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1 Polymorphic Blame Calculus

Convertibility Labels
Compatibility Labels
Base Types

Types

Ground Types
Operations
FExpressions

Values

Type-Name Stores
Type Environments
Environments
Evaluation Contexts

Term Variable Closures
Type Variable Closures

Type Name Relations
Worlds
Relations

Shorthand:

i

Qo
0 ® TWe o

<

=DM

I oo

+a | —«a
+0 | —¢
int | bool

t|A=B |VX.A|AxB| X |a|*

L] *—= x| o

+ =% ...

n | true | false | if e then e elsee |e®e |z [ AMz:A).e |e e | AX.v |
e[B] | (e,e) | mie \ﬂ'ge|(e:A£B)|(e:A$B)|blamep

n | true | false | A(z:A).e | AX.v | (v,v) | (v:A—>B£¢>A’—>B’)\
(V:VX. A=2VX.B)|(v:A=3qa)|(v:A—B L A’ B) |

(v:A =L VX.B)|(v:G = %)

S B, a=A
AKX
|,z A

[]|E®e |v®FE |if Etheneelsee | Ee|v E | E[A]]
(Ee) | (0,E) | (E:A = B)|(E:A = B)

{z — (v1,v2),...}

{X—a,...}

{a—R,...}

(j7217227’<’)

{(W,el,eg),...}

Figure 1: Syntax

def

6#—aho#+a
a ¢ dom(X)

a¢o

a ¢ def



Store Well-Formedness

ad¢s  BFA
F- FX,a:=A

Type Well-Formedness where 3

X X eA FY a:=A € X Y > X S;ARA S;AFB
S;ARX S AFa 3;AFint 3; A Fbool S A Ex S;AFA—B
S;ALXEA S;AFA 3;AFB
S;ARVX LA S;AFAXB

Convertibility where $;AF A, ;A F B, and FTN(¢) € ¥

FY FY SiAFA <A S:AFB<®B A XHFA<®B
Y:AFint <?int ;A + bool <® bool S;AFA—SB<? A B S;AFVX.A<?VX.B
YAFA<?A S;AFB<®B FY a=A4ex FY a:=A€ex
Y:AFAXxB<%A x B TiAFa<t* A TIAFA<%a
FX a:=Aex ado FX X eA FX

T:AFa<®a TIAFX <® X iA%< *

Label Negation

—(+a) = -«
—(—a) © 4a
Compatibility Y;AFA<B|where ¥;AFA and X;AFB
Y -y S;AFA' <A S;AFB<B SAXFA<B X ¢A
;A kint <int >; A Fbool < bool S:AFA—-B<A— B X;AFA<VX.B
Y;AFAR/X]<B TAFA<A O S;AFB=<DB DY a €Y FX X eA
Y;AFVX.A<B Y AFAXxB<A xB S AFa<a SAFX <X
Y, AFA Y, AFA
Y AFA <% Y AFx< A

Figure 2: Type-Level Static Semantics



where X

Environment Well-Formedness
-y SIAFT SARA
YA Y ARz A

Expression Well-Formedness where ;A FD and ;AR A

;AT Fe:bool Y, A;THer: A ;AT FHea: A

Y, ARD ;AT
Y AT Hif e then eq else ex: A

35 AT Ftrue : bool 35 AT Ffalse : bool

;AT Fetint ;AT He int

;AT
YA TFe®e int

Y AT Fnccint

Y;A;'Fe:B— A S;A;T'Fe':B

Y, A;x:AvFe: B
YA THe e A

;AT I'z)=A

YA THz:A S;A;THA(z:A).e: A— B
;A X THo: A S;ART ;A THe: VXA >;AFB S5 A;ThHe: A Y A;Tkey: B
3;A0;T ke [B]:A[B/X] ;AT F (er,e2): AX B

YA THFAX v VXL A

Y, A;THe:Ax B Y, A;THe:Ax B Y, A;THe: A Y:AFA<®B
XA ThEmre: A ;A Tkmee: B E;A;Fl—(e:AéB):B
Y;A;THe: A Y;AFA<B XoARD Y, ARA

$;A;TH(e:A=>B):B Y:A;T Fblamep : A

Figure 3: Expression-Level Static Semantics



(v:A-B 2 A= B)w v (v:A =2 A):BL B

v [*]:A[x/X] == B) if B#VY.B for any Y, B’

—_~

ISEEES

blameq if G # H
(v:A= B > %= 4) ik k= %) if A= B #+—*
(vik = k%) ik k== A= B) if A= B # %%

(v:G L %)%= H

n®n — [®](n,n)
if true then e; else e2 +— e
if false then e else ea +—— eo
Az:A)e)v +— elv/z]
Ty <’U1,U2> — V1
<U1,’U2> — V2
(v :int :> int) — v
(v : bool N bool) +— w
((102) :Ax B=2 A'x B') — ((01:4=2 B),(v2: 4 =% B'))
(v:A=sB =5 A= B)v s (v (v:A =2 A):B =2 B)
(v:aéa) — v faé¢g
((v:A%a):a%A) — v
(v :*%*) — v
(v:int &= int) — v
(v :bool == bool) +—— v
((vi,02):Ax B= A" x B") +— ((v1:A=> B),(v2: A == B'))
"
—
—
—
—
—
—
—

)
)
)
((U:Gé*):*:q> G)
)
)
)

Sre — E’De"

er— e Yre — Ye
SeE[e] — Z>E[e] YL>E[e] — Yo Ele] ¥ > E[blamep ] — 3 >blamep

5 (,X); - Fu:A a ¢ dom(X)
S (AX ) [B] — I, a:=B b (v[a/X]: Ala/X] =2 A[B/X])

a ¢ dom(X)
b(:A=LVX A)[B] — T,a:=B>((v:A =L A'[a/X]): A'la/X] 2 A'[B/X])

a ¢ dom(X)

> (v:VX. A =2 VX. A') [B] — %, 0:=Bv((v[o]: Alo/X] =2 A'[a/X]): A'la/X] 22 A'[B/X])

Figure 4: Dynamic Semantics



2 Context and Contextual Equivalence

|C’®e\e®C|ifCtheneelsee|ifethenCelsee|ifetheneelseC\
A) |Cele C|AX.Cy| C[X]]|{(Cie)|(eC)|m:iC|m2C |

]

(z

(C:A=B)|(C:A= B)

[, | A(z )C’|/\XC | (Cev) | (0,Cy) | (Cy:A— B =25 A’ B) |
(Cy VX . AL VX.B) | (Cv:A=30a)|(Cv:A— B =L A'— B') |
(Cv: AL VYX.B)|(Cy:G L %)

Ezxpression Contexts C

Value Contexts C, =

Figure 5: Context Syntax



Context Well-Formedness ’ FC: (Z;A;THB) ~ (T5AGTVFA)

ycy  AcA rcr
FL:(S;A;TFA) ~ (54T A)

}—C:(E;A;FI—B)W(E/;A/;F'I—bool) YA T et A A T Feg: A
Fif C then e; else ex: (Z;A;TFB) ~ (E';A';F’I—A)

> AT e :bool FC:(Z;A;FFB)W(Z';A’;F'FA) YA T Feq: A
Fif e then C else ex: (X;A;TFB) ~ (Z/;A';I‘/I—A)

¥ AT+ e :bool YA T et A I—C’:(E;A;FI—B)W(E/;A';F'}—A)
Fif e then eq else C: (X;A;TFB) ~ (E/;A';P'FA)

FC:(S;A;TFB) ~ (AT Fint) AT Feint
FC®e: (Z;A;THFB) ~ (E/;A/;F'I—int)

AT Feint I—C:(Z;A;F}—B)w(Z/;A';Fll—int)
Fe®C: (Z;A;TFB) ~ (E’;A';F'Fint)

FC: (Z;A;TFB) ~ (E/;A/;Fl,$:A1|_A2)
FA(:41).C: (3;0;TFB) ~ (S5A%T A1 Ay)

FC:(Z;A;TFB) ~ (E';A';P'FA1—>A2) AT e A
FCe:(Z;A;TFB) ~ (E/;A/;F/I—AQ)

YA T Re:Ai— Ay }—C:(E;A;FI—B)W(E/;A/;F'I—Al)
Fe C:(Z;A;TFB) ~ (E/;A/;P'I—Ag)

PCV:(Z;A;FFB)W(Z';AZX;F'PA) FC:(Z;A;FFB)W(Z';A';F’FVX.A) AR A
FAX.Cy: (5;0;TFB) ~ (S5AGTFVX . A) FC[A]: (S;A;TFB) ~ (25AGTFA[A'/X])
}—C:(E;A;FI—B)W(E/;A/;F'I—A) YA T e A I—C:(E;A;FI—B)W(E/;A';F/I—AXA/)
F(Cie): (5;A;TFB) ~ (B5AGT'FA X A) FriC: (3,0, TFB) ~ (S5A%TFA)
}—C:(E;A;FI—B)W(E/;A/;F/I—A/) YA T e A I—C:(E;A;FI—B)W(E/;A/;FII—AXA/)
Fe,C): (5;A;TFB) ~ (Z';A/;FII—A ><A') FroC: (Z;A;TFB) ~ (E/;A/;F'I—A')

FC: (S0 TFB) ~ (Z5A4T - Ay) YA A <® Ay
F(C: A1 =% A5): (S;A;TFB) ~ (AT F 4s)

}—C:(E;A;FI—B)W(E';A/;F/I—Al) LA A< Ay
F(C:A1 =5 A2): (50T FB) ~ (24T F As)

Figure 6: Context Static Semantics



Contextual Equivalence:

YA TFe X®eg: A = ;A TFe:A AN XA TkHey: A A
VO, X, B.FC: (Z;A;THA)~ (X -5 - FB) =
X'>Clei} = ¥ Cleaxdh) A
(3%1. ¥'>Cleg] —* Eypblamep = IXs. X' > Cleg] —* To>blamep )
DA The ~ey: A © SiATHe = ey A A SiATFey=er: A

Figure 7: Contextual Equivalence



3 Logical Relation

Shorthand: ‘
(]721a225H)'] = J
(Ja217225l€)'21 = 21
(],21,22,163).22 = 22
(33213225/{)‘K/ = K
7 (z) = vy where y(z) = (v1,v2)
Yo(z) = wg  where y(z) = (v1,v2)
Atom,, [41,42] = {(W,er,e2)| Wj<n A W e World, A WEq;-;-Fer:Ar AN Wa; 5 Fea: Ao}
Atom¥ [A1, A2] = {(W,v1,v2) € Atom,, [A1, A2] }
Rel, [A1, A2 = {RC Atom}™[Ay, A2] | V(W,v1,v2) € R.YW' I W. (W', v1,v2) € R}
World, = {(j,X1,X2,k) € Nat x TNStore x TNStore x (TName iy Rel;) |
j<n AN FX1 A FX2 A
Va € dom(k). k(a) € Rel; [E1(a), X2 ()] }
Atom [A] p = U {(W e, e2) € Atom,, [p(4),p(A4)] }
n >0
World = U World,
n >0
S>el def I, v.Zpe —* Yo
W' aw W <W  AWISIDOWEL A WS DW.Es A Wik O Wk ]y, A
W, W’ € World
W d, W © Witn=Wj AW IW
K Jdk ' Yo € dom(k). K (a) = k()
|R], = {(W,e1,e2) € R| W.j <n}
k], = {a—[R], |k(a)=R}
» R = {(W,€1,€2)|Wj >0 = (>VV,61,62)€R}

> +1,31,%2,K) (j721722atﬁjj)

WH(a,B1,B2,R) = (Wj W31, a:=B1,W.X2,cc=Ba, W.k[a— R])
Figure 8: Auxiliary Definitions

k is a relational interpretation for type names. However, rather than relate terms at the type names
themselves, we define the interpretation of a type name « as a relation on terms at their bound types W.3; («)
and W.Xs ().



Vint] p

{(W,n,n) € Atom [int] p}

V [bool] p = {(W,b,b) € Atom [bool] p}
V[A—B]p {(W, 01,0 12) € Atom [A—> B] p|
VW' W. Vv, ve. (W ,v1,v2) €EV][A]p = (W' vs1 v1,vyp2 v2) € E[B] p}
VIX]p {W, (v1: A1 = a), (v2: As => a)) € Atom [X | p |
(W, v1,v2) € »Wk ()}
Vialp = {(W,(v1:41 == ), (v2: A2 => )) € Atom [a] 0|
Wyv1,v2) € wWek(a)}
Vx]p = {(W,(v:e == %),(v:t == %)) € Atom [x] 0}
U {(W, (v1:x=x == %), (v2 1 %= % == %)) € Atom [x] 0| (W, v1,v2) € BV [x—+] p}
U {W,(vi:a=5 %), (v2:a=> %)) € Atom [+] 0 |
vi=:A1 =>a) A va=(vh: A2 =>0a) A (W,v],v}) € »W.k(a)}
VIvX.A]p {(W,vf1,v2) € Atom [VX . A] p|
YW’ 3 W.VB1,Ba, R. Ve, ea. Va.
W’.21;~|—B1 A\ W’.EQ;'l_BQ A RGRElW/Aj [Bl,BQ] A\
W' S1bvg [B1] — W .E1,a:=B1>(e1:p(A)[e/X] =2 p(A)[B1/X]) A
W' Sobv o [Ba] — W'.Sa,a:=Bob(e2:p(A)[a/X] 22 p(A)[B2/X]) =
(W' B (o, B1, B2, R), e1, e2) € »E [A] p|X — o]}
V[[AX B]]p {(VV7 <’U171}2>, <’U17’Ué>) € Atom [A X B}pl (VV7’U17’U2) € V[[A]]p A (Wa 1)/1,1);) € V[B]] ,0}
£[A]p {(W, e1, e2) € Atom [A] p| ¥j < W.j.
(VZl,vl. WEive — Tidv; = HW/,EQ,'UQ. W.Eopbes —* Yobvs A
w’ Qj W A W’.Zl =31 A W’.EQ =32 A (W’7’U17’U2) EV[[A]]/)) AN
(VE1,p. WEi>er —J ¥ipblamep = 385, W.Xabey —* 3o>blamep)}
ST World
SIS, a:=A] S[E]N{W € World | WS1(a)=A A W.Sa(a)=A A FW.E; A FW.E, A
Wek(a) = [VIA] O]y, }
D[] {(W,0)| W € World}
DA, X] = {(W,p[X —a))| (W,p) €D[A] A a € dom(Wrk)}
Gl = {W0)| W e World}
GIT,z: Alp = {(Wrle = (o1,02)]) | (W) €GITTp A (W01, 02) € V[A] p}
Y AsTHer <eq: A def X3AsTRer:A AN X; AT et A N
YW,p,v. (W eS[E] A (W,p) e D[A] A (Wy) €G[I']p) =
(W, p(v1(e1)), p(v2(e2))) € E[A] p
YA THeimes: A dof YA TFe1<ea: ANE; A;TFeaRer: A

Figure 9: Logical Relation

Note that, in the definition of V [X ] p, we have that p(X ) = «. This may be observed by expanding the
definition of Atom [X ] p. The definitions of V[X ] p and V [«] p are in fact identical.

Note that the V [A] p relation in Figure 9 could more accurately be written as an interpretation of type
well-formedness judgments V [Z; A+ A] p. In this expanded form, we may observe that A = dom(p). This
longhand also serves to clarify the definition of V [«] p.

10



4 Type Safety

Lemma 4.1 (Canonical forms)
If X; A;Tv: A then either

e v=n' and A =int

e (v =true or v =false) and A = bool

e v=Az:A). N and A=A - B

e v=AX.v and A=VX.B’

e v=0v: A=B L C'D and A= C'—D'

o v=0 VXA L VYXB and A=VX.B'

cv=v A2 and A=o

e v=0: A—B L5 /5D and A= C'— D’

e v=0: A L5 YX.B' and A =YX.B'

cv=0:G L % and A=~
where all primed variables are existentially quantified.
Proof

The proof is by cases on v and the last step in the derivation of 3; A;T'FHwv: A. O

Lemma 4.2
If 3, AFVX.A< B, then 3; A A[X:=+] < B.

Proof
We proceed by induction on ¥; AFVX. A< B.

o Case|S; Ak A' <VY.B' | (where A’ = VX.A):
We have 3; A Y FVX. A< B’. By the induction hypothesis, 3; A, Y F A[X:=%] < B’. Therefore,
S AF A[X:=+] <VY.B'[Y].

o Case \ S AFVX.A<B \;
We have 3; A+ A[X:=%] < B, which completes this case.

e Case |X; A A’ < x| (where A" = VX.A):

We have ¥; AFVX.A and so ¥; A, X F A. Then by a substitution lemma, we obtain X; A+ A[X:=x].
Therefore 3; A A[X =] < *.

O

Lemma 4.3 (Subject Reduction)
Ify; -3 -FM:Aand M —— N, then X; -; - FN: A.

Proof

The proof is by cases on M —— N. Many of the cases are trivial or standard. We give the cases that
are novel or non-trivial.

11



e Case

(V:A >B=2C-D)W
— V(W:0=24):BLD
We have ¥; - FA' B <?C—D. So%; - FC <% A and ¥; - - B <% D. Thus, the RHS also has
type D = A.

(V:A B2 C-D)W
— V(W:C=24):BLD
We have ;- FA' =B <C—D. So ¥; - FC < A’ and X; - - B < D. Thus, the RHS also has type
D= A

Case

. 1 _P
Case (v:vX. AT = Bp) : where B #£ VY.B' for any Y, B'.
— (v [¥]: A'[*/X] = B)
We have ¥; -5 - Fu:VX.A. So XZ; -; - Fo[x]: A/[x/X]. We also have ¥; - FVX.A' < B, so

Y - F A'[x/X] < B. Therefore 3; - ; - (v [x]: A'[x/X] = B): B.
O

Definition 4.4
Well-typed contexts, written X+ E : B = A, are defined in the usual way.

