CSCI B522 Lecture 25 Strong Normalization and Logical Relations 3 Dec, 2009

Lecture notes for CS 6110 (Spring’09) taught by Andrew Myers at Cornell; edited by Amal Ahmed, Fall’09.

1 Strong normalization

In previous lectures, we have seen that in the simply-typed lambda calculus (A7) we cannot write down
a well-typed version of the (untyped) term Q. In A7, all programs terminate. In fact, it doesn’t matter
which evaluation strategy we use: A\~ programs terminate in normal forms under any reasonable evaluation
strategy.

Evaluation is weakly normalizing if all values (i.e., irreducible terms) reachable by evaluation are equiv-
alent, i.e., they are the same normal form. But it doesn’t guarantee that all (or any) evaluations reach a
value. Evaluation is strongly normalizing if all evaluations reach a normal form.

We’ll prove the property of strong normalization for CBV evaluation. We use the following abbreviations:

def
ellv = e—%v

el f gye Jov

That is, we write e || v iff e evaluates to a value v in zero or more steps under the small-step CBV operational
semantics. We write e || when e evaluates to some value (i.e., when evaluation of e terminates).

Since CBV evaluation is deterministic, we know that e converges iff e does not diverge: e ||<= e {|. If
e both converged and diverged, then the convergent evaluation of e could reach some value v. Determinism
of evaluation implies that any divergent evaluation from e would be alpha-equivalent at every step to the
convergent evaluation. But any term alpha-equivalent to v has to be a value itself, and could not take any
additional step.

For our deterministic CBV calculus, we can express strong normalization as:

Fe:Tt=¢e|

To prove this, we introduce a new proof technique, logical relations. In this technique, we define a relation
over terms, where the relation is indexed by a type and is defined by structural induction on that type. For
the purposes of of this proof, we define a unary logical relation SN, . A unary relation is just a set, so we
write SN ,(e) to mean that e is a member of the set for the type 7. The definition of SN, has three kinds
of clauses for each kind of 7:

1. The condition that e has type 7, that is, - e : 7.
2. The condition we wish to prove, e J}.

3. A condition that enables us to prove that the logical relation is preserved by evaluation of elimination
forms for type 7.

For the simple case of A™, we can define SN as follows by structural induction on 7. (Below, B ranges
over base types, while b ranges over constants of base type.)
SNp(e) < Fte:B A el
SN, —m(e) <= Fe:mp—>m Ael
AVe'. SN, (¢/) = SN, (e ¢€)
The final clause of the definition of SN, _,,, corresponds to (3) above. Note that although it is defined in

terms of a universal quantification over €', the definition is well-founded because SN -, ., is defined in terms
of SN, and SN.,, and 71 and 75 are smaller types than 7 — 7a.

2 Some properties of the logical relation

We can now state some important lemmas.

Lemma 1
SN (e) = el

This is obvious from the definition. In fact, while the name SN is suggestive of “strong normalization”, the
property is stronger, because of clause (3).

Lemma 2
Fe:tAe— e ANSN, (') = SN.(e) (2a)

I—e:7/\e—>e//\SNT(€) - SNT(GI) (2b)

This lemma says that the SN, property is preserved when we walk either backward or forward in the
evaluation sequence. The proof of both parts is similar, so we show just the first part (2a).

Proof: by structural induction on 7. In each case we assume F e : 7 Ae — €' A SN, (e'), and show
SN . (e).

Case 7 = B: If we have SNp(¢’), then ¢’ converges. But since e — €', then e converges too. From
Fe: B and e}, we conclude SN p(e).

Case T = 71 — T2: As in the previous case, we have e ||. We also need to show SN, (¢”) = SN, (e e”)
for an arbitrary e”. Consider such ¢”. We have SN, _..,(¢’), so from its definition, we know SN, (e’ €”).
Since e — €, we also know that e ¢’/ — ¢’ ¢” from the CBV evaluation rules. Since 75 < 71 — T2, We can
apply the induction hypothesis to e e”, obtaining SN ., (e €’), as desired.

We need one more lemma that lets us do substitutions. The reason is that strong normalization is a
property of closed terms, but because we construct a proof by induction on typing derivations, we need
to consider open terms (the typing rule for lambda abstractions involves typing the function body, which
is open in general). However, we can close open terms by performing a substitution that replaces all free
variables with terms.

