
CSCI B522 Homework 1 Due: 17 Sept 2009

Your solutions to this assignment should be typeset using LaTeX; see the course website for instruc-
tions and resources. A pdf file containing the solutions should be submitted by 11:59pm on the due date.
Submission instructions will be posted on the course website.

Read Pierce, Chapter 5.

1. Warmup (25 pts.)

(a) Write the following λ-calculus terms in their fully parenthesized, curried forms. Change all bound
variable names to names of the form a0, a1, a2, . . . where the first λ binds a0, the second a1, and
so on.

i. λx, y. z λy, z. z y x
ii. λx. (λy. y x) λx. y x
iii. (λx. y λy. x y) λy. x y

(b) We defined capture-avoiding substitution into a lambda term using the following three rules:

(λx. e0){e1/x} = λx. e0
(λy. e0){e1/x} = λy. e0{e1/x} (where y 6= x ∧ y /∈ FV(e1))
(λy. e0){e1/x} = λz. e0{z/y}{e1/x} (where z 6= x ∧ z /∈ FV(e0) ∧ z /∈ FV(e1))

In these rules, there are a number of conjuncts in the side conditions whose purpose is perhaps
not immediately apparent. Show by counterexample that each of the above conjuncts of the form
x /∈ FV(e) is independently necessary.

2. Equivalence and normal forms (15 pts.)

For each of the following pairs of λ-calculus terms, show either that the two terms are observationally
equivalent or that they are not. Note that for part (a), we are assuming the following definitions:

0
4
= λs. λz. z

1
4
= λs. λz. s z

succ
4
= λn. λs. λz. s (n s z)

(a) (succ 0) and 1

(b) λx. x y and λx. y x

3. Encoding arithmetic (20 pts.)

Pierce (Section 5.2, Church Numerals) presents one way to represent natural numbers in the λ-calculus.
However, there are many other ways to encode numbers. Consider the following definitions:

tru
4
= λx. λy. x

fls
4
= λx. λy. y

0
4
= λx. x

n+ 1
4
= λx. (x fls) n

(a) Show how to write the pred (predecessor) operation for this number representation. Reduce
(pred (pred 2)) to its βη normal form, which should be the representation of 0 above. pred need
not do anything sensible when applied to 0.

1

(b) Show how to write a λ-term zero? that determines whether a number is zero or not. It should
return tru when the number is zero, and fls otherwise. Use the definitions of tru and fls given
above.

4. Encoding lists (15 pts.)

Pierce (Section 5.2, Pairs) shows how to implement pairs with a pair constructor pair, defined as
pair = λx. λy. λb. b x y. Or equivalently, we could define pair by writing pair x y = λb. b x y. Lists can
be implemented using pairs based roughly on the following idea (similar to a tagged union). If the list
is non-empty (i.e., cons h t, a cons cell with a head and a tail), we would like represent it as a pair of
(i) a tag to remember that it is a cons cell and (ii) a pair that contains the head and tail of the list. If
the list is empty (i.e., nil, the null list), we would like to represent it as a pair of (i) a tag to remember
that it is nil and (ii) some arbitrary value (we don’t care what).

(a) Show how to implement nil, cons, and nil? with the property that nil? nil = tru and nil? (cons h t) =
fls for any h, t.

(b) Show how to implement the functions head and tail that when applied to a non-empty list return
the head and tail of the list, respectively.

5. S and K combinators (25 pts.)

Consider the following definitions:

S
4
= λx, y, z. (x z) (y z)

K
4
= λx, y. x

In this problem you will show that any λ-calculus expression can be expressed as a series of applications
of the S and K combinators. In particular, if we think of S and K as part of the syntax, we can remove
all of the λ’s from the lambda calculus!

(a) Show that the S and K combinators can be used to construct an expression with the same normal
form (under β and η reductions) as the identity expression λx. x.

(b) