that

o k>0,

e § € D[A], and

® (k7qF7WF7’7) € g [[A - F]] 0.
Hence, Comp(k, Wr,~v(e1), T [A F 7 : TYPE]J).
Instantiate this with ji, W,, w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o wy i (Wr ®f W,.), which follows from above,

o (ws,y(e1)) —7 (wy,,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

® Wk k—j (Wfl Ok—41 WT)7 and

[ (k’ — j1,Qf1,Wfl,€f1) S T[[A o TYPE]] 4.
Hence, ey, = vy,.

Note that P(k — ji1,R, Wy, ), which follows from Corollary 16 applied to A - 7 < R and (k —
1,05 W, vp,) € T[AF 7: TYPE] S and R =7 [A F R : QUAL] 4.

Note that P(k—ji1 —1,R, Wy, ), which follows from Req 10 (qualpred-closed) and P(k—ji, R, Wy, ).
Note that
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(ws, €s) = (ws, copy y(e1))
7" (wy,, copy efy)
= (folvcopyvfl)
— (mf17<vflvvf1>)
7T (wy s ep).
Since (vy,, vy, ) is value, we have irred(wy, , (vs,, vy, ).
Hence, j —j1 —1=0 (and j = j1 + 1) and wy = wy, and ey = (vy,, vy, ).

Note that |(Wy, Ok—j, Wr)lk—ji—1 = (IWr Jk—j1—1 Ok—j1—1 W), which follows from
L(Wfl Ok—j1 WT)Jk—jl—l
= (Wfl Ok—j1 -1 WT)
which follows from Req 4 (join-closed)
= (IWh Jk—j1—1 Ok gy -2 Wr)
which follows from Req 5 (join-aprx).

Let Wy = LWf1JkZ—j1—1 and qf = L.
We are required to show that

o wy k- (W Ok Wr)
= wpy kg1 (W Jk—ji-1 Ok—ji -1 Wh),
which follows from

wyy k—jy Wy Ok—j; Wr)
which follows from above

= wy, kg -1 Wy Ok—j, Wr)
which follows from Req 2 (models-closed)

S wp kg1 [(Wr Ok—jn W) Jk—j1 1
which follows from Req 3 (models-aprx)

L(Wr Ok—js We)lk—ji—1 = (IWh Jk—j1 -1 Ok—j1 -1 Wr)
which follows from above,

o (k—j,qr,Wyep) €T [A+ r@7:TYPE] S
(k—j1—1,L, W Jk—jro1, (vp,vp)) €T [[A Flrer: TYPE]] é
(k=7 —1,L, LWfle—]d—l? <Uf17vf1>)
€ {(kaQ7Wa <U1’U2>)|
g=T[AFL:QUAL]SA
(k:,ql,Wl,vl) € T[[A Fr: TYPE]]é/\
(k‘,QQ,WQ,UQ) S T[[A Fr: TYPE]] AN
@1 2gNge 2gA
(W1 O Wa = W)},
which follows from

L=7[AFL:QUAL], which follows trivially,

(k=71 —1,q7, [ Wslk—ji—1,vp) € T[AF 7:TYPE] 6, which follows from Lemma 8
and Fact 6 applied to k—j;1 —1 < k—jq and (k—j1,q5,, Wy, v5,) € T [AF 7 : TYPE] G,
which in turn follows from above,

o (k—j1—1,q5, [ Wplk—ji—1,v5) € T[AF 7:TYPE] S, which follows from Lemma 8
and Fact 6 applied to k—j1 —1 < k—ji and (k—j1, g5, Wy, v5,) € T [AF 7: TYPE]SG,
which in turn follows from above,

e g7, = L, which follows trivially,
e gy, = L, which follows trivially, and,
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o [Welk—ji—1=(IWsJr—ji—1 ©k—ji—1 [Wy, Jk—ji—1), which follows from
(Wi k=i
= (Wfl Ok—j1 -1 Wfl)
which follows from Req 15 (qualpred-rel-join)
= (IWr k11 Ok—ji—1 [Wr Je—51-1)
which follows from Req 5 (join-aprx).
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(DroP)
AT e s T AFTjA.

A;T + drope; : "1g
We are required to show [[A; '+ drope; : L1®]].
Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e 5 € D[A], and
o (k,qr,Wr,7) € G[AFT]S.

Case

Let e = y(drope;) = drop~y(e1) and Wy = Wr.

We  are required to  show  that Comp(k, W, es, T [[A Fllg : TYPE]] 9) =
Comp(k, Wr,drop~(e1),7 [A+ " 1g : TYPE] 6).

Consider arbitrary j, W;., ws, wy, and ey such that

o j <k,

® Ws ik (Ws Ok Wr) = Ws 'k (WF Ok WT)?

o (ws,es5) = (ws,drop~y(e1)) —7 (wy,ey), and

o irred(wy,ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wy,,ep,),

o irred(wy,, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T' F eq : 7, we conclude that [A; T F ey : 7].
Instantiate this with k, d, ¢r, Wr, and . Note that

o k>0,

e § € D[A], and

L4 (k7qF7WF7’7) € g [[A + F]] J.
Hence, Comp(k, Wr,~v(e1), T [A F 7 : TYPE]J).
Instantiate this with ji, W,, w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o wy i (Wr ®f W,.), which follows from above,

o (ws,y(e1)) —7 (wy,,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

® Wk k—j (Wfl Ok—41 WT)7 and

[ (k’ — j1,Qf1,Wfl,€f1) S T[[A o TYPE]] 4.
Hence, ey, = vy,.

Note that P(k — ji,A, Wy, ), which follows from Corollary 16 applied to A = 7 < A and (k —
1,05 Wi, vp,) € T[AF 7: TYPE]S and A = T [A F A : QUAL] 6.

Note that P(k—ji1 —1,A, Wy, ), which follows from Req 10 (qualpred-closed) and P(k— ji, A, Wy, ).
Note that
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(s e2) = (ws, dropy(er))

"1 (wy,,dropey,)

= ("fflfdropvfl)

— (wp, ()

7T (wy ep).
Since () is value, we have irred(wy, , ().
Hence, j —j1 —1=0 (and j = j1 + 1) and wy = wy, and ey = ().

Note that [(Wy, Ox—j; Wi)lk—ji-1 = Wp Or—ji—1 (IUs Jk—j1 -1 Ok—ji—1 Wr)), which follows
from
\_(Wh Ok—j1 W"')Jk—jl—l
= Uo Ok—ji -1 Wy, Or—jy Wr))
which follows from Req 9 (join-unit-left)
= (Uo Jk—j1 -1 Ok—j1 -1 Wy, Ok—jy Wr))
which follows from Req 5 (join-aprx)
= (Wp Or—ji—1 ([Uo Jo—j1—1 Or—ji—1 Wr))
which follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Let Wy = LUGJk—Jd—l and ¢f = L.
We are required to show that

o wyih—j (Wy Or—; W)
= wp, ki1 ([Uo Jk—ji—1 Or—ji—1 W),
which follows from

wpy k—jy (We Or—jy Wr)
which follows from above

= wy, k—jr—1 Wy Or—jy Wr)
which follows from Req 2 (models-closed)

< W k—ji—1 I_(Wfl Ok—j1 W’")Jk*jlfl
which follows from Req 3 (models-aprx)

LW Ok—js W) Jk—ji1 = (Wpy Ok—jy—1 ([Uo Jk—jr -1 Ok—jy -1 Wr))
which follows from above

W, k—jy -1 (Wh Ok—ji—1 ([Uo Jh—j1 -1 Or—j -1 Wr))
= Wy h—jr—1 ([Uo Jk—ji—1 Ok—ji—1 Wr)
which follows from Req 16 (qualpred-aff-models),

b (k _jvqfan7€f) eT [[A H L1® : TYPEH 1)
(k=1 = LL [Uo Jr—j-1,() €T [AF"1g : TYPE] 6
(k -n-1 L, LZ’I@Jk*jlflv <>)

€ {(k,q, W, () |
¢=T[AFL:QUAL]S A
W = I_u@Jk}7

which follows from

e L=7T[AFL:QUAL]S, which follows trivially, and
o |Us|k—j—1 = |Us|k—j,—1 which follows trivially.
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(WEAK)
AFT~ T By ATy ke AFngA.
ATker T
We are required to show [A;T Fe: 7].
Consider arbitrary k, d, qr, Wr, and ~ such that
o k>0,
e § € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]d and A+ T ~» T’y T3, we conclude that there
exist qr,, Wr,, 71, qr,, Wr, and 2, such that
e (k,gr,,Wr,,m) € G[AFT1]5,
o (k,qr,, Wr,,72) € G[AFT2] 4,
e yEmH,
® gr, = qr,
® gr, = gr, and
(Wr, ©x Wr, = Wr).
Note that y(e1) = y1(eq).

We are required to show that Comp(k, W, es, T [AF 7: TYPE]9)
Comp(k, Wp,v1(e1), 7 [A F 7: TYPE]J).

Consider arbitrary j, W;., ws, wy, and ey such that

Case

o j <k,
® Ws L (Wg Ok Wr) = Ws 'k (WF Ok WT)? nOtng that
ws i (Wr O Wr)
= ws % (Wr, Ok Wr,) O Wr)
which follows from above,
o (ws,e5) = (w5, (e1)) —7 (wy,ef), and

o irred(wy,ey).

Note that (Wr, Ox Wr,) Or W) = (Wp, ©r (Wr, O W,.)), which follows from
(Wr, Ok Wry,) Or Wr)
= (Wr, O Wr, 0 W,))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Note that P(k,A, Wr,), which follows from Corollary 18 applied to A F I's < A and A
T[AFA:QUALJG.
Note that wg : (Wr, @ W,.), which follows from

ws % (Wr, Ox Wr,) O W) which follows from above

(Wr, Ok Wr,) Ok W;) = (Wr, Ok (Wr, Ok W)
which follows from above

ws ik (Wry, Ok (Wr, Ok W)

= Ws 'k (Wl"l Ok W'r)
which follows from Req 16 (qualpred-aff-models).

Applying the induction hypothesis to A;T'; F e : 7, we conclude that [A; Ty F e : 7].
Instantiate this with k, d, gr,, Wr,, and ;. Note that
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o k>0,
e § € D[A], and
e (k,gr,,Wr,,m) € G[AFT4]4.
Hence, Comp(k, Wr,,v1(e1), T [AF 7: TYPE] ).
Instantiate this with ji, W,, ws, wy, and ef. Note that
o j <k,
o wy i, (Wr, @ W,.), which follows from above,
o (ws,miler)) —7 (wy,ey),
o irred(wy,ey).
Hence, there exists Wy and gy such that
o wyip—j (WyOr_; W), and
o (k—j,q7,Wy,ep) e T[AF 7:TYPE]S.
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Case (UserPVal) ... :

Case (UserExp) ... :
End Case
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A.7.6 Type Safety

Theorem 22 (Core Language Type Safety)

Ife;el-e: 7 and w: Uy and (w,e) —* (W', €),
then either ¢ =o' or Fw” e". (w',e’) — (W",€"”).

Proof

Let o;0 - e: 7 and w : Uy and (w,e) —* (w',€).

Either irred(w’,e’) or —irred(w’,e’).

Suppose —irred(w’, e’).

Then Jw” e”. (w',e') — (w”,e").

Suppose irred(w’, €’).

Note that there exists i such that (w,e) —* (w’, e’), which follows from (w,e) —* (w',¢€’).
Applying Theorem 21 to e;e - e : 7, we conclude that [e;e e : 7].

This is equivalent to

Vk > 0. Y5, qr, Wr, .
seD[e] A
(k,qr,Wr,vy) € GleF o] 6 =
Comp(k, Wr,y(e), T [o F 7 : TYPE[§)

Instantiate this with s 4+ 1, 0, U, |Ug |i+1, and @. Note that

e ;+12>0,
e () € DJe], and
° (i+1,U,|_Z/[@Ji+1,@) Gg[[.l—.ﬂ 0.

Hence, we conclude that Comp(i + 1, |Ug |iv1,€,7 [ - 7 : TYPE] 0).
This is equivalent to
Vi<i+1, W, ws, wy,ey.
(I_UGJZ'-H @it+1 W,) defined A
ws i1 ([Uo Jit1 @ivr W) A
(wsve) —7 (wfvef) A
irred(wy, ef) =
Wy, qs-
(Wf Oit1—j WT) defined A
wy cit1—j (Wr Oipr— W) A
(i4+1—j,q7,Wys,ep) €T ok 7 TYPE]]@

Instantiate this with 4, Uy, w, w’, and ¢’. Note that
o <i+1,

o (|Up|it1 ®it1 Up) defined, which follows from

|Uo Jiv1
= (Up Git1Up)
which follows from Req 9 (join-unit-left)

= (|Uo Jit1 Oit1 Us)
which follows from Req 5 (join-aprx),
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o w1 ([Us)it1 @itr1 U ), which follows from

w: L{@

which follows from above
= w 41 Up

which follows from i+ 1 >0
S w it [Uo Jit

which follows from Req 3 (models-aprx)
=w 41 (Ue Oit1 Us)

which follows from Req 9 (join-unit-left)
= w i1 ([Uo Jiv1 Oit1 Uo)

which follows from Req 5 (join-aprx),

o (w,e) —* (w’,e’), which follows from above, and

o irred(w’, e’), which follows from above.
Hence, we conclude that there exists W’ and ¢’ such that

o (W' ®i41-iUg) defined,

o lit1—i (W/ Oit1—i Z/{@), and

o (i+1—14,¢,W,e)eT et 1:TYPE]D.
Applying Lemma 8 to ) € D [e] and e - 7 : TYPE, we conclude that 7 [e - 7: TYPE] 0 € Type.
Hence, 7 [@ - 7 : TYPE] € Type C CandUberType,, = 2CmdAtome,
Hence, (i +1—14,¢', W' ¢') € CandAtom, = Ukzo CandAtomy.

Hence, ¢’ € C'Values.

Hence, ¢/ ='.
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B Recursive Types and Functions Extension

B.1

Syntax

Type Level:
PreTypes T u= ...|pa:PRETYPE.T

Expression Level:
Values v u= ...|foldw
Ezpressions e ... |unfolde

Figure 16: Rec Extension — Syntax
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B.2 Operational Semantics

Evaluation Contexts E == ...|unfoldE

(unfold) (w,unfold (foldv)) +— (w,v)

Figure 17: Rec Extension — Operational Semantics

114



B.3 Static Semantics

AFi:ik

(RECPTY)
A, a:PRETYPEF 7: TYPE

A F po:PRETYPE. 7 : PRETYPE

Figure 18: Rec Extension — Static Semantics (I)

(FoLb)

AFE A;T R o 7[puoa:PRETYPE. 7/ AF 7[po:PRETYPE. 7/a) < €

A;T+ foldv : *ua:PRETYPE. 7

(UNFOLD)
A;TFe: Suo:PRETYPE. 7
A;T Funfolde : 7[uc:PRETYPE. 7/q]

Figure 19: Rec Extension — Static Semantics (V)
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B.4 Desugar
B4.1 Y

Syntax
Y = AN (Qz. f((unfoldz)x)) (fold (Az. f ((unfoldx)x)))

Static Semantics

(Y)

Aok Y:"VaTYPE."(Y(a —~a) - a) = Ajer...: " Va:TYPE."(Y(a — a) — «)

(ALL)
AFL:QUAL
(FN)
U' D1
]AH_:QUAL\ ’A)—ojL‘ A, a:TYPE; e, fV(a —a)F...: a
AFe=L A, a:TYPE;o A f. ...: " (Y(a —a) — )
Do = A;e - AN .. YWaTYPE.L(Y(a —a) — )
(App)
A, a:TYPEF o, f:V(a o a)~ o, fV(a —a)Be, fV(a —a)
; — 9,
A, a:TYPE;e, f:Y(a —a) ... : Y(YuB:PRETYPE.Y (Y3 —0 a) — a)
(FoLp)
’A,a:TYPE FU: QUAL‘
; _ 9,
A, a:TYPE; e, f:V(a —a) k... : Y(YuB:PRETYPE.Y (Y3 —0 a) —0 )

’ A+Y(YuB:PRETYPE.Y(Y8 —a) —a) < U ‘
A, a:TYPE; -,f:U(a —o )k fold...: Uuﬁ:PRETYPE. U(Uﬁ —o )

D1 = A, a:TYPE;e, f:Y(a —0 ) F (...) (unfold(...)) : a
(FN)
] A, :TYPE F U : QUAL \ ’ A, a:TYPEF o, fY(a —0a) < U
U U : UU =93
A, :TYPE; e, f:¥ (o —0 ),z  uB:PRETYPE. V("8 —a) ...t «
Dy =| A, TYPE;e, fV(a —a)F Az. ...: Y(YuB:PRETYPE.Y(Y8 —0 a) — a)
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(App)
A, a:TYPEF o, f:V (o —o @), 2:YuB:PRETYPE. Y (V8 —0 ) ~ o, f:Y (v —0 o) Be, 2:Vu3:PRETYPE. Y (V3 — @)
A, a:TYPE;e, f:' (@ —a) - f : V(e —a)
A, a:TYPE; e, z:Yu3:PRETYPE.Y (Y3 ) F ...: =Ds
Dy = A, a:TYPE;e, f:V(a —o ), z:YuB:PRETYPE.Y (Y8 —a) F f(...) : @
(App)
A, a:TYPE - o, :Yu3:PRETYPE. Y (Y8 —0 o) ~> o, z:Y u3:PRETYPE. Y (V8 —0 o) e, z:Vu3:PRETYPE. Y (V3 — )
(UNFOLD)
A, a:TYPE; o, 2:Yu3:PRETYPE.Y (Y8 — ) F z : YuB:PRETYPE.Y (Y3 — a)
A, a:TYPE; o, z:Yu8:PRETYPE.Y (VY3 — )  unfold z : YuB:PRETYPE.Y(YuB:PRETYPE.Y (V3 — a) — a)
A, o:TYPE; e, 2:Yu3:PRETYPE.Y (Y8 —0 ) - z : YuB:PRETYPE.Y (Y3 — )
Dy = A, a:TYPE; e, 2:Y u3:PRETYPE. V(Y3 —o @) F (unfoldz)z :
B.4.2 fix
Syntax

Static Semantics

fix f(z).e = (Y])) (Af-Az.e)

(F1x)
AL, fV(m —m),zmbe:n
AT+ fix f(z).e: Y (m —o 72) = A;FF..-:“(anz)ZDO
(App)
(InsT)
(Y)
A;oFY:WaTYPE.H(Y(a — a) — ) ’A)—U(Tl —o13) : TYPE
AFT~ oHI Ase Y[ 5V (Y (1 —om2) — V(11 —om)) —o V(11 — 7))
(FN)
[Aru:QuAL]  [AFT SU]
(FN)
[aFT=<U] ’Al—u(’ﬁ—oTz)jU‘
A+ U: QUAL AFT, f9(r —om0) < U | AL 19(n —om)mmteim
AT, fV (1 —om) F Az.e: Y(r —om2)
AT M Az e: YV (m —om) —Y(r —om))
Do = AT HE) Az e): V(1 —o 1)
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B.5

Model

" A& po:PRETYPE. 7 : PRETYPE
{(k,q,W,foldv) | k <k AW € WorldDescy, AN P(k,q, W) A
¢
q¢ 2 qn
Vi < k.
let T = 7, [i, A - ua:PRETYPE. 7 : PRETYPE] § in
(4,4, |[W]i,v) € T [A,a:PRETYPE |- 7 : TYPE] §[a — Z]}

. A, a:PRETYPE I : TYPE
T, ||k

T[A '+ pa:PRETYPE.7: PRETYPE]S = U507 [K, A - uo:PRETYPE. 7 : PRETYPE] §

Figure 20: Rec Extension — Semantic Interpretations (III)
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B.6 Proofs
B.6.1 Validity of Kinding Rules
Lemma 23 (Rec Extension: 7, [k', A pa:PRETYPE. 7 : PRETYPE] 6 € K [PRETYPE])

Let 6 € D[A] and A+ pa:PRETYPE. 7 : PRETYPE.
Then forall k', T, [k', A F pa:PRETYPE. 7 : PRETYPE] 6 € K [PRETYPE].

Proof (Ref Extension Language: 7, [k', A - pa:PRETYPE. 7 : PRETYPE] ¢ € K [PRETYPE])

Recall from Lemma 8, it suffices to prove the following:

v(k,q, W,v) € T,, [K', A+ pa:PRETYPE. 7 : PRETYPE] 6.
W € WorldDesci, A P(k,q, W) A
Vi < k. (¢, [W);,v) € T, [K, A F ua:PRETYPE. 7 : PRETYPE] 4.

Proceed by induction on the derivation A - pa:PRETYPE. 7 : PRETYPE.

(RECPTY)
A,a:PRETYPEF 7: TYPE

A F pa:PRETYPE. 7 : F’RETYPE:
Consider arbitrary k'
Recall that
7 g A, a:PRETYPE | 7: TYPE
“ | AF a:PRETYPE. 7 : PRETYPE
{(k,q,W,foldv) | k< k' AW € WorldDesci, A P(k,q, W) A
3q.
q 2 qn
Vi < k.
let 7 = T, [i, A - pa:PRETYPE. 7 : PRETYPE] § in
(t,q', [W]i,v) € T [A,a:PRETYPE I 7 : TYPE] §[a — Z]}

Consider arbitrary (k,q, W,v) € 7, [k, A+ po:PRETYPE. 7 : PRETYPE] 6.
Hence, k < k' and v = foldw, and W € WorldDescy, and P(k,q, W) and there exists qL such
that

Case

® q, =q,

o Vi < k.
let Z=17,[i,A+ pa:PRETYPE. 7 : PRETYPE] ¢ in
(4,5 IW]i,vu) € T[A, :PRETYPE &= 7 : TYPE] 6[ax = Z].

We are required to show that
o W € WorldDescy, which follows from above, and
e P(k,q, W), which follows from above.

Consider j < k.

We are required to show that (j,q, |W|;,foldv,) € 7, [k, A F pa:PRETYPE. 7 : PRETYPE] 6.
Note that 7 < &/, which follows from 7 < k and k < &'.

Note that |W],; € WorldDesc;, which follows from |-]; € WorldDesc — WorldDesc;.

Note that P(j,q, |W];), which follows from Req 10 (qualpred-closed) and Req 11 (qualpred-aprx).
Take ¢’ = q;,. Note that

e ¢ <Xq = qL =< @, which follows from above,
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o Vi < J.

let Z=17,[i,A+ pa:PRETYPE. 7 : PRETYPE] ¢ in

(t,¢", [W]i,vu) € T [A,a:PRETYPE - 7 : TYPE] 6[av — Z1:
Consider arbitrary i < j.
Let T =17, i, A+ pa:PRETYPE. 7 : PRETYPE] 6.
We are required to show that (i,¢, (W], v,) = (4,4 LW iy 00) €
T[A,a:k b 7: TYPE] 0] — Z].
Instantiate Vi < k. let Z = 7, [i, A F pa:PRETYPE. 7 : PRETYPE] 0 in (i,q;, |[W|i,v,) €
T [A, a:PRETYPE F 7 : TYPE] 6[a — Z] with 4, noting that ¢ < k, which follows from ¢ < j
and j < k.
Hence, (i,q,,, [W]i,v,) € T [A,:PRETYPE |- 7 : TYPE] 6[a = Z].
Note that |[W],]; = |[W];, which follows from Req 1 (aprx-idem).
Hence, (i, [ |W];]i,v) € T [A, :PRETYPE F 7 : TYPE] §[a — Z].

End Case

Lemma 24 (Rec Extension: 7 [A}F ¢: k] d € K[k])

Let 6 e D[A] and AF ¢ : k.
Then T [AFv: k] 6 € K[K].

Proof (Ref Extension: 7 [AF ¢ :k]d € K[k])

Recall from Lemma 8, for kK = QUAL, it suffices to prove the following:
T[AFE&:QUAL]S € Quals.

Recall from Lemma 8, for K = PRETYPE, it suffices to prove the following:

V(k,q,W,v) € T[AF7T:PRETYPE] 6. W € WorldDesci, AP (k,q, W) A
Vi <k. (j.a,|W|;,v) € T [AF 7 : PRETYPE] 6.

Recall from Lemma 8, for k = TYPE, it suffices to prove the following;:
3¢’ € Quals. V(k,q,W,v) € T[AF 7:TYPE]S. W € WorldDesci, A P(k,q, W) A
Vi <k (G,q,|[W];,v) € T[AF7T: PRETYPE]S A
/
q9=q.

Proceed by induction on the derivation A ¢ : k.

(RECPTY)
A, a:PRETYPE | 7 : TYPE
A F pa:PRETYPE. 7 : PRETYPE:
Recall that
7T [AF po:PRETYPE. 7 : PRETYPE] § = Uk,>0 7. [k, A F po:PRETYPE. 7 : PRETYPE] §

Consider arbitrary (k,q, W,v) € T [A F uc:PRETYPE. 7 : PRETYPE] 4.
Hence, there exists k" > 0 such that

o (k,q,W,v) e T,[K,AF po:PRETYPE. T : PRETYPE] 4.
Applying Lemma 23 to A F+ ua:PRETYPE.7 : PRETYPE, we conclude that

T, [k, A+ po:PRETYPE. 7 : PRETYPE] § € PreType.

Applying Fact 5 to (k,q,W,v) € 7T,[k At pa:PRETYPE.7:PRETYPE]d € PreType,
we conclude that W € WorldDesc, and P(k,q,W) and Vj < k. (j,q, [W],,v) €
7, [k, A+ po:PRETYPE. 7 : PRETYPE] 4.

We are required to show that

Case
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o W € WorldDescy, which follows from above,
e P(k,q, W), which follows from above,

Consider arbitrary j < k.
We are required to show that (j,q, W |;,v) € 7 [A F pa:PRETYPE. 7 : PRETYPE] 6.

Note that (j,q, |W|;,v) € 7, [k, A+ pa:PRETYPE. 7 : PRETYPE] ¢, which follows from above.
Hence, (j,q, |[W];,v) € T [A F po:PRETYPE. 7 : PRETYPE] 6.

End Case
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Lemma 25 (Rec Extension: 7 [AF ¢: k] ¢ (type-level substitution))

Let A, A"+ po:PRETYPE. 7 : PRETYPE and § € DA, A'].
LetT =T,[K,A, A"+ pa:PRETYPE. 7 : PRETYPE] 0.
Then |T [A, :PRETYPE, A" - 7: TYPE] §[a — Z]| k41 = | T [A, A" F 7[pa:PRETYPE. 7/a] : TYPE] 6511

Proof (Rec Extension: 7 [AF ¢: k] ¢ (type-level substitution))

Let A, A"+ po:PRETYPE. 7 : PRETYPE and 6 € D[A, A'].
Let T =7, [K,A, A" - pa:PRETYPE. 7 : PRETYPE] 6.
Proceed by induction on the derivation A, a:PRETYPE, A’ F 7 : TYPE.

Case (UserPTy)... :

Case (UserTerm)... :
End Case
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B.6.2 Validity of Typing Rules

Theorem 26 (Rec Extension Soundness)
If AsTRe: T, then [A;T Fe: 7).
Proof

By induction on the derivation A;T'Fe: 7.