Lemma 4.5 (Decomposition)
IfY; - - EM: A, then either

1. M=
2. M=
9. M=
4. M=

V/

FE'[blame p/],

E'M], SsM — S'oN', and = C 3.
E'[M'] and M' — N'.

where all primed variables are existentially quantified.

Proof

The proof is by induction on ¥; -; - M : A.

Y, -5 - Fntint|  Pick V' to be n.

;5 - B M;:int Vi e {1,2}
;- FMi®Ms: B

If My and M, are all values nq,ng, then we have M; ® My —— [®](n1,n2) (We require the
primitive operators to be type safe.) Pick £/ = O, M’ = nj ®ng, and N’ = [op](ni,n2) to
conclude.
If one of M; is not a value, let M; be the first such. Pick ' = V; ® Ff if M, is a value V; and
pick E' = E} ® V5 if Ms is a value V. By the induction hypothesis, either

1. M; = E’[blame p'], or

9. M; = E/[M!] and £ M! — ¥/ N!, or

3. M; = E{[M]] and M] — N.
In the first case we have ¥ > E’'[blame p/| — X + blame p’. In the second case we have
Yo E'[M]] — ¥ E'[N]]. In the third case we have E'[M]] — E'[N]].

12



E.

)

sx:AFN:B DI

;- FMa:A).N:A—> B

Pick V' to be (A(z: A). N).

>

X, -FV:B DI

Pick V' to be (AX.V).

Y- - FAX.V:VX.B

¥

-3+ FL:A—> B 5 FMi: A

% -5 -H(L M):B

If L and M; are values, then pick B/ = 0 and M’ = (L M;). By canonical forms (Lemma 4.1),
L is in one of the following forms:

1. L=A(z:A). Ny, or

2. L=V:A B =% A58 o

3. L=V:A' B <% A~ B.
In each of these cases, a reduction rule applies, so we have M’ — N’ for some N’.
If L is a value but not M;j, then we apply the induction hypothesis for M; to obtain a
decomposition E” of M; and then pick E' = (L E").
If L is not a value, then we apply the induction hypothesis for L to obtain a decomposition
E” of L and then pick E' = (E" My).

;- FL:VX.B - FA

;- - FL[A): B[A'/X]

If L is a value, then pick E/ = O and M’ = L [A’]. By canonical forms (Lemma 4.1), L is in
one of the following forms:

1. L= (AX.V"), or

2. L=V'":V¥X.B =2 VX.B, or

3. L=V":B £ VX.B.
In each of these cases, a reduction rule applies, so we have X > M’ —— X' N’ for some X/, N’.
Also, in each case ¥ C X',

If L is not a value, we apply the induction hypothesis to obtain a decomposition E” of L and
then pick E' = E" [A'].

>

o FMiA S - FA<®B

S F(My i A=% B):B

If M, is a value V, we proceed by cases on 3; - - A <? B.
1. Case X; - Fint <?int:
Pick B/ =0 and M’ = (V :int £ int).
Viint =% int — V.
2. Case ¥; - Fbool <? bool:
Pick £/ =0 and M’ = (V : bool N bool).
V : bool =% bool — V

3. Case ¥; - F A;— Ay <? By—Bs:
(VA=A N B;—DBs) is a value.

13



4. Case ;- FVYX.A<®VX.B:

(V :¥X.A =L VX.B) is a value.
5. Case X; - Fa <1 B:

So ¥; -; - FV:a and by canonical forms (Lemma 4.1), V =V’ : B == o. Pick ' = O

and M' = (V' : B=2 o =2 B).

(V':B=2a32B)— V'

6. Case X; - FA<“a:
(V: A= aq)is a value.
7. Case ¥; - Fa<?
Pick E' =0 and M' =(V:a = a).

8 Case ¥; - F % <% x:
Pick E' = 0 and M’ = (V : x =% ).

( ¢

Vik=%)r—V

— If M is not a value, apply the induction hypothesis for M; to obtain a decomposition E” of

M;. Then we pick E' = (E" : A =% B).

;- FM: A ;-FA<B
¥ ;- F(M,: A= B):B

)

— If M; is a value V', we proceed by cases on X; - - A< B.

1. 3; - Fint <int:
Pick B/ = O and M’ = (V : int == int).

V:iint = int — V

2. ;- Fbool < bool:
Pick E = O and M’ = (V : bool == bool).

V : bool =% bool — V

3. E; . FA1%A2<Bl*>BQI
(V:A1—Ay N B;—By) is a value.
4% - FA<VYX.B'

V:A=L VX.B')is a value.

5 %; - FVX.A'<B:
« If B=VYX.B, then (V :YX. A" =25 VX.B') is a value.
* Otherwise

—~

ViVX.A = B (V%) : A/[X:=+]

Pick B/ =0, M' =V : VX.A = B.
6. ;- Fa<a:
Pick ' =0 and M’ = (V : a == ).

(Via=a)—V

14
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7. A< %
« If A= G, then (V : G =5 %) is a value.
x If A =%, then
Vik=xr—V
Pick ' =0 and M/ =V : % == «.
x If A is not ground and not %, then

ViA=L xr—V . AL G«

Pick B/ =Oand M' =V : A =% «.
8. x < B:
By canonical forms, we have V = (V' : G =% ).

x If B=H and G = H, then
VGt L G—V
Pick F' =0 and M’ =V : » == G.
« If B=H and G # H, then

V':G=% = H+— blamep

Pick B/ = O and M’ =V : == H.
x If B =%, then
V:*:p>*.—>V
Pick B/ = D and M’ =V : x == .
* If B is not ground and not *, then

Vix= B+ V:x=G=B

where G < B. Pick E/ = O and M’ =V : x == B.
— If M is not a value, the induction hypothesis for M7 gives us a decomposition E”, so we pick
E =(E": A% B).

DI ¥, - FA
¥, -;-Fblamep: A
We satisfy the fourth option, picking £’ = O.

Lemma 4.6 (Context Inversion)
Ify; - - FE[M]: A, thenY; ;- FM:B and X+ E : B= A for some B.

Lemma 4.7 (Context Weakening)
IfYX-E:B=Aand X CY, then ¥+ E: B = A.

Lemma 4.8 (Plug)
IS ;- FM:BandSFE:B= A, thenS; -: - - E[M]: A.

Theorem 4.9 (Type safety)
1. (Preservation) If ; -5 - Fe: A and Xve — Y/'>e’ then¥; ;- Fe': A and ¥ C Y.
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2. (Progress) If &; -5 - be: A then either

ec=V' or
e ¢ =blameyp/, or

e Ype — Ype and X C Y.
where all primed variables are existentially quantified.

Proof

1. The proof of preservation is by induction on ¥ > e — ¥’ > ¢'.
o |25 Ele)] — S Blel]]

We have %; -; - Fej:Band X+ E: B = A for some B by Lemma 4.6. Then 3; -; - e} : B
by Lemma 4.3 (subject reduction). We conclude that ¥ F Ele}] : A by Lemma 4.8.

o‘ZDE[el] — 3> Ele)]
We have ¥>e; — X'>ef. Also, we have X; -; - Fep:Band ¥+ E : B = A for some B by

Lemma 4.6. So by the induction hypothesis, we have ¥'; -; - e} : B and ¥ C ¥/ for some
Y. Then we have ¥' F E : B = A by Lemma 4.7 and conclude that ¥'; -; - - E[e}]: : A by
Lemma 4.8.

o |5 (AX.0)[B] — I, :=Bv(v]o/X]: A/ X] =2 A'[B /X))
We have ¥; -, X; - Fv: A’ so by a substitution lemma, %; -; - Fo[a/X]: A'|a/X]. Also, we have
S, :=B; - F A'la/X] <+ A'[B/X]. We conclude that ¥, :=B; - ; - b (v[e/ X]: A'[er) X] =2
A'[B/X]): A'[B/X].

o |So(w:A; == VX A) [B] — Z,a:=B>((v: Ay = Ao/ X]): A [a/X] 22 A} [B/X))
Wehave X; ;- Fo: Ay, 8- F Ay <VX.A), and A = A{[B/X]. So we also have 3; -, X F 41 < A].
Then by a substitution lemma, ¥, a:=B; - FA; < Aj[a/X]. Also, we have ¥, a:=B; -
- A4 [/ X] < A} [B/X]. We conclude that &, c:=B; ;- - ((v: A; == A} [/ X]): Ao/ X] =2
A1[B/X]): A [B/X].

o | D5 (v:VX. A =% VX. A)) [B] — 3, a:=B> ((v]a]: A1a/X] =% AlJa/X]): AJa/X] =% A|[B/X])

We have 3; - - Fu:VX. Ay, ¥; - FVX.A; <?VX. A}, and A = A|[B/X]. So ¥, :=B; - ; -

Fo [a]: AiJa/X]. Also, we have %;-, X+ A; < A]. By a substitution lemma, we have

¥, a:=B; - - A1[a/X] <? A}[a/X]. Finally, we have ¥, :=B; - F Aj[a/ X] <+* A} [B/X]. We

conclude that 3, a:=B; -; - F ((v]e] : A1 o/ X] N Ao/ X)) Ao/ X] £2 A [B/X)): A, [B/X].
. ‘ZDE[blamep] —)Ebblamep‘

We immediately have 3 - blame p : A.

2. The proof of progress is a corollary of Decomposition (Lemma 4.5).

Lemma 4.10 (Termination Implies Redex Termination)
If > Ele] —* Yop o then Xbe —* i
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5 Basic Properties of the Logical Relation

Lemma 5.1 (World Extension is Reflexive and Transitive)
For any W, W', W" € World, we have

1. WaIWw
2. f W' IW' and W I W, then W" I W

Lemma 5.2 (Properties of »)
For any W € World or R € Rel,,, we have

1.»WIW
2. ]fR € Rel, [Al, Ag] then » R € Rel, [Al, AQ]
3. IfW' I W then W' JpW

Lemma 5.3 (Successive Approximation)
If <, then URLL/ = [R]; and |[R];| =Rl

J

Lemma 5.4 (Adding to the World Extends It)
IfWEl, . FBl, W.EQ; . FBQ,

a g Wi, a ¢ WE,, and

R e RGIWJ [Blv BQ]

then W B (o, B1,Bs, R) W

Lemma 5.5 (Monotonicity of Later Relations in the World)
Let (W,v1,v9) € »(Wk(a)). If W I W then (W', v1,0v3) € (W .k(a)).

Proof

Suppose that W’.5 > 0. We need to show that (»W' v, vs) € W' .k(a).

Since W’ 3 W, we have that W.j > W’.j > 0. Hence from the first premise, we have that (W, vy, v5) €
Wk ().

Note that » TV’ 3 »W by Lemma 5.2. Since W € World, we have that W.x (a) € Rely; [W.E1(a), W.E2(a)].
Hence, by monotonicity of relations in Rel, we have (W' vy, v2) € W.k (). Moreover, by definition

of approximation and », note that (wW', v1,v2) € [W.k(a)]y ;-

Since W J W and a € dom(W.x), we have that W'.k(a) = |[W.k()]yy, ;. Hence, we have that
(»W' v1,v2) € W'.k(a) as we were required to show. O

Lemma 5.6 (Monotonicity)
Let ¥;AFA. Let W € S[X] and (W, p) € D[A].
IfwW' JW and (W,v1,v2) € V[A] p, then W', v1,v2) € V[A] p.

Proof

We proceed by induction on A.

Case A = int: Immediate from the definition of V [int] p and (W, v1,v2) € V[int] p.
Case A = bool: Immediate from the definition of V [bool] p and (W, vy, vs) € V [bool] p.
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Case A = A’— B: Consider arbitrary W”, v{, v} such that
o« W/ IW
o (W" vi,vh) e V[A]p
It suffices to show that (W”, vy vy, v v4) € E[B] p.
Instantiate (W, v1,v2) € V[A'— B]p with W”, v{, v}, noting that W” 3 W by transitiv-

ity of world extension (Lemma 5.1) and that (W", v],v5) € V[A']p. Hence, we have that
(W, vy v, v v§) € E[B] p as we were required to show.

Case A = X: Let v; = (v]: B => ) and vy = (v5: By => a). We need to show that

(W', (v]: B1 == @), (v3: Bs => a)) € V[X]p
= (W' v, v5) € W' k()

We know that (W, (v] : By = a), (vy: By => a)) € V[X] p. Therefore, (W, v}, v3) € »W.k ().
By Lemma 5.5 (monotonicity of later world relations) noting that W' J W, we have that
(W' v, v5) € »W'.k(a) as we were required to show.

Case A = «a: The proof is identical to the previous case.

Case A =% Let v, = (v} :G == %) and vy = (v : G == %). We have three cases to consider.

Case G =: Since (W, vy, v2) € V[*] p, we know that v; = v}, so the proof is immediate.
Case G = x— +: We are required to show that

(W', 01, 05) € BV [x= 4] p
=W.ji>0 = (W, v,v)) eV[x—=*]p

Assume that W’.j > 0. We need to show that (W', v{,v3) € V [x— #] p.
Consider arbitrary W, vy, v§ such that

o« W' I pW!
o W7 vfsuy) € VI p
We are required to show that (W”, v v, v5 v)) € E [*] p.
We know that (W, (v] : x— == %), (v : x— % == %)) € V [+] p. Therefore, we have that

(W, v, v5) €V [x—*] p
=Wi>0 = (W, v,v5) €V[x—=x]p

We know that W.j > 0 since W’ J W, and W’.j > 0, so we have that (»W, v, v3) € V [x—+] p.
Instantiate this with W, v{’, v). Note that W J »W by transitivity of J (Lemma 5.1) since
»W' J»W by Lemma 5.2 and W’ J »W’. Also note that (W”, v{’,v§) € V%] p. Hence,
we have that (W”, v{ v{’, v5 v)) € €[] p as we needed to show.

Case G = a: We know that (W, (v]:a == %), (vj:a == %)) € V[«]p. Therefore, v =
(v : A == @), vh = (vl : Ay =2 ), and (W, 0], ) € »W.k(a).
It suffices to show that (W’ v, v)) € »W'.5(c).
By Lemma 5.5 (monotonicity of later world relations) noting that W’ J W, we have that
(W' v, v8) € wW'.k(a) as we were required to show.

Case A =VX.B: Consider arbitrary W, By, B, R, e1, ea, a such that
o W' W
o« W' B,
o WSy - F By
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e Re Relwu,j [Bl, BQ]
e W.Sibvs [Bi] — W'.S1,:=B1>(e1:p(A)|a/X] E2 p(4)[B1/X))
L] W/.EQ >V f2 [BQ] — WI.EQ, a::Bg > (62 : p(A)[Ck/X] % p(A)[BQ/X])
Let W2 =W"H (O(7 Bl; BQ, R)
It suffices to show that (Wa, e1,e1) € E[A] p[X — al.
Instantiate (W, v1,v2) € V[VX.A]p with W”, By, Ba, R, e1, e2, a, noting that Wo J W by
transitivity (Lemma 5.1) and that all other conditions are immediate. Hence, we have that
(Wa, e1,e1) € »E[A] p[X — a] as we were required to show.

Case A = A; x Ay: The proof of this case is straightforward.

Lemma 5.7 (Type Interpretations Valid)
Let B;AFA. If W € S[X] and (W, p) € D[A], then |V [A] p], € Rel, [p(A4), p(A)].

Proof

The proof follows from two facts: that type interpretations satisfy monotonicity (Lemma 5.6); and that
every (W', v1,v2) € [V[A] p], belongs to Atom,, [p(A), p(A)], which is immediate from the definition
of V[A] p. O

Lemma 5.8 (Substitution Monotonicity)
Let 3; AFT. Let W € S[X] and (W, p) € D[A].
IfW' 3 W and (W,7) € G [I] p, then (W',~) € G[I'] p.

Proof

We proceed by induction on I'.

Case I' = -: From (W,~) € G [-] p we have that v = 0. Since W’ 3 W, we have that W’ € World we
completes the proof.

Case I' =1",z: A: From (W,v) € G[I',z : A] p, we have that v = [z — (v, v2)] and (W,7') €
G[I'] and (W, v1,v2) € V[A] p. By the definition of G [,z : A], it suffices to show that

1. (W',+") € G[I'"] p, which is immediate from the induction hypothesis; and

2. (W' v1,v2) € V[A] p, which follows from Lemma 5.6 (monotonicity), noting that W’ 3 W
and (W, v1,v2) € V[A] p.

O

Lemma 5.9 (Store Monotonicity)
Let 3. If W I W and W € S[X], then W € S[X].

Proof
We proceed by induction on X.

Case ¥ = -: We know that S [-] = World. From W’ J W, we also know that W’ € World. Therefore,
w’'e ST
Case ¥ = Y/, a:=A: We need to show that
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1. W' e §[¥'], which is immediate from the induction hypothesis, since W € S [~'].

2. W.3i(a) = A and W'.E3(a) = A. Since W € S[X], we have that W.X;(«a) = 4 and
W.Xs(a) = A and, since W'.X; D W.X; and W'.X5 D W.X5 by the definition of W’ J W,
we have that W'.X;(a) = A and W'.Xa(a) = A as we needed to show.

3. FW'.2{ and FW'.X5, which is immediate from W’ € World, which in turn follows from
W' JW.

4. W'k(a) = [V[A]0]y ;- From W € S[¥', a:=A] we have that W.k(a,a) = [V[A] pyy
From W’ J W, we have that W/.x J \_WKZJW,'J.. Hence, we have that

W' k(a,a)
= W)y, (@)
= [We(a,a)ly
= “_V W']JW,4
= VIAlrlw.

where the last step follows by Lemma 5.3 (nested approximation), noting that W'.j < W.j
because W' J W.

O

Lemma 5.10 (Monotonicity for Type-Variable Environments)
If W' 3W and (W, p) € D[A], then (W', p) € D[A].
Proof

We proceed by induction on A.

Case A = -: By the definition of D [-], we have that p = (). Hence, to show (W’,0)) € D[A], we need
to show that W' € World, which is immediate from W’ J W.

Case A = A’ X: From (W,p) € D[A’, X], we have that p = p/'[X — «a], (W,p") € D[A], and
a € dom(W.k).
We are required to show that

1. (W', p") € D[A’], which follows direcly from the induction hypothesis since (W, p’) € D[A'].
2. a € dom(W'.k). From W' I W, we have that W'.x J |W.k], .. Therefore, since
a € dom(W.k), it follows that o € dom(W"' k).

O

Lemma 5.11 (Logical Relation Weakening)

Let ;AR A and S;AFT. Let W € S[S] and (W, p|X — a]) € DA, X] where X ¢ A. Then
1. W,vy,v2) € V[A] p iff W, v1,v2) € V[A] p[X — a.
2. W,er,e2) € EJ[A] p iff (W, e1,e2) € EJA] p[X — a.
3. (W,y) € G[Tp iff (W,v) € G[T] p[X = af.

Lemma 5.12 (Atom Weakening)
If p C p/, then Atom [A]p C Atom [A]p'.
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Lemma 5.13 (Related Values are Related Terms)
If (W,v1,v2) € V[A] p then (W, v1,v2) € E[A] p.

Proof

Consider arbitrary i < w.j, 31, v] such that W.X; > vy — Yy >v]. It suffices to show that there exist
some W’ 35 v} such that
[ ] W/ Ql w
o WEapwy —* Xh>v)
w'.s, =%
W' 3y =34
(W' vi,v5) € V[A] p

Since v is a value, we have that i = 0, ¥1 = W.X4, and v] = vy.

Choose W' =W, 3y = W.3,, and v = v9. We immediately have what we are required to show.

Lemma 5.14 (£ Closed Under Anti-Reduction)
Let (W, ey, es) € Atom [A]p. Given W I W, if W.j <W'.j+ j1 and
W.Eibey —3t W' .Si>e and W.Xo> eq —* W' .So>eh then

(W' el e}) € E[A]p = (W, e1,e2) € E[A] p
Proof
We proceed by cases on termination of €.

Case W'.X1>e) —F B1pv; where k < W'.j: Instantiate the definition of (W', ef, e5) € E[A] p
with k,X1,v;. We have that there exist some W', X5, v9 such that

W// ;k W/

W/.ZQ > 6/2 —* Yo >y

WS = %,

W 5 = %,

(W, v1,v2) € V[A] p

We are required to show that (W, eq,es) € E[A] p. Consider arbitrary i < W.j, ¥}, v] such that

W.S1pe; — 3 po). Tt suffices to show that there exist Wy, X5, v} such that

Wo 3; W

W.¥sp>eg —* 2/2 I>’Ué

Wo.X) = 3,

Wo.Es = 3,

(W2’ U/17 Ué) ev [[AH p

We have that

W.Xi>eq |—)j1 WI.El [>€,1 'Hk Y1y
and therefore we have v] = vy, ¥} = X4, and i = j; + k.
Similarly, we have that
WEQD@Q —* W/.22l>el2 — EQ > U9
Choose Wy = (W.j — 4,31, Yo, LW&JW.jii), ¥4 = %5, and v = vs.
Note that Wy 3 W by the definition of J since Wa.j = W.j — (j1 + k), W”.j = W'.j — k and
Wi <W'j+ji.
We have that
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Wy J; W by the definition of J;

WEQ >eo — 2/2 I>’Ué

WaSy =3

WaSs = 5,

(Wa, v],vh) € V[A] p by Lemma 5.6 (monotonicity) since Wy J W

as we were required to show.

Case W'.X1>e] —F ¥;p>blamep where k < W’.j: Instantiate the assumption with k, %1, p. We
have that there exists some 5 such that

o W' . Xop>el —* Yopblamep

We are required to show that (W, e1,es) € E[A] p. Consider arbitrary ¢ < W.j, X7, p" such that
W.Ei>e; —* X >blamep’. It suffices to show that there exists i such that

e W.Eypes —* X4 >blame p’
By the operational semantics, we have that

WEibe —t WS e —F ¥ >blamep

and therefore p’ =p, ¥ =%, and i = j; + k.
Similarly, we have that

WXsbes —* W . Sgbey —* My blamep

Choose ¥ = 5. We have that
o WEypey —* Yi>blamep
as we were required to show.

I . .
Case W'.X pe) —W'J ¥;>ef: By the operational semantics, we have that
, ;o
WEibe —t W .Sipe) —VI Bipef

Since j; + W'.j > W.j, we vacuously have that (W, ey, e2) € E[A] p as we were required to show.
[

Lemma 5.15 (Monadic Bind)
If (W,eq1,e2) € E[A] p and

VW' I W. Yo, va. (W, v1,v2) € V[A] p = (W', E1[v1], E2[vs]) € E[B]p
then (VV7 El[el],Eg[eg]) eé& [[Bﬂp
Proof
We proceed by cases on termination of e;g.

Case W.31>e; —% ¥y pw; where k < W.j: Instantiate the first assumption with &k, %1, v;. We have
that there exist some W', X5, vy such that
o W I W
o WEopey —* Mo u)
e W'Y =%,
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° W/.ZQ = 22
o (W' v,v2) € V[A] p

By the operational semantics, we have that

WEl [>E1[61] F—>k W’.El DEl[’Ul]
WEQDEQ[@Q] —* W/.ZQDEQ[UQ]

Instantiate the second assumption with W’ vy, vs, noting that (W', v1,v9) € V[A] p. We then
have that (W', E1[v1], E2[va]) € E[B] p.
By Lemma 5.14 (anti-reduction), noting that
e W' W
o« Wji=Wj+k
W.X1 b Eiler] =% W3 > Ey[v]
W.E5> Eglea] —* W'.3a0> Eslvsg]
We have that (W, E1e1], Ez2[ez2]) € E[B] p as we were required to show.

Case W'.X pe; —* Yipblamep where k +1 < W’.j: Instantiate the assumption with k, X1, p.
We have that there exists some Yo such that

e W' .Xgobey —* Yob>blamep

We are required to show that (W, Eileq], Ezlez2]) € € [B] p. Consider arbitrary ¢ < W.j, X, p’ such
that W.X; > Eq[e;] —* %) >blamep’. It suffices to show that there exist ¥ such that

o W.Eop Esles] —* X >blamep’

By the operational semantics, we have that

W.E1 > Ei[e;] —F+1 3 >blamep
W.E1 > Esles] —* Yoblamep

and therefore p' = p, ¥} =3, and i = k + 1.
Choose Y}, = ¥o. We have that W.X3>eg —* X, >blamep as we were required to show.

Case W' .Xi>e; W' Y1 >e}: By the operational semantics, we have that
W'.Zl > E1 [61} l—>W/'j 21 > E1 [6/1]

Since W'.j > W'.j, we vacuously have that (W, E1[e1], Ealez]) € € [B] p as we were required to

show.
O

Lemma 5.16 (Atom Compositionality)
Atom [A] p[X — o] = Atom [A[a/X]]p
Proof

After unfolding the definition, it suffices to show that

pil X = a)(A) = pi(Ala /X)) fori=1,2
which is straightforward to prove by induction on A. O

Lemma 5.17 (Compositionality)
If ;A X+ A, and dom(p) = A then
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1. V[A]plX = o] =V[A[a/X]]p
2. E[A] p[X = o] =E[Ala/X]]p
Proof

We prove both claims simultaneously, by induction on the step index and A. We take p as universally
quantified in the inductive hypothesis. Both cases use Lemma 5.16 (Atom Compositionality), so we
omit that reasoning to avoid repetition.

1. We consider the cases for A. In each case, we may equivalently show that
(W,v1,v2) € V[A] p|X = a] <= (W,v1,v2) € V[Ala/X]] p

Case A = (: This case is immediate from Lemma 5.11 (logical relation weakening) since
L =t[a/X].

Case A = A;— As: We first prove the = direction. Assume that (W, v1,v2) € V[A1— As] p[X +—
a]. We are required to show that (W,v1,v2) € V [(A1— A2)[a/X]] p-
Consider arbitrary W', v}, v such that

e W' IW
o (W' 1, 05) € V[(Arla/X]]p
It suffices to show that
(W' 01 vy, 02 v)) € € [Az]a/X]] p
Instantiate the assumption with W', v{, v, noting that (W', v}, v5) € V[A1] p[X — «] by the
inductive hypothesis of part 1 for A;. We then have that

(W' vy v, vg vh) € € [Az] p[X = o]
By the inductive hypothesis of part 2 for A5, we have that
(W', 01 v, va vh) € E [Az[a/X]] p

as we were required to show.
We next prove the < direction. Assume that (W,vy,v2) € V[A1— As[a/X]] p. We are
required to show that (W, v1,v2) € V [A1— Ao] p[X — a].
Consider arbitrary W', v/, v} such that

e W IW

o (W, v}, v5) € E[Ai] p[X = a
It suffices to show that

(W' vy vi, 09 vh) € E[A2] plX = q

Instantiate the assumption with W’ v}, v}, noting that (W', v{,v}) € V[A1[a/ X ] p by the
inductive hypothesis of part 1 for A;. We then have that

(W' vy vy, v vh) € E[As] p[X + a]
By the inductive hypothesis of part 2 for Ay, we have that
(W', 01 vy, 02 v)) € € [A2a/X]] p

as we were required to show.
Case A=VY. A"
We first prove the = direction. Assume that (W,vy,v2) € V[VY. A | p[X — «]. We are
required to show that (W,v1,v2) € V[VY. A'[a/ X]] p.
Consider arbitrary W', By, Ba, R, e1, e3,’ such that
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W' 3w

W/.El; . }_Bl and W/.EQ; . }_BQ

R e Relw/,j [Bl, BQ]

W/.El >vq [Bl] — W/.Zl, a/IZBl > (61 p(A)[OL//X] % p(A)[Bl/X])
W' 35> vy [Ba] — W' .5E5,a/:=Bay>(ea: p(A)]e/X] to P

‘We need to show that

(W8 (o/, By, Ba, R),e1,e2) € E[A[a/X]] p|Y + ]

Instantiate the assumption with W', By, B, R, e1, €2, a’, noting that
e W IW
e W' X; - FByand W'.Xs; - By
e R € Relw ; [B1, Bs)

o WS [Bi] — WS, :=B1b(e1: p(A)[/X] £2 p(A)[B1/X))

p 1
o W'.3sp>wy [Ba] — W'.E5,a/:=Bay>(e2:p(A)[e/X] £ p(A)[B2/X])
We have that
(W'H («/, B1, B2, R),e1,e3) € E[A] p|X = ][Y — ]

By the inductive hypothesis of part 2 for A’, we then have that
(W' (o', By, Ba, R),e1,e2) € E[A[a/X]] plY + ]

as we were required to show.

We next prove the < direction. Assume that (W, v1,vs) € V [VY. A'[a/X]] p. We are required
to show that (W, vy,v2) € V[VY. A'] p[X +— a.

Consider arbitrary W', By, Ba, R, e1, €2, & such that

e W' W
[ ] W’.El; . FBl and W’.EQ; . FBQ
e Re RGIW/_]‘ [317 BQ]

o W' .Sibvy [B] — W31, 0/:=B;>(e1:p(A)[e//X] 2 p(A)[B1/ X))
o W' .Sybwy [Ba] — W'.Sa,0/:=Byb (e5: p(A)[e//X] £ p(A)[By/ X))
We need to show that
(W’ H (O/, B, Bs, R),Bl, 62) eé [[A/]] p[X — Oz] [Y = O/}

Instantiate the assumption with W', By, Ba, R, €1, €2, a’, noting that
e W' IW

W/.El; . }—B1 and WI.EQ; . }—Bg

e Re Relw/‘j [Bl, BQ]

L] W/.El >vq [Bl] — W’.Zl,a’::31>(61 p(A)[O//X] % p(A)[Bl/X])
+
0

’

o W' .Sspvy [By] — W'y, a/:=Byp(eg: p(A)[a/X] == p(A)[Bs/X])
We have that
(W' (o', By, Ba, R),e1,e2) € E[A [a/X]] plY + ]

By the inductive hypothesis of part 2 for A’, we then have that
(W8 («/, By, B2, R),e1,e3) € E[A] p|X = ][Y = ]

as we were required to show.
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Case A = A; x Ay: The proof of this case is straightforward.

Case A=Y"
Suppose X =Y.
VIY]plX = a] =V]a] 0 =V[Y[a/X]] p
Suppose X #£Y.
VIYIpIX = o] =V[p(Y)]0 =V [Y][a/X]] p
Case A =a’: This case is immediate since o' = o/[a/ X].
Case A =x: This case is immediate since * = x[a/X].

. We may equivalently show that
(W,e1,e2) € EJA] p[X — o] &= (W, e1,e2) € E[Ala/X]] p

We first prove the = direction. Assume that (W, eq,e2) € E[A] p[X — a]. We are required to
show that (W, e, ez) € E[A[a/X]] p.
We proceed by cases on termination of e;.
Case W.X >e; —F Yi>w; where k < W.j: Instantiate the assumption with k, %1, v;. We have
that there exist some W', 35, vy such that
o W I, W
o Wiop>ey —* oDy
W', =%
L] W/.EQ = 22
o (W' vi,v2) € V[A] p[X — ¢
Choose W', %5, v2. We have that
o W' I W
o Wispbey —* Yoy
e W' =3
WS = %y
o (W' v1,v3) € V[A[a/X]] p by part 1
Therefore, we have that (W, e, e2) € £ [A[a/X]] p as we were required to show.

Case W'.X >e} —F ¥>blamep where k < W'.j: Instantiate the assumption with k, ¥y, p.
We have that there exists some Y5 such that

o W'.35>el, —* Yonblamep
We are required to show that (W, e, e3) € E[A] p. Consider arbitrary i < W.j,3), p’ such
that W.X1>e; ——? %) >blamep’ . It suffices to show that there exist ¥4 such that

o WXopey; —* X, >blamep’
Note that p = p'.

Choose Y} = X5. We then have that W.Xy>es —* Yi>blamep’ as we were required to
show.

. . .
Case W'.X;>ef —W'J B1pef: By the operational semantics, we have that
. .
WEibe —t W .Sipe) VI Sipef

Since j1 +W'.j > W'.j, we vacuously have that (W, eq, e3) € £ [A[a/X]] p as we were required
to show.

The proof for the the < direction is identical.

26



Lemma 5.18 (Type Application Steps to a Conversion)
Ify; o - FuVX A, 2 - F B, and o ¢ dom(X)
then Spv [B] — 3, 0:=Bp (e: Ala/X] =2 A[B/X]) for some e.

Proof
We proceed by cases on the canonical forms.

Case v = AX.v
Sov[B] — B a:=Bb (V'[a/X]: Ala/X] 22 A[B/X])

Pick e = v'[a/ X].
Case v = (v: A" = VX. A)

Yov[B] — B, a:=B>((v: A" £ Ala/X]): Ala/X] S A[B/X))

Pick e = (v': A’ N Ala/X]).
Case v = (v :VX. A' =% VX. A)

Yoo [B] — X, a:=Br((v' [a]: A'[a/X] N Ala/X]): Ala/X] matt A[B/X])

Pick e = (v/ [a] : A'[a/X] =2 Ala/X)).
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6 Conversion and Cast Lemmas

This section deals with the relatedness of conversions and casts. We treat these terms first for two reasons.
First, the proofs about relatedness of conversions must be done via simultaneous induction to have inductive
hypotheses for both positive and negative conversions. Second, since in the semantics of casts to polymorphic
type we generate a conversion, the cast lemma depends on the conversion lemma.

Lemma 6.1 (Canonical Forms for Conversion)
IfS;AFA<T™ B or 5;AFB <" A, then

e if A=int then B =int

e if A =bool then B = bool

o if A=X then B=X

o if A=x then B =%

o if A=A,— Ay then B = B1— B>
o f A=VX. A" then B=VX.B’

o if A=A X Ay then B = By X By
e if A=« then B =X («)

e if A=0a' and o' # a then B = o

Lemma 6.2 (Convertibility Substitution)
IfS;AF A, ac=B € X, and « ¢ FTN(A) then

1. ;AR Ala/ X <t A[B/X]
2. 5, AFAB/X < Ala/X]

Proof
We prove 1. and 2. simultaneously by induction on the derivation of A. Note that FX from the
assumptions.
Case A =int
1. and 2. are both immediate.
Case A = bool

1. and 2. are both immediate.
Case A= A;— A,
1. By 2. of the inductive hypothesis for A;, we have that ¥; A+ A;[B/X] <> A;[a/X].
By 1. of the inductive hypothesis for Ay, we have that ;A - As[a/X] <+ A3[B/X].

Therefore, we have
E;A F (A1—> AQ)[O[/X] _<+o¢ (Al—) AQ)[B/X]

as we were required to show.

2. By 1. of the inductive hypothesis for A;, we have that ¥; A+ A;[a/X] <T* A;[B/X].
By 2. of the inductive hypothesis for As, we have that 3; A+ A3[B/X] <% As[a/X].
Therefore, we have

E;A F (A1—>A2)[B/X} <7 (A1—>A2)[OZ/X}

as we were required to show.
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Case A=VY. A’

1. By 1. of the inductive hypothesis for A’, we have that ¥; A - A'[a/ X <T> A'[B/X].
Therefore, we have
YA R (VY. A a/X) <t (VY. A))[B/X]

as we were required to show.
2. By 2. of the inductive hypothesis for Az, we have that ¥; A+ A'[B/X] <~ A'[a/X].

Therefore, we have
AR (VY. A)[B/X] <" (VY. Ao/ X]

as we were required to show.

Case A = A; x As: The proof of this case is straightforward.

Case A=Y
Note that Y € A because 3; AFY.
If Y # X then we have
1. 3;AFY[a/X] <Y [B/X]
2. ¥;AFY[a/X]<72Y[B/X]
as we were required to show.
Otherwise, we need to show
1. XA F X[a/X]<T* X[B/X]
=Y;Ata<t™B
2. 3;AFX[B/X]<"*X[a/X]
=X;AFB<"%«

In both cases, we obtain the result directly from a:=B € 3.
Case A =o'

1. Note that o/ ¢ +a because a ¢ A and that there exists B’ such that o’:=B’ € ¥ because
3; A o’. Therefore, we have

YA R [a/X] <1/ [B/X]

as we were required to show.

