
CSCI B522 Homework 2 Due: 2 Oct 2009

This assigment consists of a written part and a programming part. Your solutions to the written part
(Problem 1) should be typeset using LaTeX or Word. If you use LaTeX, there is a template available for
your use at the course website.

You should submit two files by 3:00pm on the due date:

(i) a pdf file containing the solutions to the written part (Problem 1), and

(ii) a tar file containing all the files that make up the solutions to the programming part (Problems 2,3,4).
Specifically, the tar file must include the following files:

• a.ml

• b.ml

• lam.ml

• logic.ml

1. For Loop (20 pts.)

Consider IMPFOR, a version of IMP that has for loops instead of while loops. We redefine commands
c as follows:

c ::= skip | x := a | c0; c1 | if b then c1 else c2 | for x = a0 to a1 do c

Informally, the for loop works as follows. When entering the loop for x = a0 to a1 do c, the expression
a0 is evaluated to an integer n0 and the expression a1 is evaluated to an integer n1. If n0 > n1, the
command just behaves like skip. If n0 ≤ n1, the body c is executed n1−n0 + 1 times, with x assigned
the value n0 + i − 1 at the beginning of the ith loop iteration. (For instance, if n0 = 3 and n1 = 5,
the body c will be executed 3 times, with x assigned the values 3, 4, and 5 at the beginning of the
first, second, and third iteration, respectively.) Note that the loop bounds are computed once at the
beginning of the loop, and no computation in the body of the loop can change the number of times
the loop is executed. That is, although the loop index variable x can be assigned within the body c of
the loop, these assignments do not affect the value of x at the beginning of the next loop iteration.

(a) Write a big-step operational semantics for the for x = a0 to a1 do c construct.

(b) Write an IMPFOR program that, given an input value in the variable n, computes the nth Fi-
bonacci number F (n) (where F (0) = 0, F (1) = 1, and F (n) = F (n− 1) + F (n− 2)), and returns
the result in variable r. You may assume that you have multiplication, addition, and subtraction
as built-in arithmetic operators.

2. OCaml Warmup (15 pts.)

In order to program effectively in OCaml, you need to be able to understand the type inference error
messages that the compiler will tell you when you make a mistake in a program. These messages can
be quite cryptic!

The goal of this problem is make as few changes as possible to the files a.ml and b.ml so that they
type check. In other words, don’t change 2 lines when you could change 1 line in the file. Don’t change
2 operators when you could change 1 operator. (I’m not going to be too strict about this but basically
I want to see if you can exactly pinpoint where the type error is in the file and change it.) Hand in
your changed versions of a.ml and b.ml.

To solve this problem, start the ocaml interactive system. At the prompt, type

#use ”a.ml”;;

1

then look at the error message you get. Then use the information in that error message (or warning)
to make a change to the file so that it type checks. Try doing #use ‘‘a.ml’’ again to see if there are
any more errors. Repeat until there are no errors or warnings. Do this for both a.ml and b.ml. The
files are here:

http://www.cs.indiana.edu/classes/b522/hw2-code.html

3. Lambda Calculus (40 pts.)

Implement and test the following functions in ML by downloading and modifying the file

http://www.cs.indiana.edu/classes/b522/hw2-code/lam.ml

• fv e, which computes the set of free variables of a lambda-calculus term e;

• print varset s, which prints out a set of variables s;

• subst e e1 x, which implements capture-avoiding substitution e{e1/x};
• isval e, which checks if a term e is a value; and

• eval e, which evaluates the term e using the big-step, call-by-value operational semantics.

The file lam.ml contains further details. Make sure you test all your functions!

Once you have implemented these functions, you can take a look at how they work together using the
function evalsto that is defined for you in the Lam module (i.e., in lam.ml).

4. Simple Logic (25 pts.)

Here is the definition of a simple logic with true, false, inequalities on natural numbers, conjunction
and disjunction. Below n represents natural numbers. The formulas F are as follows:

n ::= Z | S n
F ::= true | false | n1 ≤ n2 | F1 ∧ F2 | F1 ∨ F2

The truth of a logical formula is determined by judgements with the form Leq n1 n2 and F Valid.

Here are the rules for Leq n1 n2:

Leq Z n2

Leq n1 n2

Leq (S n1) (S n2)

Here are the rules for proving F Valid:

true Valid

Leq n1 n2

n1 ≤ n2 Valid

F1 Valid F2 Valid

F1 ∧ F2 Valid

F1 Valid

F1 ∨ F2 Valid

F2 Valid

F1 ∨ F2 Valid

Now, download the file logic.ml from here:

http://www.cs.indiana.edu/classes/b522/hw2-code/logic.ml

and fill in the missing definitions. It is possible to get bonus points on this problem. See the file
logic.ml for additional details and directions.

2