(FoLp)
AF¢E A;T v 7[pc:PRETYPE. 7/ A 7[pa:PRETYPE. 7/a] < £
A;T F foldwy : $pua:PRETYPE. 7 ’

We are required to show [[A; I'F foldwv; : $puo:PRETYPE. T]].
Consider arbitrary k, d, qr, Wr, and ~ such that

e k>0,

e § € D[A], and

d (k7QF7WF77) € g IIA F F]] J.
Let e = y(foldw;) = fold~y(vy) and W, = Wr.
We are required to show that Comp(k, Wy, es, T [[A F €0:PRETYPE. 7 : TYPE]] 0) =
Comp(k, Wr, fold~(v1), T [[A F ¢0:PRETYPE. 7 : TYPE]] d).
Consider arbitrary j, W;., ws, wy, and ey such that

Case

° j <k,

® Wgs ik (WS Ok Wr) = Ws 'k WF Ok er

o (ws,e5) = (ws, foldy(vy)) —7 (wy,er), and

o irred(wy,ey).
Since foldv(vy) is a value, we have irred(ws, fold~y(vy)).
Hence, j = 0 and wy = w; and ey = foldy(vy).
Applying the induction hypothesis to A;T" F vy : 7[ua:PRETYPE.7/a], we conclude that
[A;T F vy 7[pa:PRETYPE. 7/a]].
Instantiate this with k, d, g0, Wr, and . Note that

e k>0,

e § € D[A], and

° (k,qF,WF,’)/) €g [[A F F]] d.
Hence, Comp(k, Wr,v(v1),7 [A F 7[ua:PRETYPE. 7/a] : TYPE] §).
Instantiate this with 0, W,., ws, ws, and v(v1). Note that

e 0 < k, which follows from j =0 and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,7(v1)) = (ws,7(v1)), and

o irred(ws,y(v1)), which follows from the fact that ~(v1) is a value.
Hence, there exists Wy, and gy, such that

® Ws k—0 (Wfl ®Ok—0 W,«), and

o (k—0,q5,Wr,,7(v1)) € T [A F 7[pa:PRETYPE. 7/a] : TYPE] 4.
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Let Wy = Wy, and ¢y =T [AF & : QUAL] 6. We are required to show that

o wi o (WyOp—o W)
= Ws 'k (Wfl Ok WT),
which follows from above, and

o (k—

0,7, Wy, eg) € T [AF €ua:PRETYPE. 7 : TYPE] §
(k,T[AF € : QUAL] 6, Wy, , fold(v1))
(g W)
g=T[AF¢: QUAL]S A
(k,q,W,v) € T [AF pa:PRETYPE. 7 : PRETYPE] §}
(k,T[AF & :QUAL] S, Wy, ,foldy(v1))
& (kg W)
g=T[AF¢: QUAL]S A
(k. q,W,v) € Upoy T, [K, A F uo:PRETYPE. 7 : PRETYPE] 6}
(k, T [AF €&: QUAL] S, Wy, foldy(vy))
€ {(k,q,W,foldv) | K. k <K' AW € WorldDescy N P(k,q, W) A
g=T[AFE&:QUAL]S A
dq'.
¢ 2qn
Vi < k.
let Z =17, [i,A+ pa:PRETYPE. 7 : PRETYPE] 0 in
(i,q', |[W |5, v) € T [A, a:PRETYPE F 7 : TYPE] §[a — 7]}

which follows from

o K. k<k

Take k' = k. Note that k& < k follows trivially.
T[AFE:QUAL)S =T [AF € : QUAL] 4, which follows trivially,

Wy, € WorldDescy, which follows from Fact 6 to (k,qp,Wyp,v(v1)) €
T [A ¢ 7[pa:PRETYPE. 7/a] : TYPE] S,

Pk, T[AFE: QUAL] 6, Wy,), which  follows from  Corollary 16  ap-
plied to A F  7[pa:PRETYPE.7/a] =< & and (k,qp,Wy,v(v1)) €
T [AF 7[pa:PRETYPE. 7/a) : TYPE] § and 7 [A F £ : QUAL] 4, and
dq'. ...
Take ¢ = gy,. Note that
° gy =< T[AFE&:QUAL]S, which follows from Lemma 15 ap-
plied to A F 7[puaPRETYPE.7/a] =< ¢ and (k,qp, Wy ,v(v1)) €
7T [AF 7[pa:PRETYPE.7/a] : TYPE] § and 7 [A F £ : QUAL] S,
o Vi<k. ...
Consider arbitrary ¢ such that

o i < k.
Let T =17, [i, A+ po:PRETYPE. 7 : TYPE] 6.
We are required to show that (4,5, Wy |4, v1) €

T [A, :PRETYPE I 7 : TYPE] §[a — 1].
Note that 7, [i, A+ pa:PRETYPE. 7 : PRETYPE] 6 € K [PRETYPE], which fol-
lows from Lemma 23 applied to § € D[A] and A F pa:PRETYPE. 7 : PRETYPE.

Applying Lemma 8 to A F 7[ua:PRETYPE.7/a] : TYPE, we conclude that
T [AF 7[pa:PRETYPE. 7/a] : TYPE] § € Type.

Applying Fact 6 to (k,qys,, Wy,,v(v1)) € T [A F 7[pa:PRETYPE. 7/a] : TYPE] § €
Type instantiated with 4, noting that

124



e i < k, which follows from i < k,

we conclude that (4, qr,, |Wr, i, v(v1)) € T [A F 7[pua:PRETYPE. 7/a] : TYPE] 4.
Hence, (4,47, Wy i,v(v1)) € [T [AF 7[po:PRETYPE.7/a] : TYPE] 6],
which follows from the definition |-].

Applying Lemma 25 to A F puo:PRETYPE.7 : PRETYPE and § €
D[A], we conclude that |7 [A,a:PRETYPEF 7:TYPE]d[a — Z]|iy1 =
|7 [AF 7[pc:PRETYPE. 7/a] : TYPE] §];41.

Hence, we conclude that (@ ap, Wy j,7v(m)) €
|7 [A, a:PRETYPE F 7 : TYPE] 6[a v ] |s41.
Hence, we conclude that (6 qps IWh i, v(v1)) €

T[A,:PRETYPEF 7: TYPE] [ — Z], which follows from the definition
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(UNFOLD)
A;TF ey : Spo:PRETYPE. 7 '
A;T - unfolde; : T[ua:PRETYPE. 7/a]’
We are required to show [A;T' F unfolde; : 7[ua:PRETYPE. 7/¢]].

Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e 5 € D[A], and
o (k,qr,Wr,v) € G[AFT]6.
Let es = y(unfolde;) = unfold~y(e;) and Wy = Wr.
We are required to show that Comp(k, Wi, es,7 [AF 7[pa:PRETYPE.7/a] : TYPE]d) =
Comp(k, Wr,unfold~y(e1),7 [A F 7[ua:PRETYPE. 7/a] : TYPE] §).
Consider arbitrary j, W,, ws, wy, and ey such that

Case

° j <k,
o wy i (Ws O Wy) = ws i, (Wr O W),
o (ws,e5) = (ws,unfoldy(e)) —7 (wy,ef), and
o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
b (wSaIY(el)) 1 (wfl’efl)V
o irred(wy, ey, ), and
[ ] jl S _]
Applying the induction hypothesis to A;I' + e; : Sua:PRETYPE.7, we conclude that
[[A;F Fep: 5ua:PRETYPE.T]].
Instantiate this with k, 4, qr, Wr, and . Note that
o« k>0,
e § € D[A], and
o (k,qr,Wr,,v) € G[AFT]6.
Hence, Comp(k, Wr,vy(e1),T [[A F $p0:PRETYPE. 7 : TYPEH d).
Instantiate this with ji, W;., w,, wy,, and ey, . Note that
e j; < k, which follows from j; < j and 7 < k,
wg : (Wr O W,.), which follows from above,
(ws,v(e1)) —7 (wyy,ep,),
irred(wy,, ey, ).

Hence, there exists Wy, and gy, such that
® Wry k—js (Wfl Ok—3; WT)7 and
o (k—=ij1,q5, W ep)
eT [[A - €uo:PRETYPE. 7 : TYPE]] 0
={(k,q,W,foldv) | IK'. k < k' AW € WorldDescy A P(k,q, W) A
g=T[AFE&:QUAL]S A
dq’.
q 2gn
Vi < k.
let Z=17T,[i,A+ pa:PRETYPE. 7 : PRETYPE] ¢ in
(i,q',|W]i,v) € T [A,a:PRETYPE | 7 : TYPE] [ — Z]}
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Hence, ey, = foldwy, and qf, = T [AF&:QUAL]J and there exists ¢’ such that ¢
qr, and Vi < k — ji. let T = 7T,[i,A+ po:PRETYPE.7: PRETYPE]$ in (i,¢, |[W];,v)
T [A, a:PRETYPE F 7 : TYPE] d[a — 7).

Note that

=
€

(ws, es) = (ws, unfoldy(e1))
L (wflvunf()ldefl)
= (wy,,unfold (foldwy,,))
'_>1 (Wf1vvf11)
7T (wyey)
Since (wy,, vy, ) is a value, we have irred(wy,, vy, ).
Hence, j —j1 —1 =0 (and j = j1 + 1) and wy = wy, and e = vy,,.

Note that |(Wy, Ok—j, W) lk—ji—1 = (W5 Jk—j1—1 @r—jr—1 W;), which follows from
LWy Ok—js Wr)lk—j1—1
= (Wp Ok—j1—1 Wr)
which follows from Req 4 (join-closed)
= (Wh Jk—j1—1 Ok—ji 1 Wr)
which follows from Req 5 (join-aprx).

Let Wy = LWf1JkZ—j1—1 and qf = q.
We are required to show that

® Wys ip_j (Wf Ok—j W)
= wy, h—ji—1 (W Je—ji—1 Or—ji—1 Wi),
which follows from

wpy k—jy (Wr Or—jy Wr)
which follows from above

= Wy k—jy—1 (Wfl Ok—j1 W’")
which follows from Req 2 (models-closed)

S Wy tk—jp-1 L(Wfl Ok—j1 WT)Jk*jlfl
which follows from Req 3 (models-aprx)

LWs Or—js W) Jk—ji—1 = (Wi Jk—j1 -1 Or—j -1 Wir)
which follows from above,
o (k—7,q5,Wy,e5) € T [AF 7[ua:PRETYPE.7/a] : TYPE] §

= (k—j—1,4,\Wplk—jr-1,vp,) € T [AF 7[pa:PRETYPE. 7/a] : TYPE] §
Instantiate Vi < k — j1. let Z =7, [i, A+ pa:PRETYPE. 7 : PRETYPE] 6 in (i,¢', |[W |;,v) €
T [A,:PRETYPE F 7 : TYPE] §[a — Z] with k& — j; — 1. Note that

° k—j1—1<k—j1.
Let Z="1T,[k— j1 — 1,A+ po:PRETYPE. 7 : PRETYPE] 6.
Hence, we conclude that (k—j1 —1,¢', Wy, Jk—jr—1,v5,) € T [A,a:k F 7 : TYPE] 0[a — Z].
Hence, (k — j1 — 1, ¢, |IWy, lk—ji—1,v5,) € [T [A, kb 7:TYPE]Sla — Z]]k—j,, which
follows from the definition |-].
Applying Lemma 25 to A F  ua:PRETYPE.7 : PRETYPE and 6 €
D[A], we conclude that |7 [A,aPRETYPEF 7:TYPE]dla +—  Z]lp—;, =
|7 [A F r[ua:PRETYPE. 7/a] : TYPE] i,

Hence, we  conclude  that k — 4 — 1,4, Wglk—j—1,0f,) €
| T [AF 7[pa:PRETYPE. 7/a] : TYPE] 61—, .
Hence, we conclude that k — 45 — 1,4 Wglk—j—1,0f,) €

T [A F 7[pa:PRETYPE. 7/a] : TYPE] 4, which follows from the definition of |-].
End Case
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C References

C.1 Syntax

Type Level:
Extended PreTypes Tx = refr

Expression Level:

Locations Il € Locs
Extended Values vx = 1
Extended Exzpressions ex 1= newge |freee |rde |wreies | sweies

Figure 21: Ref Extension — Syntax
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C.2 Operational Semantics

World w == {l—(q,v1),.-,ln— (gn,vn)}

FExtended Evaluation Contexts Ex

newg F | freeE |rdE |wrEes |wrviE |swEex |swv B

—

Figure 22: Ref Extension — Operational Semantics
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C.3 Static Semantics

AFi:ik

(REFPTY)
AFT:TYPE

A Fref 7: PRETYPE

Figure 23: Ref Extension — Static Semantics (I)

(NEW(U,A)) (NEwW(R,L)) (FREE)
qg=<A A;THe: T AFT=<A R=<g¢q A;Tke: T AT Fe:Cref 1 AFA<E
A;T Fnewge: Iref 7 A;T Fnewge: ref 7 A;T F freee : 7
(READ)
A;ThHe:Sref T AF7T<R
A;Thrde : “(Cref 7@ 7)
(WRITE(STRONG))
A}—F«»FlEEI‘g A;F1|—€1Z§I’ef7'1 A"leA Al—Ajf A;le—engQ Al—ngf
A;TFuwrepes < Sref To
(WRITE(WEAK))
AFT~T1BT, ATibFer:Srefr AFT=<A  ATsber:T
A;T'Fuwrer e cSref T
(SWAP(STRONG))
AFT~T1HTI, A;Fll—elzgrefﬁ AFA=<¢ A;TabFes:me AbFT <€

AT Fsweres : “(Cref m®@71)

(Swap(WEAK))
AFT~T1 BT, ATiber:Srefr  ATobes:r
AT swer ez :L(gref7®7)

Figure 24: Ref Extension — Static Semantics (V)
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C.4 Desugar
C.4.1 wr
Syntax

Operational Semantics

(
(
(
(

Static Semantics

Wo, Wr e ez ) —
wi,wrles ) —"
w2 W {l— (q,v1}),wrlvy) —
w6 {1 (q,021).0)

= (wo,let (r,z) =sweiez inr)+—>
w1, let (r,z) =swley inr) —
wa W {l — (q,v1)},1let (r,z) =swlvy inr) —
wa W {l — (q,v2)},1let (r,z) = (l,v1) in r) —
ws 6 {L > (g,u2)1.0)

wreiez = let (r,x)=sweiez inr

*

(
(
(
(

(WRITE(STRONG))

[AFT~T @810,

|A;I‘1I—el :5ref7'1|

1

*
*

1
1

AF7m <A

[AFA=E]l  [AToke:n| |AFm ¢
: _ o,
A;I‘erelez:gresz = A;P#...:Erefrg
(LET-MPAIR)
(SWAP(STRONG))
|A;1"1|—61:5ref7'1| |A|—Aj§| |A;F2I—ez:7'2| |AI—sz§

AFT~THe

A;T Fswepes : I‘(5ref To ® T1)

(WEAK)
’ At o, r:lref 7o, m:7 ~ @, ribref o He, zi7y ‘
(VAR)
[are=<a| [AFn=A] | A Sref r: TYPE]

At e x:T1 <A

A;o,r:'sref 7o b1 Sref 1o

A;o,r:‘sref To,x:T1 7t Eref o

Do =

A;TFlet (r,z) =swer ez inr: Sref o
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(WRITE(WEAK))

[AFT~T, 81|

A;Fll—elzgref'r| |A|—TjA| |A;P2I—ezz7'

:@0

Do

A;T'Fuwreres

:Cref T = A;TH...:Srefr

(LET-MPAIR)

(SWAP(WEAK))

AFT T, Bl | AsTy b e s ref 7| ATsbes:r

AFT~THe

A;T Fsweres : L(gref TQT)

(WEAK)

’ AF o réref 7,07~ o, 1:5ref T He, zi7 ‘

’Al—ojA‘

|AFT§M

At e x:T <A ’A;o,r:grele—rzgrefT‘

Ao, réref rxir b fref T

A;T F let (r,z) = swei ez inr: Sref 7
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C.5 Model

World Description (Notation) W == {(+— (¢,X),...}

W € CandWorldDesc, = Locs = Quals x CandUberType,

W € C(CandWorldDesc,, = Locs = Quals X CandUberType,,
UkZO CandWorldDesci, C  CandWorldDesc,,

(Wl =" {l—= (g, le) | 1€ dom(W)AW(I) = (¢, x)}
Wl € CandWorldDesc., — CandWorldDescy,

Plk,q, W) = Vi€ dom(W). W*(]) < ¢
P(k,q,W) € N x Quals x CandWorldDesc,, — P

RW) = Vledom(W). (W () < A=V(,q, ) eW¥(). ¢ <A
R(W) € CandWorldDesc, — P

Figure 25: Ref Extension — Semantic Interpretations (Ia)
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W € WorldDesc, = {W € Locs — Quals x Type, | R(W)} C  CandWorldDescy,

|[W]r € WorldDesc — WorldDescy,

W1 O Wa def
{l — |_W1Jk(l) | le dom(Wl) N dom(Wz)} if vVl € dom(Wl) N dom(Wg). I_W1Jk(l) = |_W2Jk(l)
W{l— [Wi|e(l) |l € dom(W1)\ dom(Wa)} and VI € dom(W1). A = W (1) = | ¢ dom(W2)

W{l = Wi (D) |1 € dom(W2) \ dom(W1)}  and VI € dom(Wa). A < W*(1) = 1 ¢ dom (W)

1 otherwise
W1 O Wa S WorldDesc x WorldDesc — WorldDescy,

def 55, gtoes.

AFw : S — WorldDescy.
3Fq: S — Quals.
let W = (W 0, O Fw (1)) in
dom(w) 2 dom(W,) =S A
VieS. Vj<k.
Gy Fa D), [Fw ()15, w7 (1) € [WEP(0)]1 A
viesS.
wd (1) = WP (I)A
vstCs.
dom(W) C ST A (VI € ST. dom(Fw (1)) CST) =
St=8A
vl € dom(w).
Rxuw™()=1eS
w:i W € N x World x WorldDesc — P

w e W

U = {}
Us €  WorldDesc

Figure 26: Ref Extension — Semantic Interpretations (Ib)
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AFT:TYPE
et x=|T[AFT:TYPE]S]x A

(a=2A=V(d,,)ex ¢ =A)}

Figure 27: Ref Extension — Semantic Interpretations (IIT)
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C.6 Requirements

e Req 1 (aprx-idem)

LLWJ sz k1 — LWJ min(ki,k2)*
Proof

Immediate from the definition of [V |.

e Req 2 (models-closed)
if j <kandw: W, thenw:; W.
Proof

Immediate from the definition of w :; W and Req 5 (join-aprx) and Fact 6.
(Note that Req 2 (models-closed) does not require Req 3 (models-aprx).)

e Req 3 (models-aprx)
w W iff w k LWJk
Proof

Note that dom(W) = dom(|W |x).
Immediate from the definition of w :;, W and Req 5 (join-aprx).
(Note that Req 5 (join-aprx) does not require Req 3 (models-aprx).)

e Req 4 (join-closed)
lfj < k and (W1 O Wo = VVg)7 then (W1 OF Wy = LWng)
Proof

Immediate from the definition of Wi ©p Ws.

e Req 5 (join-aprx)
(W1 O Wy = W) iff (W1 Or Wo = Ws) iff (W1 O [Walr = Wa) iff ([Wi]i Ok [Wa]r = Ws).
Proof

Immediate from the definitions of Wy © Wy and |W .

e Req 6 (join-commut)
if (Wl O Wo = Wg), then (W2 O Wi = Wg)
Proof

Immediate from the definition of Wi ® Ws.

e Req 7 (join-assocl)
it (Wy O W3 = Wag) and (Wh O Wag = Wias),
then there exists Wiy such that (Wy ©r Wa = Wis) and (Wia O W3 = Wia3).
Proof

Immediate from the definition of Wi © Ws.
e Req 8 (join-assocr)
if (W1 @k W1 = Wiz) and (Wi2 ©p W3 = Wiag),

then there exists Was such that (W @ W3 = Was) and (W1 © Wag = Wias).
Proof
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Immediate from the definition of Wy © Ws.

Req 9 (join-unit-left)
Uy O W = [W ).
Proof

Immediate from the definitions of W7 ©f Ws and Uy .

Req 10 (qualpred-closed)
if j <k and P(k,q, W), then P(j,q, W).
Proof

Immediate from the definition of P(k,q, W).

Req 11 (qualpred-aprx)
Proof

Immediate from the definitions of P(k, ¢, W) and |W |.

Req 12 (qualpred-join)
if P(kaqa Wl) and P(ka q, WQ) and (Wl O W = W3)? then P(ka q, W3)
Proof

Immediate from the definitions of P(k,q, W) and Wy O Wa.

Req 13 (qualpred-qualsub)
if P(k,q,W) and q < ¢, then P(k, ¢, W).
Proof

Immediate from the definition of P(k, q, W).

Req 14 (qualpred-unr-unit)
Pk, U,Us).
Proof

P(k,U,Us) = VI € dom({}). {}92(I) < U = True.

Req 15 (qualpred-rel-join)
if P(k,R,W), then (W & W) = |W ).
Proof

Immediate from P(k,R, W) = VI € dom(W). W () < R and the definition of W ®3 Wo.

Req 16 (qualpred-aff-models)
if P(k,A,W1) and (W; @ Wa = W3) and w :, W3, then w :p, Wh.
Proof

Note that

w L W3 = 383 : QLOCS.
AF3w : S3 — WorldDescy..
IF3q : S3 — Quals.
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We are required to show that

w g W2 = 352 . ZLDCS.
IFow : So — WorldDescy,.
JFoq : S2 — Quals.

Take

Sz = minc{S € 25°°* | dom(W2) C S A (VI € S. dom(Faw (1)) C S)}
Fow (l) = {fgw(l) if l € S
Foq(l) = {Fsq(l) ifleS,

e Req 17 (qualpred-lin)
Pk, L, ).
Proof

P(k,L,W) =Vl € dom(W). W(]) < L = True.
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C.7 Proofs
C.7.1 Validity of Kinding Rules

Lemma 27 (Ref Extension: 7 [AF ¢: k] d € K[k])
Let 6 e D[A] and AF ¢ : k.
Then T [Atv: k] 6 € K[x].

Proof (Ref Extension: T [AF ¢: k] 6 € K[k])

Recall from Lemma &, for K = QUAL, it suffices to prove the following:
T[AFEE:QUAL]S € Quals.

Recall from Lemma 8, for K = PRETYPE, it suffices to prove the following:

V(k,q,W,v) € T[AF7T:PRETYPE] 6. W € WorldDescy, AP (k,q, W) A
Vi <k. (j,q,|W];,v) € T[AF7: PRETYPE]S.

Recall from Lemma 8, for kK = TYPE, it suffices to prove the following:
3¢ € Quals. Y(k,q,W,v) € T[AF 1 :TYPE]S. W € WorldDescy A P(k,q, W) A
Vi <k (G,q,|[W];,v) € T[AF7: PRETYPE]S A
q=q"
Proceed by induction on the derivation A ¢ : k.
(REFPTY)
At T:TYPE

A ref 7: PRETYPE
Recall that

Case

6 ={k, ¢, {l = (3,2}, 1) |

X=|T[AFT:TYPE]S]r A

(@=2A=V(d . )ex ¢ 2A)}
Consider arbitrary (k,q, W,v) € T [A + ref 7: PRETYPE] 6.
Hence, v=1land W ={l— (¢,x)} and x = [T [AF 7: TYPE]d|x and (¢ < A=V(,q,-,-) €
X- ¢ 2 A).
Applying the induction hypothesis to A F 7 : TYPE, we conclude that 7 [A F 7 : TYPE] § € Type.
Note that 7 [A+F 7: TYPE]é € CandUberType, and Yk > 0. |T [AF 7:TYPE]d|r € Typey,
which follows from the definition of Type.
We are required to show that

AFT:TYPE
A ref 7: PRETYPE

e {I—(gq,x)} € WorldDescy,, which follows from

{l— (g,x)} € Locs = Quals x Type,
which follows from x = |7 [AF 7: TYPE]d|r € Type,

(@=2A=V(.q . )Ex. d 2A)
which follows from above

= {1 (@)} 2 A=Y d, -0 € {lm (@.0)}(0). ¢ 2 A)
which follows from the fact that {I — (g, x)}™*(1) = ¢ and {I — (g, x)}**(1) = x

=V € dom({l = (¢,)})- ({1 = (4,)}™ (1) A=V q, ) € {l = (.0} (). ¢ < A)
which follows from the fact that dom({l — (¢, x)}) = {I}

=R({l— (¢}
which follows from the definition of R(-)

{l— (g,x)} € {W € Locs — Quals x Type, | R(W)}
which follows from above

={l~ (¢,x)} € WorldDescy
which follows from the definition of WorldDescy,.
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o P(k,q,{l — (¢,x)}), which follows from

=q¢=2q
which follows from reflexivity of <

= ("l (0D 2 q
which follows from the fact that (*'{l — (g, x)})(I) = ¢

=V € dom({l — (¢,)})- (**{l = (¢,0D() = q
which follows from the fact that dom({l — (q,x)}) = {l}

=Pk g, {l—(4,})
which follows from the definition of P(:,-, ).
Consider arbitrary j < k.
We are required to show that (j,q, [{{ — (¢,x)}];,1) € T [AF ref 7: PRETYPE] .
Note that [{l — (¢,x)}|; = {l— (¢, |x];)}, which follows from the definition of |-]j.
Hence, we are required to show that (j,q,{l — (¢, [x];)},1) € T [AF ref 7: PRETYPE] 6. Note
that

o |x|; =|7[AF7:TYPE]4],, which follows from
X=|7T[AF7:TYPE]S]x
which follows from above
= [xl;=LT[AF7:TYPE[]k];
=|xl;=|7[AF7:TYPE]4|,
which follows from Fact 2.
e (=A=V(,q¢, .)€ |x])j ¢ 2 A), which follows from Fact 1 and (¢ < A=VY(.¢,_,-) €
X- ¢ 2 A), which in turn follows from above.

End Case
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C.7.2 Validity of Typing Rules

Theorem 28 (Ref Extension Soundness)

If AsTRe: T, then [A;T Fe: 7).

Proof

By induction on the derivation A;T'Fe: 7.

Case

(NEW(U,A))
qg=A AT e T AFTjA'

A;T Fnewge: Iref 7

We are required to show [[A; ' b newgeq : Sref Tﬂ.
Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e 0 € D[A], and
o (k,qr,Wr,v) € G[AFT]0.
Let es = v(newy e1) = new, y(e1) and W, = Wr.
We are required to show that  Comp(k, Wy, es, T [[A FYref 7: TYPE] J)
Comp(k, Wr,new,v(e1), T [AF Yref 7: TYPE] §).
Consider arbitrary j, W, ws, wy, and ey such that

o j <k,

o wy i (Wy O Wy) = wy i, (Wr O W),

o (ws,e5) = (ws,new,y(e1)) —7 (wy,ef), and
o irred(wy,ey).

Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wy,,ep,),

o irred(wy, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T'F e; : 7, we conclude that [A;T e : 7).
Instantiate this with k, J, ¢r, Wr, and . Note that

e k>0,

e § € D[A], and

o (k,qr,Wp,v) € G[AFTT]0.

Hence, Comp(k, Wr,~v(e1),7 [A F 7: TYPE]J).
Instantiate this with ji, W,., w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,
o w; i (Wr ®r W,.), which follows from above,

hd (wSa’Y(el)) 1 (wf156f1)7

o irred(wy, ey, ).

Hence, there exists Wy, and gy, such that
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o wy i—j, (Wp Op—j, Wp), and
° (k 7j1,Qf1,Wf1,6f1) S T[A o TYPE]] J.

Hence, ey, = vy,.
Note that
(wsy€0) = (ws, mewy y(e1))
71 (wy, ,newg ey, )
= (?funewq ’Ufl)
— (’_"Ufl W {lf = (%Ufl)}vlf) ly ¢ dom(wﬁ)
T (wy ep).

Since Iy is value, we have irred(wy, W{ly — (g, v5,)},1f).
Hence, j —j1 —1=0 (and j = j1 + 1) and wy = wy, W{ly — vy, } and ey = ;.
Note that

we ik—gy (Wy Or—jy Wr)
which follows from above
=38 : 2Loes,
IF 1w : S§1 — WorldDescy,_j, -
IF14 : S1 — Quals.
let Wi = (Wy, Ox—j, Wr) Ok —j, O35 Fiw (1)) in
dom(wy,) D dom(Wix) = S1 A
Vie S Vi<k—j1.
(i, Fig (D), |Frw (D3, wf' 1) € [WPPS W) —jy A
vie S.
w(}:al(l) = Wf:al(w) A
vsi C 1.
dom((Wy, Ok_j, Wr)) €S A (WL € 8. dom(Fiw (1) € 81 =
Sl =81
Vi € dom(wy, ).
Rxwi®()=1e8

which follows from the definition of w :;, W.

Note that
dom(wy,) D dom(Wh.) = &1
which follows from above (wy, :k—j; (Wy Ok—j, Wr))
= dom(wy,) D dom(Wi.) = dom(Wy,) U dom(W,.) U dom(Fiw (1)) = S
which follows from above (W1, = ...) and dom(W1 ©r W2) = dom(W1) U dom(Ws2).

Furthermore, note that Iy ¢ dom(Wi,) and Iy ¢ dom(W,) and Iy ¢ Si, which follows from
ly ¢ dom(wy, ).
Note that either ¢ = U or ¢ = A, which follows from ¢ < A.
Case ¢ = U:

Let x; = |7 [At+7:TYPE]6s—;.

Let Wy = {ly — (U, xs)}-

Let gf = U.

Note that ({if — (U, xs)} ®r—; W;) defined, which follows from Iy ¢ dom(W,).

We are required to show that

o wy kg (Wy Oy W)
= wp W{ly = op} - ({ly = (U, xg)} Ok We),
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which is equivalent to

wpy Wy = (Uyvp)} g (I = (Usxp)} Or—j W)
=385 : 2Locs,
AFw : S — WorldDescy,_;.
3F4: S — Quals.
let W = (({lf = (U,xp)} Ok—j Wr) Ok—; OS5 Fw (1)) in
dom((wg, W{ly — (U,vg)})) 2 dom(Ws) =S A
ViES. Vi<k—j
(&, Fq (1), [Fw D] i, (wgy W{ly = (U,0p) N D) € (WP (1) Jk—j A

vieS.
(wp, W{ly — (U,vp,))% (1) = WS (1) A

vst C s.
d?m(({lf = (U, xf)} Ok—j Wr)) € ST A (VL € ST. dom(Fw (1)) C ST) =
ST=8A

Vi € dom((wy, W{ly — (U,ug)})).
R < (wp, W{ly — (U,up)H () =>1€S

which follows from the definition of w :;, W.

Take
S = {lf} W Sy.

It remains to show that

IFw : {lf} & S1 — WorldDescy,_.
3F, : {lf} W S1 — Quals.
let Wi = (({Ly = (U, xp)} @y W) @ry O, Fiyp (1) in
dom((wg, W {ly — (U,v5)})) D dom(Wi) = {lp} & S1 A
Vie{ly}wSi. Vi<k—j.
(1, Fq (1), [Fw (D]i (wp, W {ly = (U,0p) D) € WP 0] 1—j A
Vie {i;} 68
(wp, & {ly = (U,0p) D (0) = W ()A
vst - {lf} WSy,
dom(({lf — (U,xf)} Ok—; Wr)) C ST A (VI € ST. dom(Fw (1)) C ST) =
St = {lf} [CRSTIA
Vi € dom((wy, W{ly — (U,up)})).
R= (wp, W{ly = (Uup )N = L {l; 8 S

which follows from above (S =...).
Take s ] )
o I/Vf1 k—j ifl e lf
Fw(l) = {Lflw(z)Jk,j ifl € S1
and )
_Jan if e {ly
Fall) = {flq(l) ifle S
Note that

Wy, € WorldDescy—j,
which follows from Fact 6 applied to (k — j1,q5, Wy ,vs) € T [AF 7: TYPE] S € Type,
which in turn follows from Lemma 8 applied to 7 [A + 7: TYPE] §
= |Wy, Jk—; € WorldDescy—;
which follows from |-|x—; € WorldDesc — WorldDescy,—;
= Fw(ly) € WorldDescy,—;
which follows from above (Fw (I) = ...).

Note that

Vi € 81. .'F1w(l) S WOTldD@SCkfjl
which follows from above (wy, :k—j; Wy, Or—j, W) = V0L € S1. |[Fiw (1) |k—; € WorldDescy—
which follows from |-]x € WorldDesc — WorldDescy,

=Vl e S1. Fw(l) € WorldDescr—;
which follows from above (Fw (l) =...).

Hence, Fw : {lf} ¥ Sy — WorldDescy,_;.
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Trivially, Fy : {ly} W S1 — Quals.
It remains to show that

let W = (({ly = (U, x7)} Or—j Wr) Or—j O Fw (1)) in
dom((wg, W{ly — (U,vy,)})) 2 dom(Wy) = {lf} WS A
vl e {lf}Eszl. Vi<k—j.
(6, Fg (), [Fw ()]s, (wg, @ {ly — (U,0p,) 1) (1) € (WP r—j A
Vie{ly}wSi.
(wp, WLy — (U, vp) N0 = W' (1)A
VST C {if}wS.
dom(({ly — (U, xf)} Or—j Wr)) C ST A (VL € St. dom(Fw (1)) CST) = St = {l;JwS1 A
Vi € dom((wy, W {ly — (U,vp)}).
R =< (wp, W{ly— (U,up) D0 =1 € {I;} WS

which follows from above.

ote that — Or—i Wis) defined, which follows from om(Wiy).
N hat ({{; — (U, x)} j W) defined, which foll f Iy ¢ dom(Whs)
Furthermore, dom(({l; — (U, xs)} ©k—j Wi.)) = {{;} & dom(W1.).
Note that
{lr = (U, xs)} Or—j W) s
= ({ls = (U, x0)} Or—j (Wp, O—jy Wi) Oy OS5 Frw (1))
which follows from above (Wi, =...)
= ({ls = (U,x0)} @5 [(Wr, Ok Wr) @r—jy Op 1 Faw (D) J5—5)
which follows from Req 5 (join-aprx)
= ({ls = (U,x0)} Or—s (W5, Ji—s O3 Wi) Oy O [Frw (D] -5))
which follows from Req 4 (join-closed) and Req 5 (Jom aprx)
= ({ls = (U,x0)} @5 (Fw (lg) Ok—3 Wr) @1—; O Fwr (1))
which follows from above (Fw(l) =...)
({15 = (U, x1)} Ok—g Wi) ©p—j (Fw (I5) ©r—; O Fw (1))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)

lel S1
(({Lr = (U, x1)} Orj Wi) @ej O ™ Fur (1))
Le{lf}u51

le{zf}u51

which follows from simplifications of On Fw ().

Hence, W, = (({ly — (U, xs)} Ok—; W;) Ok—; Qlelfusl w(l)) is defined.
Furthermore, W, = ({ly — (U,xf)} O Wl*) and dom(W,) = dom(({ly —
(U, x5)} Or—j Wix)) = {l} & dom(W,).
Note that
dom(wy,) D dom(Wi.) = S1
which follows from above (wy¢, :k—; (Wy, Or—; Wr))
= dom(wy, ) W{ls} 2 {ly} Wdom(Wi.) = {l;} WS
which follows from Iy ¢ dom(wy,) and Iy ¢ dom(W1,) and Iy ¢ Sy
= dom(wy, ) W{ls} 2D dom(W.) ={l;} WS
which follows from above (dom(W,) =...)
= dom((wy, W {ly — (U,v5,)})) 2 dom(W-) = {ls} W S
which follows from simplifications of dom((wy, W{ly — (U,vs)})).
It remains to show that

Vie{lf}wS:. Vi<k—j.
(i, Fa D) [Fw (D) i, (wp, W {ly = (U, 0p,)H)¥(D) € [W2P(D) ]y A
vl e {lf} WSy
(wy, W {ly — (U,vp ) 31 = W (1) A
VST C {l;} wSi.
dom(({ly — (U,x7)} Ok_; W;)) C St A (Wl € ST, dom(Fw (1)) C ST) =
St={l;}ws A
Vi e dom((wy, W {ly — (U,vg)})).
R < (wp, W{ly— (U,up) D0 =1 € Iy} WS

which follows from above.

We are required to show that
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Vie{lf} WS Vi<k—j.
(i, Fo (1), [Fw (D) ]is (wy, W {ly = (U, 0p) 1) (D) € (WP )i
Note that

Vie{lf} WS Vi<k—j.
(i, Fo (0, |Fw (D i, (wpy W {Ly = (U,0p) )" (1) € WP (D) k-
=Vie{ly}. Vi<k—j.

(i, Fo (0, |Fw (D3, (wpy W {ly = (U051 (1) € W) Jo—j A
Vie S Vi<k-—j.
(i, Fo (0, |Fw (D1, (wpy @ {Ly = (U,0p) )Y (1) € WP (D) k-
which follows from simplifications of VI € {l;} W Sy. ...1...
=Vi<k-—j.
(i, Fo(Ly)s |Fw () )i, (wpy W {Ly = (U, o)1) (1) € LWEPS(Ug) Jomj A
Vie S Vi<k-—j.
(i, Fo (0, |Fw (D1, (wpy W {Ly = (U,0p) )Y (1) € WP (1) k-
which follows from simplifications of VI € {if}. ...1...
=Vi<k-—j.
b aps Wi Jk—jlis (wpy W {ly = (Usvg 7 P ks
( LW Je—jlis (g @ {Ty = (Uyvp ) 1) (1)) € [IWPS(1g) L1y A
Vie 8. Vi<k—j.
(i, Frqg (), L F1w D)5 )i: (wpy @ {lp = (U,0p) )Y (D) € (WP (D) iy
which follows from above (Fy (I) = ... and F¢(l) =...)
=Vi<k-—j
(agy, (Wi Jis (wpy 0 {ly = (U 0p) 1) (15)) € LIWEPS(Lp) iy A
Vie 8. Vi<k—j.
(i, Fig(0), [Frw (D], (wpy W {ly = (U,0p) 1) (1) € WP (W) k-
which follows from Req 1 (aprx-idem)
=Vi<k-—j
(agy, [ Wy Jisvg,) € IWEPS (L) Jo—j A
Vie S Vi<k—j.
(i, Frg(0), [Frw (D, (wpy W {ly = (U,0p) 1) (1) € WP (W) k-
which follows from simplifications of (wg, W {ly — (U,vs )} (lf) = vy,
=Vi<k-—j.
(i apy (Wi Jivp,) € WP () =g A
ViESy. Vi< k— 3.
(i, Frg (D), [Fiw (D)o, wf (1) € (WP (D) )k
which follows from simplifications of
Vie St .. (wp W{ly— (U )D(0)... =Vl €St .. wf(D) ...
=Vi<k-—j.
(i apy, (W Jisvg) € (L = (U, xp)} Or—j W) ¥ (lg) -5 A
ViE Sy Vi< k—j.
(i, Frg(), [F1w (D)o, wi (D) € [({Iy = (U, xp)} Oy W)Y (D) |-
which follows from above (W, =...)
=Vi<k-—j.
(451, (Wi Jis o) € L de—gle— A
ViES,. Vi<k—j.
(i, F1g (1), [ Frw (D )i, w (1) € [({Lg = (U, x4)} @ Wi) ¥ (D)
which follows from simplifications of ({lf — (U, x )} Or—; W1«)¥2(lf) = [xflk—;
=Vi<k-—j.
(iv qf1> LWf1Ji:Uf1) € H_ijktfjjkfj A
Vie S Vi<k-—j.
(i, Frg(), [F1w ()]s, wf (1) € LW 1% (1) k5

which follows from simplifications of

VEE St ... ({ly = (U,xp)} Okmy Wi)PPe() ... =VLE St ... WP () .

We are required to show that
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o Vi< k—j.
(6 ap s [WrJisvp) € LIXg ksl k-
which follows from
(k= j1,q7,, Wyg,,vp,) € T[AET:TYPE]S
which follows from above
= Vi<k—j1.06, 97, |[Ws li,v5) € TIAET: TYPE]S
which follows from Lemma 8 and Fact 6
= Vi< k—j.(i,q5,, | W i,0p) € T[AF 7 : TYPE]S
which follows k —j < k — j1
=>Vi<k-— j.(i,qfl, LWflJi,'Ufl) S LT IIA Fr: TYPE]] (Hk_]'
which follows from j < k A (4,9, W,v) € x = (j,q, W,v) € | x|«
=Vi<k —j.(i,Qfl, \_Wfljivvfl) € Xr
which follows from above (xr =...)
= Vi <k—j.(i,q7,, [(Wslivn) € [Xflr-s
which follows from j < kA (4,¢, W,v) € x = (j,q, W,v) € | x|k
= Vi <k—j(i,q7, [Wnlivn) € LIxsle—ilr—i
which follows from j < k A (4,¢, W,v) € x = (4,9, W,v) € [x]&-
e VieS . Vi<k-—j.
(i, Frg (D), [Frw (1)1, w @ (D) € LW 3225 (D) i
which follows from
VLE S1 Vi < k= . (s Fra(l), [Frw (D)is w (D) € (WS
which follows from above (wy, :k—j; (Wy, Or—j; Wr))
=V €S Vi<k—j (i,F1q(), |Frw ()]s, wF (1) € (WP ks
which follows from k — j < k — j1
S VL€ 1. Vi < b — . (1, Frall), LFrw (D) iy wr, () € LIWEP(D) ko Jims
which follows from j < k A (4,¢, W,v) € x = (J,q, W,v) € | x|«
=VlieS.Vi<k-— 7 (’i,fm(l), L.7:1W(l)ji,wfl (l)) S I_Wltipe(l)kaj
which follows from Req 1 (aprx-idem)
=Vie S Vi<k—j (4, Fiq), | Faw ()]s, wg (1) € LWHJE’EEJ-(Z)
which follows from the definition of |W |k
=>Vle 8. Vi <k—j. (i, Fiq(), [Fiw ()]s, wp, (1) € [[Wre [ZP5 D) ] k—j
which follows from j < k A (4,¢, W,v) € x = (j,q, W,v) € | x]k-
o Vie {ls}wWS.
(wy, W {ly = (U,vp,) (1) = W)
Note that

Vi e {lf} WSy
('val ©] {lf — (U’vfl)})qual(l) _ qual(l)
=Vvie {lf}l

(wy, W{ly — (Uvp ) H(1) = W(1) A
VieS.

(wr, W {ly = (Vo) DHW) = W)
which follows from simplifications of VI € {l;} W Sy. ...1...
= (wy, W{ly — (U,vp) 0 (1) = W (ip) A
Vi e S;.
(wp, W{ly = (U,up) D20 = W)
which follows from simplifications of VI € {ls}. ...1...
=U=wa(u)A
Vi€ S;.
(wg, W{ly = (U,0p) P20 = W)
which follows from simplifications of (wy, & {if — (U,vg )})%(lf) =U
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=U=wa(u)A
Vi€ Si.
wi (1) = W)

which follows from simplifications of

V€SI .. (wp, Wil — (U ) NP ... =V ES .. wl()...
=U=({ly = (Uxp)} Ok—j W1)®(15) A
vl e Sy.
wi(1) = ({Iy — (U, x5)} Ok—j Wi ) (1)
which follows from above (W, =...)
=U=UA
Vi e S;.

ual
W) = ({1 — (U xg)} Oy W)™ (1)
which follows from simplifications of ({l{f — (U, xf)} Or—; W) (l;) = U

=U=UA
Vi€ S;.
Wi (1) = W)
which follows from simplifications of
VieSt ... ({ly — (U,xp)} Op_j W)™ (1) ... =Vl € 1. ... W™ (1)....
We are required to show that
e U=U
which follows trivially,
e Ve S;.

w1 = W)

WhiCl’ll follows from

Vi€ Sy wi(1) = WiR(1)
which follows from above (wy, :k—;, (W, Or—j; Wr)).
VST C {l;} W Sy.

dom(({ly — (U, xy)} @k—; Wr)) € STA

(VI € ST. dom(Fw (1)) C ST) =

St = {lf} HS;

Consider arbitrary ST such that

o ST C {lf} W Sy,

o dom(({ly — (U,xy)} Or—; W;)) C ST, and

e VI e St dom(Fw(l)) C ST.

Note that {l; }&dom(W,.) C ST, which follows from dom(({l; — (U, xf)}®k—;W..)) C
ST and Iy ¢ dom(W,.).

Note that I; € ST, which follows from {l;} & W,. C ST.

Let 8] = ST\ {/;}.

Note that ST = {I;} WSy

Note that

. SI C Si, which follows from St C {l;} WS,

e dom(W,) C 8!, which follows from {l;}w dom(W,) C ST,

o dom(Fw(ly)) C{ls} W Sif, which follows from VI € ST. dom(Fw (1)) C ST, and,
furthermore, dom(|Wy, Jx—;) C {l;} @ SI, which follows from the definition of
Fw, and, furthermore, dom(W,) C {I;} & S,

o Vi e Sl dom(Fuw (1)) C {l;}wS], which follows from VI € St. dom(Fw (1)) C ST,
and, furthermore, VI € S dom(|Fiw (1) x—;) € {ls} & SI, which follows from
the definition of Fyy.
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Recall that dom(Wy,) € S; and VI € Si. dom(Fiw(l)) € Si, which follows from
wy, k—ji (Wr Or—jy W)
Hence, dom(Wy,) C S, which follows from dom(Wy,) C {ls} WS and dom(Wy,) C
Sy and Iy ¢ 5.
Hence, VI € SI. dom(Fiw() C 8, which follows from VI €
Sl dom(|Fiw ()| r—;) € {l;} w S and VI € 8. dom(Fiw (1)) C Sy (and Sf C &)
and Iy ¢ S;.
Instantiate (VS C Sy. ...) of wy, h—jy Wy, Ok—j, W,) with SI. Note that

. SI C 84, which follows from above,

o dom((Wy, ®k_j;, dom(W,.))) C SI, which follows from dom(Wy,) C S!, which

follows from above, and dom(W,.) C 8!, which follows from above,
o Ve S}L. dom(Fiw (1)) C SI, which follows from above.

Hence, we conclude that S}L =35
Hence, St = {I;} WSl = {I;} w 8.
o Vi€ dom((wy, & {ly — (U,v5,)})).
R= (wp, Wil = (Uyup ) )™ = Le {0 S
Note that
Vi € dom((wy, W{ly — (U ,ug)})).
R < (wfl ] {lf — (U,vfl)})qual(l) =1le {lf} WSy
=Vi € dom(wy, ) W{ls}.
R < (wfl ] {lf — (U,’l}fl)})qual(l) =1le {lf} WS
which follows from simplifications of dom((wyg, & {l; — (U,vp,)})) = dom(wy, ) W {ls}
=Vl € dom(wy,).
R < (wy, & (I — (o ) D@0 = L€ {1} &S A
Vi€ {s}.
R = (wy, w{ly— (Uup )N (1) =1 e{l; S
which follows from simplifications of VI € dom(wy, )W {ls}. ...1...
=Vi € dom(wy, ).
R= (wy, W{ly — (U,0) ") = L€ {l} W S1 A
R= (wpy Wl (Uup )W (1) = Iy € {I} WS
which follows from simplifications of VI € {lf}. ...1...
=Vi € dom(wy, ).
R = (wp, W{ly— (Uup )N (1) =1 {l;} WS A
RjU:>lf e{lf}l;HS1
which follows from simplifications of (wy, W {ly — (U,vg,)})9(l5) = U
=Vi € dom(wy, ).
R=wi(l) =1e{l;}usiA
R=<U :>lf S {lf}L‘HS1
which follows from simplifications of

Vi € dom(wygy). ... (wg W{ly — (U,vp)HID) ... =V € dom(wy, ). ...w‘}al'(l) e

We are required to show that
o Vi€ dom(wy,). R wi® () =1 {l;}ws
which follows from
Vi € dom(wy,). R 2 wf™(l) = 1 € S
which follows from wy, :x—j; (Wy, Or—j; Wr)
=Vl € dom(wy,). R=2wi () =1 e {l;} WS
which follows from 5 ¢ S;.

° RjU@le{lf}L‘HSl
which follows trivially.
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o(k—

Jrap, Wy,ep) € T [A Yref 7: TYPE] §
(k=5,U,{ly = (U,xp)},ly) € T [A+ Uref 7 : TYPE] 6
(k= 3, U, {ly = (U xp)} 1)

€ {(k,q,W,v) |

g=T[AFU:QUAL]S A
(k,q,W,v) € T[AF ref T : PRETYPE] 5}
(k 7].7 Ua{lf = (U7Xf)}7lf)

e{(k, ¢, {l— (0}, 1) |

g=T[AF U:QUAL]S A
x=|T[AF7:TYPE]S]|i A
(e =2A=V(,q,,)ex ¢ 2A},

which follows from

U=7T][AFU:QUAL]J, which follows trivially,

Xr=|T[AF 7:TYPE]d]x—_;, which follows trivially,

U=xA=V(,¢ . )exs ¢ 2A)

=U=xA=VY(,¢,,,) € |T[AFT:TYPE]d]|x—;. ¢ = A)

Consider arbitrary (-,¢’,-,-) € [T [AF 7: TYPE]0]x—;.

Note that (-, ¢',-,-) € T [A F 7: TYPE] 4, which follows from the definition of |-].
Note that ¢’ < A, which follows from Lemma 15 applied to A+ 7 < Aand (, ¢, _, ) €
T[AF 7:TYPE]d and A=T [A+ A : QUAL]S.

Case ¢ = A: Symmetric.

End Case
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(NEw(R.L))
R <g¢q A;er:T.

Case :
A;T Fnewge: Iref 7

We are required to show [[A; ' newgeq : Sref Tﬂ.
Consider arbitrary k, 8, gr, Wr, and « such that
e k>0,
e § € D[A], and
o (k,qr,Wr,v) € G[AFT]6.
Let e; = v(newy e1) = new, y(e1) and Wy = Wr.
We are required to show that  Comp(k, Ws,es, T [[A F Yref 7: TYPE] 9) =
Comp(k, Wr,new,v(e1), T [A+ Uref 7: TYPE] §).
Consider arbitrary j, W;., ws, wy, and ey such that

o j <Kk,
® Ws ik (Ws' O Wr) = Ws 'k (WF Ok Wr)a
o (ws,e5) = (ws,new,y(e1)) —7 (wy,ef), and
o irred(wy,ey).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
b (wsa’}/(el)) 1 (wfl’ef1)7
o irred(wy, ey, ), and
[ ] jl S j
Applying the induction hypothesis to A;T' F eq : 7, we conclude that [A; T Feq : 7].
Instantiate this with k, d, g0, Wr, and . Note that
e k>0,
e § € D[A], and
hd (k7QF,WF7’Y) € g[[A - F]]5
Hence, Comp(k, Wr,~v(e1),7 [A F 7: TYPE]J).
Instantiate this with ji, W,, ws, wy,, and ey, . Note that
e j; < k, which follows from j; < j and j < k,
o w; i (Wr ©r W,.), which follows from above,
b (wsa’}/(el)) —t (wfl’ef1)7
o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that
® Wk k—ji (Wfl Ok—41 WT), and
(] (k 7j1,th1,Wf1,€f1) € T[A For: TYPE]] 0.
Hence, ey, = vy, .
Note that
(ws,e5) = (U_’& newg y(e1))
71 (wflanewq efl)
= (”»lvfunewq v, )
" (wp, W{ly = (q,vp)}, 1) 1p & dom(wy,)
It (wf7 ef)'

150



Since Iy is value, we have irred(wy, W{ly — (q,vf,)},1¢).
Hence, j —j1 —1 =0 (and j = j1 + 1) and wy = wy, W {l; — vy, } and ey = [.
Note that
wyy h—jy, Wy O—jy Wr)
which follows from above
= 381 . 2L()Cs.
IF 1w : S1 — WorldDescy,_j, .
3F1q : S1 — Quals.
let Wi, = (Wy, Ok—j, Wr) Ok—jy O35 Frw (1)) in
dom(wy,) D dom(W1is) =S1 A
V€S Vi<k—ji.
(i, Fig (1), LFrw (D )i, w' (D) € (WP ()] k—jy A
vieS.
wi? (1) = WP (w) A
vsi C s
dom((Wy, @x_j, Wi)) €SI A (Wl € Sf. dom(Fiw (1)) € ST =
Sh=s8n
Vi € dom(wy, ).
R=uwd()=1e8
which follows from the definition of w :;, W.

Note that
dom(wy, ) 2 dom(Wi.) = S1
which follows from above (wy, :k—j; (Wy Or—j; Wr))
= dom(wy,) D dom(Wi.) = dom(Wy,) U dom(W,.) UUU'S®* dom(Fiw (1)) = Si
which follows from above (Wi, =...) and dom(W1 O W2) = dom(W1) U dom(W3).