2. Note that o/ ¢ —a because o ¢ A and that there exists B’ such that o/:=B’ € ¥ because
¥; At o'. Therefore, we have

YA [/ X])<7d[B/X]

as we were required to show.

Case A =«
1. and 2. are both immediate.

Lemma 6.3 (Conversion)
Let a:=By, € X, dom(X) C dom(W.%,), a:=By, € W.X;, dom(X) C dom(W.Xs), a:=Bp € W.Xs, Wk(a) =
LV [Be] p) W.j» and (W, p) € D[A].

1 IfS;AFA<T B and (W, e1,e3) € E[A] p then

(W, (e1:p(A) 2 p(B)), (e2:p(A) =2 p(B))) € E[B] p
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2. IfS;AFB <% A4 and (W, e1,e2) € E[B] p then

Proof

(W, (e1:p(B) =% p(A)), (e2:p(B) =% p(A))) € E[A] p

By induction on the size of A.

Case A = int

1. We have that (W, e1,ez) € € [int] p and X; A Fint <7 int and need to show that

(W, (e1 :int =% int), (e2:int == int)) € & [int] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W/ J W
and (W' v,vq) € V[int] p. Note that

W' 31> (vy tint it int) — W .Xipv; and W'.3s> (vg:int st int) — W'.Xipuvy

We apply anti-reduction (Lemma 5.14), so it remains to show that (W', v1,v3) € & [int] p.
We have (»W',v1,v2) € V[int] p by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.

Case A = bool

This proof has the same structure as the proof for the int case above.

Case A= A,— A,

In both parts, by Lemma 6.1 (canonical forms for conversion), we have that B = B;— Bs.
1. We assume that (W,e1,e3) € E[A1— As] p and X; A Aj— Ay <7 Bi— By and need to

show that
(W (e1:p(A1)— p(Az) %}p(Bl)H (Bz)), ) € E[B1— Ba] p
(e2:p(A1)— p(A2) = p(B1)— p(B2
Let

= ([1: p(A1)— p(A2) 2 p(B1)— p(B2))
= ([1: p(A1)— p(A2) 2 p(B1)— p(B2))
],

We need to show that (W Eilei1], Eqles]) € £[B1— Ba] p.

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W7y, vy, ve such that Wy J W
and (W1, v1,v2) € V[A1— As] p. Related values are related terms (Lemma 5.13), so it suffices
to show that (Wl, Eq [’Ul], FEs [’UQD ey [[Bl—) BQ]] p.

We unfold the definition of V [B;— Bs] p. Consider arbitrary Wa, vs,v4 such that Wo J W)
and (WQ,U3,1)4) ey [[Bl]] p. ‘We need to show that (WQ, FEq [’Uﬂ U3, EQ[’UQ] 1}4) €€ [[BQ]] p. We
have

Wo.S1 5 Erfvr] vs — (v1 (vs:p(By) == p(A1)) : p(Az) =2 p(By))
Wa. X2 Bafva] va +— (va (va:p(B1) =% p(A1)): p(Az) =2 p(Bz))

So by anti-reduction (Lemma 5.14), it suffices to show

Note that » Wy J W.
By 2 of the induction hypothesis for A1, noting that
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a:=B, €Y

dom(X) C dom(»W5.31) by the definition of world extension
a:=By, € »W5.31 by the definition of world extension
dom(X) C dom(»W5.33) by the definition of world extension

a:=By, € »W5.35 by the definition of world extension
»Ws.k(a) = UV [By] o] W.jJ _— \V[Bs] plyw, ; by the definition of world extension
»Ws.g

and Lemma 5.3 (successive approximation)

(»Ws,p) € D[A] by Lemma 5.10 (monotonicity)

e ;AFB; <74

(Wa,vs,v4) € £[B1] p by Lemma 5.13 (related values are related terms)
we have

(»Wa, (vs: p(B1) = p(A1)), (va:p(B1) = p(A1))) € E[Ai] p

We proceed via monadic bind (Lemma 5.15), with the contexts
By = (v1 []:p(A2) =2 p(B2))  and Ey = (vs []: p(A2) =% p(Bs))

Consider arbitrary W3, v4, v) such that W3 J »Wo and (W3, v5,v)) € V [A2] p. We need to
show

(Ws, Es[vs], Ea[v]) € € [Ba] p
Because (W, v1,v3) € V[A1— As] p, we have (W3, vy v§,vs vy) € E[Az] by Lemma 5.13
(related values are related terms). We proceed again via monadic bind. Consider arbitrary
Wy, vs,ve such that Wy 3 W3 and (Wy, vs,v6) € V [A2]. We need to show that

(Wi, (vs: p(Az) =2 p(Ba)), (v6 : p(Az) =2 p(Bo))) € € [Ba] p

Note that W, 3 W.

By 1 of the induction hypothesis for As, noting that
e =B, X

dom(X) C dom(Wy.31) by the definition of world extension

a:=Byj, € W,.3; by the definition of world extension

dom(X) C dom(Wy.3s) by the definition of world extension

a:=By, € W4.3%5 by the definition of world extension

o Wyk(a)= UV [Bs] p] W.jJ Way [V [Bbv] plw, ; by the definition of world extension and
Lemma 5.3 (successive approximation)

o (Wy,p) € D[A] by Lemma 5.10 (monotonicity)

e X AR Ay <TY By

o (Wy,v5,v6) € E[Az] by Lemma 5.13 (related values are related terms)

we have what we are required to show.

. We assume that (W,e1,eq) € E[B1— Ba] p and ¥; A B1— By <% A1— Ay and need to
show that

By) =3 p(A1)— p(Az)),
(e2: p(B1)— p(Ba) = p(A1)— p(Az))

/
=
o
S
=
1
=

) S 5[[A1—>A2]]p

Let



We need to show that (W, E1le1], Ez[es]) € € [A1— Aa] p.

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W7y, vy, vs such that W, J W
and (W1, v1,v2) € V [B1— Bz] p. Related values are related terms (Lemma 5.13), so it suffices
to show that (Wl, Ey [’Ul], EQ[’UQD ey [[Alﬁ AQH p-

We unfold the definition of V [A1— As] p. Consider arbitrary Wa, vs, v4 such that Wy J Wy
and (Wa,vs,v4) € V[A1] p. We need to show that (W, E1[v1] vs, Eafvs] v4) € € [Az] p. We
have

Wa. 510 Er[vn] vz — (1 (v3:p(A1) == p(B1)): p(B2) = p(Ay))
W5.Xo > Eafva] vg4 — (v2 (vg:p(A1) a4 p(B1)): p(Bs) == p(By))

So by anti-reduction (Lemma 5.14), it suffices to show

(,WQ’ (1 (va:p(Ar) =2 p(B1)) s p(Ba) =3 PA)), ) € £ 1Al
P

Note that » Wy J W.
By 1 of the induction hypothesis for Ay, noting that

e =B, X

o dom(X) C dom(»W2.X1) by the definition of world extension

e a:=B; € »W5.X; by the definition of world extension

o dom(X) C dom(»W2.X3) by the definition of world extension

e a:=B; € »W5.X5 by the definition of world extension

o pWs.i(a) = UV [Bs] p] W.jJ ey LV [Bv] plyww, ; by the definition of world extension
and Lemma 5.3 (successive apprdximation)

o (»Ws3,p) € D[A] by Lemma 5.10 (monotonicity)

e i AFA <t By

(Wa,vs,v4) € £[B1] p by Lemma 5.13 (related values are related terms)

we have

(> W, (vs: p(A1) == p(B1)), (va: p(A1) == p(B1))) € € [Bi] p

We proceed via monadic bind (Lemma 5.15), with the contexts
B3 = (v1 []:p(B2) =% p(A2))  and By = (vz []: p(B2) = p(A2))

Consider arbitrary W3, v4, vy such that W3 3 »W, and (W3, v5,v)) € V[B2] p. We need to
show

(Ws, Es[vg], Eulvy]) € € [B2] p
Because (W, v1,v2) € V[B1— Bs] p, we have (W3, vy v§,vy v)) € E[Be] by Lemma 5.13
(related values are related terms). We proceed again via monadic bind. Consider arbitrary
Wy, vs,vg such that Wy J W3 and (Wy,vs,v6) € V [Bz]. We need to show that

(Wi, (vs : p(B2) == p(A2)), (ve : p(B2) = p(A2))) € € [A2] p

Note that W, I W.
By 2 of the induction hypothesis for As, noting that

o =B, X
e dom(X¥) C dom(W,.31) by the definition of world extension
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a:=By, € W,.X; by the definition of world extension
dom(X) C dom(W4.X2) by the definition of world extension
a:=By, € W,.X5 by the definition of world extension

Wak(@) = |V IBl ol
Lemma 5.3 (successive appro;imation)
(W4, p) € D[A] by Lemma 5.10 (monotonicity)

e Y AFBy <Ay

o (Wy,v5,v5) € E[Az] by Lemma 5.13 (related values are related terms)
we have what we are required to show.

Case A=VX. A
In both parts, by Lemma 6.1 (canonical forms for conversion), we have that B =VX. B’.

1. Let By = ([[]:VX. p(A47) At VX.p(B')) and B, = ([]:VX. p(A) =2 VX. p(B')). We assume
(W, e1,e3) € E[VX.A'] p and need to show (W, E1[e1], Ezleq]) € E[VX. B'] p. We proceed
by monadic bind (Lemma 5.15). Consider arbitrary Wi, v, vy such that Wi, 3 W and
(Wi,v1,v2) € V[VX . A'] p. Related values are related terms (Lemma 5.13), so it suffices to
show

= [V[Bu] plw, ; by the definition of world extension and

(W1, E1[v1], E3[vs]) € V[VX. B p
We unfold the definition of V [VX. B'] p. Consider arbitrary Wy, By, Ba, R, e3, eq, &’ such that
the following hold:
Wy 3 Wy
WQ.El; -k B1
WQ.EQ; -k B2
R e Relw/_j [Bl, B2]

WQ.Zl I>E1[U1] [Bl] — W2.217CM/3=Bll>(63I,O(B/)[O//X] % (B/)[Bl/X])

p
WQ.EQDEQ[’UQ] [BQ] — W2.227O/::BQI>(€4:p(B/)[Ol//X] % p(BI)[BQ/X])
Let Wi = Wy B (¢, B1, B, R) and p’ = p[X — o].

We need to show

(Wé,€3,€4) 3 2 [[Bl]] pl

Note that from the definition of F; and Es and the operational semantics, we have that

Wa. 1 Bafor] [Bi] — (v [0']: p1(A)[0! /X ] Z2 p(B)[o! /X ]): p(B') o/ X] £% p(B')[B1/X])
= W 3o Bi[n] [Bi] — (01 [o]: p/(4) 22 p/(B)): g/ (B) 25 p(B))[B1/X])

Wa.S20 Eafvg] [Ba] +— ((vz [a']: p(A)[a'/X] £3 p(B ’)[ ’/X]) p(B))o!/X] E2 p(B))[B2/ X))
B)

= WS Bafug] [Bo] +— ((va [o]:/(A') 22 o/ (B')) 1 (B') 22 p(B')[B2/ X))

Therefore, it suffices to show that

/ ’ “"04 ’

Q%,@ﬂ} () = <Bp,>e,gwmd
(vala’] 1 p(A") 22 p/(B'))

Consider the case where W3.j = 0. Then, by definition of later relations, we have what we are

required to show.
Otherwise, we are required to show



Note that »W; I W.
By 1 of the induction hypothesis for A’, noting that

o =B, X

dom(X) C dom(»W3.21) by the definition of world extension
a:=By € »WJ,.52; by the definition of world extension
dom(X) C dom(»W3.533) by the definition of world extension
a:=By, € »WJ4.%5 by the definition of world extension

sWin(0) = |VIBIA | = VB ey = VBl plywy s by the defini-

»Wi.j
tion of world extension, Lemma 5.3 (successive approximation), and since ¥; - - By,

(»W3,p") € D[A, X] by Lemma 5.10 (monotonicity) and the definition of D [A, X]
e ¥; A, XF A <t B’ by the structure of the derivation
We have

"o Tl vs o m ot ’ (01[0/}50/(14/)%0/(3/))7 A
(>W27 1[ ]7 2[ ])GEHA]]p = <>W27 (’UQ[CYI}:[)I(AI);EP/(B/)) )Eg[[B]]p

The conclusion of the above satisfies what we need to show, so it remains to prove the premise.
Since (W, v1,v2) € V[VX.A'] p and Wj I W, we have that (W3, v1,v2) € V[VX.A'] p by
Lemma 5.6 (monotonicity).

Choose o’ such that o ¢ WJ}.X; and o ¢ W3.3,.

By Lemma 5.18 (type application steps), there exist e5 and eg such that

Wi.Sib01 [0f] — WhE1,a"=a’ > (e5: p(A) o X] 25 p(AN) !/ X])
l tal /

p a
W5 Sab vy [@] — Wi e, o/ :=a > (e6: p(A)[a" | X] == p(A)[/X])

Instantiate (W3, v1,v2) € V[VX . A'] p with Wi, o/, |V [o'] p] wy.j 0 €5 eg, . Note the follow-
ing:
e W) 3 W) by reflexivity.
W3.E1;-Fao and W3.Xs; - Fa’ since o € W53 and o € W35.3s.
WV [T plw,.; € Relwy.;[o, /] by Lemma 5.7

"

o WiSibw [@] — W41, o i=a/ > (e5: p(A)[ ) X] 25 p(A))[a!/X])
o WiSoruy [of] — Wi.Eo, o :=a'v(es: p(A) ][/ X] o p(AN[a' /X))

Let W3 = W3 B (", o/, d, [V ][] pJWé.j).
Hence, we have that (W3, e5,e) € »E [A'] p[X — «”']. Since W3.j5 = Wj.j > 0, we have that

(PWg, €5, 66) c& [A/]] p[X — O//]

Let X, = X, o’:=bool, a”:=c’.
Therefore, by the inductive hypothesis for A’[a/'/X ], noting that
e o:=a' €
e o:=a' € »W3.3;
o o:=a' € »W3.2,
(»W3).k(a") = [V [&'] p]pw, ; by the definition of »
(»W3, p) € D[A] which follows by Lemma 5.10 (monotonicity) from (W, p) € D [A]
(wWs,e5,e6) € E[A "/ X ] p
Sp A Al /X ] <" A’[o’ /X ]| by Lemma 6.2 (convertibility substitution)
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o (WWs,e5,e6) € E[A' [/ X]] p by Lemma 5.17 (Compositionality) from (»Ws3, es5,€e6) €
E[A]plX = "]

we have that
(> W, (e5: Al /X] £ A[o!/X]), (e6: Ala” ) X] £ A[o//X])) € E[A'[a//X]] p

We next apply Lemma 5.14 (anti-reduction) noting the following
e » W3 J » W, by Lemma 5.2 (properties of later relations) since W3 3 W3
o pWi.j <w»W;5.j+1since wW5.j =Wij—1=wWj.j
o PN >ui[d] — WSS, o :=a' > (e5: p(A)][o / X] ol p(A)[a/ /X)) since »W4.321 =
W35,
o pWi N> ug[d] — BWL.Eg, o :=a' > (es: p(A") ][/ X] o p(A)[e/ / X]) since »W4.55 =
W33
o (W3, (e5: Ala”/X] o Al /X]), (e : Ale”" / X] oy Al /X)) € ETA [/ X ] p
Hence, we have that (»W3, v1[/], v2[a']) € £ [A'[¢//X]] p and therefore (W W3, v1[e], v2[c/]) €
E[A'[¢'/X]] p' by Lemma 5.11 (logical relation weakening) as we were required to show.
2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A = A; x Ay: The proof of this case is straightforward.
Case A = o where o/ # «a

1. We have that (W,e1,ez) € €[] p and 3; A F o/ <t*a/ and need to show that
(W, (e1:0/ 22 a), (ez:a’ 2 0')) € E[] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W' vy, ve such that W' J W
and (W', v1,v2) € V[a/] p. Note that

W .Sio (oo 22 a/) — vy and W'.Sob (vg:0’ =2 o) — vy

We apply anti-reduction, (Lemma 5.14) so it remains to show that (WW’ v1,v2) € & [/] p.
We have (W', v1,v2) € V[&] p by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A=«
1. We have that (W, e1,ez) € € [a] p and ¥; A Fa <7 B, and need to show that

(W, (e1:0 =2 By), (e2: 0 =2 By)) € E[By] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vs such that W’ 3 W
and (W' v1,v2) € V[a] p. It suffices to show that

(W', (v1:00 =2 By), (v2: 0 =2 By)) € E[By] p

By the definition of V [a] p, we have that v; = (v3: B, = @), v2 = (v4: By, = a), and
(W' vs,04) € wWeki(a) = (W' vs,04) €0 [V [Bb]] ;-

If W’.j = 0 then we have what we are required to show. Otherwise, we have that (WW’, v3,v4) €
\V[By])w - Since [V [By]ly; C V[Bs], we have that (»W’,v3,v4) € V[By] and because
related values are related terms, we have that (»W’' v3,v4) € € [By].
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Note that »W’' J W’ by Lemma 5.2 (properties of later), W’.j < »W’.j + 1, and that
W .15 ((v5: By == a):a 22 By) — »W'.S1p0s
W' Sob ((vg: By == a):a == By) — pW . Sob1y
By anti-reduction, we have that
W, (v1:a =2 By, (v2:a =2 By)) € E[By] p

as we were required to show.
2. We have that (W, e1,e2) € E[Bp] p and ¥; A F By, <~ and need to show that

(W, (e1:By == a),(ea: By = a)) € £ [a] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W’ J W
and (W' v1,v2) € V[By] p. It suffices to show that

(W', (v1: By == @), (v2: By == a)) € V[a] p

Note that W'.k(a) = [V [By] plyy ; from the premises and the definition of world extension.
Assume W'.j > 0. Since W’.j — 1 < W'.j, we have that (»W’,v1,v2) € [V [Bo] plyy ;-

We then have that (W', vi,v2) € »[V[By] ply. ; and so (W', v1,v2) € »W'.k () by the
definition of ». The result is then immediate from the definition of V [a] p.