Let v be a finite substitution, that maps from variables to values, e.g. v = {1 — v1...2, — v,}. We
say that 7 satisfies a typing context I', written «y =TI, if both have the same domain, and v maps variables
onto values that are of the right type I'(z) and that also satisfy the SN property at that type:

vET <= dom(y) = dom(I') AVz € dom(y). SNp)(v(z))

We write v(e) to mean the substitution in e of all variables in the domain of v with the corresponding
values:

~v(e) =ef{vi/z1}. . {vn/xn}

We need a substitution lemma regarding finite substitutions:

Lemma 3
F'Fz:7AyET =Fy(): 7

Proof: This is proved by induction on the size of the domain of . The case n = 1 is exactly the substitution
lemma that we used to prove Preservation. And that same lemma can be used to prove the induction step.
With these definitions, we can now prove the main result:

Lemma 4
I'te:TAyET = SN.(y(e))

Notice that if we instantiate this with v = (), T' = @, then we get F e : 7 = SN ,(e), which implies
strong normalization by Lemma 1.
We prove Lemma 4 by induction on the typing derivation I' e : 7.

e Case I' - b: B. Since b = v(b), clearly v(b) |} and F v(b) : B. Therefore, we know SN g(y(b)).

e Case I' F = : 7. It must be the case that I'(x) = 7, and because v |= T, therefore SN, (v(x)), as
required.

e Case I' F eg e; : 7. We know from the typing derivation that the premises I' F ey : 71 — 7 and
'k ey : 71 hold for some type 7. We apply the induction hypothesis to get SN, _.(v(ep)) and
SN, (7v(e1)). From the definition of SN, _,. (clause 3), this implies SN (v(ep) v(e1)). But by the
definition of substitution, this is the same as SN, (v(eg e1)).

Notice that without that third clause (which we were able to introduce as part of the definition of
the logical relation), we would have been stuck at this point if we had just tried to prove the theorem
directly by induction on the typing derivation.

e Case ' - Az :7y.e5 : 7y — 7o. This is the only tricky case, because we need to prove the third clause
that we exploited in the application case. We need to show SN, .., (y(e)). This requires proving three
clauses.

The first clause requires that y(e) has the right type. This comes trivially from the typing derivation
and Lemma 3.

The second clause requires that «y(e) converges. Since v maps variables only to values, there is no
possibility of variable capture in the substitution y(e). Therefore, y(e) = Az:7y. (v\x)(e2), where v\z
is the same as ~, without any mapping for z. Since 7y(e) is a value already, the second clause is also
trivial.

The third clause requires that for an arbitrary e’ satisfying SN, (¢/), we have SN ., (v(e) ¢’). Consider
such an ¢’. How does the term v(e) €’ evaluate? Since «y(e) is already a value, the right-hand side (e’)
evaluates until it reaches a value. Since we assumed SN ., (¢/), its evaluation reaches some value v’ by
Lemma 1. By Lemma 2b, the value v’ satisfies SN, (v'). The next step is to substitute v" for z in the
function body: v(e) v — (y\z)(e2){v'/x}. But we can fold the substitution for x into 7, making this
Yz = v](ea).

From the typing derivation for e, we know ',z : 7y F eg : 75. If v E T, then [z — ¢/ ET,z: 71. So
we can use the induction hypothesis to conclude SN, (y[z — v'](ez2)). Since v(e) e’ steps to this term
in a finite number of steps, we can conclude by induction on the number of steps (and Lemma 2a) that
SN ., (v(e) €'), as required.

3 Discussion

The technique of logical relations generalizes to more expressive languages. We’ll shortly see extensions of
the lambda calculus that can be used to write more interesting computations, yet can be proved strongly
normalizing with the same technique.

And there are situations in which it is useful to have a language in which all programs terminate. For
example, operating systems and web browsers are often extended with plug-in software that is not fully
trusted. Knowing that the plug-in code can’t create an infinite loop is useful (though we probably want
an even tighter bound on run time). Also, we’ll later see type systems with type expressions isomorphic to
the lambda calculus (parameterized types). Because evaluation in the type language terminates, the type
checker also terminates, which is a useful property!

Extending the proof of strong normalizaton

To extend the proof of strong normalization to a language with Unit, Bool, and product types, we define
the logical relation as follows:

SNunit(e) < Fe:Unit A el

SNBooi(e) < Fe:Bool A (Fu.elwv
A (v=true V v = false))

SN om(e) <= Fe:mp—m A el
AYe'. SN, (¢') = SN, (ee)

SN xm(e) <= Fe:impxm Ael
A SN, (fst e) A SN.,(snd e)

Note that for product types, we can alternatively define the logical relation as follows. (Hint: You may
wish to refer to the version below as you try to define the logical relation for sum types.)

SN7-1><7—2(€) <~ Fe:T X1 A (3’1)1,'02. el ('Ul, ’Uz)
A SN, (v1) A SN, (v2))