Furthermore, note that Iy ¢ dom(W1,) and Iy ¢ dom(W,) and Iy ¢ S, which follows from
ly ¢ dom(wy, ).
Note that either ¢ = L or ¢ = R, which follows from R < g.
Case ¢ =1L:
Let xy = |7 [AF7:TYPE]d]s—;.
Let Wy = {lf — (L,Xf)}.
Let qf = L.
Note that ({I; — (L, xs)} ©®x—; W,) defined, which follows from Iy ¢ dom(W,.).
We are required to show that
o wyik—j (W Or—j Wr)
= wy, W{lg—vp} oy ({lr = (Lxg)} Ok Wr),
which is equivalent to
wpy Wl = (Lvp)} -y (U= (Lixg)} Or—j W)
=38 : 2loes,
IFw : S — WorldDescy,_ ;.
3Fy : S — Quals.
let W = ({ly = (L, xf)} Ok—s Wi) Ok—; OIS Fw (1) in
dom((wg, W {ly — (L,vg)})) 2 dom(Wi) =S A
VieS. Vi<k—j.
(i, FaDs LFw D)) a, (wyy W {Ly = (Log) DY) € W2 (D) ks A

vieS.
(wfl W {lf — (L, vf1))qua|(l) = Wﬂual(l) A

vst C S.
dom(({ly = (LX)} Ok W) € ST (ML € ST dom(Fiy () € 8 =
ST=8A

Vi € dom((wyg, W{ly — (L,vs)})).
R= (wg, 0{ly— (Liog) () =1e S

which follows from the definition of w :; W.
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Take
S = {lf} WS,

It remains to show that

AFw : {lf} W S1 — WorldDescy_;.
AF, : {ly} W S1 — Quals.
let W = (({ly = (L,xf)} Ok—j Wr) Ok—; @if,{;f}wsl Fw (1)) in
dom((wyg, W{ly — (L,vg)})) 2 dom(Wi) = {l} W S1 A
Vie{l;} WS Vi<k—j
(& Fa (D, LFw (D] i, (wpy W {ly = (Lo )DY(D) € WD) s A
vie {lf}uwS.
(wy, 8 {ly = (Lvg ) Hel@) = W (A
VSt C {l;} WS,
dom(({l — (L,xf)} Ok—j Wr)) C St A (VL € St. dom(Fw (1)) C ST) =
St = {lf} WS A
Vi € dom((wy, W{ly — (L,vf)})).
R < (’LUf1 ] {lf — (L,vfl)})qual(l) =1le {lf} WSy

which follows from above (§ =...).
Take Wi 0
. Wi Jk—j ifl e {ly
Fwll) = {Lflw(z)Jk_j ifle S
and R
_Jan if e {ly
Fall) = {flq(l) ifle S
Note that

Wy, € WorldDescy—j,
which follows from Fact 6 applied to (k — j1,qs,, Wy, vp,) € T[AF7: TYPE] 6 € Type,
which in turn follows from Lemma 8 applied to 7 [A 7 : TYPE] o
= |Wy, |k—; € WorldDescr.—;
which follows from |-|x—; € WorldDesc — WorldDescy,—;
= Fw(ly) € WorldDescy,—;
which follows from above (Fw (l) =...).

Note that

Vi€ S1. Fiw(l) € WorldDescy_j,
which follows from above (wy, :k—j; (Wg Or_jy Wr)) = VI € Si. | Fiw (1) |k—; € WorldDescy,—;
which follows from |-]x € WorldDesc — WorldDescy,

=Vl e S1. Fw(l) € WorldDescy—;
which follows from above (Fw (I) =...).

Hence, Fw : {l;} WS — WorldDescy,_;.
Trivially, F, : {l;} & S — Quals.
It remains to show that

le{ls}uS .
let Wi = (({Ly = (L xg)} Ok W) @ry O, Fiyp (1) im

dom((wy, W{ly — (L,vg)}) D dom(Wi) = {lf} W S1 A
Vie{lf}wS1.Vi<k—j.
(1, Fq (1), [Fw D]i, (wp, W {ly = (Liog )N D) € WP W) 1—j A
vl e {lf} GRS
(wg, @ {ly = (Log DT (1) = W ()A
vst C {i;}wSi.
dom(({lf — (Lixs)} @r—j Wy)) CST A (Wl € St dom(Fw (1)) CST) = St ={l;}wS A
Vi € dom((wy, W{ly — (L,vp)})).
R= (wyy @ {ly = (Lo ) D™ = L {Ilf} w0 s

which follows from above.

Note that ({i; — (L, xf)} ®r—; Wis) defined, which follows from Iy ¢ dom(Wi.).
Furthermore, dom(({l; — (L, xs)} @r—j Wix)) = {ls} & dom(W,).
Note that
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({lr = (Lixs)} Ok W) s

= ({ly = (Lyxs)} Or—j (Wgy Ok—jy Wi) Oy O Fiw (1))
which follows from above (Wi, =...)

= ({Iy = (Lixp)} Oy (W, Oy Wr) @jy O Frw (D) ]x—5)
which follows from Req 5 (join-aprx)

= ({Iy = (Lxp)} Ok—s (W, Ji—j Oy W) Oy Ok [Frw (1) k)
which follows from Req 4 (join-closed) and Req 5 (join-aprx)

= ({ly = (Lxp)} Ok—s (Fw (ly) O3 Wy) x5 O3S Fw (1))
which follows from above (Fw (l) =...)

= (({ly = (Lixp)} Ok W) Ok—s (Fw (I5) Or—5 O Fw (1))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)

el ;WS
(({ly = (Lixs)} Ory Wi) Ok Ot Fur (1)
le{lp}us,

which follows from simplifications of (), p Fw ().
Hence, W, = (({ly — (L, xy)} Ok—j Wy) Op—; ij;wsl Fw (1)) is defined.
Furthermore, W, = ({{; — (L,xy)} Or—; Wi.) and dom(W.) = dom(({l; +—
(Lxs)} Or—j W) = {ly} & dom(Wi.).
Note that
dom(wy,) 2 dom(Wh.) = S1
which follows from above (wy, :k—; (Wy, Or—; W)
= dom(wy, ) W{ls} 2 {ly} Wdom(Wi.) ={l;} ¥ S1
which follows from Iy ¢ dom(wy,) and Iy ¢ dom(Wh.) and Iy ¢ S1
= dom(wp, ) W{ls} 2 dom(W.) = {l;} W&
which follows from above (dom(W.) =...)
= dom((wy, W {ly — (L,vs)})) 2 dom(Ws) = {ls} 0 Sy
which follows from simplifications of dom((wy, W{ly — (L,vs,)})).

It remains to show that

Vie{ly}wS:. Vi<k—j.

(i, Fa(0), [Fw (D)5 (wpy W {ly = (Livg )DD) € (WP s A
Vi e {lf} WSy,

(wp, 8 {1y — (v )W (0) = W) A
VST C {if}w St
dom(({Ly — (LX)} @y Wi)) € ST A (VI € ST. dom(Fyy (1)) € ST) =
St={l;}wsSi A
Vi € dom((wy, W {ly — (L,vs)})).
R < (wfl ] {lf — (L,Ufl)})qual(l) =1le {lf} WSy

which follows from above.

We are required to show that
e Vie{lf} WS Vi<k—j.
(i, Fo (1), [Fw D)]i, (wp, W {ly = (Lvp )@)€ (WP -y
Note that

Vie{lf}wS:. Vi<k—j.
(6, Fq (), [Fw (D], (wyy, @ {ly = (Lo ) (0) € (WD) k-
=Vie{ly}. Vi<k—j.

(i, Fa ), [Fow (D)6, (wg, @ {Ig — (Liog )DY(D) € (WP oy A
VIES. Vi<k—j.

(6, Fo ), [Fw (D]i, (wygy, W {ly = (Lo ) 0) € WD)k
which follows from simplifications of VI € {l} W S1. ...1...
=Vi<k-—j.

(i, Fa (), [Fw (L) )ir (wp, WLy = (Log )N (1p) € [WP(U5) r—y A
Vi€ S Vi< k—j

(6, Fa (0, LFw (D]i, (wpy W {ls = (Lvg )DY(D) € (WD) ]y
which follows from simplifications of VI € {ls}. ...1...
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=Vi<k-—j.
(b apys LLWh Ji—gli (wp, w{lp = (Lvg DY (1)) € LWRPS(U5) oy A
VieS.Vi<k—j.
(i, Frqg()s LLF1w D] k—sli (wpy W {ly = (Lvg YD D) € (WP (D) ]k
which follows from above (Fy (I) = ... and Fy(l) =...)
=Vi<k-—j
(g (Wi Jir (wpy w{lp = (Lvg ) )Y (15)) € LWP(U5) [y A
VieS.Vi<k—j.
(i, Frg(D), [Fiw (D s, (wgy w{ly = (Lvg )N(D) € (W) 1—j
which follows from Req 1 (aprx-idem)
=Vi<k-—j.
(iyap,, \Wp, Jisvp) € [WEP(Ig) J—y A
VieS.Vi<k—j.
(i, Frg (D), [Fiw (D i, (wgy W {ly = (Livg )N(D) € (W) ]1—j
which follows from simplifications of (wy, W {Iy — (L,vs, )})¥(If) = vy,
=Vi<k-—j
(i agy, (Wi Jisvg,) € W) Je—j A
ViE S Vi< k—j.
(i, Fig (1), LFrw (D )i, wl (1) € (WP ()] k-
which follows from simplifications of
V€St ... (wp W{ly— (Lo )D(D)... =V € Sy ...wﬁ'(l) e
=Vi<k-—j

(ianlv I_WflJiv'Ufl) € I_({lf = (vaf)} Qk—j Wl*)type(lf)Jk—j A
VIES). Vi<k—j.

(i, F1g (1), [Frw (DJi, wg (D) € L({Iy = (L, xp)} Oy W)Yo (1) ] 1o
which follows from above (W, =...)
=Vi<k—j
(@ ar s (Wi Jisog,) € Ll k—j - A
Vi€ Sy. Vi< k—j.

(i, Frg (D), [Faw (D ]i, wF 1) € [Ty = (Lixg)} Oy W1)¥P (D) |-
which follows from simplifications of ({l; — (L, xf)} @r—j; Wi«)¥P%(ls) = |xs])k—;
=Vi<k-—j.
(a5, (Wi Jisop) € Lxple—jle—5 A
vie§1.Vi<k—j.

(i, Fra), [ Frw (D], w2 (1)) € [[Wra] 2" 0]y
which follows from simplifications of
VieSi . ({ly = (Lixg)} Op—j Wi )¥e(1) ... =VLES1. ... [Wi P50 -
We are required to show that
o Vi< k—j.
(6 qp s [(Welivp) € X e—i)k—j
which follows from
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(k= j1,95,, Wy ,vp) €ET[AFT:TYPE] S
which follows from above
= Vi < k—j1.(i,qp, [Wh i,05,) € T[AF7: TYPE] S
which follows from Lemma 8 and Fact 6
= Vi< k—3j.(i,q5,, |Wp )i,vp) € T[AF 7: TYPE]S
which follows k — j < k — j1
=>Vi<k—j.(i,q90, W livn) € |T[AFT:TYPE]§]k—;
which follows from j < kA (4,¢, W,v) € x = (j,q, W,v) € | x|k
=Vi<k—ji,qn, [ Wnlivn) €xs
which follows from above (xs =...)
=Vi<k _.j~(i7qf17 LWflJi’/Ufl) € LXka*j
which follows from j < kA (4,9, W,v) € x = (j,q, W,v) € | x|«
= Vi <k—3j.(i,q0, (W livn) € LIxele-ilo—;
which follows from j < k A (4,9, W,v) € x = (4,9, W,v) € | x]k-
e VieS . Vi<k-—j.
(i, Fag(D)s [Frw (D) )i, w2 (1)) € (W JFP5 (D)1
which follows from
Vi€ 81 Vi < k= ji. (i, Fig(l), [Frw (1), wi (1) € (WP (D) k—ss
which follows from above (wy, :k—j; (Wy, Or—j; Wr))
=VleS.Vi<k—j (i,Fiq(), [Fiw )]s, wF (1) € WP ]k,
which follows from k — j < k — j1
=Vl € S1. Vi <k —j. (i, Frg(), [Frw ()]s, wp, (1) € LW w1 J1—s
which follows from j < k A (4,¢, W,v) € x = (4,9, W,v) € | x]&
=Vie S Vi<k—j (i,Fiq), [Fiw )]s, we, (1) € (W) | ks
which follows from Req 1 (aprx-idem)
=V €S Vi<k—j. (i, Fiq(l), [ Faw (D)]i,wp, (1) € [ Wi ]7P(D)
which follows from the definition of |W |
>V e 8. Vi <k—j. (i,Fiq(l), [Fiw D) ]i,ws, (1) € [[Wra [P0 k5
which follows from j < k A (3,9, W,v) € x = (4,4, W,v) € | x]&-
o Vie{l;}wWS.
(wp, WLy — (Lvg ) Dol (1) = W)
Note that
Vi e {lf} W Sy.
(wp, & {ly = (Lup )PP = W ()
=Vl e {is}.

(wp, & {ly = (Lvg ) D) = W (1) A
VieS.

(wp, &Ly = (Lo D) = W)
which follows from simplifications of VI € {l;} W Sy. ...1...
|
= (wp, W {ly = (Loog ) DM (1Lp) = W (1) A
vie Sy.
(wp, & {ly = (LoD = W)
which follows from simplifications of VI € {If}. ...1...
=L=wd()A
vie .
(wp, & {ly = (Lo )H () = W)
which follows from simplifications of (wy, W {ly — (L,vys,)})(Is) =L

=L=wau)A
Vie S;.
wt}tllal(l) — Wﬂual(l)

which follows from simplifications of

VIES .. (wp, Wl = (Lup )N ... =V €S . wi (). ..
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=L=({ly = (Lixp)} Or—j W)™ (I5) A

Vi e Sy.
wi® (1) = ({Iy = (L xs)} Or—j Wi)®2l(0)
which follows from above (W, =...)
=L=LA
VieS.

wi (1) = ({ly = (LX)} Oy Wi)3 (1)
which follows from simplifications of ({lf — (L, X )} Or—; Wi)%!(ly) =L

=L=LA
VieS.
wi (1) = Wi (1)

which follows from simplifications of

VieSt ...({ly — (Lixp)} Ok Wi)®™al(1) ... =V € 8. ... w1y,

We are required to show that
o L=1L
which follows trivially,
e Vi eS,.
(1) = W)
which follows from

Vi€ S wi(1) = W)
which follows from above (wy, :k—j; Wy, Or—j; Wr)).
VST C{l;} W Sy.

dom(({ly — (L, xy)} @x—; W;)) € STA

(VI € ST. dom(Fw (1)) C ST) =

St = {lf} HS;

Consider arbitrary ST such that

o ST C {lf} W Sy,

o dom(({ly — (L, xs)} @k—; W,)) C ST, and

o VI e St dom(Fw(l)) C S

Note that {l;}Wdom(W,.) C ST, which follows from dom(({l; — (L, xs)}®k—; W) C
ST and Iy ¢ dom(W,.).

Note that Iy € ST, which follows from {l;} & W, C ST.

Let 8] = ST\ {Is}.

Note that St = {I;} w S!.

Note that

° S}L C S;, which follows from St C {ly} WSy,

o dom(W,) C 8], which follows from {I;} & dom(W,) C ST,

o dom(Fw(ly)) C{ls} W SI, which follows from VI € St. dom(Fw (1)) C ST, and,
furthermore, dom(|Wy, |x—;) C {lf} ¥ SI, which follows from the definition of
Fw, and, furthermore, dom(Wy,) C {i;} & SI,

o Vi€ S]. dom(Fuw (1)) C {l;}wS], which follows from VI € St. dom(Fw (1)) C S,
and, furthermore, VI € S dom(|Fiw () r—;) € {l5} & SI, which follows from
the definition of Fyy .

Recall that dom(Wy,) € S; and VI € Si. dom(Fiw(l)) € Si, which follows from
Wiy hejy Wir Ok—j, Wr).

Hence, dom(Wy,) C SI, which follows from dom(Wy,) C {ls} WS! and dom(Wy,) C
Sy and Iy ¢ 8.
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Hence, VI € SI. dom(Fiw(l)) C SL which follows from VI €
SI. dom(|Fiw ()] r—;) € {l;} S and VI € 8. dom(Fiw (1)) C Sy (and Sf C &)
and Iy ¢ S1.
Instantiate (VS;r CSi. ...)of wy, gy, (Wi, Ok—j, W) with Sir. Note that

. S}L C &Sy, which follows from above,

o dom((Wy, ®Ok_j;, dom(W,))) C SI, which follows from dom(Wy,) C S!, which

follows from above, and dom(W,.) C 8!, which follows from above,
o Ve SI. dom(Fiw (1)) C SI, which follows from above.

Hence, we conclude that S}L =S§;.
Hence, ST = {i;} WSl = {lf} WSy
o Vi€ dom((wy, W{ly — (L,vp)}))-
R= (wp, Wil = (L) D) = Le {l; w8
Note that
Vi € dom((wyg, W{ly — (L,vg)})).
R = (wg, w{ly — (Livg)H (1) =1 e{lf}wS)
=Vi € dom(wyg, )W {ls}.
R < (wh ] {lf — (L7 ’Ufl)})qual(l) =1le {lf} WSt
which follows from simplifications of dom((wys, W {ly — (L,vys,)})) = dom(wy,) W {ls}
=Vi € dom(wy, ).
R= (wp, W{ly = (Lo )N = L (I} S1 A
vl e {lf}.
R < (wh ©] {lf — (L7 ’Ufl)})qual(l) =1le {lf} W Sq
which follows from simplifications of VI € dom(wy, )W {lz}. ...1...
=Vi € dom(wy, ).
R= (wp, W{ly = (Lo )PW(0) = L {ly}wS1 A
R = (wp, W{ly = (Lo )NW(Uy) = Uy € {ly 0 S
which follows from simplifications of VI € {l;}. ...1...
=Vl € dom(wy, ).
R < (wy, W{ly— (Livg)Dd ) = 1e{lfwS A
RL=lye{lf}uwsS
which follows from simplifications of (wy, W {5 — (L,vs )})32(Iy) =L
=Vl € dom(wy, ).
R2wi?() =1 {i;}wSiA
R =< L=>lf € {lf}L*JSl

which follows from simplifications of

Vi € dom(wg,). ... (wg W{ly— (Lvg) NN ... =V € dom(wy, ). wﬁ'(l)

We are required to show that
[
o Vi€ dom(wy,). R2wi™ (1) = 1€ {l;} WS
which follows from
Vi € dom(wy,). R 2wl (l) =1 € S
which follows from wy, :x—j; (Wy, Or—j; Wr)
=Vl € dom(wy,). R 2w (1) = 1€ {l;} WS
which follows from I ¢ Si.
. RjLile{lf}L‘HSl
which follows trivially.
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o (k—j,q5,Wy,er) €T [At+ tref 7: TYPE] &
(k—4,L{ly— (Lixp)}ly) € T [AFtref 7: TYPE] 6
(k -7 L, {lf = (L, Xf)}7 lf)
€ {(k,q. W,v) |
g=T[AFL:QUAL]SA
(k,q,W,v) € T[AF ref 7: PRETYPE] 6}
= (k=5 LA{ly = (Lxp)h 1)
e{kq.{l—~ (¢} |
g=T[AFL:QUAL]SA
x=|T[AF7:TYPE]S]|i A
(g =2A=>V(q,,)ex ¢ =A}
which follows from
e L =T[AFL:QUAL]S, which follows trivially,
o x;=|7[AF 7:TYPE]4|k—;, which follows trivially,
e (L=< A= ...), which follows trivially.
Case ¢ = R: Symmetric.
End Case
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(FREE)
AT ke :Srefr AFAZE
A;T + freee; : 7 ’
We are required to show [A;T'F freee; : 7].

Case

Consider arbitrary k, 8, gr, Wr, and «y such that
e k>0,
e 5 € D[A], and
o (kyqr,Wr,7) € G[AFT] 6.
Let e; = y(freee; ) = free~y(e;) and Wy = Wr.
We  are  required to  show  that Comp(k, W, es, T [AF 7: TYPE] ) =
Comp(k, Wr,freevy(e1),7T [A F 7: TYPE]§).
Consider arbitrary j, W;, ws, wy, and ey such that

o j <k,

o wy i (Ws O Wy) = ws 1 (Wr O Wi,

o (ws,e5) = (ws, freey(e1)) —7 (wy,ef), and

o irred(wy, ef).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ), and

e j1 <.
Applying the induction hypothesis to A;T F ey : ¢ref 7, we conclude that [[A; Ik ey Sref Tﬂ.
Instantiate this with k, 0, gr, Wr, and . Note that

e k>0,

e 6 € D[A], and

o (kyqr,Wr,7) € G[AFT]6.
Hence, Comp(k, Wr,y(e1), 7 [A + éref 7: TYPE] §).
Instantiate this with ji, W,, w,, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o w; i (Wr ©r W,.), which follows from above,

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that

o wy k—j;, Wy Op—jy Wy), and

o (k—ji,q7,, Wy, ep)
€T [A+ ¢ref 7: TYPE] 6
= {(kqu {l = (Q>X)}7l) |
g=T[AF ¢: QUAL]S A
X=|7T[AFT:TYPE]J§]|x A
(e =2A=>V(q,,)ex. ¢ A},
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Hence, ey, = Iy, and qf, = T[AF&:QUAL]6 and Wy, = {ly, — (¢5,,x5)} and x5 =
[T[AFT:TYPE]S]k—j, and (¢, = A=V(,¢,-,-) € xp- ¢ 2 A).
Note that A = ¢ , which follows from Lemma 12 applied to A - A < £ and A =
TJ[AFA:QUAL]S and g, =7 [AF & : QUAL] 6.
Note that Iy, ¢ dom(W,), which follows from A < g5, = W]?I“al(lfl) and (Wy, @r_;, W) defined.
Note that
wyy ik—jy (Wy Ok—j; Wr)
which follows from above
= 38, : 2kocs,
IAF1w : S1 — WorldDescy,_j, .
IF14 : S1 — Quals.
let Wi = (Wy, ©x—j, Wr) Ok —j, O35 Fiw (1)) in
dom(wy,) D dom(Wix) = S1 A
VIE S Vi<k—ji.
(i, Fig (D), LFrw (D )i, w' (D) € (WP (D)) k—jy A
vie S.
wi (1) = WP (1) A
VS C 1.
dom((Wy, Ok_j, Wr)) €SI A (WL € ST dom(Fiw (1) € 81 =
Sh=81n
Vi € dom(wy,).
R=wi®()=1€8

which follows from the definition of w :;, W.

Note that
dom(wy,) D dom(Wi.) = S1
which follows from above (wy, :k—j; (Wy, Or—j; Wr))
= dom(wy,) D dom(Wi.) = dom(Wy,) U dom(W,.) U 'S dom(Fiw (1)) = Si
which follows from above (Wi, =...) and dom(W1 ©r W2) = dom(W1) U dom(W2)
= dom(wy,) D dom(Wi.) = {ls, } U dom(W,) Ut dom(Fiw (1)) = S
which follows from simplifications of dom(Wy,) = {iy, }.
Hence, Iy, € dom(wy,) and Iy, € Si.
Note that
Vi € i wi (1) = WiR(1)
which follows from above (wy, :k—j; (W Or—j, Wr))
= wi(ly) = Wi (lp)
which follows from Iy, € S1
= w(}:al(lﬁ) = ((Wfl Ok—j1 Wr) Ok—j @iéef“sjll le(l))qual(lh)

which follows from above (Wi, =...)
= w(}:al(lﬁ) = (({ly, = (@51, x51)} Or—jy Wr) Ok—jy Qgcef‘ill le(l))qual(lﬁ)
which follows from above (Wy, =...)

=wi(ly,) = qr,
which follows from the definition of (W7 ©r Wa).

qual

Note that wy, = wy,, W{ly, — (¢, vy, )}, which follows from Iy, € dom(wy,) and w3 ™ (I4,) = g,
Note that
(ws, es) = (ws, freevy(e1))
71 (wy,, freeey, )
= (wyy, freely, )

= (’Llufll W{ly, — (@, vp,)} freely, )
" E (wfnvvfn)
J—ii—1 (wf,ef).

Since vy, is a value, we have irred(wy,,, vy, ).
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Hence, j —j1 —1 =0 (and j = j; + 1), and wy = wy,, and ey = vy, .
Note that

wyy iw—jy (Wy Ok—jy Wr)
which follows from above
=38, : 2Loes,
IF 1w : S1 — WorldDescy,_j, .
IF14 : S1 — Quals.
let Wisx = (Wy, Ok—j; Wr) Ok—j; Oie,é;ll Fiw (1)) in
dom(wg,) D dom(Wix) = S1 A
Vie S . Vi<k—j1.
(i, Fig (1), LFrw (D )i, wg' (1) € (WP ()] k—jy A

ViES:.
(}l;al( ) unal(l)
vsi C s
dom((Wy, Ox_j, Wr)) €8] A (VL € 81 dom(Fiw (1) C 8) =
Sh=s1n

Vi € dom(wy, ).
R2wi() =18
= 38] : oLoes,
let S1 = {lfl} HJS{ in
IF 1w : S1 — WorldDescy_j, -
IF14 : S1 — Quals.
let Wi, = (Wy, Ox—j, Wr) Ok—jy Op5 Fiw (1)) in
dom(wyg,) D dom(Wix) = S1 A
VIG‘Sl.\ﬁ<k7j1.
(i, Fig (D), [Fiw ()i, wf' (1) € [WEPS(D) [y A
vieS.
Wi (1) = Wi D) A
vsf C s
dom((Wy, Ox_j, Wr)) €SI A (VL € ST dom(Frw (1) C 8T) =
Sh=811
Vi € dom(wy, ).
R2wi() =18
which follows from Iy, € &1
=35 : 2koes,
let S1 = {lfl}ErJSi in
IF 1w : S§1 — WorldDescy,_j, -
IF14 : S1 — Quals.
le{ls, }wS] .
let Wis = (Wy, Ok—j; Wr) Ok—jy O hfl ' Fiw (D)) in
dom(wyg,) D dom(Wix) = S1 A
VieS . Vi<k-—j1.
(6, Frg (D), [Frw (D)1, wg () € [WEPH (D) gy A
vieS;.
qual(l) W?:al(l) A
vs] C s1.
dom((Wy, Ox_j, Wr)) CSJ A (VL€ SI. dom(Fiw (1) C ST) =
Sh=s1n
Vi € dom(wy, ).
R2wi() =18

which follows from S; =
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=38 : glecs,
let S1 = {lfl} H_'Jsi in
IF 1w : S1 — WorldDescy,_j, .
3F14 : S1 — Quals.
1€S] .
let Wi. = (Wy, ©r—j, Wr) Ok—jy (Fiw (l,) Ok—jy Ot Frw (1)) in
dom(wy, ) 2 dom(Wix) = S1 A
V€S Vi<k—ji.
(i, Fig (1), LFrw (D )i, w' (D) € (WP ()] k—jy A
Vi Sy
w (1) = WD) A
vsi c s
dom((Wy, @x_j, Wi)) €SI A (Wl € 8] dom(Fiw (1)) C ST =
Sh=81n
Vi € dom(wy,).
Rxuwi()=1e8
lele{ly, yws]

k—j1 le(l)

which follows from simplifications of

Let Wy = [Fiw (Ig,) |-

Let qr = flq(lfl).

Note that (|Fiw(lf,)]k—; Or—; Wy) is defined, which follows from Regs 4, 5, 6, 7, and 8 (join-
closed, join-aprx, join-commut, join-assocl, and join-assocr) and (Fiw (Is, ) ©k—;, W;-) defined, which
in turn follows from Wi, defined.

We are required to show that

o wy h—j (Wy Or—; W)
= wpy, g ([Fiw ) k—j Or—j Wr),
which is equivalent to

wyy kg (Frw () k-5 Ok—j Wr)
=35 : 2locs,
AFw : S — WorldDescy,_ ;.
3Fq : S — Quals.
let W = ([F1w (g ks @k—j Wr) Ok OES Fw (1)) in
dom(wy,,) D dom(Wi) =S A
VieS. Vi<k—j.
(6, Fa D), LFw (s (1)) € WP ()1
vViesS.
wi? (1) = WD) A
vstCs.
dom((|Fiw (L, )] k—j Ok—yj Wr)) C ST A (VL € ST. dom(Fw (1)) C ST) =
St=8n
Vi € dom(wy, ;).
R=uwd()=1e8

which follows from the definition of w :p W.

Take
S=35;.
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It remains to show that

AFw : 8§ — WorldDescy,_;.
AF, : 8§ — Quals.
les]

let We = (([F1w (Ugy) -5 Ok—j Wr) Ok—j Oy Fw (D) in
dom(wg,,) 2 dom(Wy) =S] A
VeS| . Vi<k—j.
(i, Fo(O), [Fw ()i, wf (1) € (WP D) k—j A
vies).
wi? (1) = W) A
vst'c s;.
dom((|F1w (Ip,) | k—j Or—; Wr)) C ST A (VI € ST. dom(Fw (1)) C ST) =
St=8/n
Vi € dom(wyg,,).
Rxwi() =18

which follows from above (§=...).
Take
Fw(l) = {I_flw(l)kaj ifl € Sy
and
Fo) = {Fiq(1) ifle S
Note that

Vi e Si. Faw (1) € WorldDescy—j,

which follows from above (wy, :k—j; (Wy, Or—j, Wr))
= Vi e 8. Faw(l) € WorldDesck—j,

which follows from S; C S;
=Vl eS8 [Fiw(l)]k—; € WorldDescy,_;

which follows from |-]; € WorldDesc — WorldDescy,
=Vi € Si. Fw(l) € WorldDescy—;

which follows from above (Fw (I) =...).

Hence, Fy : 8§ — WorldDescy,—;.
Trivially, F, : S — Quals.
It remains to show that

les] .
let Wa = (LF1w (L) k-5 Or—j Wr) Ok—j Oy |Faw (1)) in
dom(wg,,) 2 dom(Wi) = S] A
VeS| Vi<k—j.

(i, Fig (D), LLF 1w D) k—j )i, w (1) € (WP x5 A
Vi€ Sy,
wi (1) = WD) A
vst Csy.
do’m(([flw(lfl )Jk,j Ok—j Wr)) - St A (Vl e St. dom([]rlw(l)jk,j) C ST) =
St=8/n
Vi € dom(wy,, ).
R<xuw?()=1e8]

f11
which follows from above (Fy (1) = ... and Fy(l) = ...).
Note that
(W J—j
S
= [(Wr, @k Wi) Oy (Frw () Ox—jy O Frw (D)) s
which follows from above (Wi, =...)

= (W, @k—s Wr) @ny ([Frw (Usy) Jims Ones Ot [ Frw ()] —)

which follows from Req 4 (join-closed) and Req 5 (join-aprx)

1S
= (Wy, Ok (1 Fw (g k-5 Ox—s W) Oxs O [ Frw (D) ]x—5))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).
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Hence, W = (([F1w (Lf,) Jo—j Orj Wr) Orey Ot [Frw (D) ] 5—;) s defined.
Furthermore, (Wy, Ok—; W) = Wiy k-,

Note that W, = Wi, ]x—; \ {ls, }, which follows from Wy, = {ly, — (g5, x5 )} and A < gy,
and the definition of (- ® -).

Furthermore, dom(W,) = dom(W1,) \ {ls, }, which follows from
dom((Wy, ©Or—; Wa)) = dom([Wix ;)
which follows from (Wy, Or—; W) = [ Wi ]k—;
= dom(({ly, = (45, X51)} Or—j Wa)) = dom([ Wi ]r—;)
which follows from Wy, = {lf, — (qr, X5 )}
= {11, } & dom(W.) = dom(| Wi Ji_s)
which follows from A < ¢y, and
({lg = (a1, x5:)} Or—j W) defined
= dom(W-) = dom([ Wi Je—) \ {l1, }
which follows from simplifications of AWB=C=B=C\A
= dom(Wy) = dom (W) \ {lf, }-
Note that
dom(wy,) D dom(Wis) = S1
which follows from above (wy, :k—; (W, Or—; W)
= dom(wfll W {lfl = (qfl7vf11)}) 2 dom(Wl*) =&
which follows from above (wy, = wyp, W{ly, — (q7,,v5,)})
= dom(wysy, ) W{ly, } 2 dom(Wi) = &1
which follows from simplifications of dom(wy,, W{ly, — (g5, v5,)})
= dom(wfu) W {lfl} 2 dom(Wl*) = {lfl} @ S{
which follows from above (81 =...)
= dom(wfll) 2 dom(Wl*) \ {lfl} =S
which follows from simplifications of AWB 2D C=BWD = ADC\B
= dom(wg,,) 2 dom(W,) = 81
which follows from above (dom(W,) = ...).

Il
-

It remains to show that
VieS,|. Vi<k—j.
(i, Frg(), LLFiw D e—j )i, wF, (1) € WP D) k5 A
vies,.
wi (1) = WD) A
vst'c sy

dom(([Fiw (Lp,)k—j Or—j Wr)) € ST A (VL € ST, dom([Fiw (1) —;) C ST) =
ST =8 A

Vi € dom(wy, ;).
R=wl()=1es]

which follows from above.
We are required to show that
o VieS.Vi<k-—j.
(ivflq(l)v |_Lf1W(l)Jk7jJiuw}?ll (l)) € LW:ype(l)J k—j
Note that
VieS,|. Vi<k—j.
(i, Frg ), LLFrw (D e—jliswpy, D) € [WEP() ]

=VvlieS. Vi<k—j
(i, Frg(), [Frw (D i, wpy, (1) € [WEPE() [
which follows from Req 1 (aprx-idem)

=VieS|. Vi<k-—j.
(4, F1q(), IFiw D] iswpyy () € LUIWrsJo—j \ {Lg, DYPE(D Jko—s

which follows from above (Wi =...)
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=VvlieS. Vi<k—j
(i, Fig (), [Frw ()i, wpyy (1) € LW P50 k-,
which follows from simplifications of l¢, ¢ S}
=vlieS. Vi<k—j
(i, Fig (1), [Faw ()]s, w0y, (1) € IWRPED) i
which follows from the definition of |W | and Fact 2.

We are required to show that

e VieS| . Vi<k-—j.
(i, Frg (), [Frw (D) )i, w (1) € (WP (D) )i,
which follows from
VI € S Vi< k—ji. (i, Fig(l), [Fiw ()]s, wf (1) € (WP (1) | k—jy
which follows from above (wy¢, :k—j; (Wy, Or—j; Wr))
=VieS. Vi<k—ji. (3, Fig(l), L.7:1W(l)ji,w‘}31'(l)) c WP (D) |-y
which follows from S; C S;
=Vle S Vi<k—j (4,FiqQ), [ Fiw D) ]s,wf'(1) € [WP(1)] ks,
which follows from k — j < k — j1
=Vie S{ Vi<k-—j. (ivj_—lqu): I.}—lw(l)le (wfll W {lfl = (qfuvfll)})val(l)) € \_Wltipe(l)jk*jl
which follows from above (wy, = wyg, W{ls, — (¢5,v5,)})
=Vle S Vi<k—j (i, F1q(), [ Frw ()]s, wf (1) € [WP() | k—sy
which follows from simplifications of
Vi ES{ ~~-(wf11 H'J{lfl = (Qflvvfu)}) (l) C=EVIES. . w}ill(l)
= Ve S Vi <k —j. (i, Fig(l), [Faw (I )Jhwflll(l)) e [we )Jk P
which follows from j < k A (4,¢, W,v) € x = (J,q, W,v) € | x|«
=VIe 8. Vi<k—j. (i, Fiq(l), [ Fiw (1) z,w‘}jll D) € [WP(D) | p—j
which follows from Fact 2.

o Vies,
ual ual
wh,y (1) = W (D)
Note that

vl e S;.
wieda) = welg)

=vies].

w0 = (Wi \ {1 D)

which follows from above (W, =...)

=Vies;.

wil) = w3 )
which follows from simplifications of iy, ¢ S}
=Vie s
Wit () = W)
which follows from the definition of |W .

We are required to show that

o VieS].
wi (1) = WiR(1)
which follows from
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Vi e S wi(l) = WikR(1)
which follows from above (wy, :k—; (Wy, Or—; W)
=Vl €S wi(l) = Wi (1)
which follows from S C S;
=Vvie S (w.fll W {lfl = (qflvvfll)})qual(l) = Wf:al(l)
which follows from above (wy, = wyg,, W{ls, — (¢5,v5,)})
=Vl e Si w1 = W)

f11
which follows from simplifications of
VIS .. (wp, W{l = (qn,v0,) )™ (). =VIES ... wi?(D). ...

o VST C S{.
dom((|Fiw (Lp,) | k—j @k—j Wi)) € ST A (VL € ST. dom(|Fiw (1) ]k—;) C ST) =
St=3
Consider arbitrary ST such that
o ST C &,
o dom(([Friw (ls)|k—j Or—j W) € ST,
o Vi€ ST dom(|Fiw(l)]r—;) C ST
Note that I;, ¢ ST, which follows from ST C 8] and Iy, ¢ Si.
Let 8] = {I;,} w ST
Note that
e SI C Sy, which follows from ST C &} and &; = {ls,} WS,

o {l5,} Wdom(W,) C SI, which follows from dom((|Fiw (If,)]k—j Ok—j Wr)) C ST
and Iy, ¢ dom(W,),

o VI e Sl dom(Fiw (1)) C S, which follows from

o Vi e {ls}. dom(Fiw(l)) €SI, which follows from dom ((|Fiw (Is,)]s—; Or—;
WT)) g ST7
eVl € S dom(Fw() C S, which follows from VI e
ST. dom(|Fiw ()] r—;) € ST.
Instantiate (VS] € Sy. ...) of wy, x_j, (Wy, O_;, W,.) with SI. Note that
° SI C &y, which follows from above,
o dom(({ly, — (qp,xpn)} Or_j dom(W,))) C Si, which follows from {l;} w
dom(W,.) C SI, which follows from above,
e Vi eS8, dom(Fiw (1)) C SI, which follows from above.

Hence, we conclude that SI =S
Hence, {I;,} &St = {I;,} WS}, which follows from S| = {I;,} wS' and S; = {I;,} & S].
Hence, ST = Sj.
o Vi€ dom(wy,,).
R=uwl()=>1e8]

fl 1
which follows from
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Vi € dom(wy,). R 2wl (l) = 1 € S
which follows from above (wy, :k—j; (Wy, Or—j; Wr))
=Vl € dom(wy,). R =2 w;l:a'(l) =>1le{l,tus]
which follows from above (S1 = {lf, } ¥ S1)
=Vvie dom((wfu W {lfl e (qf17Uf11)}))' R= (wfll @ {lfl = (qf17Uf11)})qual(l) =1€ {lfl} H—JS{
which follows from above (wy, = wy,, W{ly, — (gf,,v5.)})
=Vie dom(wfu) W {lfl}' R= (wfn @ {lfl = (qflavfn)})qual(l) =1le {lfl} WSt
which follows from simplifications of dom(wy,, W{ls, — (g5, v5,)})
=>Vie dom(wfu)' R= (wfll & {lfl = (qf17vf11)})qual(l) =1le Si
which follows from dom(wy,,) C dom(wy,,) W {ly, }
=Vl € dom(wy,,). R = w‘}?all(l) =>1led
which follows from simplifications of
Vi € dom(wyy,). .. (wp, Wiy — (qp,v5,) D) ... =V € dom(wy,). .. .w}ll’all(l) e

o (k—j,q]c,Wf,ef) S T[[A 7 TYPEH(S
= (k - j"}-lqafl)’ I_le(lﬁ)Jk—j’Ufu) € T[[A For: TYPE]] 4
which follows from

Vi€ Si. Vi <k — g1 (4, Fig(l), [Frw (D)]is wp, (1) € (WD) ko
which follows from above (wy, :k—j; Wy, Or—j; Wr))

= Vi <k—ji. (i7~7_—161(lf1)7 I_flw(lfl)Ji7wfl (l)) € I_Wltipe(lfl )Jk*h
which follows from Iy, € S;

= (k= j, Fia(ls)s [Frw () Ju—gs wpy (1) € [WPP(Ugy) i
which follows from k — j < k — j1

= (k= 4, Frg(s), [ Faw (L) i vin) € WP () Jo—in
which follows from simplifications of wy, (If,) = (wyg,, W {ly; — ve, Ps) = v,

= (k _jvj:lfI(lfl)v I_}—lW(lfl)Jk*j?Ufu) € H.Xfle*lek*jl
which follows from simplifications of WP*(I5,) = [Wr, |27 (Is,) = [Xf1 ks
= (k= 3, Fralp), [Faw () ks vpa) € LT [AF 7 TYPE] 6]k Jk—ja Jk—sn
which follows from simplifications of xp, = |7 [AF 7: TYPE] 6 ]x—j,
= (k= 4, Figls)s [Faw ) Jk—jsvpy) € [T [AF 7 TYPE]O]k—sy
which follows from Fact 2
= (k—j, Fiqp), [Fiw () k=g v51,) € T[AF7: TYPE] S
which follows from the definition of |-]x.
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Case

(READ)
A;F}—ezgrefv' AF7T=<R
A;THrde :“(Sref 7@ 7) :
We are required to show [A;T'Frde; :“(Sref 7@ 7)].
Consider arbitrary k, 8, gr, Wr, and « such that

e k>0,
e § € D[A], and
o (kqr,Wr,y) € G[AFT]6.
Let es = y(rde; ) = rdvy(e1) and Wy = Wr.
We are required to show that Comp(k, Ws,es, T [[A Flcref r®@7): TYPE] 9) =
Comp(k, Wr,rd~v(e1),T [A " (Sref 7@ 7): TYPE] §).
Consider arbitrary j, W,, ws, wy, and ey such that

o j <k,

o wy i (Wy O Wp) = wy i (Wr O W),

o (ws,es) = (ws,rdy(e1)) —7 (wy,eyf), and

o irred(wy,ey).
Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that

o (ws,y(e1)) —7* (wyy,ep,),

o irred(wy, , ey, ), and

e j1 <j.
Applying the induction hypothesis to A;T F e; : éref 7, we conclude that [A; I'Fep:Sref Tﬂ.
Instantiate this with k, 8, gqr, Wr, and . Note that

e k>0,

e § € D[A], and

o (k,qr,Wr,v) € G[AFT]0.
Hence, Comp(k, Wr,v(e1),T [AF Sref 7: TYPE] 6).
Instantiate this with ji, W,, ws, wy,, and ey, . Note that

e ji1 < k, which follows from j; < j and j < k,

o wy i, (Wr ®f W,.), which follows from above,

o (ws,y(e1)) —7 (wyy,ep,),

o irred(wy,, ey, ).
Hence, there exists Wy, and ¢y, such that

o wy h—j, Wy, Op—j, Wy), and

° (k_jlaqf17Wfl7ef1)
€T [AFSref 7: TYPE] S
={(k,q,{l = (¢,)}, 1) ]
q=T[AFE&:QUAL]S A
Xx=|7[AFT:TYPE]é|x A
(g=A=V(,q¢,,)ex ¢ A},
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Hence, ey, = Iy, and qf, = T[AF&:QUAL]6 and Wy, = {ly, — (¢5,,x5)} and x5 =
[T[AFT:TYPE]S]k—j, and (¢, = A=V(,¢,-,-) € xp- ¢ 2 A).
Note that

wyy k—jy (Wy Ok—jy Wr)
which follows from above
=38, : 2Loes,
IF 1w : S§1 — WorldDescy,_j, -
IF14 : S1 — Quals.
let Wi, = (Wy, Ox—j, Wr) Ok—jy, O35 Frw (1)) in
dom(wyg,) D dom(Wix) = S1 A
VlESl.Vi<k7j1.
(i, Frg (D), [Faw (D)o, w (1) € (WP D) k-5, A
vl e Sy.
ual ual
w1 = W (1) A
vsi C S
dom((Wy, Ox_j, Wr)) CSf A (VL€ SI. dom(Fiw (1) C ST) =
Sh=s1n
Vi € dom(wy, ).
R2wi() =18

which follows from the definition of w :;, W.

Note that
dom(wg,) 2 dom(Whiy) = S1
which follows from above (wy, :k—j; (Wy, Ok—j, Wr))
= dom(wy,) D dom(Wi.) = dom(Wy,) U dom(W,) U 'S5t dom(Fiw (1)) = S
which follows from above (Wi, = ...) and dom(W1 ©r Wa) = dom(W1) U dom(W>)
= dom(wy,) D dom(Wi.) = {ly,} U dom(W,.) UJ'C® dom(Fiw (1)) = S
which follows from simplifications of dom(Wy,) = {ly, }.
Hence, Iy, € dom(wy,) and Iy, € Si.
Note that
Vi € Si. wi (1) = WiR(1)
which follows from above (wy, :k—j; (W Or—j; Wr))
= wi () = Wi (s,
which follows from Iy, € S:
= (l,) = (Wr, Ok—jys Wr) Ok—jy Qi Faw ()™ (1y,)

k—j
which follows from above (Wi, =...) '
= w(}:al(lﬁ) = (({lfl = (Qf1 ) Xfl)} Ok—j1 Wr) Ok—j1 @;gefsjll le(l))qual(lfl)
which follows from above (Wy, =...)

— |
= w?’:a (lf1) =4

which follows from the definition of (W1 ©r Wa2).

Note that wy, = wy,, W{ls, — (gs,,vy,)}, which follows from Iy, € dom(wy,) and w?fal(lfl) =4qy,.
Note that
(ws, es) = (ws,rdy(€1))
7 (wyy,Tdey )
= (wy,,xdly, )
= (wry, W{ly = (g5, v0.) }xdly )

= (wpy WALy = (@ vt U o)
=TT (wy ep).

L

Since (l,,vy,,) is a value, we have irred(wy,, W{lr, = (¢5,,v5.)}, ({15 Vp))-
Hence, j —j1 —1 =0 (and j = ji1 + 1), and wy = wy,, W{ly, — (qf,,vp,,)} = wy, and ey = vy, .
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Note that

wy, o—jy (Wy Or—jyy Wr)
which follows from above
=38, : 2Loes,
IF 1w : S1 — WorldDescy_j, -
3F14 : S1 — Quals.
let Wi, = (Wy, Ox—j, Wr) Ok—jy Oppt Fiw (1)) in
dom(wy, ) 2 dom(Wis) = S1 A
VZGSI.Vi<k7j1.
(i, Fig(), [Fiw (D)]i, wf (1) € WP D)k, A
vl e Sy.
| |
W) = W) A
vsi c s,
dom((Wy, Ox_j, Wr)) €SI A (VL € 8T dom(Frw (1) C 8T) =
Sh=81 A
Vi € dom(wy, ).
ual
ij?ﬁ =18
= 38/ : 2Loes,
let S1 = {lfl} L*JS{ in
IF1w : S1 — WorldDescy_j, -
3F14 : S1 — Quals.
let Wi, = (W, Ok—j; Wr) Ok—jy Oppt Fiw (1)) in
dom(wy,) 2 dom(Wix) = S1 A
VieS. Vi<k—j.
(i, Fig (D), [Fiw () Ji, wf (1) € (WP (D) Jk—jy A
vie Sy.
wqual(l) — unal(l) A
f1 1%
vsi C S
dom((Wy, Ox_j, Wr)) € S5 A (VL € 8T dom(Frw (1) C 8T) =
Si=81n
Vi € dom(wy, ).

ual
ij‘}l ()=1eS

which follows from Iy, € &1
= 38] : olees,
let S1 = {lfl}ErJSi in
FF1w : S1 — WorldDescy_j, -
3F14 : S1 — Quals.
let Wiy = (Wy, Og—j; Wr) Or—j; ©
dom(wy,) 2 dom(Wix) = S1 A
VieS. Vi<k—j.
(i, Fig (D), [Fiw (1) ]i, wf' (1) € [WEPS (D) Jk—jy A
vl e Sy.
ual ual
w‘}l (1) =W () A
vsi C S,
dom((Wy, Ox_j, Wr)) €SI A (VL € ST dom(Fiw (1) C 8T) =
Sh=81 A
Vi € dom(wy, ).
R2wi®()=1e8

le{ly, Yws]

k—j1 FlW(l)) in

which follows from &1 = ...
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= 35] : oLoes,
let S1 = {lfl} H—JS{ in
IF 1w : S1 — WorldDescy,_j, -
3F14 : S1 — Quals.
1es] .
let Wix = (Wy, Ok—jy W) O—jy (Frw (ls,) Ok Oy, Frw () in
dom(wy,) 2 dom(Wix) = S1 A
Vle S Vi<k—ji.
(i, Fig (D), [Fiw ()i, w' (1) € [WEPS(D) [y A
Vi€ 8.
Wi (@) = W) A
vs) c s
dom((Wy, Ox_;, Wr)) C 8§ A (V1 € 8T dom(Frw (1)) € 8T) =
Sl =811
Vi € dom(wy, ).
R2uwd()=1e8
lele{ly, Yws]

k—j1 FlW(l)

which follows from simplifications of &
=38] : olecs,
let S1 = {lfl}ErJSi in
IF 1w : S1 — WorldDescy_j, -
3F14 : S1 — Quals.
leS] .
let Wi. = (Wy, @k—jy Fiw(U5,)) Ok—jy W) Ok—jy O Faw (1)) in
dom(wy,) 2 dom(Wix) = S1 A
Vie Sy Vi<k—j1.
(i, Fig (), LFiw (1)]i, w (1) € [WEPE D) k5, A
vieS.
wh (@) = WD) A
vsi c s
dom((Wy, Ox_;, Wr)) C 8§ A (V1 € 8T dom(Frw (1) € 8T) =
Sh=8 1
Vi € dom(wy, ).
R2wd()=1e8

which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Note that (Wy, ®x—j,—1F1w (ly,)) is defined, which follows from Req 4 (join-closed) and (W, ©k—j,
Fi(lfy ) defined, which in turn follows from Wi, defined.

Note that
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Vi S Vi <k—ji. (i, Fig), [Faw (D))o, w (1) € [WPP(D) k-5,
which follows from above (wy, :x—;; (Wy, Or—j; VtVre))
= Vi<k 7.]'1' (/L" qu(lfl)z LfIW(lf1)Jl»w\}all(l)) S Lwlip (lfl)kajl
which follows from Iy, € S;
S (b= Frall s LFrw L) e w1 (D) € LWERPS (L) s,
which follows from k& — j < k — j1
= (k =4, F1q(py), [Faw g ) k-5 v5,) € Lwltipe(lfl)Jk—jl
which follows from simplifications of w‘}il(lfl) = (wry, Wly = (@py,v5,) D 1p) = vy
= (k= 5, Frglpy)s Faw (g k=5 vi) € LD Je—ii Ik
which follows from simplifications of Wfipe(lfl) = LWhJ}jﬁejl () = X =i
= (k= 4, F1q(g), [ Frw (g ) Jk—jrvpr,) € LT [AF 72 TYPE] 6] k—jy Jo—j1 Jk—sa
which follows from simplifications of x, = |7 [A+ 7: TYPE]§]r—_j,
= (k 7j7-7_—1q(lf1)’ L]-—IW(lfl)kajvvfu) S LT [[A Fre TYPEII 6Jk*j1
which follows from Fact 2
= (k= 4, F1q(lpy), LFaw gy ) k—j vpy) € T[AE T2 TYPE]S
which follows from the definition of ||

Fiq(ly) 2R
which follows from Lemma 15 applied to A+ 7 <R
and (k — j, Fiq(Lf,), [Fiw (g, ) —j vf,) € T[AF 7 : TYPE]S and R=T [AF R: QUAL] S

P(k — iR, LfIW(lf1 )Jk*j)
which follows from Corollary 16 applied to A+ 7 <R
and (k — j, F1g(,), [Fiw (L ) k—jovpy,) € TIAF 7: TYPE]S and R=T7 [A F R: QUAL] S
= P(k _j’ szlW(lfl))
which follows from Req 11 (qualpred-aprx).

Let Wy = (Wy, Ox—; Faw (1,))-

Let qf = L.

Note that (Wy, Ok—; Fiw (I5,)) ©k—; W) is defined, which follows from Reqs 4, 5, 6, 7, and 8 (join-
closed, join-aprx, join-commut, join-assocl, and join-assocr) and (Wy, @r—;, Fiw (ly,)) Or—jy Wr)
defined, which in turn follows from W7, defined.

We are required to show that

o wy k- (WO W)
= wyy ki (Wr Ok Faw(lf))) Or—j Wr),
which is equivalent to

wiy tk—j (Wpy Ok—j Fiw (lyy)) Ok—j Wr)
= 35 : 2loes,
3Fw : & — WorldDescy,_;.
3Fy : S — Quals.
let W = (W, @k Fiw (If,)) Ok—j Wr) Ok O Fw (1)) in
dom(wy,) 2 dom(Wy) =S A
VieS. Vi<k-—j.
(i, Fq (1), [Fw (D], wf' 1) € WP (W) 1—j A
vieS.
wie (1) = W) A
vst Cs.
dom((Wy, ®k—; Fiw (Lf,)) Ok—j W) € ST A (VL € ST. dom(Fw (1)) C ST) =
St=8na
Vi € dom(wy, ).
Rzuwi()=1e8

which follows from the definition of w :, W.

Take
S=8 ={l;}ws,.
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It remains to show that

AFw : S1 — WorldDescy,_ .
3F¢ : S1 — Quals.
let W = (Wy, ©k—; Fiw (I5,)) Ok —; W) Ok O Fw (1)) in
dom(wyg,) 2 dom(Wy) = S1 A
VIieS. Vi<hk—j.
(i, Fo(1), [Fw )] i, wf 1) € (WP (1) Jk—j A
Vi e Sy.
wi? (1) = W) A
VST C 8.
dom((Wy, ®k—; Fiw(ly,)) Ok—s W) € ST A (V1 € ST. dom(Fw (1)) C ST) =
St = S1 A
Vi € dom(wy, ).
R2wi() =18

which follows from above (§ =...).
Take
.'Fw(l) = {L-,Flw(l)kag ifle Sy
and
Fq(l) = {flq(l) if l € Sy
Note that

Vi € S1. Faiw (1) € WorldDescr—j,

which follows from above (wy, :k—j; (W Or—j; Wr))
=ViesS. \_flw(l)Jk_j S WOT‘ldDeSCk_j

which follows from |-|, € WorldDesc — WorldDescy,
=Vl e S1. Fw(l) € WorldDescy,—;

which follows from above (Fw (1) =...).

Hence, Fw : S1 — WorldDescy,—;.
Trivially, 7, : $1 — Quals.
It remains to show that

let W = (Wy, @k Fiw(ls,)) Ok—; W) Ok Q) [ Frw (D] k—;) in
dom(wy,) 2 dom(Wy) = S1 A
Vie S Vi<k-—j.
(i, Frg (D), LLFrw (D)) k—j )i, wf (1) € LW () J—j A
Vi € S1.
w;vlial(l) — qual(l) A
vst C Sy
dom,(((VVf1 Ok—j ]:IW(lfl)) Ok—j WT)) C St A (Vl e st dom(Lflw(l)Jk—j) - ST) =
St = S1 A
VI € dom(wy, ).
Rxwi®() =18

which follows from above (Fy (1) = ... and Fy(l) = ...).