Case A=X
1. We have that (W,e1,ez) € E[X] p and ;A F X <7 X and need to show that

(W, (e1: X 22 X), (e2: X 22 X)) € £[X] p
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W/ J W
and (W', v1,v2) € V[X] p. Note that
W .Sio (v : X =2 X) — W.Sipv, and Wb (vg: X =2 X) — W .Sy0 v,

We apply anti-reduction, (Lemma 5.14) so it remains to show that (»W' v1,v2) € € [X] p.
We have (W' v1,v9) € V[X] p by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A=+«

1. We have that (W, e1,ez) € € [x] p and ¥; A F%x <T%x and need to show that
(W, (e1 1% =2 %), (e2:% =2 ) € E[X] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W’ J W
and (W', v1,v2) € V[x] p. Note that

W’.Zlb(vlz*g*) — W'.3i>v; and W’.ZQD(’UQZ*%*) — W . 35> 09

We apply anti-reduction, (Lemma 5.14) so it remains to show that (»W’', vy, v9) € E [#] p. We
have (W', v1,v2) € V [*] p by monotonicity (Lemma 5.6) and recall that related values are
related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
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Lemma 6.4 (Pre-Compatibility: Type Application)
If (W,v1,v2) € VVX. A] p and W.Eq; - F p(B), then (W, vy [p(B)],v1 [p(B)]) € E[A[B/X]] p

Proof

Choose « such that o ¢ W.X; and o ¢ W.Xs.
By Lemma 5.18 (type application steps), there exist e; and es such that

W15 v [p(B)] +— W51, a:=p(B) v (e1: p(A)[o/X] =% p(A)[p(B)/X])
W.S v [p(B)] — W.Sa, ai=p(B) > (e: p(A)[a/X] =2 p

Instantiate (W, v1,v2) € V[VX . A] p with W, p(B), p(B), |V [B] p] w.j» €1, €2, . Note the following:

o W 1 W by reflexivity.

W.X1;- Fp(B) from the premises

W.X9; -+ p(B) from the premises

[VIB] plw; € Relw,; [p(B), p(B)] by Lemma 5.7.
o W10 [p(B)] — WSy, aimp(B)> (e1 : p(A)fa/X] 22 p(4)[o(B)/X))
o W00 [p(B)] s WS, armp(B)5 (e2: p(A)[0/ X] 22 p(A)[p(B)/X))

Let Wy = W 8 (a, p(B), p(B), [V[B] ply,)-
Hence, we have that (Wa, eq, e2) € E[A] p[X — a].
By Lemma 5.17 (Compositionality), we then have that (W2, e1, e2) € & [A[a/X]] p.
Assume W.j = 0. Then the result is immediate.
Otherwise, Wy.j = W.j > 0, and we have that (»Ws, eq, e2) € € [A[a/X]] p.
Let 3 = 5, a:=B.
Note that, since »Ws € S [Ep] which follows by Lemma 5.9 (monotonicity) from W € S [¥] and from
the definition of S [X;], we have
e :=B €
e dom(X;) C dom(»Wa.X4)
e a:=B cpWsy.2
e dom(%;) C dom(»Ws.X5)
o a:=B e pWs5.2
> Ws.s(a) = |V [Bl o)

»Ws.j

By Lemma 6.3 (Conversion), additionally noting that
e Xy AFAla/X]<T* A[B/X] by Lemma 6.2 (convertibility substitution)
o (»W3,p) € D[A] which follows by Lemma 5.10 (monotonicity) from (W, p) € D [A]
o (WWh,e1,e0) € E[Ala/X]] p
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we have that
(»Wa, (e1: Ala/X] =5 Alp(B)/X]). (e2: Ala/X] =2 A[p(B)/X])) € E[A[B/X]] p
We next apply Lemma 5.14 (anti-reduction) noting the following

e »W5 J W by Lemma 5.4 (adding to the world extends it),
o W3 <Ws.j+1since wWs.j+1=W.j5

W.Eipv [p(B)] — WX, a:=p(B)>(e1: p(4)[a/X] it p(A)[p(B)/X]) and that »W5.X; =
W.21, a:=p(B)

W.Eapv [p(B)] — W.Es, ae=p(B)>(e2: p(A)[a/X] it p(A)[p(B)/X]) and that »W5.Xy =
W.Xo, a:=p(B)

o (B W2, (er: p(A)a/X] =2 p(A)[p(B)/X]), (e2: p(A)[a/X] =5 p(A)[p(B)/X])) € E[A[B/X]] p

Hence, we have that (W, v [p(B)], v2 [p(B)]) € E[A[B/X]] p as we were required to show. O

Lemma 6.5 (Cast)
Let ©;AFA<B, W e S[X], and (W, p) € D[A].
If (W,e1,e2) € E[A] p then (W, (e1:p(A) == p(B)), (e2:p(A) == p(B))) € € [B] p-
Proof
By induction on the step index and on the derivation of X; A+ A < B.
X
;A Fint <int
We assume (W, ey, ez) € € [A] p and need to show that

Case

(W, (eq :int == int), (ep:int == int)) € & [int] p

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W’ J W
and (W', v1,v2) € V[int] p. Note that

WS (vg:int == int) — W .S1pv; and WSy (v:int = int) — W . Doy

We apply anti-reduction, (Lemma 5.14) so it remains to show that (W' v, vs) € & [int] p. We
have (W', v1,v2) € V[int] p by monotonicity (Lemma 5.6) and recall that related values are
related terms (Lemma 5.13).

X
3; A Fbool < bool
This case has the same structure as the case for int.
Y, AFBy <A Y AF Ay < By
Y AFA— Ay < B1— By
We assume that (W, eq,e2) € E[A1 — As] p. Let

Case

Case

By = ([ p(A1) plA2) =2 p(B1)— p(By))
By = ([]:p(A1) plA2) =2 p(B1)— p(By))

We need to show that (W, E1[e1], Ez2les]) € € [B1— Ba] p.
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W7y, vy, vy such that
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o W1 3IW
o (Wi,v1,v2) € V[A1— As]p
Related values are related terms (Lemma 5.13), so it suffices to show that (W1, E1[v1], E2[va]) €
V [B1— B2] p.
We unfold the definition of V [B1— Bs] p. Consider arbitrary Ws, vs, v4 such that
e Wy JW
° (W2,1}3, 1}4) ey [[Blﬂ p
We need to show that (Wa, E1[v1] vs, Ealva] v4) € € [Ba] p. We have

Wy 1> Er[vi] vs = (v1 (v3:p(B1) = p(A1)): p(A2) == p(Bs))
Wyt Eafva] va = (v2 (va:p(B1) == p(A1)): p(A2) == p(B3))

So by anti-reduction (Lemma 5.14), it suffices to show

. _p . p

(,Wz’ (01 (va: p(Br) = plida)) s p(A2) = p(B2)) ) c £ 1B
(v2 (va:p(B1) = p(A1)): p(A2) = p(B2))

By the induction hypothesis for ¥; A - By < A1, noting that

e W5 € S[X] by Lemma 5.9 (monotonicity)
o (»Ws,p) € D[A] by Lemma 5.10 (monotonicity)
o (BWs,v3,v4) € V[Bi1] p by Lemma 5.6 (monotonicity)

we have
(> W, (vs: p(B1) =% p(A1)), (va: p(B1) =5 p(A1))) € E[Ai] p
We proceed via monadic bind (Lemma 5.15), with the contexts
By = (v []:p(A2) == p(Ba)) and Ey = (vs []: p(A2) == p(B2))

Consider arbitrary Ws, v, v} such that
o W3 J W,
o (Ws,vi,vy) € V[Ai] p
We need to show
(W3, Es[v3], Exlvy]) € € [Ba] p
Note that (W7, v1,v2) € V[A1— As] p.
Instantiate the definition of V [A;— As] p with W3, v4, v}, noting that
e W3 JW,
b (W37 'UL/S’ vfl) eV [[Al]] P
We have that (W3, vy v§,vs v}y) € E[A2] p.
We proceed again via monadic bind. Consider arbitrary Wy, vs, vg such that
o Wy I Ws
o (Wy,vs,v6) € V[A2]

We need to show
(Wi, (vs: p(A2) == p(Ba)), (ve: p(A2) == p(Ba))) € € [Ba] p

By the induction hypothesis for 3; A - Ay < B, noting that
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e W, € S[X] by Lemma 5.9 (monotonicity)

o (Wy,p) € D[A] by Lemma 5.10 (monotonicity)

o (Wy,vs,v6) € € [A2] p by Lemma 5.13 (related values are related terms)
we have what we are required to show.
SIAXFA<B O X ¢A

S AFA<VX.B

We assume (W, eq1,es) € E[A] p. Let By = ([[]: p(A) =L VX.p(B") and Ey = ([-]: p(A) =L
VX.p(B')). We need to show that

(W, Eqle1], Bales]) € E[VX. B'] p

Case

We proceed by monadic bind (Lemma 5.15). Consider arbitrary Wi, vy, vy such that
e W1 JIW
o (Wi,v1,v9) € V[A]p
We may equivalently show that
(W1, E1[v1], Eslv2]) € V[VX. B'] p
and then conclude because related values are related terms (Lemma 5.13).
We unfold the definition of V [VX. B'] p. Consider arbitrary Ws, By, Ba, R, €1, e3, & such that
o Wo I W,
Ws.X1;- F By and W5.Xo; - F By
R € Relw, ; [B1, Ba]
W15 By [n1] [By] — Wa. 1, a:=By > (es: p(B') [/ X] =2 p(B')[B1/X])
WSy b Esvg] [Ba] — Wa. S, a:=Ba b (e4: p(B')[a/ X] 22

Let W3 = Wy B (o, By, B2, R) and p' = p[X — a].
We need to show that

(W3, e1,e2) € E[B'[a/X]] ¢/
= (W3, e1,e2) € E[B'] p[X = a]
= (Wa,e1,e2) € E[B]

by Lemma 5.17 (Compositionality).
By our operational semantics we have that

Wo. S0 Ey[v1] [Bi] — Wa.S1, a:=By (v : p(A) == p(B')[a/ X)) : p(B)[a/X] 2 p(B')[B1/X))
WS b Es[vg] [Ba] — Wa.Xo, =By ((vs: p(A) == p(B')[e/X]) : p(B')[a/ X] e

and therefore that

Thus, by Lemma 5.13 (related values are related terms), and since X ¢ A, it suffices to show that

(W, (v1: p(A) == p(B")[er/ X]), (v2: p(A) = p(B)[er/X])) € V[B'] '
= (W3, (v1:p/(A) =5 p/(B"), (v2:p/(A) = p/(B))) € V[B'] p/
By the inductive hypothesis for ¥; A, X - A < B’, noting that
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Case

e W5 € S[X] by Lemma 5.9 (monotonicity)
o (W3, p') € D[A, X] by definition since (W3, p) € D [A] by Lemma 5.10 (monotonicity) and
a € dom(Ws.k)

o (W3, v1,v2) € V[A] p' by Lemmas 5.6 (monotonicity) and 5.11 (weakening).

we have that
(W, (v1:p/(A) == p/(B")), (v2:9/(4) == p'(B))) € VBT /'

as we were required to show.
S;ARA%/X]<B
S.AFVX.A <B
We assume (W, ey, ez) € E[VX. A’] p and need to show that

(W, (e1:VX. p(A') = p(B)), (e2:¥X. p(A") = p(B))) € £ [B] p

We proceed by monadic bind (Lemma 5.15). Consider arbitrary W1, vq, ve such that W3 J W and
(W1, v1,v2) € V[VX. A'] p. It suffices to show that

(Wi, (v1:VX. p(A") = p(B)), (v2:VX. p(A') = p(B))) € E[B] p

Assume W7.j = 0. Then the result is immediate.
Otherwise, Wj.j > 0.
By the operational semantics, we have that

WiS1 b (01 VX, p(A') L p(B)) — Wi.B1 5 (0 [¢]: p(A") 5/ X] 2> p(B)
W1.820 (vg:VX. p(A') = p(B)) — WS> (vg [4]: p(A)[x/X] == p(B))
So by anti-reduction (Lemma 5.14), noting that »W; 3 W and Wy.j = »Wi.j + 1, it suffices to
show that
(w1, (v1 (4] p(A")[x/X] == p(B)), (v2 [#] : p(A") [/ X] == p(B))) € E[B] p

By the inductive hypothesis for ¥; A+ A’'[x/X ] < B, noting that

e W, € S[X] by Lemma 5.9 (monotonicity)
e (»W74,p) € D[A] by Lemma 5.10 (monotonicity)
it suffices to show that

(W1, 01 [, 02 [¥]) € E[A /X ] p

Choose «a such that o ¢ W7.3; and o ¢ W;.3,.
By lemma 5.18 (type application steps), we have that for some es, e4

WS 0 [+ — W51, ai=> (e3: p(A' [/ X]) =2 p(A'[x/X]))
W95 vs [4] — Wi B, ai= b (eq: p(A'|a/ X)) =2 p(A'[x/ X))

We instantiate the definition of (Wy,v1,v2) € V[VX. A'] p with Wy, %, |V [*] p] Wy.j 0 €3 €4, QY
noting that

o Wi J Wi by reflexivity
[ Wl.Zl; - % and Wl.ZQ; e
o (VI rlw,. ; € Relw, 5 [*,*] by Lemma 5.7 (type interpretations are valid)
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o Wi.S1bv; [ — W1.S1, ar=#>(e5: p(A'[)/X]) =2 p(A'[x/X]))
o W1.Eobwg [x] — Wi.Eg,ar=%>(eq: p(A'Ja/ X]) = p

Let Wy = Wi B (a, %, %, [V [¥] plw, ;)-

Therefore, by Lemma 5.17 (compositionality), we have that

(Wa, e3,e4) € BE[A'] p[X — @]
= (W2,€3,64) eps [[A/[Q/X]]]p

Note that 2, a:=x; A+ A'[a/X] <1 A’[x/X] by Lemma 6.2 (conversion substitution).
Then, by the induction hypothesis for ¥, a:=x; A+ A’[a/X] <T* A’[x/X], noting that
o Wy € S[X,a:=+] by the definition of S[¥,a:=«] and from W; € S[X] by Lemma 5.9
(monotonicity)
o (Ws,p) € D[A] by Lemma 5.10

since Wy.7 = W1.j > 0, we have that

(Wa, (e3: p(A'a/ X]) =25 p(A'[x/X])), (ea: p(A'[a/ X]) =2 p(A'[x/X]))) € »E [A'[x/X]] p
= (bW, (e3: p(A'la/ X]) =2 p(A'[x/ X)), (ea: p(A'[a/ X]) T2 p(A'[x/X]))) € E[A'[x/X]] p

By Lemma 5.14 (anti-reduction), noting that »W> J »W; by Lemma 5.2 (properties of later
relations), »Ws.j < »Wi.j + 1, and

WS b0y [+] — BIW.S1 b (5 p(AJa)/X]) =2 p(A[x/ X))
DIV S0 b0 [+] — BW.Sob (eq: p(AJa/X]) =2 p(A[x/ X))

since »W1.3; = W1.2; and WX, = WX, = W1.X;, a:=*, we have that
(Wi, 01 [x],v2 [+]) € E[A/X ] p

as we were required to show.
Z;A"A1<Bl E;Al—A2<Bg

Case S AFA x A, < B, By . The proof of this case is straightforward.
X a€X

Case ————
Y AFa<a

We assume (W, eq,e2) € €[] p and need to show
(W, (e1:a == a), (e2:a == a)) € E[a] p
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W’ vy, vy such that W’ J W
and (W', v1,v2) € V[a] p. Note that
W .Sio (v a=a) — W D>
W' .Sob (vg:a = a) — W' Doy

We apply anti-reduction (Lemma 5.14), so it suffices to show that (WW’' vy, v2) € € [a] p, which
we have by monotonicity (Lemma 5.6) since related values are related terms (Lemma 5.13).