Note that
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Wik k—j
les]
= (W, @kjy Frw (14,)) Ok—jy W) Ok—jy Or)t Faw () k-
which follows from above (Wix =...)

les;
((Wy, Ok—j LFrw Uy ) k=) O—j Wr) @iy O Frw (1))
which follows from Req 4 (join-closed) and Req 5 (Jom aprx)

((Wy, Ok—j (Faw (p,) Ok—j Fiw (15,))) Or—j Wr) O @k P (1)
which follows from P(k — j, R, Fiw (If,)) and Req 15 (qualpred rel-join)

les]
((Wy, Ok—j Faw (lg,)) Ok—j Wr) Ok—j (Faw (Iy,) Ok—j Op_;* Fiw (1))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
le{z }us
(W, Ok Frw (Ug)) Ok W) Ok Oy, Frw (1)
lfs{lf}us1 Fw (l)

which follows from simplifications of (O,

= ((Wy, Op—j Frw (ly,)) Ok—j Wr) O—; lesl Fiw (1))
which follows from S1 =

= (W, ©1ms Frw(l7,)) Oy We) Oy O [Frw Di—y)
which follows from Req 4 (join-closed) and Req 5 (join-aprx).
Hence, W = (Wy, ©x—; Fiw (l5,)) ©k—; Wy) Ok O [ Faw (1) Jx—;) is defined.
Furthermore, W, = [W1. |k—; and dom(W,) = dom(|Whs]k—;) = dom(W1.).
Note that

dom(wg,) 2 dom(Why) = St

which follows from above (wy, k—j, (Wys Or—j; Wr))
= dom(wy,) 2 dom(W,) = &1

which follows from above (dom(W.) =...).

It remains to show that

Vi€ St Vi< k— 3.
(i, Frg(), LLF1w (D s—5 )i, wf' () € (WP (D) ]y A

Vi € S;.
wi (1) = W) A

vSt C 8.
dom((Wy, Ok—j Fiw (ly,)) Or—; W) C ST A (VI € ST. dom(|Fiw (1) ]r—;) € ST) =
St = S1 A

Vi € dom(wy, ).
R2wi()=1es

which follows from above.

We are required to show that

eVieS. . Vi<k—j.
(i, Frq(), LLF1w (1) Je—j i, W' (D) € (WP (D) ]
Note that
Vie 8. Vi<k—j.
(i, FigW), LLF1w (D g—j )6 w 1) € (W2 (D) Ji—j

=Vlie S Vi<k—j
(s Fra ), LFrw (), R 1)) € [WEPS(0) |5
which follows from Req 1 (aprx-idem)

=Vi€ S Vi<k—j.
(&, Fig (D |F1w (D] s, wpy (1) € LW [P (1) k-
which follows from above (Wi =...)

=Vi€S1.Vi<k—j (4 Fiq), |[Faw@)]iswp (1) € (WP (D)) k-
which follows from the definition of |W |, and Fact 2.

We are required to show that
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e ES L Vi<k—j (i, FiD), [Frw]owsn D) € WD
which follows from

Vi€ Si. Vi <k —ji. (4, Fig(1), [Frw (D) ]iswyp, (1) € [WEP(D) k-
which follows from above (wy, :k—j;, (W Or—j, Wr))

=Vl €S Vi <k—j. (i, Frg(), [Frw ()]s, wp, () € (WP (D) Jw—ja
which follows from k — j < k — j1

=Vl €81 Vi <k—j. (i, Frg(), [Fiw ()]s, wp, (1) € [IW2PD) Jk—jy Ji—s
which follows from j < k A (3,9, W,v) € x = (4,9, W,v) € | x|«

=Vie S Vi<k—j. (4, Fiq(l), [FiwD)]i,wp, (1) € (W) k-5
which follows from Fact 2.

o Ve S.
wi (1) = W)
Note that
Vi e Sy.
w1 = W)
=Vie S

qual

wi (1) = (Wi 32 (1)

which follows from above (Wi
=VieS.

Wi (@) = Wi @)

which follows from the definition of |W .
We are required to show that

o Ve Sy.
w1) = W)
which follows from
Vi € i wi(1) = W)
which follows from above (wy, :k—; (Wy, Or—; Wr)).
o VST C Sy

d?m(((Wfl O—j Frw(ly,)) Or—j Wy)) € ST A (VI € ST dom(|Faw (1) Jr—s) € ST) =
ST=5

Consider arbitrary ST such that
L4 ST g Sla

o dom((Wy, Or—j Frw(ls,)) Ox—j Wy)) C ST,
o Vi€ S dom(|Fiw()]sy) € ST,

Instantiate (VS C€ Sy. ...) of wy, x_j, (Wy, Or_j, W,) with ST. Note that

e ST C Sy, which follows from above,

o dom((Wy, ®—j, W) C ST, which follows from
dom((Ws, Or—j Fiw (Is,)) Or—j Wy)) C ST
which follows from above
= dom((Wy, @k—j Wr) @x—j Fiw (ly,))) € ST
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
= dom((Wy, Or—j W;)) U dom(Fiw (l5,)) C S
which follows from dom (W1 ©r Wa) = dom(W1) U dom(W>)
= dom((Wy, Or—; W,)) C ST
= dom((Wfl Gk*jl WT)) - ST
which follows from dom((Wy, Or—; Wr)) = dom((Wy, Ok—j, Wr)).
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e Vi € ST. dom(Fiw (1)) C ST which follows from Vi € ST. dom(|Fiw (1) ]r—;) C ST.
Hence, we conclude that ST = S;.

o Vi € dom(wy, ).
R2uwl()=1e8
which follows from
Vi € dom(wy,). R = w;l;’al(l) =1les
which follows from above (wy, :k—; (Wy, Or—j Wy)).

— 73,45, Wy,ep) €T [[A FlEref reT): TYPEH )
(k =3, L, (Wfl Ok—j le(lﬁ))v <lf1’vf11>) €T [[A F L(gl’ef T®T): TYPEH 1)
(k—3,L, Wy, Or—;j le(lfl))’ <lf1avf11>)
€ {(k,q, W, (v1,v2)) |
g=T[AFL:QUAL]S A
(k,qi, Wi, v1) € T [AF Sref 7: TYPE] 6 A
(k,q2, Wa,v9) € T[AF 7: TYPE]S A
@ =2qgNAq 2 gA
(W1 O Wa = W)},
which follows from

e L =T[AFL:QUAL]S, which follows trivially,

o (k—j.qp, [Wplr—j.lp,) € T [AF tref 7: TYPE] 6, which follows from Lemma 8 and
Fact 6 applied to k —j < k — j1 and (k — j1,q5,, Wy, lp,) € T [A+ Sref 7: TYPE] 6,

o (k—7,Fiq(ly), | Fiw(lg) | k—j,vp,) € T[AF 7: TYPE] 6, which follows from above,

o=

* (

e ¢y, = L, which follows trivially,
e Fi4(ly,) <X L, which follows trivially,

] (Wf1 Ok—j .7:1w(lf1)) = (LWfljk*j Ok—j |_.7:11/1/(lfl)Jk,j)7 which follows from Req 5
(join-aprx).
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(SWAP(STRONG))
AFT~Ti8BTy  ATike:frefmn  AFA<E  ATober:im  Abm=<E
AT Fswer e : S(Cref o ® 1) '
We are required to show [A;T Fswepes : H(Sref @ 7)].
Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e § € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]d and A+ T ~» T’y T3, we conclude that there
exist qr,, Wr,, 71, qr,, Wr, and 2, such that
(k.qr,, Wr,,m) € G[AFT4]6,
(k. qry, Wr,,72) € G[AFT5] 6,
e yem By,
® gr, = qr,
® gr, = gr, and
(Wr, © Wr, = Wr).

Case

Note that y(e1) = v1(e1) and y(e2) = y2(e2).
Let es = y(swepea) = swy(er) y(e2) = swyi(er) y2(e2) and Wy = Wr.
We are required to show that Comp(k, Wy, es, T [[A; I'Fsweies :H(éref m® 71)]] J) =
Comp(k, Wr,swyi(e1) y2(e2), T [[A;F Fswepey : H(Sref m ® 71)]] d).
Consider arbitrary j, W;., ws, wy, and ey such that
o j <k,
o wy i (Ws O W,) = ws i, (Wr O W), noting that
ws % (Wr O Wr)
= ws i (Wr, Ok Wr,) Ok Wp)
which follows from above,
(ws, es) = (ws, swyi(er) 12(e2) ) =7 (wy, ef), and

irred(wy, ey).

Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
° (wsa 71(61)) '—>j1 (wf1 ) efl)a
o irred(wy, , ey, ), and
° j1<J.
Note that (Wr, Or Wr,) ©Or W) = (Wr, ©r (Wr, Ok W,.)), which follows from
(Wr, Ok Wry,) O Wr)

= (Wr, Ok (Wr, O Wr))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T'; F e; : €ref 7, we conclude that [[A; Ty b e Sref 7'1]].
Instantiate this with k, §, gr,, Wr,, and ;. Note that

e k>0,
e 6 € D[A], and
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b (k7qF17WF17'71) € g[[A = Flﬂ 0.

Hence, Comp(k, Wr,,v1(e1), T [[A Féref - TYPE] 9).
Instantiate this with ji, (Wr, ©r W;), ws, wy,, and ey, . Note that

e j; < k, which follows from j; < j and j < k,

o wy i (Wr, ©x (Wr, ©r W;.)), which follows from

ws i (Wr, Ok Wry) Or Wr)
which follows from above

((Wr, @k Wry) O W) = (Wr, Ok (Wr, Ok W)
which follows from above,

o (ws,miler)) =7 (wyy ep,),
o irred(wy, ey, ).
Hence, there exists Wy, and gy, such that
o wy kg Wy Or—jy (Wr, ©r Wr)), and
o (k—=ju,an,Wren)
eT [[A Féref 7 : TYPE]] )
={(kq.{l— (@)} D |
g=T[AFE&:QUAL]S A
X=|7[AF 7 :TYPE]O|r A
(@=2A=VY(,¢,)ex ¢ A}
Hence, ef, = ly, and g5, = T[AFE:QUAL]S and Wy, = {ly, — (¢, xn)} and x5 =
LT HA e TYPE]] 5Jk—j1 and (qf1 A= V(,, q/aﬂ *) € Xfi- q/ = A)
Note that A =< ¢ , which follows from Lemma 12 applied to A - A < £ and A =
TJ[AFA:QUAL]S and g7, =7 [AF & : QUAL] 6.
Note that

(ws, €s) = (ws, sumi(e1) v2(e2) )
71 (wy,, sweyr, v2(e2))
= (wyy, swip, 72(e2))
77 (wys e)
and irred(wy, ey).
Hence, by inspection of the operational semantics, it follows that there exist j2, wy,, and ey, such
that

b (wfur)/?(e?)) —72 (wf2ﬂ€f2)7

o irred(wy,,ey,), and

e jo <j—j1.
Note that (VVf1 Ok—j; (WF2 Ok WT» = (|_Wf‘2Jk—j1 Ok—j, (VVf1 Ok—j; WT)), which follows from
(Wfl Ok—j1 (WF2 Ok WT))

= ([WryJk—i1 Ok—js (Wr Ok—jy W)
which follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T's F e : 72, we conclude that [A;Ts F es : 1]
Instantiate this with k& — j1, d, gr,, |Wr, |k—j,, and v2. Note that

e k — j1 > 0, which follows from j; < k,
e § € D[A], and
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o (k—ji,qry, IWr, |k—j,,72) € G[A F T2 6, which follows from Lemma 9 applied to k—j; < k
and (k7 qFQ; WF2772) S g [[A l_ Fz]] (S

Hence, Comp(k — j1,72(e2), [Wry | k—j,, 7 [A F 72 : TYPE] ).
Instantiate this with jo, (Wy, Or—j, W;), wy,, wy,, and ey,. Note that

e jo < k — 71, which follows from j, < j —j; and 7 < k,

o wr k—j, (IWr,lk—sy Ok—jy Wy, Ok—j, W), which follows from

Wfy ‘k—j1 (Wfl Ok—j1 (WFZ Ok WT))
which follows from above

Wi ©k—jy (Wry Ok Wi)) = ([Wry Jk—51 Ok—ji (Wr Ok—jy Wr))
which follows from above,

b (wf1a72(62)) —72 (wfzaef2)7 and

o irred(wy,, eg,).
Hence, there exists Wy, and ¢y, such that

® Wy k—jr—j2 (sz Ok—jr—ja (Wfl Ok—j1 W), and

L] (k‘ —J1 —jg,qu,Wf2,€f2) S T[[A Fro TYPEH d.
Hence, ey, = vy,.
Note that Iy, ¢ dom(Wy, ®—j,—j, Wy), which follows from A = g5, = W{*(l;,) and
Wiy Ok—ji—js W, Or—jy W) = (W, Ok—jy—j Wi, Ok—jy—j, Wr)) defined.
Hence, Iy, ¢ dom(Wy,) U dom(W,.), which follows from dom(W; © Wa) = dom(W1) U dom(W).
Note that

Wiy h—jy—jo Wiy On—jy—jo (Wy, Ok—jy Wr))
which follows from above
= 38, : 2Loes,
IFow : S2 — WorldDescg_j, _j,-
IF2q : S2 — Quals.
leS .
let Waw = (W, Ok—jy—jz (Wry Or—jy W) Ok—jy—jy Q3= _j, Faw (1)) in
dom(wg,) D dom(Wax) = S2 A
Vi€ S2. Vi < k —j1 — j2.
(&, Foq (1), [Fow (D )i, W (D) € WP ()] iy —sz A
vl € Ss.
ual ual
w0 = W) A
VS C S,
dom((Wy Ok—jy — i (Wi, Ok—jy Wi))) C S A (VL € SJ. dom(Faw (1)) C S) =
Sl =81
VI € dom(wy,).
R2wi() =18

which follows from the definition of w :;, W.

Note that
dom(wyg,) 2 dom(Was) = Sa
which follows from above (wy, tk—j;—jo (Wi, Ok—ji—jo (Wi Ok—j; Wr)))
= dom(wy,) 2 dom(Wa.) = dom(Wy,) U dom(Wr,) U dom (W) U J'S? dom(Faw (1)) = So
which follows from above (W2, = ...) and dom(W1 ©r Wa) = dom(W1) U dom(W>)
= dom(wy,) D dom(Wa.) = dom(Wy,) U {ls, } U dom(W,.) U €52 dom(Faw (1)) = So
which follows from simplifications of dom(Wy,) = {ly, }.

Hence, Iy, € dom(wy,) and Iy, € Ss.
Note that
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Vi€ Sp. wi (1) = W (1)
which follows from above (wg, tk—j;—jo (Wi, Ok—js—js (W5 Ok—jy Wr)))
= wh () = Wa(ly,)
which follows from Iy, € S2
= wi(11,) = (Wi, Okjy—jz (Wpy Or—jy Wi)) Oy —go O _j, Fow (D)™ (U,

k—j1—J2
which follows from above (Wa. =...)
= w}ual(lfl) = ((Wf2 Ok—j1—j2 ({lfl = (quXfl)} Ok—j1 W) Ok—j1-j2 @2'6753‘2173‘2 fQW(l))qual(lh)
which follows from above (Wy, =...)
= ch:a (lr) = an

which follows from the definition of (W1 ® Wa).

Note that wy, = wy,, W{ls, — (q,,vs,)}, which follows from I, € dom(wy,) and wj‘c;al(lfl) =qy,.
Note that

(ws, es) = (ws, suyi(er) v2(e2) )
7 (wy,, swey, y2(e2))
= (u_]flvs"]lfl 72(62) )
72 (wf27 SWlfl €fa )
= (wy,,swlyp vy, )
= (wpyy Wy = (qr,0p0) }swlp vpy)

—' (wf21 U{lfl (qf17vf2)}7<lf17vf11>)
—J—J1—J2— 1(wf,ef).

Since (Iy,,vy,,) is value, we have irred(wy,, W{ls, — (g5, v5) 1 L, vn))-
Hence, j—j1—j2—1 =0 (and j = ji+jo+1) and wy = wyg, W{ly, — (qf,,vyf,)} and ey = (lf,, vy, ).
Note that
Vi€ S2. Vi < k= j1 — ja. (6, Faq(l), [Fow (D]i, w2 (D) € (WP (D] k—jy —jo
which follows from above (W, x—j; —jo (Wry Ok—j;—jo Wy Op—j; Wr)))
=Vi<k —J1 — J2. (i,qu(lfl), |_~7'—2W(lf1)Ji7 Val(lfl)) c LW;);pe(lfl)Jk_jl_jQ
which follows from Iy, € Sz
=Vi<k 7.7'1 7.7'2' (i7‘7:2q(lf1)’ L]:?W(lf1)J’Lv (wle & {lfl = (qfl’vf11)})val(lf1)) € Lwéipe(lfl )Jk*jlfjg
which follows from (wy, = ...
=Vi<k—j1 —ja. (i, Faq(lp,), [Fow (g Jisvp,) € [IWePS (L) k—jy—jo
which follows from (wy,, W {ly, — (q5,,vf,)})" I(lf ) =vg,
= (k— 7, F2q(lsy), U'—ZW(lh)Jk J?”fu) € Lngpe(lfl)Jk J1—J2
which follows from k — j < k — 71 — j2

= (k— g, Faq(ly)s [ Fow g ) k—gsvsy1) € LIXgy Io—gi—go Jl—j

—J2
which follows from simplifications of W;;pe () = Wy 2"’?1 o () = Ixplo—ji—jo

= (k= 5, Faq(g,), [Fow (g, ) k—jsvp00) € LLLT [AF 71 : TYPE[ 6] k—jy Jk—ji —ja Jk— 51 —js
which follows from simplifications of xy, = |7 [AF 71 : TYPE] §]x—j,

= (k—4,F2q(s), [Fow gy ) k—jrvg,) € LT [AF 71 : TYPE] 0 k—j, —js
which follows from Fact 2

= (k—j, Faqg;)s [Fow (U, Jk—jsvpy,) € T[A 71 : TYPE]S
which follows from the definition of |- |f.

Note that

Wiy k—j1—ja Wiy Ok—ji—ja (Wg, Ok—j; Wr))
which follows from above
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=38, : 2Loes,
FFow : S2 — WorldDescg_j, —j,-
IF2q : S2 — Quals.
les .
let Waw = (W, Ok—jy,—jp (W, Or—jy Wr) Or—jy—js Q4= 7, Fow (1)) in
dom(wy,) 2 dom(Wax) = S2 A
VIe Sy. Vi< k—j1—ja.
. va t
(i, Faq (), [Fow ()5, wE (1) € (W (D]k—j1 —ja A
Vi € Ss.
wie (1) = Wi (1) A
VS C Ss.
dom (W, Ok—jy —jp (Wi, Ok_jy Wi))) €SI A (V1 € 8. dom(Faw (1)) C S5) =
Sl =81
Vi € dom(wy,).
R2wi()=1e 8,
= 38}« 2kees,
let So = {ly, } WS, in
IFow : S2 — WorldDescy_j, —j,-
3F2q : S2 — Quals.
les .
let Waw = (W, O—jy—js Wry Ormjy W) Ok—jy—js Q37 _j, Faw (1)) in
dom(wy,) 2 dom(Wax) = S2 A
VIie Sy. Vi< k—j1—ja2.
. va t
(i, Faq (), [Faw ()]s, wE (1) € (W (D] k—jy —ja A
Vi€ Sa.
wie (1) = Wi (1) A
VS C 8.
dom (W, Ok—jy—js (Wi, Ok—jy Wi))) C SIA (VL€ SI. dom(Faw (1)) C S) =
Sl =81
Vi € dom(wy,).
ual
ij;;(l):}lGSQ
which follows from Iy, € Sa
= 38}« 2kees,
let Sy = {ly, } & S} in
IFow : S2 — WorldDescy_j, —j,-
IF2q : S2 — Quals.
le{ly, YwsS) .
let Waw = (W, Ok—jy—jz (Wry Ok—jy Wr)) Ok—jy—jz Qg1 %5, - Fow (1) in
dom(wy,) 2 dom(Wax) = S2 A
Vi€ S2. Vi < k— j1 — jo.
(i Fag (1), [ Faw ()i w (D) € WD) J—jy—ja A
VI € Ss.
ual ual
wh (1) = W2 (1) A
VS C 8.
dom (W, Ok—jy—jp (Wi, Ok_jy Wr))) €SI A (V1 € 8. dom(Faw (1)) C S§) =
Sl =81
Vi € dom(wy,).
R uwd™() =18,

which follows from So = ...
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=38} : 2lees,
let So = {lfl} H—JSé in
IFow : S2 — WorldDescy_j, —js,-
IF24 : S2 — Quals.
let Way = ((Wf2 Ok—j1—j2 (Wh Ok—j; Wr)) Ok—j1—32 (-7:2W(lf1) Ok—j1—j2 ©
dom(wy,) 2 dom(Wax) = S2 A
Vie Sa. Vi< k—j1— ja2.
(i, Foq (1), [Fow (D)5, w2 (1) € WP W) k=12 A
Vi € Sa.
Wi (1) = W) A
V8] C So.
dom (Wi, O—j,—ja W, Ok—j, W) € S] A (VL€ 8] dom(Faw (1) € 8}) =
Sl =81
Vi € dom(wy,).
R < wqf:al(l) =1€85

lesy
k—j1—J2

fgw(l))) in

which follows from simplifications of Oze_{jlfl_];fsé Fow (1).

Let lel = [T [AF 1o : TYPE]O]k—;.

Let W}l = {lfl = (qan}l)}'

Note that (W} ©r—; Faw(ly,)) is defined, which follows from A < gy, and (Wy, O—; Faw (Iy,))
defined, which in turn follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut,
join-assocl, and join-assocr)and W, defined.

Let Wy = (VV}1 Ok—j fzw(lfl)).

Let qf = L.

Note that (W}, ©k—; Faw (lf,)) Or—; W;) is defined, which follows from A < gy, and (W, Ok—;
Fow (Ly,)) ©k—; W) defined, which in turn follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx,
join-commut, join-assocl, and join-assocr)and Wa, defined.

Note that i7, ¢ dom(Fow (ly,) @k—; W), which follows from A < g, = W}?”al(lfl) and (W}, Ok—;
Faw (Uf,)) Or—g Wr) = (Wi, O (Faw (Iy,) ©Ok—j Wr)) defined.

Hence, Iy, ¢ dom(Faw (lf,)) U dom(W,), which follows from dom(W; © Wa) = dom(Wi) U
dom(Wy).

We are required to show that

o wi ik (Wy Op—; Wr)
= wp,, W{ly = (a5,08)} w—j (W} Ok—j Fow (lg,)) Ok—j Wr),
which is equivalent to

wgyy k—j (Frw ()] k—5 Ok—j Wr)
=38 : 2Loes,
3Fw : & — WorldDescy,_ ;.
3Fq : S — Quals.
let We = (W}, @k Fow (If,)) Ok —j Wr) Ok—; OIS Fw (1)) in
dom(wyy, W{ly, = (qr,,v5,)}) 2 dom(Wy) =S A
VieS. Vi<k-—j.
(i, FaDs LFw D)5 (o, WLy = (a7,,v5) 1) 1) € (WP k-5 A

vieS.
(wry W{lp, = (qflvva)})qual(l) = qual(l) A

vst C s.
dom((W}, Ok—j Faw (Is;)) Ok—j Wr)) C ST A (VL € ST. dom(Fw (1)) C ST) =
St=8na

vie dom(wle @ {lfl = (qf17vf2)})~
R =< (Wf21 ) {l.fl — (qh,’vf2)})q”al(l) =1leS

which follows from the definition of w :; W.

Take
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S=8={ly,} &S5
It remains to show that
AFw : S2 — WorldDescy,_ .
3Fq : S2 — Quals.
let Wi = (W}, ©k—; Faw (I5,)) Ok —; W) Ok O Fw (1)) in
dom(wf21 & {lf1 = (qflvvfg)}) 2 dom(W*) = 82 A
ViE Sy Vi<k—j.
(i, Fa (D), [Fw (D)is (wpyy WLy, = (a5,,05,) )" (D) € [WEPD) k-5 A

vie Ss.
(w2 g, — (a5, 05) D) = WD)

VSt C Ss.
dO’ITL(((VVf,1 Ok—j fgw(lfl)) Ok—j Wr)) C St A (Vi e st dom(Fw (1)) C ST) =
St = So A

VI € dom(wyy, W{ly, — (qf,,v5,)})-
R = (wle @ {lf1 = (quvfz)})qual(l) =182

which follows from above (S =...).
Take
_ Wk iftle{ly}
Fw(l) = {LBW(Z)JH if 1 € S}
and
_ ) d4f ifl € {lfl}
Fall) = {.7-'2q(l) it s
Note that

Wy, € WorldDescy—j, —j,
which follows from Fact 6 applied to (k — j1 — j2,Gfy, Wiy, v5,) €T [AF 12 : TYPE] S € Type,
which in turn follows from Lemma 8 applied to 7 [A + 7o : TYPE]§
= |Wy, | k—; € WorldDesci—;
which follows from |-|x € WorldDesc — WorldDescy,
= Fw(ly,) € WorldDescy—;
which follows from above (Fw (l) =...).

Note that
Vi € Sa. Faw (1) € WorldDescy—j, —j,
which follows from above (wy, k—j;—jo (Wi, Ok—ji—jo (W5 Ok—j; Wr)))
=Vl € S5. Faw(l) € WorldDescr—j, —j,
which follows from Sy C S»
= Vi€ 8. |Fow(l)|k—; € WorldDescy_;
which follows from |- |, € WorldDesc — WorldDescy,
= Vi e 8. Fw(l) € WorldDescy.—;
which follows from above (Fw (l) = ...).

Hence, Fy : So — WorldDescy,—;.
Trivially, Fy : So — Quals.
It remains to show that
let Wi = (W}, ©k—j; Faw (lf,)) Ox—j Wr) Or—; @LE_S]Z Fw (1)) in
dom(wyy, W{ly, = (qr,,v5,)}) 2 dom(Wy) = S2 A
VIE So. Vi< k—j.
(i, Fa(O), [Fw (D] s (wpyy W {Lgy = (5,5 05,) )" (1) € [W2PD) 55 A

Vi € Ss.
(W, W{ly — (qflvvfz)})qual(l) = qual(l) A

VSt C S,.
dom((W}, O—; Faw (I5,)) Ok—j Wr)) € STA (VI € ST. dom(Fw (1)) C ST) =
St = So A

vi e dom(wf21 @ {lfl = (qf17vf2)})~
R =< (’wf21 O] {lfl — (qf“va)})qual(l) =1e8s

which follows from above.
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Note that

[Wa]k—j
eS8}
= \_((Wh Ok—j1—j2 (Wf1 Ok—j1 W) Ok—j1—j2 (~7:2W(lf1) Ok—j1—j2 @ke—ji—jz }—2W(l)))Jk*j
which follows from above (Wa. =...)