FX X eA
SIAFX <X
We assume (W, ey, es) € £ [X] p and need to show that

Case

(W, (e1: p(X) = p(X)), (e2:p(X) = p(X))) € E[X] p
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Because (W, p) € D [A], we have p(X) = o/ and o € dom(W.x) for some «'. So it suffices to show
(W, (e1:a' £ o), (e2:0/ 2= o)) € E[X] p

The rest of this case follows the same structure as the previous case.
S AFA

Y AFA <%

We assume (W, e1,e2) € € [A] p and need to show that

Case

(W, (e1: p(A) = %), (e2: p(A) == %)) € E[+] p
Proceeding by monadic bind (Lemma 5.15), we consider arbitrary W’ vy, vy such that W/ J W
and (W' v1,v2) € V[A] p. Next we consider two cases regarding A:

1. A = G: Because related values are related terms (Lemma 5.13), it suffices to show
(W' (01:G = %), (v2:G =2 %) € V[+] p

We consider the three cases for G.
e If G =, then our goal follows from (W’ v1,v2) € V[¢] p since v = vs.

e If G = *—x, then by the definition of V [x] p, our goal follows from (W' v1,vs) €
V [*— ] p by Lemma 5.6 (monotonicity) since »W’ J W’ by Lemma 5.2 (properties of
later relations)

e If G = a, by the definition of V [a] p we have
v; = (vl A; => a) for i € {1,2} and (W, v],v}) € »W’ k()
for some v, v4, Ay, As. So by the definition of V [x] p we conclude
(W, (v1:a == %), (v2:a == %)) € V[«] p
2. A=VX. A we need to show that
(W', (v :VX. A" %), (v2:VX. A" L ) e E[+] p

By Lemma 5.14 (anti-reduction), noting that
e »WW' J W' by Lemma 5.2 (properties of »)
e W j=Wj—1+1=wW.j+1
o W .B1b (v :VX. A5 %) — pW' 21> (vg [4]: A [/ X] == %)
o W' .Son (v9:VX. A = &) — »W .5y (vg [4]: A'[x/X] == %)
It suffices to show that

(W', (01 [#]: A'[x/ X] == %), (02 [] : A'[x/ X] == %)) € E[*] p

By Lemma 6.4 (pre-compatibility for type application), noting that (W’ v1,v9) € V[VX. A] p,
we have that
(W', v1 [, v2 [¥]) € E[A[x/X]] p
By induction on the step index, noting that
o ¥ At A[x/X] <% by definition since ¥; A+ A[x/X]
e pIW' € S[X] by Lemma 5.9 (monotonicity)
e (»W’, p) € D[A] by Lemma 5.10 (monotonicity)
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o (W' vy [,v2 [x]) € E[AR/X]] o
We have that (WW’, (v1 [x]: A'[x/X] == %), (v2 [x] : A'[x/X] == ) € E[*] p as we were
required to show.
. A=A;— Ay and A;— As # x—*. We have that

W’.Ei > (Ui Ip(A1—> Ag) :p> *) — W’.Eib ((1}1 : p(A1—> A2) :p> *— *) Tk— ok :p> *)

for i € {1,2}. Let v} = (v;: p(A1— A2) £ +— %) and A A £ x). We apply
anti-reduction (Lemma 5.14), noting that

e »WW' J W' by Lemma 5.2 (properties of »)

o W j=Wj—1+1=wW.j+1
W’.Zl > (’Ul Zp(A1—> AQ) :p> *) — PW’.Zl l>’Ui/
W/.EQ > (1)2 : p(A1—> Az) :p> *) — >W/.EQ l>U/2/
and because related values are related terms (Lemma 5.13), it suffices to show (»W’',v{,vY) €
V [#] p. So by the definition of V [x] p, we need to show

(W' vl v5) €V [x—+]p

We proceed according to the definition of V [x— «]] p. Consider arbitrary W, vz, v4 such that
o W' J e’
o (W" us,vq) € V] p

We need to show that (W v} vs, v} vs) € €[] p. We have

W S100) vg — W51 (v1 (v3:% = p(A1)): p(As) == *)
W S1>vh vy — W50 (v (vg:x == p(A1)): p(As) == %)

so, by anti-reduction (Lemma 5.14), it suffices to show that
(W (v1 (vs:x =2 p(A1)): p(Az) == %), (v2 (va:% =2 p(A1)): p(A) == %)) € E[] p

By the inductive hypothesis for the step index, noting that
e Y: AFx =< A; by definition

" € S[X] by Lemma 5.9 (monotonicity)

(»wW",p) € D[A] by Lemma 5.10 (monotonicity)

(»wW" vs,v4) € E[*] p by Lemma 5.6 (monotonicity) and Lemma 5.13 (related values are
related terms)

‘We have

(W, (0314 =5 p(A1)), (va:% =2 p(A1))) € E[Ai] p

We proceed by monadic bind, so we consider arbitrary W3, v}, vy such that W3 J »W" and
(W3, vh,v)) € V[A1] p. Tt suffices to show that

(W, (v1 vh: p(Ag) = %), (vg v : p(As) 2= %) € E[+] p
By the definition of (W', v1,v2) € V [A1— As] p, we have
(W3, v1 vg,v9 vy) € E[A] p

By the inductive hypothesis for the step index, noting that
e Y: A Ay <% by definition
e W5 € §[X] by Lemma 5.9 (monotonicity)
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o (W3,p) € D[A] by Lemma 5.10 (monotonicity)
o (W3, vy vh,va v)) € E[Aa] p
We have what we were required to show.
S:AFB
S:AFx<B
We assume (W, ey, es) € € [*] p and need to show that

Case

(W, (e1:% == p(B)), (e2:% == p(B))) € E[Bl p
We proceed by monadic bind, so we consider arbitrary W', vy, vo such that W/ 3 W and
(W' v1,v2) € V[*] p.
We proceed by cases on B:
1. B=1t. So p(B) =¢. Based on (W’ ,v1,v2) € V[4] p, we have three subcases to consider:
(a) v1 = (v:1/ =% %) and vy = (v: 1/ == )
Suppose ¢/ = ¢. Then
W .Siv (vt == %) :ix == 1) — W X for i € {1, 2}.
We apply anti-reduction (Lemma 5.14), so it suffices to prove that
(W' v,v)e&fp

which is true because related values are related terms (Lemma 5.13).
Suppose ¢’ # t. Then

W' .S ((v:d =% %) :x = 1) — W'.E;pblamep for i € {1,2}.
We apply anti-reduction (Lemma 5.14), so it suffices to prove that
(» W', blame p,blamep) € £ [¢] p

Which is immediate from the definition of & [¢] p.
(b) vy = (V) :x—* == %) and vy = (V) : x— * == %) and (W', v}, v}) € V[x—=+] p
We have
W' 2> (v ik == 1) — W'.3;>blamep for i € {1,2}.
so the proof is similar to the above case in which ¢/ # ¢.
(c) v = (V) :a =% %) and vy = (vh: v == %) and (W', v}, v) € V[a] p
We have
W' 2> (v % == 1) — W'.3;>blamep for i € {1,2}.

so the proof is similar to the above case.
2. B= B1 — BQ.
Based on (W', v1,v2) € V [*] p, we have three subcases to consider:

(a) v1 = (v:e == ) and vy = (V:1 == %)
We have

Wi (v;: % == p(B1)— p(Ba)) — W' X;>blamep  forie {1,2}.

and the rest of this case is straightforward.
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(b) vy = (V) :x— % == *) and vy = (V) : x—* == %) and (W', v}, vh) € V[x—=+] p
Suppose B = x — x. Then we have
WSio (V] k=% = %) 1k == x— %) — WD) forie {1,2}.

We apply anti-reduction (Lemma 5.14). By monotonicity, we have (»W’' v{,v}) €
V [x— «]] p and we conclude because related values are related terms (Lemma 5.13).
Suppose B # x— . Then p(B) # *— *.

So

WS> (v;: % == p(B1)— p(Ba))
— Wb (05 1% = 5= *) 1 x— % == p(B1)— p(Bs))
— WS> (v] k=% == p(B1)— p(By)) for i € {1,2}

We proceed via anti-reduction (Lemma 5.14), noting that W’.j = »»W’.j + 2, so we need
to show
(mw T, (o] 55 L p(B)), (v x> % = p(B))) € E[B] p

which we obtain by the induction hypothesis for the step index.

(c) vy = (V) : e/ =% %) and vy = (vh: 0/ == %)
We have

WS> (v;: % == p(B1)— p(Bg)) — W'.%;pblamep for i € {1,2}.

and the rest of this case is straightforward.
3. B =VX. B’: Because related values are related terms (Lemma 5.13) it suffices to show

(W', (v1 : % == VX. p(B")), (vg: %+ == ¥X. p(B"))) € V[VX.B'] p

Consider arbitrary W”, o/ such that W” 3 W’ and o € dom(W".k). Let v} = (v; : % ==
VX.p(B')) We need to show that

(W [o'], 03 [@]) € E[B] p[X = o]
We have
W S0} [o] — WS (v;:x == p(B')[o//X])

We proceed via anti-reduction (Lemma 5.14), so we need to show

v, (e =2 p(B)la//X]), : :
(’W " (vaex L p(B) o'/ X]) )ESHB“”[XH“]

which we obtain by the induction hypothesis for the step index.

4. B = X: We have X € A and (W’,p) € D[A] (by monotonicity), so p(X) = o« and
o € dom(W'.k) for some o’. We need to show that

(W', (01 :% == o), (v2:%x = ') € E[X] p
The rest of this case follows the same reasoning as for the next case where B = a.

5. B = So p(B) = a. Based on (W’,v1,v2) € V[+] p, we have three subcases to consider:
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(a) vy = (v:e == ) and vy = (V: 1 == %)
We have
WS> (v;: % == a) — W'.5;>blamep for i € {1,2}.

so it is straightforward to finish this case.

(b) v = (V) :x = *x == ) and vy = (vh: % — * == ) and (W', v}, v4) € V[x = +] p
We have
WS> (v; 1 x N a) — W'.X,;>blamep for i € {1,2}.

so it is straightforward to complete this case.
(c) v = ((0):A; == /) :0/ =% %) and vy = (V] : Ay == /)1’ =% %)
and (W' vy, v5) € wW'k(a).
Let v} = (v} : A; =% ) and v} = (v§ : Ay == ).
We need to show that
(W (Vo =5 %) ix =25 a), (v o =5 %)% == a)) € E]a] p

As an aside, recall that 3; A F B and B = a so a € dom(X). Also, because W’ € S [¥]
(by monotonicity, Lemma 5.6), we have a € dom(W’.k).

e Suppose o = . Then
W' i ((v):a) =5 %) :x = a) — W.Spo)  forie {1,2}.

We proceed via anti-reduction (Lemma 5.14). From (W', v{,v}) € »W'.k(’), we have
W', vy, v5) € V[a] p and so we conclude that (W', v}, v5) € € [a] p because related
( 1, V2 P 1, V2 P

values are related terms (Lemma 5.13).

e Suppose a # . Then
W 8o ((v):o) =5 %)% = a) — W'.S;>blamep  for i {1,2}.

So it is straightforward to complete this case.
6. B = %: We have

W/.Eib(’l)i Lk :p> *) — W/.Eibvi fori e {1,2}

We conclude this case by anti-reduction (Lemma 5.14) and note that related values are related
terms (Lemma 5.13).

O
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7 Fundamental Property / Parametricity

Lemma 7.1 (Compatibility: True)
¥; A; T Ftrue <true : bool.

Proof
Clearly, 3; A; T Ftrue : bool.
Consider arbitrary W ,p, v such that:
o WeS[X]
» (W,p) eD[A]
e (Wy)eg[I]p

‘We need to show that

(W, p(y1(true)), p(v2(true))) € & [bool] p
= (W, true,true) € & [bool] p

Since (W, true,true) € V [bool] p, by Lemma a 5.13 (related values are related terms) we have what we
needed to show.

O
Lemma 7.2 (Compatibility: False)
¥, A; T Ffalse <false : bool.
Proof
The proof is analogous to that for true. O

Lemma 7.3 (Compatibility: If)
If3;A;THe=<e':bool, ;A;T ey <ef: A, and X;A;T Fey<ef: A,
then ¥; AT Hif e then e else eg <if €’ then ef else e€}: A.

Proof

Note that ¥; A;T' Fif e then e else ea: A and ¥; AT Hif e’ then ef else e} : A are immediate from
the premise.

Consider arbitrary W, p, v such that
o WeS[X]
» (W,p) eD[A]
e (W) eg[l]p

We need to show that

(W, p(y1(if e then ey else e2)), p(y2(if €’ then e] else €}))) € E[A] p
= (Wif p(y1(e)) then p(y1(er)) else p(vi(e2)),if p(y2(€’)) then p(v2(er)) else p(12(e3))) € E[A] p
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Let

Ey = if [] then p(71(e1)) else p(71(e2))
By = if [ then p(ya(e})) else p(7a(ch))

Instantiating the first premise with W, p, and -+, we have that (W, p(71(e)), p(12(¢'))) € & [bool] p. We
will use monadic bind to proceed.

Let W/ J W and let (W', vy, v2) € V[bool] p. By Lemma 5.15 (Monadic Bind), it suffices to show that

(W', E1[v1], Ealvs]) € E[A] p

So v; = vg = b by the definition of V [bool] p, and depending on whether b = true or b = false we have
either
Erftrue] — p(y1(e1)) and  Exftrue] — p(72(eq))

Ei[false] — p(v1(e2)) and Fs[false] — p(v2(€3))

Hence, by Lemma 5.14 (anti-reduction), noting that W' J W’ and W’.j < W'.j + 1, it suffices to show
that

(W', p(mi(en)), plraler))) € E[Alp and (W', p(mi(e2)), p(12(e2))) € E[A] p

We can obtain these by instantiating the second and third premises with W’ p, and ~, noting that
W' e S[Z], (W', p) € D[A], and (W’,5) € G[T'] p by the monotonicity lemmas (5.8,5.9, 5.10).

O

Lemma 7.4 (Compatibility: Int)
X AT Fn <n:int.

Proof
Clearly, ¥; A;T' Fn tint.
Consider arbitrary W, p, v such that:
o WeS[X]
o (W,p) e D[A]
e W) eg[l]p

‘We need to show that

(W, p(11(n)), p(72(n))) € E[int] p
=(W,n,n) € &Jint]p

Since (W, n,n) € V[int] p, by Lemma 5.13 (related values are related terms), we have what we needed
to show.

O

Lemma 7.5 (Compatibility: Op)
If3;A;THep <ef:int and ;A;T Feg<e):int, then 3;A;T Fe; ®eg<ef ®el:int.

Proof
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The first and second conjuncts are immediate.

For the third conjunct, consider arbitrary W, p,~ such that:
o WeS[X]
e (W,p) € D[A]
e W) eg[l]p

We are required to show that:

(W, p(v1(e1 ® e2)), p(v2(e; ® €3))) € E [int] p
= (W, p(y1(e1) ® p(11(€2))), p(72(€1) ® p(72(e3)))) € € [int] p

Instantiate the first premise with W, p,, noting that
e WeS[X]
.« (W,p) e D[A]
e W) eg[l]p
We have that (W, p(7:(e1)), p(2(e1))) € & [int] p.
We will use monadic bind to proceed. Consider arbitrary W’, vy, v] such that
o W W
o (W' vg,vy) € Vint]p
It suffices to show that (W', v1 ® p(y1(e2))), v ® p(12(€5)))) € & [int] p.
By the definition of V [int] p, we have that v; = v}, so we may equivalently show that

(W', v1 @ p(11(e2)),v1 ® p(12(e3))) € E [int] p

Instantiate the second premise with W', p, v, noting that

e W € S[X] by Lemma 5.9 (monotonicity)
o (W', p) € D[A] by Lemma 5.10 (monotonicity)
o (W',v) € G[I'] p by Lemma 5.8 (monotonicity)

We have that (W', p(71(e2)), p(12(€h))) € & [int] p.
We will use monadic bind to proceed. Consider arbitrary W, vy, v such that
e W' W
o (W, vg,vh) € Vint] p
It suffices to show that (W", v ® ve,v; ®vj) € & [int] p.
By the definition of V [int] p, we have that vy = v}, so we may equivalently show that

(W vy ® o, 01 ®v2) € & [int] p

If W”.5 = 0, we have what we are required to show. Otherwise, by Lemma 5.14 (anti-reduction),
it suffices to show that (MW", [®] (v1,v2), [®] (v1,v2)) € E[int] p. Then, since related values are
related terms (Lemma 5.13), it suffices to show that (»W”, [®] (v1,v2), [®] (vi,v2)) € V [int] p, which
is immediate.

O
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Lemma 7.6 (Compatibility: Var)
If X A;Tkx: A then ;AT <z :A.

Proof

The first and second conjuncts are exactly equivalent to the premise.

Consider arbitrary W, p, « such that
e WeS[X]
» (W,p) e D[A]
s W) eg[llp

We are required to show that

(W, p(1(2))), plra(w)))) € € [A] p
= (W,n(2),12(x)) € E[A] p

Since (W,~) € G[T'] p, there exist vy and v such that:
e () = (vi,v2)
o (W,v1,v2) € V[A]p
By lemma 5.13 (related values are related terms), we then have that

(W,v1,v2) € E[A] p
= (Wyi(z),v2(z)) € E[A] p

as we were required to show. O

Lemma 7.7 (Compatibility: Lambda)
IfY ;AT oAb ey <eq: B then B; AT Az :A).ey SA(z:A).ea: A— B.

Proof
Note that Z; A;TFA(z:A).e1: A= B and X;A;TFA(z:A). e2: A— B are immediate from the

premise.

Consider arbitrary W, p, v such that
o WeS[X]
o (W,p) eD[A]
e (W,7)eg[l]p

We are required to show that:

(W, p(n(\(z : A). e1)), pya(A(x : 4). e2)) € E[A— B] p
= (W,A(z : p(A)). p(1(e1)) Mx : p(A))- pl3(e2))) € E[A— B p

By Lemma 5.13 (related values are related terms) it suffices to show that

(W,A(z : p(A)). p(r1(e1)), Az : p(A)). p(12(e2))) € V[A— Bl p

Consider arbitrary W/, vy, vy such that
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e W I W
o (W' vy,v2) € V[A]p

It suffices to show that
(W', (M : p(A)). p(vi(e1))) vi, A(z 2 p(A)). p(r2(e2))) v2) € E[B]p

Note that
W'.E1> Az :p(A)). p(r1(e1))) vi —> W.Eiep(ni(er))|vi/z]

and
W' So0 (A= :p(A)). p(2(e2))) va — W'.Eapp(ya(e2))[ve/]

Hence, by Lemma 5.14 (anti-reduction), noting W’ 3 W' by reflexivity and W'.j < W'.j + 1, it further
suffices to show that
(W', p(m(er))[vi/z], p(ra(e2))[va/z]) € E[B] p

Instantiate the first premise with W', p, and [z — (v1, v2)]. Note that

e W' e S[X] by store monotonicity (Lemma 5.9)
o (W', p) € DJA] by monotonicity (Lemma 5.10)

o (W' vz — (vi,v2)]) € G[I',x : A] p, which follows from (W’,v) € G[I'] (which we have by
monotonocity (Lemma 5.8)) and (W', v1,v2) € V[B] p (which we have from above)

Hence we have
(W, p(y1lz = vil(er)), p(v2[z = val(e2))) € E[B]p

Since v; and vo contain no free type or term variables, the above is equivalent to

(W', p(n(er))[vi/z], p(ra(e2))[v2/x]) € E[B] p

which is what we needed to show. O

Lemma 7.8 (Compatibility: Application)
IfS;A;The;<ex:B—>A and ;A T e 2e): B, then ;AT ey ef Seq eh: A

Proof

Note that X;A;T'Feq ef: A and ;AT Fey e): A are immediate from the premises.
Consider arbitrary W, p, v such that

e WeS[X]
e (W,p)eD[A]
e W) eg[I]p
We are required to show that

W.p(mi(er er)), p(r2(e2 €3))) € E[A] p
= (W, (p(11(e1))) (p(r1er))), (p(r2(e2))) (p(12(e3)))) € ETA] p
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Instantiating the first premise with W, p, and v, we have that (W, p(y1(e1)), p(12(e2))) € E[B— A] p.
We will use monadic bind to proceed.