S}

(Wi ks @ng Wy, @k W) Ok (Faw (Ig,) Ok O [ Fow (1) Jx—5))
which follows from Req 4 (join-closed) and Req 5 (join- aprx)

(Wy, Ok—s Faw (l1,)) Oy Wi) Ok ([W, |i—j Oy Opc U‘—zw( Mk—-i))
which follows from Regs 6, 7, and 8 (join-commut, join- assocl and join-assocr)

€8

(Wy, Oy Fow (ls,)) Ok—g Wr) Oy (Fw (Isy) On—y O Fw (1))

which follows from above (Fw (l) =...)

ze{z Yws),
(Wi, Ok Faw(lg,)) Ok Wi) @k O, 2 Fw (1))
le{lfl}USQf (l)

which follows from simplifications of

(Wr, ©k—j Faw (U5,)) Ok Wr) Ok OZESZ}' ()
which follows from above (S2 =...).

Hence, W, = (W}, Ok—j Fow (1)) ©k—j Wr) Ok ®l€$2 w (1)) is defined, which follows
from Wy, = {ly, = (qr,,xp)} and Wi = {ly, — (quXfl)} and and A < ¢y, and the
definition of (- © -) and |Way|p—j = .. ..

Note that W, = (W} ©k—; ([Wau]r—; \ {l1, })), which follows from Wy, = {ly, — (g7, x1)}
and VV)'C1 = {ly, = (4., X},)} and and A = gy, and the definition of (- © -) and [Wa.]p—; =

Furthermore, dom(W,) = dom(Wa,).

Note that
dom(wg,) D dom(Wax) = S2
which follows from above (wy, k—j; —jo (W, Or—j; —jo (Wi, Or—j; Wr)))
= dom(wy,, W{ly, — (qf,,vf,)}) 2 dom(Was) = S2
which follows from above (wy, = .
= dom'(wf21 W{ly, — (gf,,v8,)}) 2 dom(Wg*) S
which follows from dom(wy,, W {ly, — (qp,,vp,)}) = dom(wyp,, W{ly, — (q5,,v5,)})
= dom(wy,, W{ly — (q5,,v5,)}) 2 dom(Wi) = S2
which follows from above (dom(Wy) = ...).

It remains to show that

Vi€ Ss. Vi < k— 3.
(i, Fa (s [Fw (D)), (wryy W{ly, = (ap,,v) DY) € (WP (D) k-5 A

Vi e Ss.
(wyyy W{ly = (qflvva)})qual(l) = Wgual(l) A

VSt C S,.
dom((W}, ©O—; Faw (I5,)) O—j Wr)) C STA (VI € ST. dom(Fw (1)) € ST) =
St = So /\

Vi € dom(wyy, W{ly, — (q5,,v5,)})-
R < (wf21 ©] {lf1 — (qfl,va)})qual(l) =1e8:

which follows from above.

We are required to show that

e Vie S Vi<k—j.
(i, Fo (), [Fw (D) i, (wpy WLy, = (g7, 0p) )" (1) € (WD) ]k
Note that
Vi€ Sy Vi< k—j.
(i, Fa (), LFw D), (wryy & {Lgy = (a5,505,) D) (D) € (WD) ]k
=Vie{ly WS, Vi<k—j.
(i, Fo(0), L Fw (D) i, (o W {ls;, = (a5, v5,) DY (D) € (WP | o

which follows from above (S1 =...)
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=vie{ly ) Vi<k—j

(6 Fo (), | Fw (W), (wpgy @ {Lpy = (a5,,v8,) )" (D) € WP W) s A
Vie S, Vi<k—j.

(1, Fa (O, LFw (D i, (wray WLy, = (a5, 05) D)7 (D) € WP (D) ] 1—;
which follows from simplifications of VI € {ly, } W Ss. ...1...
=Vi<k-—j.
(6, Fa gy LFw (g i (wgy @ {lgy = (ap,v5) )" Uy )) € LW ) Sy A

VieSh Vi<k—j.
(1, Fa (O, LFw (D i, (wryy WLy, = (a5, 05) D)7 (D) € (WP (D) k-
which follows from simplifications of VI € {l}. ...1...
=Vi<k-—j.
(6 fas LW Jh—jJir (Wray W {lyy — (qfl’”fz)})val(lfl)) € LW’Eype(lfl)Jk*j A
Vie S, Vi<k—j.
(i, Faq (), [ F2w (D) k5 )is (wpyy © {lgy = (a5, 0) D' (1) € WD) k-
which follows from above (Fy (I) = ... and Fy¢(l) =...)
=Vi<k-—j.
(i aps, (Wi iy (wryy W {Lpy = (a50,05) 1) (U5)) € IWRP (g ) Ji—j A
Vie S, Vi<k—j.
(i, Faq (1), [ Faw ()]s, (wpay W {Lyy = (agy,05,) DY (1) € WP () k-
which follows from Req 1 (aprx-idem)
=Vi<k-—j
(i as, (Wi Jiyvg,) € LW () Je—j A
Vie S, Vi<k—j.
(i, Faq (1), [ Fow (D], (wpyy W {Lyy = (ag,,05,) D) (1) € WP (D) k-
which follows from simplifications of (wy,, W {ls, = (qp,,v5,) 1) (ls,) = vy,
=Vi<k-—j.
(g, (Wi lirvpy) € WP (g ks A
Vie S, Vi<k—j.
(i, F2q (), [Fow (1)]i, wif (1) € (WP (D)) k-

which follows from simplifications of ¥l € S}. ... (wg,, W{ly, — (a5,,vp,) D' (1) ... =VI € S).

=Vi<k-—j
(i afs5 Wiy lisvgs) € LW}, O ([WasJo—j \ {lr; D) (g, ) Jo—j A
Vie S, Vi<k—j.
(i, Fag (), [ Fow (D ]s, wi, (D) € LW}, Or—j ([Wasi—j \ {Lpy 1)¥P (D)) -y
which follows from above (Wi =...)
=Vi<k-—j
(6:4fy5 Wiy lisvg,) € I_I.X/fljk*jjk*j A
Vie S, Vi<k-—j.
(i, Faq (D), [F2w (D)3, w, (1)) € (W, Oy ([WasJi—y \ {5, )P (D)) 1o
which follows from simplifications of (W} ©r—; ([Was]r—j \ {l; ))¥(ls,) = X}, Jk—j
=Vi<k-—j.
(irquv LWfQJivvfz) € LLX}ljkfijfj A
Vie S, Vi<k—j.
(i, Faq (1), [Fow (D)5, w5, (1) € LIW2e [P (1) ]k—;

which follows from simplifications of
V€S, ... (W}, Or—j ([Waslo—y \ {ls; }))PPe()) ... =L ES). ... LWQ*J;CYE?(I) e
We are required to show that
o Vi< k—j.

(6 afas [WrJisvps) € LIXG, Jk—glk—j
which follows from
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(k —J1 = J2, 4, Wf27Uf2) € T[[A For: TYPEH 4
which follows from above
=>Vi<k—7j 7j2.(i,qf2, LWfQJi’UfQ) € TIIA F7o TYPE]] 1)
which follows from Lemma 8 and Fact 6
=>Vi<k—3.(¢4qp, [ Wlivn) € T[AF 72 : TYPE] S
which follows k — j < k — j1 — j2
=Vi<k—3.(0%¢q5, Wilivy) € [T[AF72: TYPE] ]k
which follows from j < k A (5, q,VV,U) ex= (4,¢, W,v) € |x]r
=>Vi<k-—j (74 qfas LszthfQ) € Xfl
which follows from above (X}, =...)
= Vi <k —j.(i,q5, [Wr]ivpn) € fole j
which follows from j < k A (4,¢q, W,v) € x = (4,¢, W,v) € |x]&
= Vi <k—j.(i,q5, [Wrlive) € |_|_Xf1Jk ile—;
which follows from j < kA (4,¢, W,v) € x = (4, ¢, W,v) € | x]&-
o VieS, Vi<k-—j.
. t
(i, Fog (D), [ Faw ()], w5 (D) € [[Wau 25D -
which follows from
Vi€ 8. Vi <k — j1 = jo. (6, Foq (1), [Fow (1) i, wy (1) € (WP (D) Jr—1—ja
which follows from above (wg, tk—j;—j5 (Wi, Ok—js—ja (W5, Ok—jy Wr)))
=Vl € 8. Vi < k—j1— 2. (i, Foq(l), [ Fow (D) ]i,wd (1) € [WoP (D) k-1 —ja
which follows from S5 C S2
=V €Sy Vi<k—j. (i,F2q(l), [Fow (1) ]i,wf (1) € (WP (1) k—js—io
which follows from k — j < k — j1 — j2
=Vvie Sé Vi <k—j. (i7f2Q(l)7 I.]:QW(Z)J“ (wf21 W {lf1 = (qfuvfll)})val(l)) € LWQtipe(l)Jk*jlsz
which follows from above (wyg, =...)
=WV €S Vi <k —j. (i, Fag(D), [Faw (1)1, w3, (1) € (WP (D) Jr—r s
which follows from simplifications of

vl e Sé s (wle W {lfl (Qflvvfn)}) (

)...=VleS8 .. .wh (I)..
= VI € 8. Vi <k —j. (i, Faq(l), [ Fow (I )Juwlel(l)) € [lwrea )Jk =g k=i

which follows from j < k A (4,¢, W,v) € x = (4, q, W,v) € | x|«
=Vl € 85 Vi < k—j. (i, Foq(l), [ Faw (D) s, wg, (1) € [W5P*(1) |-,
which follows from Fact 2.

o Vi€ Ss.

(wf21 W {lf1 — (qfl,va)})qual(l) — Wﬂual(l)
which follows from

VLE S (wpyy © {lgy = (a0, v) )™ (1) = WE (D)
which follows from above (wy, k—j;—jo Wiy Or—j1—jo (Wi Ok—j; Wr)))
=VIiE S, (wfm W {lfl = (qflvva)})qual(l) = W;:al(l)
which follows from Vi € Ss. (wf21 W {lfl = (qflvvfu)})qual(l) = (wle W {lfl = (qflv'uf’z)})qual(l)
=Vl € S (wryy Wl = (ap,0) )™ (1) = W)
which follows from VI € So. Wit (1) = (W}, ®Or—j ([WasJi—j \ {ls,}))*™'(1) = W'(1).
o VST C Sy.
dom(((Wf Ok—j Fow () Or—j W) C ST A (VI € ST. dom(Fw (1)) C ST) =
ST=8,
Consider arbitrary ST such that
L4 ST g 823
o dom((Wy, Ok—j Faw (ly,)) Ok Wr)) C St, and
e VI € St dom(Fw (1)) C S
Note that {l, } Udom(Faw (If,)) U dom(W,) C ST, which follows from dom ((W}, Ok—;
Fow (ly,)) @k—j Wy)) C€ ST and dom(Wt ) = {lp, },
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Note that Iy, € ST, which follows from {ls, } U dom(Faw (I1,)) U dom(W,) C ST.
Note that dom(Wy,) € ST, which follows from
vl € ST. dom(Fw(l)) C ST
which follows from above
= dom(Fw (ly,)) C S*
which follows from 1, € ST
= dom(|Wy, J1—j) C S
which follows from above (Fw(l) =...)
= dom(Wy,) C ST
which follows from dom(|Wy, |k—;) = dom(Wy,).

Let St =8T\ {iy }.
Note that ST = {I,} W SE.

Note that VI € 8. dom(Faw (1)) C S}, which follows from
dom(Faw (ly,)) € ST AV € ST. dom(Fw (1)) C ST
which follows from above
= dom(Faw (ly,)) € ST AVI € S*. dom(Fw (1)) C ST
which follows from S* C S
= dom(Faw (ly,)) C ST AV € St dom(|Faw (1) ]5—j) € ST
which follows from above (Fw(l) =...)
= dom(Faw (ly,)) C ST AV € S§*. dom(Faw (1)) C ST
which follows from dom(|Few (1) |k—;) = dom(Faw (1))
=Vi € {ly, } WSt dom(Faw (1)) C ST
which follows from simplifications of VI € {Is, } W S*. ... 1. ..
=vie S dom(Fow (1)) C ST which follows from above (ST =...).

Instantiate (VS) C Sy ...) of wpy kjy—jo (Wp, O_jr—jn Wy, Oy, W) with ST,
Note that

e ST C S,, which follows from above,

o dom((Wy, Gr_ji—jn (Wy, @y, W,))) C S, which follows from dom(Wy,) C
S;r , which follows from above, and {ls,} C Sg , which follows from above and
dom(Wy,) = {ls,}, and dom(W,) C S}, which follows from above, and

o Vi e Sl dom(Fow(l)) C S;f, which follows from above.
Hence, we conclude that St = Ss.

o VI € dom(wyy, W{ly, — (qp,v5.)})
R= (wle W {lfl = (qfwvfz)})qual(l) =1€ 8
which follows from
Vi€ dom(wfm L2 {lfl and (qf17vf11)})' R= (wf21 L2 {lfl iand (qflavfll)})qual(l) =>1e€s
which follows from above (wy, k—j; —jo Wiy Ok—j1—jo (Wi Ok—js Wr)))
=Vl € dom(wypy, W{ly, — (41,v5,)}) R =2 (wpy, Wl — (qflvvfn)})qual(l) =>1€S
which follows from dom(wg,, W {ly, — (g5,,v5,)}) = dom(wy,, ) W {ly, }
=Vvie dom(wle) @ {lfl}' R= (wf’n @ {lfl e (qf17Uf2)})qual(l) =>1e€s
which follows from
VI € dom(wyy, ) W{ly } (wpyy Wl — (qflvvfn)})qual(l) = (wyy, thl{lfl = (Qflavfz)})qual(l)
=Vl € dom(wy,, W {lfl = (qflavfz)})' R =< (wyyy W {lfl = (qflavfz)})qua H=1es;
which follows from dom(wyg,,) W {ls, } = dom(wy,, W {ly, — (qs,,v5,)})-
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o (k—17,q5, Wf7ef) €T [AF (ref m®7): TYPE] S
(k— (Wf Ok—j Fow (Lg,)), (g v5,)) €T [[A FLEref @) : TYPE]] )
(k — (Wf1 Ok—j Faw (L11))s (Lpy s 010 ))
€ {(k q, W, (v1,v2)) |
q_T[[AI—L.QUAL]]é/\
(k,qi,Wi,v1) € T [AF Sref 75 : TYPE] 6 A
(k,q2,W27'U2) S T[[A Force TYPE]] d N
@ =qgNAq 2 gA
(W1 O Wo = W)},
which follows from
e L =T[AFL:QUAL]S, which follows trivially,
o (k—Jj,apn Wi lp) €T [[A Féref - TYPE] )
= (k-1 qf17{lfl = (qqu}l)}’lfl)
e{(k,a.{l—= (¢, )} 1) |
qg=T[AFE: QUAL]S A
X=|T[AF m: TYPE]d|r A
(=A=VY(.q,-)€ex ¢ A}
which follows from

e g5, =7 [AF&:QUAL] S, which follows from above,
® X}, = |T[At 72 : TYPE]6],—j;, which follows from above,
e (¢, 2A=V(d ) EX).d ZA)
=(qn A=V, ¢,,) € [T[AF 1 TYPE]S]k—;. ¢ = A)
Suppose g, = A.
Consider arbitrary (-,q¢’,-,-) € |7 [A+ 7 : TYPE]6|s—;.
Note that (-,¢',-,-) € T [AF 7o : TYPE]§, which follows from the definition of
s
Note that ¢’ = gy,, which follows from Lemma 15 applied to A + 7 < £ and
(¢, ) €T[AF 1 : TYPE]S and g5, =7 [AF & : QUAL]G.
Note that ¢’ < A, which follows from ¢’ < ¢y, and g7, < A.

o (k—j,Foqlp), [Fow () k—j,vp,) € T [AF 7 : TYPE] S, which follows from above,

e ¢y, = L, which follows trivially,
o Fou(ly,) < L, which follows trivially,
o (Wi Or—jFow(ly,)) = Wi, Ok—j [Faw(lf,)]k—j), which follows from Req 5 (join-aprx).
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(SwAaP(WEAK))
AFT~T1 BTy ATiber:Srefr ATobes:7
AT+ sueyes : S(Cref T®7) ’
We are required to show [A;TFswepey : (Sref 7@ 7)].
Consider arbitrary k, d, qr, Wr, and ~ such that
e k>0,
e § € D[A], and
o (k,qr,Wr,7) € G[AFT]4.
Applying Lemma 20 to (k,qr, Wr,v) € G[AFT]d and A+ T ~» T’y T3, we conclude that there
exist qr,, Wr,, 71, qr,, Wr, and 2, such that
(k.qr,, Wr,,m) € G[AFT4]6,
(k. qry, Wr,,72) € G[AFT5] 6,
e yem By,
® gr, = qr,
® gr, = gr, and
(Wr, © Wr, = Wr).

Case

Note that y(e1) = v1(e1) and y(e2) = y2(e2).
Let es = y(swepea) = swy(er) y(e2) = swyi(er) y2(e2) and Wy = Wr.
We are required to show that Comp(k, W, es, T [[A;F Fswepey : H(Cref T ®T)]] 5 =
Comp(k, Wr,swyi(e1) v2(e2), T [[A;F Fswepey i H(Sref T® T)]] J).
Consider arbitrary j, W;., ws, wy, and ey such that
o j <k,
o wy i (Ws O W,) = ws i, (Wr O W), noting that
ws g (Wr O Wr)
= ws i (Wr, Ok Wr,) Ok Wp)
which follows from above,
(ws, €5) = (ws, swyi(er) y2(e2) ) =7 (wy, ey), and

irred(wy, ey).

Hence, by inspection of the operational semantics, it follows that there exist ji, wy,, and ey, such
that
° (wsa 71(61)) '—>j1 (wf1 ) efl)a
o irred(wy, , ey, ), and
° j1<J.
Note that (Wr, ©r Wr,) ©r W,.) = (Wr, ©r (Wr, ©r W,.)), which follows from
(Wr, Ok Wry,) O Wr)

= (Wr, Or Wr, O Wy))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T'; F e; : €ref 7, we conclude that [[A; Tyt e Sref 7']].
Instantiate this with k, §, gr,, Wr,, and ;. Note that

e k>0,
e 6 € D[A], and
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b (k7qF17WF17'71) € g[[A = Flﬂ 0.

Hence, Comp(k, Wr,,v1(e1), 7 [A b Sref 7: TYPE] §).
Instantiate this with ji, (Wr, ©x W;), ws, wy,, and ey,. Note that

e j; < k, which follows from j; < j and j < k,

o w, i, (Wr, O (Wr, ®r W,.)), which follows from

ws . (Wr, Ok Wry) Or Wr)
which follows from above

(Wr, Ok Wr,) Or Wr) = (Wr, Or (Wr, O Wr))
which follows from above,

hd (wsa71(61)) 1 (wf176f1)7
o irred(wy,, ey, ).
Hence, there exists Wy, and gy, such that
® Wry k—ji (Wfl Ok—j (WFz Ok WT))? and
b (k_jlaqwaflveﬁ)
ET[[A}—gref TZTYPE]] )
={(k,q,{l = (0} |
g=T[AFE&:QUAL]S A
X=|7[AF7:TYPE]J§]|x A
(=A=V(.q,~)ex ¢ 2A}
Hence, ey, = ly, and ¢y, = T[AF&:QUAL]6 and Wy, = {ly, — (g5, x5)} and x5 =
|[T7[AFT:TYPE]S]r—j, and (¢, = A=V(.,¢,-,-) € xp- ¢ 2 A).
Note that

(ws, es) = (ws, suyi(e1) vz(e2) )
7 (wyy, swey, 2(e2))
= (Wfl_vszfl Y2(€2))
7 (’UJf,Ef)

and irred(wy, ey).
Hence, by inspection of the operational semantics, it follows that there exist j2, wy,, and ey, such
that
b (wfu’yQ(e?)) 2 (wfwefz)v
o irred(wy,,ey,), and
® j2<j—J1
Note that (Wfl Ok—j; (WF2 Ok WT)) = (LWF2J1€,J‘1 Ok—j; (Wf1 Ok—j; Wr)), which follows from

(Wf1 Ok—j1 (WF2 Ok Wr))
= ([WryJk—i1 Ok—js (Wp, Ok—j; W)
which follows from Regs 4, 5, 6, 7, and 8 (join-closed, join-aprx, join-commut, join-assocl, and join-assocr).

Applying the induction hypothesis to A;T's F e : 7, we conclude that [A;To Feq: 7].
Instantiate this with k — j1, 6, gr,, |Wr, |x—;,, and y2. Note that

e k — j1 > 0, which follows from j; < k,

e 6 € D[A], and

o (k—ji,qry, [Wr, |k—j,,72) € G[AF T2 6, which follows from Lemma 9 applied to k—j; < k
and (k, qr,, Wr,,72) € G[A F T3] 4.
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Hence, Comp(k — ji,72(e2), [Wr,]k—j,, T [A F 7 : TYPE]9).
Instantiate this with jo, (Wy, Or—j, Wy), wy,, wy,, and ey,. Note that

e jo < k — j1, which follows from j, < j — j; and j < k,

o wy k—j, (IWr,lk—ji Ok—j; (Wy, Or—j, W,)), which follows from

wyy tk—jy (Wp Ok—j; (Wr, Ox Wr))
which follows from above

(Wi Or—ji (Wry, Ok W) = ([Wrs Jk—jy Ok—jy (Wi Or—jy W)
which follows from above,

b (wfu’Y?(e?)) —7 (wfz’ef2>7 and

o irred(wy,,ef,).
Hence, there exists Wy, and gy, such that

o Wiy k—ji—jy (We Ob—ju—jo (Wr, Ok—jy W), and

(] (k -0 —j27qf2,Wf2,ef2) € T[[A Fr: TYPEH 6.
Hence, e, = vy, .
Note that l;, ¢ dom(Wy, ®k_j,—j, Wy), which follows from A < ¢y = W;‘lual(lfl) and
(sz Ok—j1—ja (Wfl Ok—jy Wr)) = (Wf1 Ok—j1—ja (sz Ok—j1—ja W) defined.
Hence, Iy, ¢ dom(Wy,) U dom(W,.), which follows from dom(W; @, Wa) = dom(W1) U dom(W5).
Note that

Wey k-1 —jo Wiy Ok—ji—jo (Wg; Or—jy Wr))
which follows from above
= 38, : 2kecs,
AFow : S2 — WorldDescy_j, —js,-
IF2q : S2 — Quals.
les .
let Waw = (W, O—jy—jo (Wpy Ok—jy W) Ok—jy—js Q)2 _;, Fow (1)) in
dom(wg,) 2 dom(Wax) = S2 A
Vie Sy Vi<k—j1—ja.
(i, Faq (1), [Fow (D)1, w (D) € (WP (D) gy g0 A
VI € Ss.
ual ual
w‘}; O =W (1) A
V8] C So.
dom((Wy Ok—jy—jp (Wp, Ok_jy Wi))) €SI A (VI € 8. dom(Faw (1)) C SI) =
Sh =851
Vi € dom(wy,).
Rxwi(l)=1€S;

which follows from the definition of w :;, W.

Note that
dom(wy,) D dom(Was) = Sa
which follows from above (wg, tk—j; —jo (W5, Ok—ji—jo (Wg Ok—jy Wr)))
= dom(wy,) D dom(Wa.) = dom(Wy,) U dom(Wy,) U dom(W,.) U J <52 dom(Faw (1)) = Sa
which follows from above (Wa. =...) and dom (W1 ©r W2) = dom(W1) U dom(W2)
= dom(wy,) 2 dom(Wa.) = dom(Wy,) U {ls, } U dom(W;) UJ'S5? dom(Faw (1)) = So
which follows from simplifications of dom(Wy,) = {iy, }.

Hence, Iy, € dom(wy,) and Iy, € Ss.
Note that
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Vi€ Sp. wi (1) = W (1)
which follows from above (wg, tk—j;—jo (Wi, Ok—js—js (W5 Ok—jy Wr)))
= wh () = Wa(ly,)
which follows from Iy, € S2
= wi(11,) = (Wi, Okjy—jz (Wpy Or—jy Wi)) Oy —go O _j, Fow (D)™ (U,

k—j1—J2
which follows from above (Wa. =...)
= w}ual(lfl) = ((Wf2 Ok—j1—j2 ({lfl = (quXfl)} Ok—j1 W) Ok—j1-j2 @2'6753‘2173‘2 fQW(l))qual(lh)
which follows from above (Wy, =...)
= ch:a (lr) = an

which follows from the definition of (W1 ® Wa).

Note that wy, = wy,, W{ls, — (q,,vs,)}, which follows from I, € dom(wy,) and wj‘c;al(lfl) =qy,.
Note that

(ws, es) = (ws, suyi(er) v2(e2) )
7 (wy,, swey, y2(e2))
= (u_]flvs"]lfl 72(62) )
72 (wf27 SWlfl €fa )
= (wy,,swlyp vy, )
= (wpyy Wy = (qr,0p0) }swlp vpy)

—' (wf21 U{lfl (qf17vf2)}7<lf17vf11>)
—J—J1—J2— 1(wf,ef).

Since (Iy,,vy,,) is value, we have irred(wy,, W{ls, — (g5, v5) 1 L, vn))-
Hence, j—j1—j2—1 =0 (and j = ji+jo+1) and wy = wyg, W{ly, — (qf,,vyf,)} and ey = (lf,, vy, ).
Note that
Vi€ S2. Vi < k= j1 — ja. (6, Faq(l), [Fow (D]i, w2 (D) € (WP (D] k—jy —jo
which follows from above (W, x—j; —jo (Wry Ok—j;—jo Wy Op—j; Wr)))
=Vi<k —J1 — J2. (i,qu(lfl), |_~7'—2W(lf1)Ji7 Val(lfl)) c LW;);pe(lfl)Jk_jl_jQ
which follows from Iy, € Sz
=Vi<k 7.7'1 7.7'2' (i7‘7:2q(lf1)’ L]:?W(lf1)J’Lv (wle & {lfl = (qfl’vf11)})val(lf1)) € Lwéipe(lfl )Jk*jlfjg
which follows from above (wy, = ...
=Vi<k—j1—ja. (i, Faq(lp,), [Fow (g Jisvp,) € [IWePS (L) k—jy—jo
which follows from (wy,, W{ls, = (a5,,v5,) DY Us) = vy,
= (k— 7, F2q(l5y), U'—ZW(lh)Jk J?”fu) € Lngpe(lfl)Jk Jj1—J2
which follows from k — j < k — 71 — j2

= (k= g, Faq(ly)s [ Fow gy ) k—gsvsy1) € LIXgy I —go Jl—j

—J2
which follows from simplifications of W;;pe () = Wy 2"’?1 o () = Ixplo—ji—jo

= (k= 5, Faq(g,), [Fow (g, ) k—js vp00) € LLLT [AF 71 : TYPE] 6]k jy Jk—jy —ja Jk— 51 —js
which follows from simplifications of xy, = |7 [AF 7: TYPE]6],_j,

= (k= 3, F2qs); [Fow (g ) k—ssvp,) € [T [AFT:TYPE]6]k—j, —j,
which follows from Fact 2

= (k=34 Faq(lpy), [Fow (L) Jk—j vpyy) € T[AF 7 TYPE]S
which follows from the definition of |- .