Let W J W and let (W', v1,v2) € V[B— A] p. By Lemma 5.15 (monadic bind), it suffices to show
(W' v1 (p(1aler)), vz (p(12(e2)))) € E[A] p

Instantiating the second premise with W, p, and +, we have that (W, p(v1(e})), p(12(e3))) € E[B] p.
We will again use monadic bind to proceed.

Let W” 2 W’ and let (W”, vy, v5) € V[B] p. Applying Lemma 5.15 (monadic bind), it suffices to show

(W vy v),va vh) € E[A] p

Instantiate (W', v1,v2) € V[B— A] p with W, v{, and v}, noting that W” I W’ and (W",v{, v}) €
V [B] p- Hence, we have (W, v1 v, v2 v35) € E[A] p as we needed to show. O

Lemma 7.9 (Compatibility: Type Abstraction)
IfS; A X;THo 209 A and XA T, then ;AT HAX v KAX 09: VX A.

Proof
Note that X; A, X;THFAX v :VX. Aand X; A, X ;T FAX .vy:VX . A are immediate from the premise.
Consider arbitrary W, p, v such that
o WeS[X]
e (W,p) € D[A]
e (Wy)egG[l]p
We are required to show that

(W, p(11(AX .01)), p(r2(AX .02))) € E[VX . A] p
= (W, AX p(1(01)), AX .p(12(v2))) € € [VX . A] p

By Lemma 5.13 (related values are related terms), it suffices to show that
(W, AX p(71(v1)), AX .p(72(v2))) € VIAX . A] p
Consider arbitrary W', By, Ba, R, e1, €3, a such that

W' Iw

W/.El; . FBl and W/.ZQ; . FBQ

R e RelW/_j [Bl, BQ]

W/.El l>/\Xp(’}/1(’Ul)) [Bl] — W/.217O£I:B11>(61 p(A)[a/X] g} p(A)[Bl/X])

o W S50 AX .p(v2(v2)) [Ba] — W' Eo, :=Ba (e2: p(A)er/ X] =2 p(A)[B,/X])

53



Let WQ W' H (a,BhBQ,R).

It suffices to show that
(W27€1,€2) €€ [[A]] p[X — 04

Note that by the operational semantics,

W'.S10 AX p(31(01)) [Bi] — W', a:=B1 > (p(n (v1))/ X] : p(A)er/ X] £3 p(A)[By/X])
W'.S20 AX p(35(v)) [Ba] — W', =By > (p(12(ve)) [0/ X] : p(A)[a/X] £3 p(4)[By/ X))

Therefore, we may equivalently show that

(Wa, p(y1(v1))[e/ X], p(y2(v2))[a/ X]) € E[A] p[X = a]
= (Wa, p'(71(v1)), p'(12(v2))) € E[A] o'

where p' = p[X — al.
Instantiate the assumption with Wy, p/, v, noting that
e W5 € S[X] by Lemma 5.9 (monotonicity) since Wo I W

o (Wa,p') € DA, X] by the definition of D [A, X] and from (Ws, p) € D[A], which we obtain
from Lemma 5.10 (monotonicity)

o (Wy,v) € G[I'] p' by Lemma 5.8 (monotonicity) and Lemma 5.11 (logical relation weakening)

We then have that
(W2, p'(71(v1)), p'(2(v2))) € E[A] ¥/

as we were required to show. O

Lemma 7.10 (Compatibility: Type Application)
IfS;A;The; <ea:VX. A and ;A F B then ;AT ey [B]<Xeqy [B]: A[B/X].

Proof

First, note that ¥; A;T' ke [B]: A[B/X] and ;AT e [B]: A[B/X ] are immediate from the first
two premises.

Consider arbitrary W, p, «v such that
o WeS[X]
e (W,p)eD[A]
e Wy)egl]p

We are required to show that

(W p(v1(e1 [B])), p(v2(e2 [B])) € E[A[B/X
= (W, p(v1(er)) [p(B )LP( 2(e2)) [p(B)]) € €

Instantiating the first premise with W, p, v we have that (W, p(v1(e1)), p(y2(e2))) € E[VX . A] p. We
will use monadic bind to proceed.
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Let W/ J W and let (W', v1,v3) € V[VX.A] p. By Lemma 5.15 (monadic bind), it suffices to show
that
(W' v [p(B)], vz [p(B)]) € E[A[B/X]] p

Note that W'.%;;- F p(B), which follows from the premise ¥; A+ B along with W’ € S[X] (which
follows by monotonicity from W € S[X]) and (W', p) € D[A] (which follows by monotonicity from
(W p) € D[A]).

The result is then immediate from Lemma 6.4 (pre-compatibility for type application).

Lemma 7.11 (Compatibility: Pair)
IfX;A;The;<eg: A and X; AT Hef <eb: B, then ;AT F{(ey,ef) X{(ea,el): Ax B.

Proof

The proof of the lemma is standard. O

Lemma 7.12 (Compatibility: Left Projection)
IfY:;A;TkFeyReg: Ax B then X; AT e <mrex: A.

Proof

The proof of the lemma is standard. O

Lemma 7.13 (Compatibility: Right Projection)
IfY:;A;TFeyRes: Ax B then X; AT g ey <Xmpeq: B.

Proof

The proof of the lemma is standard. O

Lemma 7.14 (Compatibility: Conversion)
IFS;ATHe <es:A and S;AFA<? B, then S; AT F (e1: A =2 B) < (e2: A =% B): B.

Proof
Note that X; AT F(er: A N B):B and X;A;T H(ep: A 2 B): B follow from the premises.
Consider arbitrary W,p, v such that
e WeS[X]
.« (W,p)eD[A]
e (Wiy)eg[I]p

We are required to show that

(W, p(r1(e1: A =2 B)), p(va(es: A =2 B))) € E[B] p
= (W, (p(71(e1)): A1 == Ba), (p(v2(e2)): A2 =% Bo)) € E[B] p
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where A1 = p(A4), As = p(4), B1 = p(B), and By = p(B).
Instantiating the first premise with W, p, v we have that

(W, p(v1(er))), p(va(e2)))) € E[A] p

We will use monadic bind to proceed.
Let W/ 2 W and let (W', v1,v2) € V[A] p. By Lemma 5.15 (monadic bind), it suffices to show that

(W, (v1: Ay == B1), (v2: Ay =% B)) € £[B] p

Note that we have ¥; A - A4 <% B as a premise, and that by monotonicity we have W’ € S[X] (by
Lemma 5.9) and (W', p) € D[A] (by Lemma 5.10). Also, note that (W', vy, vs) € E[A] p since related
values are related terms (by Lemma 5.13).

The desired result now follows by the Conversion Lemma (Lemma 6.3). O

Lemma 7.15 (Compatibility: Cast)
IfS:AThe <ep: A, 2;AFA<B then ;AT H(e1: A =5 B)<(es: A => B):B.

Proof

Note that $;A;T F(e;: A == B):B and ;A ;T +(ey: A == B): B follow from the premises.
Consider arbitrary W, p, v such that

e WeS[X]

o (W,p) e D[A]

e (Wiy)eg[I]p
We are required to show that

(W,p(v1(e1: A = B)), p(va(e2: A = B))) € E[B] p
= (W, (p(y1(e1)): p(A) == p(B)), (p(v2(e2)) : p(A) == p(B))) € E[B] p

Instantiating the first premise with W, p, v we have that

(Wi p1(v1(e1)), p2(v2(e2))) € E[A] p

We will use monadic bind to proceed.
Let W J W and let (W', v1,v2) € V[A] p. By Lemma 5.15 (monadic bind), it suffices to show that

(W', (v1:p(A) == p(B)), (v2:p(A) == p(B))) € E[B] p

Note that we have ;A F A < B as a premise, and that by monotonicity we have W’ € S[X] (by
Lemma 5.9) and (W', p) € D[A] (by Lemma 5.10). Also, note that (W’ v1,vs) € £ [A] p since related
values are related terms (by Lemma 5.13).

The desired result now follows by the Cast Lemma (Lemma 6.5). O

Lemma 7.16 (Compatibility: Blame)
>, A;T Fblamep <blamep : A.
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Proof

Clearly, 3¥; A;T Fblamep : A.
Consider arbitrary W, p, v such that

e WeS[X]
e (W,p)eD[A]
e W) eg[l]p

We are required to show that

(W, p(y1(blame p )), p(y2(blame p ))) € E[A] p
= (W, blame p ,blamep ) € E[A] p

This is immediate from the definition of £ [A] p.

Theorem 7.17 (Fundamental Property)
IfS:A;T'He: A, thenX;A;THe<e: A.

Proof

By induction on the derivation of ¥; A;I'e: A. Each case follows from the appropriate compatibility
lemma. O
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8 Soundness W.r.t. Contextual Equivalence

Lemma 8.1 (Weakening)
IfY:;A;Ther<eq: A, X' DX, AYDA, and TV DT then ¥; AT Fe; <eg: A.

Proof

Consider arbitrary W, p’, ' such that
o WeS[¥]
o (W,p") e D[A]
o (W) egGI"y

We need to show that (W, p'(vi(e1)), p'(v5(e2))) € E[A] p'.

Let p 3 p’ such that dom(p) = A. Let v J 4 such that dom(y) = dom(T").

Since ¥;A;T'Feq: A, for any z in e7, z € dom(I"). Similarly, for any X in e;, X € A. Therefore,
p'(n(er)) = p(m(er)).

The same reasoning holds for es.

Hence, it suffices to show that (W, p(y1(e1)), p(72(e2))) € E[A] o'

Further, by Lemma 5.11, it suffices to show that (W, p(y1(e1)), p(72(e2))) € E[A] p.

Instantiate the premise with W, p, 7. Note that W € S[X] since S [E] 2 S[X’]. Further note that
(W, p) € D[A] because for all X € A, we have that p(X ) = p'(X ) = o where a € dom(W.k).

We claim that (W,v) € G[I'] p. For all z € dom(T"), we have that y(z) = 7/(z) = (v1, v2) where
(W,v1,v2) € V[I'(z)] p'- By Lemma 5.11 (logical relation weakening), we have that (W, vq,v2) €
V[T (z)] p. This gives us (W,~) € G[I'] p.

Hence, we have that (W, p(vy1(e1)), p(v2(e2))) € £ [A] p as we were required to show.

Lemma 8.2 (Congruence)
IfS;A;The;<eg: A and - C: (B;A;THA) ~ (X5AGT'EB) then &5 AT E Cler] 2 Cles]: B

Proof

By induction on the type derivation for C, using Lemma 8.1 (weakening) for the cases where C is empty,
and the compatibility lemmas for all other cases.

O

Lemma 8.3 (Adequacy)
IfY; ;- Fep<eq: A and X >eqd) then X >esd).

Proof

Assume that ¥ > eq 7.
Let W= (j,2, 2, {a— [V[A]0]; | a:=4 € X}).

Instantiate the premise with W, 0, (), noting that W € S[X], (W,0) € D[], and (W,0) € G[]0.
Hence, we have that (W, e1, e2) € E[A]D. Thus, we also have that 3 >es| as we were required to
show.

O
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Theorem 8.4 (Soundness: Logical Approx. implies Contextual Approx.)
IfFX:;A:The;=eg: A then B; AT ey X% eyt A,

Proof

Clearly, ¥;A;TFe;: A and X;A;T Feqg: A.
Consider arbitrary C', ¥/, B such that

e FC:(Z;ATHA) ~ (X5 -5 - FB)

We are required to show that /> Clei]y = /> Cles]|.
By Lemma 8.2 (congruence), we have that ¥/; -; - = C'[e1] < C[es]: B.
Additionally, by Lemma 8.3 (adequacy), we have that ¥'> C'[e1]{} =

¥'> Clea] as we were required
to show.

O
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9 Examples

Lemma 9.1 (Identity Conversions are Contextually Equivalent)
IS ATH(e: A=S A): A then S5 A TH(e: A =2 A) et e A

Theorem 9.2 (Free Theorem: K-Combinator)
Suppose ¥ -5 - Fu:VX. VY. X—>Y—X %; ;- Fovi:A, and X; - - Fvy: B. Then either

1. Spv[A] [B] v1 vg —* Ypwve A Y -5 - Fuox® o A for some Y v, or
2. Yoo [A] [B] v1 va f, or
3. Zvw [4] [B] v1 v2 —* ¥ >blamep for some ¥/, p
Proof
Let e = v [A] [B] vy va.
If Xvefor ¥pe —* Y >blamep then we have what we are required to show.

Otherwise, it must be that X >e —* ¥/ >wv,.., and we are required to show that X'; -; - F v,.es =67 vy 1 A.

We use Lemma 4.10 (redex termination) to guarantee that all subexpressions terminate in values. This
reasoning is omitted in the rest of the proof for brevity.

Let k = {a— [V[E()] 0], | @€ X} and let Wy = (n +1,%,5,5).

By the Fundamental Property (Theorem 7.17), - -; - Fo<v:VX.VY. X—= Y — X. We instantiate this
with Wy, 0,0 so we have (Wy, v,v) € £ [VX.VY. X—Y— X] 0 and therefore

(Wo,v,v) € V[VX. VY. X— Y — X[ 0

Choose some «. Define

Rx = {(W,v.,0,) € Atom}) [A, A] | v, = v V v, = (v : 4 =2 A)}
W1 = WQ H (Oé,A7A,Rx)

By Lemma 5.18 (instantiation steps), we have
Wo.Sibv [A] — WS (e1:VY. a— Y= o =3 VY. A— Y — A)
for some e;.
Instantiate (Wy,v,v) € V[VX.VY. X— Y — X] 0 with Wy, A, A, Rx, e, e1,a, noting that
o Wy O Wy by reflexivity
o - FA
(] RX S Relwo,j [A, A]
o Wo.Bibv[A] — Wi.Eib(e1:VY.a—Y —a =2 VY. A Y — A)

We have that (Wi,e1,e1) € »E[VY. X =Y — X[ 0[X — a] or equivalently, by Lemma 5.17 (composi-
tionality) and since Wy.5 > 0, that (»W1,e1,€e1) € E[VY. a—= Y — o] 0.

We have that »W;.5;pe; —™ Xi>0v" where m < n, 31 2O »Wi.E;, and Wo = (»W7.j —
m, X1, E1, [WWik ] yy, ;). Therefore, we have (Wa,v',v") € V[VY.a— Y —a] (.
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Choose o' such that o/ ¢ ;.

By the operational semantics, we have that

>e —F Wl.Eibeﬁ [B] V1 U2

—* Xp,a:=Br>((v [¢/]:a—d =« 22 Ao/~ A):A—ad'— A = A B A) v1 vy

Choose some o’ such that o ¢ (£1,a/:=B). Define

W3 = W2 EB (O/vaBv |_V [[B]] pJWQJ)
Wy =W3 8 ("o, [V[d] plw, ;)

By Lemma 5.18 (instantiation steps), we have

Wo.Si, o i=Bov [of] — Wi ;b (ez:a—a'—a =% a— B—a)

for some es.
Instantiate (Wa,v',v") € V[VY. A=Y — A] 0 with W3, o/, o/, [V ['] ply, ; €2, €2, ¢, noting that
e W3 O W5 by the definition of world extension
[ W3E“ i e
o V][] plw, ; € Relw,.;la o]
o W3 X0 [f] — WyE;>(e2:a—a"— o a—a'—a)
We have that (Wy, ez, e3) € »&€ [a— Y — a] O[Y — o] or, by Lemma 5.17 (compositionality) and since
Wy.j > 0, equivalently that (»Wy, e, e2) € € [a— a”— a] 0.

We have that BW,.3;bey —! Mopo” where | < »Wy.j, B9 O »WyY;, and W5 = (»Wy.j —
1,39,%,, \_>W4./-@J>W4'jfl). Therefore, we have (W5,v”,v") € V [a— o — ] 0.

By the operational semantics we have that

’
e —* WX ((v [o/]:a—>a’—>a§>A—>o/—>A):A—>o/—>A§>A—>B—>A) vy Vg
" ’
% Db (v a—s o’ a s asa/sa)iasd a2 A a/ 5 A) Ao/ AES A B A) vy vy

" ’
—* Db (0 V) e s a S o/ a) o a 2 o/ A)id— A LS B A) vy

where either v = ((vy: A = A): A =2 a)or v = (v1: A =2 a). Then by preservation, Xo; -; - -0} : .
We have that (W5, v],v]) € V[a] @ by definition since (W5, (v1: A = A),(v1:A = A)) € Ry and
(W5, 1)1,’[}1) € Rx.
Instantiate the definition of (W5,v”,v") € V [a— o — o] @ with W5, v], v}, noting that

o W5 3 W5 by reflexivity

b (Wg,,’UL’Ui) eV [[aﬂ 0
We have that (Ws,v” vf,v"” v}) € € [a”— a] 0 and that Yo >v"” v) % Y3>wv3 for some k < Ws.j, vs,
and 23 2 22.
Let WG = (Wg,j — k, 23, 23, \_WE"KJWs.j—k)'
We then have that (Ws,vs,v3) € V' [o”— o] 0.
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By the operational semantics, we have that

" ’
be —* WaSio (V' v):a"—sa o/—a):id—a =3 o/ A):d/ 5 AZS B A) vy
" ’
st W Siv (130" a5 o/ —a)id/—a Z3 o/ A):o/— A S B A) vy

—* W52 > (((vs v’zzaga):agA):AgA)

for some v} such that, by preservation, Xs; -; - Fvh:a”.

b

By the Fundamental Property (Theorem 7.17), ¥, o/:=B,a”:=d/; - ; - F vl v} :a”. Instantiate this
with We, 0, 0. We have that (Ws,vh,v5) € €[] 0 and therefore

(Wﬁa vé?”é) eV Hauﬂ (Z)

Instantiate the definition of (Ws,vs,v3) € V [o'— o] § with Wg, v, v5, noting that

o Wy J Wy by reflexivity

o (We,v5,v5) € V[a"T0
We have that (Ws,v3 vh, vz v}) € € [a] @ and that X3>v3 v} " %, >y for some n' < We.j, v4, and
54D s
Let W7 = (W6] — n’,24,24, I_WG'KJWG.jfn’)'
We then have that (W7, v4,v4) € V [ 0 and by the definition of V [ @, we have that vy = (v} : A == a)
and (W, v}, v)) € wWr.k(a).

By the operational semantics, we have that

‘>e —* Yo (((vs vé:aga):agﬁA):AgA)
s e (0225 0) a0 =2 4): A S5 4)
— S (0 A=2 a):a 22 4): A E% Q)

— E4D(UQ:A§;A)

Since W7.j > 0, we have that (»W7,vy,v5) € [Rx]yy, ;. Thus, we have that either vj = v; or
vy = (vl:A_:a; A).

Consider the case where vj = v;. By Lemma 9.1 (identity conversion equivalence), we have 34; - ; -
F(vg: A £ A) =y : A as we were required to show.

Otherwise, vy = (v1: A = A). By two applications of Lemma 9.1 (identity conversion equivalence),
we have X4; -3 - H(vj: A £ A) =% yy 1 A as we were required to show.

O

Theorem 9.3 (Free Theorem: Swap)

Let
oo Fr 0 VX X XXX xX
X -5-Hf : A—B
s -Fv o 0 AxA
= = Mz:A)ANy:A).{f ,f y)

IfYo f (my o)l and o f (mev){ then X5 - - = f% (r [A] v)=°®r [B] (f* v): B x B.
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Proof

By Lemma 4.1 (canonical forms), we have that v = (vq,v9).

From the assumptions, we have that X f (7; v) —* 3, 31> 0v] and Xp f (1o v) —* X, Xy >0} for
some X, Xo, v}, vh.

It suffices to show that X; -5 - F f* (r [A] v) =7 [B] (f* v): B x B by Theorem 8.4 (soundness). We
prove each conjunct separately.

Left: We are required to show that ¥; -; - = f* (r[4] v) <7 [B] (f* v): B x B.

Consider arbitrary W, p,~ such that

o W eS[X]

e (W.,p)eD[]

e W) edllr
We have that p = () and v = @ by definition.
It suffices to show that (W, f* (r [A] v),r [B] (f* v)) € £[B x B] p.
By the Fundamental Property (Theorem 7.17), we have ¥; -; - Fr<r:VX. X x X— X x X. We
instantiate this with W, (), #, noting that

e W € S[X] by definition of S [X]

e (W,0) € D[] by definition D [-]

o (W,0) € G[-]0 by definition of G [-]0
We then have (W,r,r) € E[VX. X x X— X x X] 0.

Assume that W.X;>r —" X! >r, where n < W.j. Otherwise, we have what we are required to
show.

By the definition of £ [VX. X x X— X x X] 0, we have that there exists W’ such that

e W I, W
o« W'.N, =3
o« WD, =3

o (W' ry,ry) €eV[VX. X x X— X x X[ 0
Choose « such that o ¢ W'.3; and a ¢ W'.Xs.
Let R = {(W,v3,v4) € Atom}’j}l,_j [A,B] | £ f v3 —* Ypovf A (W,v5,04) € V[B] 0} and let
Wy =W'H (o, A, B, R).
By Lemma 5.18 (instantiation steps) there exists e; such that

W .Sior, [A] — W.S,a=A>(e1:aXxa—axa=3 Ax A Ax A)
W' .Sybr, [B] — W'.Sy,a:=Bb(e1:axa—axa=2BxB—BxB)

Instantiate (W', ry,7,) € V[VX. X x X— X x X] 0 with W/, A, B, R, e1, e1, a, noting that
W' 3 W' by reflexivity

W'.31; - B A by weakening

W'.3s; - F B by weakening

R e RelW/_j [A, B}

W' Sipr, [A] — WS, a=Av(e1:aXxa—axa 2L Ax Ao Ax A)

W' Sobry [B] — W'.5s,t=Bb(e1:a X a— o x a =% B x B— B x B)
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We have that (Wa,e1,e1) € E[X x X=X x X[ 0[X — «].
Then, by Lemma 5.17 (compositionality) we have that

(Wa,eq,e1) € Elaxa—axa]l

Assume that Wo.X1>e; —™ Y3 wg where m < Wi.j. Otherwise, we have what we are required
to show.

Instantiate (Wa,eq,e1) € € [a X a— a x o] @ with m, X3, v3. There exist W3, X4, v4 such that

Wy Xo>ey —* Xybuy

Ws 3., Wa

W3.21 =33

W35 = 3,

(Ws,v3,04) € V]axa—axa]d

By the operational semantics, we have that W.35> f* v —* X 3, Yo > (v],05).

Let W = (W.j5,(W.X1,%1), (W2, X1), Wk U{a = [V[E1(a)] 0]y, | @ € dom(X1))}). Note
that W’ JW.

By the Fundamental Property (Theorem 7.17), we have that ¥, ¥1; -; - o] v} : B. We instantiate
this with W”, (), @, noting that

o W"e S, %]

o (W",0)eD[]

o W".0)eG[]0
Therefore, since values related in £ [B] 0 are related in V [B] @, we have that (W",v{,v}) € V[B] 0.
Let W5 = (Ws.j, (W3.51,%1), (W3.52,%1), Wa.k U{a = [V[S1(0)] 0]y, ; | @ € dom(E1))}).
Note that (W3, (vi: A == a), (v} : B == a)) € V[a] 0 since Wj.k(a) = Ry, o B0 f v1 "
¥, ¥ >o), and (Wi, v1,v;) € V[B] 0 by Lemma 5.6 (monotonicity) since W4 3 W".
Likewise, let W' = (W.j, (W.21, £2), (W.E2, 52), Wk U{a = [V [Ea(a)] 0]y ; | € dom(E2))}).
Note that W J W.
By the Fundamental Property (Theorem 7.17), we have that X, ¥a; - - Fvj < v} : B. We instantiate
this with W’ 0, (), noting that

o« W e S[E, 5]

o (W 0)eD[]

o (W 0)yeG[]0
Therefore, since values related in € [B] ) are related in V [B] 0, we have that (W', v{,v}) € V[B] 0.
Let W3 = (W3.5, (W3.51, X2), (W3.52,52), Wa.k U {a = [V [E2()] 0]y, ; | @ € dom(2))}).
Note that (W4, (ve: A == a), (vy: B == a)) € V [a] 0 since W4 .k (a) = Ry, j» 20 f v2 ——7
¥, 31> vh, and (W, v5,v5) € V[B] 0 by Lemma 5.6 (monotonicity) since W4’ I W',
Let W5’ = (W34, (W35.31, 31, 32), (W5.39, 31, 3s), Wik U{a — |V [Z1(a)] U)JWM— | @ € dom(34))}U
{o= V[EA)] 0]y, ; | @ € dom(22))}).
Note that W§” 3 W3 and W3” 3 W3 by definition.
We then have (W}", (v1: A == a), (v} : B == a)) € V][a] 0 and (W5’ (vy: A == a), (vh: B =
a)) € V[a] @ by Lemma 5.6 (monotonicity).
Let vy = ((v1: A == a),(v2: A == a)) and let v/, = (v} : B == a),(vh: B == a)).
Therefore, we have (W5”,v,,v),) € V[a x «f 0 by definition.
We instantiate (W3, v3,v4) € V [a X a— a x o] § with W§", v,, v),, noting that

o Wi 1 W3 by definition
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o (Wi vy,v)) eV]axa]l
We then have that (W5, v3 v, v4 v)) € E o x a] O
Assume that W5". %) >v3 v, % Ts>vs where k < Ws.5. Otherwise, we have what we are
required to show. If k > Ws.j then k > W5 j =Woj—m=W.j—n—msok+n+m>Wjy
and we vacuously have what we are required to show.
Instantiate (W4, vs va,v4 v),) € € [ x ] @ with k, X5, vs. There exist Wy, Xg, vg such that

o Wi Sopuy v, —* g ug

o Wy 3 WY

o« W5, =¥

o Wy.3o =3
(Wy,vs,06) € V[axa]d

By the definition of V [a x o] 0), we have that vs = ((v5: 4 == a),(v): A == a)) and vg =

((vg: B == a),(vl: B == a)) where (Wy, (v : A == a), (vs: B == a)) € V[a] B and (Wy, (vf: A == a),
(v§: B =2 a)) € V[a] 0. By the definition of V [a] (), since Wy.k (o) = R, we further have that

Y5> f vpdl vf and X5 f v} v where (Wy,v%,v5) € V [B] 0 and (Wy, o7, v) € V [B] 0.

By the operational semantics, we then have that

o fX (r[Alv) R S X (pgia 22 A) ! 85,5y, S b g
Yor[B] (f* v) —* Ygbug

Recall that it suffices to show that (W, f* (r [A] v),r [B] (f* v)) € £[B x B] p.
We apply Lemma 5.14 (anti-reduction), noting that
e W, J W by transitivity of extension
o Wj<Wyj+k+n+m
S fX (r[A] v) —ktrtm Son X (g a0 £5A)
Yor[B] (f* v) —* Zgbug
Then it suffices to show that (Wy, f* (vs:a == A), (vg,vg)) € E[B x B] p.
Assume that Wy. 31> f* (v5: « a4 A) ——m' Yo > u, where m! < Wy.j. Otherwise, we have what
we are required to show.
Let W5 = (Wy.j —m/, Wy X1, Wy 30, LW4./-€JW4'j7m,).
By Lemma 5.14 (anti-reduction), it suffices to show that (W5, vz, (vg,vf)) € € [B x B] p,
which we have from the definition since v; = (v5,v%) and (Ws,vh,v5) € V[B] 0 and (Ws, 05, vg) €
V [B] 0 by Lemma 5.6 (monotonicity).
Right: We are required to show that 3; -; - Fr [B] (f* v) 2 f* (r[4] v): B x B.
Consider arbitrary W, p,~ such that
o W eS[Y]
e (W,p)eD[]
e W) egllp
We have that p = () and v = () by definition.
It suffices to show that (W,r [B] (f* v), f>* (r[A] v)) € £[B x B] p.
By the Fundamental Property (Theorem 7.17), we have X; -5 - Fr<r:VX. X x X— X x X. We
instantiate this with W, 0, (), noting that
e W € S[X] by definition of S [X]
e (W,0) € D[] by definition D [-]
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o (W,0) € G[-]0 by definition of G [-]0
We then have (W,r,r) € E[VX. X x X— X x X] 0.

Assume that W.X,;>r —" Xi>r, where n < W.j. Otherwise, we have what we are required to
show.

By the definition of £ [VX. X x X— X x X] 0, we have that there exists W’ such that

o W' I, W
e W3 =3
e W3y =3

o (W'iry,r) eV[VX. X x X=X x X]0
Choose « such that o ¢ W'.3; and a ¢ W'.Xs.
Let R = {(W,vs,v4) € Atomﬁll_j [B,A] | > f vy —* Y'pov) A (W,vs,v)) € V[B] 0} and let
Wy = W' B (o, B, A, R).
By Lemma 5.18 (instantiation steps) there exists e; such that

W' Sipr, [B] — WS, e=Bp(e:aXxa—axa=%BxB—BxB)
W' Ss>r, [A] — W’.Eg,a::AD(elzaxa%axa%AXA%AXA)

Instantiate (W', ry,7,) € V[VX. X x X— X x X] 0 with W/, B, A, R, e1, e1, a, noting that
o W' J W’ by reflexivity

W'.31; - F B by weakening

W'.3s; - F A by weakening

R € Relw ; [B, 4]

W' S1>r, [B] — W'.E,ac=Bpr(e1:axa—axa 22 Bx B3 Bx B)

W' Sobry [A] — W Ss, ai=Ab (e :a X a—a x a =% A x A— A x A)

We have that (Wa,e1,e1) € E[X x X=X x X[ 0[X — a].

Then, by Lemma 5.17 (compositionality) we have that

(Wa,eq,e1) € Elaxa—axa]l

Assume that W5.X1 >e; —™ X3>wv3 where m < Ws.j. Otherwise, we have what we are required
to show.

Instantiate (Wa,eq,e1) € € [a X a— a x o] @ with m, X3, v3. There exist W3, X4, v4 such that

[ WQ.ZQD@l —* Z4D1}4

o W3 1, Wo
o W3 X =35
° Wg.ZQ = 24

(W3, v3,v4) € V]axa—axa]d

By the operational semantics, we have that W.X; > f* v —* X 3, So b (v],05).
Let W' = (W.j,(W.31,%1), W.X2, %), Wk U{a — |[V[E1(a)] @JW.j | @ € dom(31))}). Note
that W’ JW.
By the Fundamental Property (Theorem 7.17), we have that 3, ¥; -; - v} o] : B. We instantiate
this with W, (), @, noting that

o W eS[%, %]

o (W",0)eD[]

o (W".0)egG[]0
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Therefore, since values related in £ [B] 0 are related in V [B] @, we have that (W",v{,v]) € V[B] 0.
Let W5 = (Ws.j, (W3.51, 1), (W3.82,51), Wa.k U{a = [V [Ei(@)] 0]y, ; | @ € dom(Z1))}).
Note that (W3, (v} : B == a), (v1: A == a)) € V[a] 0 since Wj.k(a) = [Rlw, ;» Z>f o —"
¥, ¥ pv), and (Wi, v1,v)) € V[B] 0 by Lemma 5.6 (monotonicity) since W4 3 W".
Likewise, let W' = (W.j, (W.X1,X2), (W.E2, Xo), Wk U{a = [V [E2()] 0]y, | @ € dom(22))}).
Note that W' J W.
By the Fundamental Property (Theorem 7.17), we have that 3, ¥o; -; - F v} <0} : B. We instantiate
this with W', 0, (), noting that

e W" e S[E, 3]

o (W 0)eD[]

o (W",0)eG[10
Therefore, since values related in € [B] ) are related in V [B] §), we have that (W', v{,v}) € V[B] 0.
Let Wy = (Wa.j, (Wa.S1, £2), (Ws.Z2, £2), Waek U fa = [V [Sa(@)] 0]y, ; | o € dom(S:))}).
Note that (W4, (vh: B == a), (v2: A == a)) € V [a] @ since W4 .k (a) = LRy, g 20 f v2 ——7
Y, ¥ >vh, and (W, v5,v5) € V[B] 0 by Lemma 5.6 (monotonicity) since W4’ J W',
Let Wi’ = (Ws.j, (Wa.S1, 51, Z2), (Wa.Ea, £1, Ba), Wa.kU{a = [V[E1(@)] B4y, | @ € dom(S1))}U
{a= V[Z2Aa)] 0]y, ; | a € dom(X2))}).
Note that W35” 3 W3 and W3” 3 W3 by definition.
We then have (W3", (v} : B => a),(v1: A => a)) € V[a] 0 and (W', (vh: B == a), (v2: A =
a)) € V[a] 0 by Lemma 5.6 (monotonicity).
Let vy = ((v1: A == a),(v2: A == a)) and let v/, = (v} : B == a),(vh: B == a)).
Therefore, we have (W3”,v),,v,) € V[a x o] 0 by definition.
We instantiate (W3, v3,v4) € V [a X a— a x o] § with W} v/, , vy, noting that

o Wi 1 Wj3 by definition

o (Wi vl v,) € V]axa]l
We then have that (W5, vs v, v4 vo) € E o x a] 0
Assume that W5". 3 >v3 v, % Ss>vs where k < Ws.5. Otherwise, we have what we are
required to show. If K > W3.j then k > Wi j=Wej—m=Wj—n—msok+n+m>Wj
and we vacuously have what we are required to show.
Instantiate (W4, v3 v, v4 vo) € € [ X ] @ with k, X5, vs. There exist Wy, X, vg such that
W3 Sab vy vy —* g g
Wy 2 W5’
Wy =35
WyXe = 3
(Wa,vs,v6) € V] xa]d
By the definition of V[a x o] #, we have that vs = ((vi: B = a),(vY: B == a)) and vs =
(v : A =2 a),(vl : A== a)) where (Wy, (vh: B == a), (vh: A == a)) € V[a] § and (Wy, (v : B == a),
(v : A =% a)) € V[a] 0. By the definition of V [a] @, since Wy.k(a) = R, we further have that
Y5> f vgd vf and 5> f vl v where (Wy,vf,vh) € V[B] 0 and (Wy,vf,v) € V [B] 0.
By the operational semantics, we then have that

Yor[B] (f*v) =t Ssor[B] (vi,vh) (RN U Y
o fX(r[Alv) " Xgp fX (v(;:oz%A) —* Y6, X1, LoD s

Recall that it suffices to show that (W, f* (r [A] v),r [B] (f* v)) € E[B x B] p.
We apply Lemma 5.14 (anti-reduction), noting that
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Wy J W by transitivity of extension
Wij<Wij+k+n+m

Yor [B] (f* v) —aktntmtl Sios g
SofX (r[A] v) —* Seb fX (v =2 A)

Then it suffices to show that (W, (vhvl), f* (vs:a == A)) € E[B x B p.

By Lemma 5.14 (anti-reduction), it suffices to show that (Wy, (vf,vl), (v4vY)) € E[B x B] p.
which we have from the definition since (Ws,vi,v%) € V[B]0 and (Ws,vf,v%Y) € V[B]0 by
Lemma 5.6 (monotonicity).

O
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