Note that

Wiy k—j1—ja Wiy Ok—ji—js Wy, Ok—jy Wr))
which follows from above
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=38, : 2Loes,
FFow : S2 — WorldDescg_j, —j,-
IF2q : S2 — Quals.
les .
let Waw = (W, Ok—jy,—jp (W, Or—jy Wr) Or—jy—js Q4= 7, Fow (1)) in
dom(wy,) 2 dom(Wax) = S2 A
VIe Sy. Vi< k—j1—ja.
. va t
(i, Faq (), [Fow ()5, wE (1) € (W (D]k—j1 —ja A
Vi € Ss.
wie (1) = Wi (1) A
VS C Ss.
dom (W, Ok—jy —jp (Wi, Ok_jy Wi))) €SI A (V1 € 8. dom(Faw (1)) C S5) =
Sl =81
Vi € dom(wy,).
R2wi()=1e 8,
= 38}« 2kees,
let So = {ly, } WS, in
IFow : S2 — WorldDescy_j, —j,-
3F2q : S2 — Quals.
les .
let Waw = (W, O—jy—js Wry Ormjy W) Ok—jy—js Q37 _j, Faw (1)) in
dom(wy,) 2 dom(Wax) = S2 A
VIie Sy. Vi< k—j1—ja2.
. va t
(i, Faq (), [Faw ()]s, wE (1) € (W (D] k—jy —ja A
Vi€ Sa.
wie (1) = Wi (1) A
VS C 8.
dom (W, Ok—jy—js (Wi, Ok—jy Wi))) C SIA (VL€ SI. dom(Faw (1)) C S) =
Sl =81
Vi € dom(wy,).
ual
ij;;(l):}lGSQ
which follows from Iy, € Sa
= 38}« 2kees,
let Sy = {ly, } & S} in
IFow : S2 — WorldDescy_j, —j,-
IF2q : S2 — Quals.
le{ly, YwsS) .
let Waw = (W, Ok—jy—jz (Wry Ok—jy Wr)) Ok—jy—jz Qg1 %5, - Fow (1) in
dom(wy,) 2 dom(Wax) = S2 A
Vi€ S2. Vi < k— j1 — jo.
(i Fag (1), [ Faw ()i w (D) € WD) J—jy—ja A
VI € Ss.
ual ual
wh (1) = W2 (1) A
VS C 8.
dom (W, Ok—jy—jp (Wi, Ok_jy Wr))) €SI A (V1 € 8. dom(Faw (1)) C S§) =
Sl =81
Vi € dom(wy,).
R uwd™() =18,

which follows from So = ...
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=38} : 2lees,
let So = {lfl} H—JSé in
IFow : S2 — WorldDescy_j, —js,-
IF24 : S2 — Quals.
let Way = ((Wf2 Ok—j1—j2 (Wh Ok—j; Wr)) Ok—j1—32 (-7:2W(lf1) Ok—j1—j2 ©
dom(wy,) 2 dom(Wax) = S2 A
Vi e S Vi < k—j1— jo.
(is Faq0), | Faw (D)), 0 (1) € (WP D) sy —3z A
Vi€ Sa.
|
Wi (1) = W) A
vS] C .
dom((W, Ok—jy—js (Wr, Ok—jy Wr))) € S§A (VL € SL. dom(Faw (1) € S3) =
Sl =81
Vi € dom(wy,).
R < wqf:al(l) =1€85

lesy

k—j1—J2 Faw (1)) in

which follows from simplifications of Oze_{jlfl_];fsé Fow (1).

Note that (Wy, ©r—; Fow(ly,)) is defined, which follows from Reqs 4, 5, 6, 7, and 8 (join-closed,
join-aprx, join-commut, join-assocl, and join-assocr)and W, defined.

Let Wy = (Wy, Ok—j Faw (I1,))-

Let ¢y = L.

Note that ((Wy, @r—; Fow (lf,)) @r—; W;) is defined, which follows from Regs 4, 5, 6, 7, and 8
(join-closed, join-aprx, join-commut, join-assocl, and join-assocr)and Wa, defined.

We are required to show that

o wiip—j (Wy Op—; Wr)
= wpy, Wl = (ar,vp)} s (W Ok—j Faw (lg,)) Or—j Wr),
which is equivalent to

wgyy k—j (Frw ()] k—j Ok—j Wr)
= 38 : 2loes,
IFw : § — WorldDescy,_ ;.
3Fq : S — Quals.
let Wy = (Wy, Or—j Faw (lf,)) Ok—j Wr) Ok—j @ﬁf_‘j Fw (1)) in
dom(wyg,, W{ls — (qf,,v5,)}) 2 dom(Wy) =S A
VieS. Vi<k—j
(i, FoDs LFw D)5 (wpy, WLy = (a7,,v5) 1) D) € (WP k-5 A

viesS.
(s W{lg, — (qfl’vfz)})qual(l) = qual(l) A

vst Cs.
dom((Wy, Ok—j Faw (Lg,)) Or—j Wy)) € ST A (VI € ST. dom(Fw (1)) C ST) =
St=8n

Vi€ dom(wyy, W{ly — (qf,v5,)}).
R = (wgy, W{lp, — (g,vp) D0 =18

which follows from the definition of w :; W.

Take
S=8={l; WS
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It remains to show that

AFw : S2 — WorldDescy,_ .
3Fq : S2 — Quals.
let Wi = (Wy, O—j Fow (lp,)) Ok—j We) Op—j O,lrce,sf Fw (1)) in
dom(wf21 Y {lfl = (qflvvfz)}) 2 dom(W*) =8 A
Vie S Vi< k—j.
(&, Fq (1), [Fw D] i, (wpyy W{lyy, = (a5,,05,) D" D) € WP (W)]1—j A

Vi € Ss.
(wry W{ly, — (qflvvfz)})qual(l) = Wgual(l) A

vSt C Ss.
dom((Wy, Ok—j Faw (Iy,)) Or—j Wr)) € ST A (VL € ST dom(Fw (1)) C ST) =
St = So A

Vi€ dom(wy,, W{lp, — (qr,,vp,)})-
R =2 (wp,, {ly, — (qflvvfz)})qual(l) =>1€S52

which follows from above (S =...).
Take
_ Wik ifle{ly}
Fw(l) = {LfQW(Z)Jk,j it e S
and
_ ) 4r ifl e {lfl}
Fall) = {fzq(l) il e S
Note that

Wy, € WorldDescr—j, —js,
which follows from Fact 6 applied to (k — j1 — j2,4f,, Wiy, v5,) € T [AF 72 : TYPE] S € Type,
which in turn follows from Lemma 8 applied to 7 [A F 7 : TYPE]§
= |Wy, | k—j € WorldDesci—;
which follows from |-|x € WorldDesc — WorldDescy,
= Fw(ly,) € WorldDescy—;
which follows from above (Fw (I) =...).

Note that
Vi € Sz. Faw (1) € WorldDescr—j, —j,
which follows from above (w¢, k—j;—jo Wiy Ok—j,—jo (Ws, Or—j; Wr)))
VIl € Sy. Faw (1) € WorldDescr—j, —j,
which follows from Sy C S»
=Vl e Sé I_fQW(l)Jk_j S WOTldDeSCk_]‘
which follows from |-|, € WorldDesc — WorldDescy,
= Vi € 8. Fw(l) € WorldDesc,—;
which follows from above (Fw (l) = ...).

Hence, Fyw : So — WorldDescy,—;.

Trivially, 7, : So — Quals.

It remains to show that
let Wi = (Wy, Ok—j Fow (lg,)) Or—j Wr) Or—j @26783‘2 Fw (1)) in
dom(wyy, Wl — (qf,,v5,)}) 2 dom(Wi) = S2 A

VIESy Vi<k—j.
(i, Fa (), [Fw (D)5 (wpyy WLy, = (ap,505,) D" (1) € [W2PHD) ks A

vieS,.
(wle L {lfl = (qfl’vfz)})qual(l) = qual(l) A

VSt C S,.
dom((Wy, @k—j Faw (lg,)) Or—j Wy)) C ST A (VI € St dom(Fw (1)) C ST) =
St = So A

Vi€ dom(wg,, W {ly, — (a5, v5,)})-
R=(wpy, W{ly — (q.f17vf2)})qual(l) =1€S2

which follows from above.
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Note that

[Wa]k—j
eS8}
= \_((Wh Ok—j1—j2 (Wf1 Ok—j1 W) Ok—j1—j2 (~7:2W(lf1) Ok—j1—j2 @ke—ji—jz }—2W(l)))Jk*j
which follows from above (Wa. =...)

S}
(Wi ks @ng Wy, @k W) Ok (Faw (Ig,) Ok O [ Fow (1) Jx—5))
which follows from Req 4 (join-closed) and Req 5 (join- aprx)
les}
(Wr, ks Fow (U5,)) @y We) Oy ([Ws ki Ok Oy [Fow ()] 5—5))
which follows from Regs 6, 7, and 8 (join-commut, join-assocl, and join-assocr)
€8
(Wy, Oy Fow (ls,)) Ok—g Wr) Oy (Fw (Isy) On—y O Fw (1))
which follows from above (Fw (l) =...)

ze{z Yws),
(Wi, Ok Faw(lg,)) Ok Wi) @k O, 2 Fw (1))
le{lfl}USQf (l)

which follows from simplifications of
(Wr, ©k—j Faw (U5,)) Ok Wr) Ok OZESZ}' ()

which follows from above (S2 = ...).

Hence, W, = ((Wy, ©r—; Fow (1)) Ok—j Wy) Ok—;j @l€$2 w(l)) is defined.
Furthermore, W, = [Wa |k—; and dom(W,) = dom(Wa.).

Note that
dom(wyg,) 2 dom(Wax) = S2
which follows from above (wy, x—j; —jo (Wiry Or—j;—jo (W Op—j; Wr)))
= dom(wy,, W{ly, — (q7,,v5,)}) 2 dom(Wax) = S2
which follows from above (wy, = .
= dom.(wf21 W{ly = (gr,v5)}) 2 dom(WQ*) Sa
which follows from dom(wy,, W {ly, — (qp,,vp,)}) = dom(wyp,, W{ly — (q7,,v5,)})
= dom(wpy, W{ly, — (qf,,v5,)}) 2 dom(Ws) = Sz
which follows from above (dom(W,) =...).

It remains to show that

VIES, Vi<k—j.
(i, Fa (s [Fw (D], (wryy W {lyy = (ap,,v5) )" (D) € (WP (D) k-5 A

Vi e Sa
(wf21 @ {lf1 = (qfuvfz)})qual(l) = qual(l) A

vSt C Ss.
dom((Wy, Ok—j Faw (g,)) Ok—; Wr)) €St A (VI € ST, dom(Fw (1)) C ST) =
St = So A

Vi € dom(wyy, W{ly, — (q5,,v5,)})-
R < (wf21 (] {lfl — (qfl,’UfZ)})qual(l) =1e8s

which follows from above.

We are required to show that

o Vie S, Vi<k—j.
(i, Fo s [Fw (D))is (wpo ® {Lg, = (a7, 05) 1) (1) € (WP (D) Jr—j
Note that

Vi€ S Vi<k—j.
(1, Fa ), [Fw (D], (wpyy © {Lgy = (a5,,05) 1) (1) € (WD) k—;
=Vie{ly WS, Vi<k—j.
(1, Fa (O LFw (D i, (wryy WLy, = (a5, 0) D)D) € WP (D) ]y
which follows from above (S1 =...)
=vie{ly ) Vi<k—j.
(6 Fo(0), [Fw (D] a5 (wypyy W {ly; (qflvvfz)})val(l)) € \_W:ype(l”k—]’ A
Vie S, Vi<k—j.
(1, Fa (O, LFw (D i, (wryy WLy, = (a5, 0) D)D) € WP (D)4
which follows from simplifications of VI € {ly, } WSS, ...1...

196



=Vi<k-—j.
i Fa(lpy )y LFw (L) i (wyy WALy = (a50505 h S UNIT
(6 Fq(lyy )y LFw (L) Jis (wryy W ( WD Upy)) € WP (L) s A
Vi€ S, Vi<k—j.
(1, Fa (O, LFw (D i, (wray WLy, = (a5, 05) D)7 (D) € WP (D) ]
which follows from simplifications of VI € {l}. ...1...
=Vi<k-—j.
(oo LW L Jis (Whay WALy = (a1, 01) 1) () € LW (g ) s A
Vie S, Vi<k—j.
t Faq(l), LIFaw (D k—jli, (wyyy 717 (@ vp, PP h—y
(6 F2q (D) L1 Fow (D —j )i, (wpyy WAl ( HD) € (WP W)
which follows from above (Fy (I) = ... and Fy¢(l) =...)
=Vi<k-—j.
(6 afas Wiy Jis (wiyy W {ly; = (qf17vf2)})val(lf1)) € LW:ype(lh Mk—3 A
Vie S, Vi<k—j.
i, Faq(l), [Faw i (W f1 7 \af V5 ’E ¢ k—j
(i, F2q (D), [ Faw (D], (wy, Wl ( D) € (WP
which follows from Req 1 (aprx-idem)
=Vi<k-—j.
(i,qu, LszJi’”fz) S LW:ype(lh )Jk*j A
Vie S, Vi<k—j.
(i, Faq (1), [ Fow ()]s, (wpay W {Lyy = (ap,,05,) )" (1) € W) i
which follows from simplifications of (wy,, W {ls, = (qp,,v5,) 1) (ls,) = vy,
=Vi<k-—j
(65, (W, Jisvgy) € I_W:ype(lfl Me—j A
Vie S, Vi<k—j.
(i, Faq (1), [Fow ()i, wf (1) € (WP (D) Jx—;

which follows from simplifications of VI € Sb. ... (ws,, W{ly, — (a5, vp,) D) ... =V €S}

=Vi<k-—j
(iv dfas I_Wf'zJi7 vfz) € I_I.W2*J§€yie'(lf1 )Jk—j A
J
Vie S, Vi<k—j.
(i, Faq(), [Fow (1) )i, w2 (D) € LUIW2u [YP5(D]k—;
which follows from above (W, =...)
=Vi<k-—j.
(ivqu LszJi"Ufz) S LLX/flefijfj A
Vie S, Vi<k—j.
(is Faq D), | Faw ()i, 0! () € LW 2% ()]s

which follows from simplifications of LWQ*JZYE?. (g) = IxXp ) b—j-

We are required to show that
o Vi< k—j.
(6 afss (Wi vp) € LIxpk—jlk—j
which follows from

(k -5 _j27qf2an27Uf2) € T[[A e TYPE]]‘S
which follows from above

=>Vi<k-—ji sz.(z‘,qu, LWfQJivvh) S TIIA Fr TYPE]] 1)
which follows from Lemma 8 and Fact 6

=Vi<k —j.(i,qu, LWfQJi,vﬁ) S T[[A o TYPE]] 1)
which follows k — j < k — j1 — j2

=>Vi<k—35.(i,q85, Wt |isv5,) € [T [AF7: TYPE] ]k

which follows from j < k A (4,¢, W,v) € x = (j,q, W,v) € | x|k

= Vi <k—j(i,q5, [Wsliven) € xn
which follows from above (xr, =...)

=Vi<k _j'(ivlb’zv I_szjivvfz) € I_Xfljk*j

which follows from j < k A (4,¢, W,v) € x = (4,9, W,v) € |x]&

(
=Vi<k—j.(iq, Lszjivvfzz 'E LD b= )k—j

which follows from j < kA (4,¢, W,v) € x = (4, ¢, W,v) € | x]&-
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o VeS8, Vi<k-—j.
(i, Fog (s [Faw (1) )i, w2t (1) € [[Wau | RP5(D) -

which follows from

Vi€ Ss. Vi <k—j1— 2. (3, Foq(l), [ Fow (I )Jz:w}azl( )) € LW;ipe(l)kajlsz
which follows from above (wy, :k—j,—js (Wiy Ok—ji—js Wy Ok—j, Wr)))

= VI €85 Vi < k—ji — ja. (i, Faq(l), [Fow (1) i, wR (1) € (WP (D) J k1~
which follows from S5 C S»

=Vl € 8. Vi < k—j. (i, Fq (1), [Fow (1) i, w§ (1) € (WP (D) =1~
which follows from k — j < k — j1 — J2

=V € 85 Vi <k —j. (i, Faq(l), [Faw (1) i, (wrpy W {lgy = (a51,05:) 1) (1) € (Wl (1) Jo—ju—sa
which follows from above (wy, = ..

= VL€ 4. Vi < k. (i, Fay(D), [ Fow (D), 0}ty (D) € [WE(0)Jx—i—ss
which follows from simplifications of

V€S . (why Wl — (qr,vn) D). =VIE€S .. wi ().

=V €Sy Vi<k—j. (i,F2q(), [ Fow(l) uw}l'l(l)) € [[wPe( )Jk i1—g2lk—j
which follows from j < k A (4,¢, W,v) € x = (J,q, W,v) € | x|k

=Vl € S5 Vi <k —j. (i, Fag(1), [ Fow (1) )i, why, (1) € (WP (1))
which follows from Fact 2.

e Ve Ss.

(wr WAl = (a5, 00) D™ (1) = W)
which follows from
Vi€ Ss. (wle W {l.fl = (qflvvfn)})qual(l) = qu:al(l)
which follows from above (wy, tk—j;—jo (Wi, Or—ji—js Wi Ok—js Wr)))
= VL€ Sa- (w9 {Lp, = 4z 0 )™ () = WD)
which follows from VI € Sa. (wgy, W {ly, — (qflvvfu)})qual(l) = (wpyy W{ly, — (qfnvfz)})qual(l)
=V e S,. (wf21 (C] {lf1 — (qf“q]fz)})q“'(l) unal(l)
which follows from VI € So. W§*'(1) = LWQ*Jq“a' (1) = wa=(q).
o VST C S,.
dom((Wp, O Fow (11)) ks Wr)) € STA (VL€ ST dom(Fuw () € 5T) =
St=5,
Consider arbitrary ST such that
o STCSy,
o dom((Wy, Or—j Faw(ly,)) @k W) C€ ST, and
o Vi c ST dom(Fw(l)) C ST.

Note that {lf, } U dom(]-'QW (I,))Udom(W,) C ST, which follows from dom(((Wy, ®k—;
Fow (1)) ©k—j Wy)) C ST and dom(Wy,) = {lfl}
Note that Iy, € ST, which follows from {ls, } U dom(Faw (I1,)) U dom(W,.) C ST.
Note that dom(Wy,) € ST, which follows from
vl € ST. dom(Fw(l)) C ST
which follows from above
= dom(Fw(ly,)) C S'
which follows from I, € ST
= dom(|[ Wy, Ji—;) C ST
which follows from above (Fw (l) =...)
= dom(Wy,) C ST
which follows from dom(|Wy, |k—;) = dom(Wy,).

Let 8t =St {1, ).
Note that St = {i;,} w SI.
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Note that VI € 8. dom(Faw (1)) €SI, which follows from
dom(Faw (ly,)) C STAVL € ST. dom(Fw (1)) C ST
which follows from above
= dom(Faw (ly,)) C ST AV € 8. dom(Fw (1)) C St
which follows from S* C 8
= dom(Fow (ly,)) C STAVL € St dom(| Faw (1) ]5—j) C ST
which follows from above (Fw (l) =...)
= dom(Faw (ly,)) C ST AVI € St dom(Faw (1)) C ST
which follows from dom(|Faw (1) |k—;) = dom(Faw (1))
=Vl e {ly,} WSt dom(Fow (1)) C ST
which follows from simplifications of VI € {Is,} & S*. ...1...
=Vl e St dom(Faw (1)) C St which follows from above (SJr =...).

Instantiate (VS; C S, .. ) of Wiy ‘k—j1—jo (Wf2 Ok—j1 —ja (Wf1 Ok—j, WT)) with ST.
Note that

e ST C S,, which follows from above,

o dom((Wy, Or—ji—j, Wy, Or—jy Wr))) C S, which follows from dom(Wy,) C Sl
which follows from above, and dom(Wy,) C Sg , which follows from above, and
dom(W,) C S;r, which follows from above, and

o Vlie S;r. dom(Faw (1)) C S; which follows from above.
Hence, we conclude that ST = S,.

o Vi€ dom(wf21 2 {lfl = (qfwvfz)})'
R = (wpy, W{ly = (ap,vp)N™(0) = 1€ S
which follows from
vl e dom(wf21 @ {lfl = (qf17vf11)})' R = (wle @ {lfl = (qf17Uf11)})qual(l) =1€8
which follows from above (wy, k—j; —jo (Wi, Or—ji—jo Wi Ok—js Wr)))
=Vie dom(wfm @ {lfl = (Qflavfz)})' R = (wf21 @ {lfl = (qflvvfn)})qual(l) =1e€8
which follows from dom(wg,, W {ly, — (gr,,v5,,)}) = dom(wys,, ) W {ly, }
=Vvie dom(wle) @ {lfl}' R= (wf21 @ {lfl e (qflfvfz)})qual(l) =1e8;
which follows from
Vi€ dom(wyy, ) Wl b (wyyy W{ly — (qflavfn)})qual(l) = (wgy, t:—"{lfl = (Qflavfz)})qual(l)
=Vie dom(wfm @ {lfl = (qf17vf2)})' R = (wf21 @ {lfl = (qflvvfz)})qua (l) =>1€es
which follows from dom(wyg,,) W {ls, } = dom(wy,, W {ly, — (qs,,v5,)}).
—J.q5, Wy,ep) €T [[A Flref T®7) ! TYPEH 0
(k‘ —J,L, (lecl Ok—j fgw(lfl)), <lf1,11f11>) cT [[A + L(gref TR T) : TYPEH 1
(k —JL (W}l Ok—j -7:2W(lf1))7 <lf17vf11>)
€ {(kﬂ q, Wa <U13U2>) |
g=T[AFL:QUAL]S A
(k,q1,Wi,v1) € T [AFSref 7: TYPE] 6 A
(k,qg,W27/l)2) € T[[A Fr: TYPE]] A
G =2qgAq 2 gAN
(W1 0 Wo = W)},
which follows from

L=7[AFL:QUAL]J, which follows trivially,

(k=3d,a7r,, IWp le—j,lz,) € T [AF Sref 7: TYPE] 6, which follows from Lemma 8 and
Fact 6 applied to k — j < k —ji and (k — j1,q7,, Wy, ly,) € T [A+Sref 7: TYPE] 6,
(k= g, Foq(lp), [Faw (Lg)  k—js vy ) € T [AF 7 : TYPE] 4, which follows from above,
g, = L, which follows trivially,

Faq(ly,) = L, which follows trivially,

e

*
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o (Wi, Ok—jFow(ly,)) = Wy, Or—j [ Fow(ly,)]k—;), which follows from Req 5 (join-aprx).
End Case
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C.7.3 Type Safety
Theorem 29 (Ref Extension Type Safety)

Ife;et-e: 7 and ({},e) —* (w',€),
then either ¢’ =v' or Jw” e”. (w',e') — (w",e").

Proof
Let o;0 - e: 7 and ({},e) —* (w',€).
Note that Yk > 0. {} . {}.
Applying Theorem 22 to e;e - e : 7 and {} : {} and ({},e) —* (w',¢), we conclude that either
e =v or e (w,e) — (w” e").
Theorem 30 (Ref Extension Collection)

Ife;etc:t1g and ({},e) —* (wy,ey) and irred(wy,ey),
then V1 € dom(wy). w;”al(l) =<A.

Proof

Let o;0 - e: 1g and ({},e) —* (wy,ef) and irred(wy, ef).

Note that there exists ¢ such that ({},e) —" (wy, es), which follows from ({},e) —* (wy,ey).
Applying Theorem 28 to e;e ¢ : “1g, we conclude that [[0; ele: L1®ﬂ.

This is equivalent to

Vk > 0. V6, qr, Wr, .
se D[] A
(k,qr,Wp,’y) Eg[[OFO]](5=>
Comp(k, Wr,v(e), T [o - "1g : TYPE] 9)

Instantiate this with 4 4+ 1, @, U, {}, and @. Note that

o it1>0,
e () € DJe], and
o (i+LU{},0)eGet o]0

Hence, we conclude that Comp(i + 1,{},e, 7 [o F 15 : TYPE] 0).
This is equivalent to
Vi <i4+1, Wy, ws,wy,eyz.
({} ©Oi+1 Wr) defined A
ws tir1 ({} Oipr W) A
(ws,€) —7 (wy,e) A
irred(wy, ef) =
Wy, qs-
(Wf Oit1—j WT) defined A
wy tiv1—j (Wy Qig1—5 Wr) A
(i+1—j,qr,Ws,ef) €T [oF 15 : TYPE] 0

Instantiate this with ¢, {}, {}, wy, and e. Note that
o <i+1,

o ({} ®it1{}) ={} defined,
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e Hrin (o {h) = Jun {h
e ({}.e) —" (wy,er), which follows from above, and

o irred(wy, er), which follows from above.
Hence, we conclude that there exists Wy and g such that
. (Wf Oit1—i {}) defined,

° wf Yid1—i (Wf @i—i—l—i {})a and

o (Z‘+177:,(If,Wf,€f)
eT[[ I—L1®:TYPE]]®

={(k,q, W, () |
g—T[AFL:QUAL]S A
W= {}}.
Hence, ef = () and ¢y = L and Wy = {}.
Note that

wy tiv1—i Wy OQir1-i {})
= wy tiv1—i ({} Qit1-i {})
=wy tiy1-i {}
=35 : 20,
IFw : S — WorldDescy,.
3F, : S — Quals.
let W, = ({} Oit1—i Oerl i ( )) in
dom(wys) 2 dom(W,) =S A

VIeS. Vj<it+1l—i (j,FQ0), [Fwd)];wdQl) e W) ]it1-i A

Vi e S. wi(l) = Wi(1) A

VST C 8. dom({}) CSTA(V € ST. dom(Fw (1)) CST) =St =8A

Vi € dom(wys). R 2 wi?(l) =>1€ 8
=35 : 25,
I3Fw : S — WorldDescy,.
3Fq: S — Quals.
let Wo = ©I55_, Fw(l) in
dom(wy) 2 dom(W*) SA

VIeS. Vj<it+l—i (j,FQ0), [Fw®)];wfl) e W) ig1-i A

Vi € S. wi (1) = W(1) A

VSTCS. {} CSTAMW € ST dom(Fw(l)) CST) = ST =S

Vi € dom(wys). R 2 wi?() =>1€ 8

Hence, there exists S, Fw, and F; such that

o W, =5, Fwl(l) is defined,
o dom(wy) 2 dom(W,) =S8,
o V€S Vi <i+1—i (j,F0), [Fw?)]jwfD) € (W W)]ir1-i,

o VieS. witl(l) = W),

VST C 8. {} C 8T A (VI € ST dom(F (1)) C ST) = St

vl € dom(wy). R wi(l) = 1€ 8.
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Instantiate (VST C S. ...) with {}. Note that

e {} C S, which follows trivially,
e {} C {}, which follows trivially,

o Vi e {}. dom(Fiw (1)) C {}, which follows trivially.

Hence, we conclude that {} = S.

Hence, VI € dom(wy). R < w‘}ual(l) =1le{}.

Consider arbitrary I € dom(wy).

We are required to show that w‘}”a'(l) =<A.

Suppose, by way of contradiction, that —\(w?“al(l) =< A).

Hence, R < w?”al(l).

Instantiate (VI € dom(wy). R < w}ual(l) = [ € {}) with [, noting that R < w;ual(l).
Hence, we conclude that [ € {}. =<«.

Hence, w;”al(l) =< A.
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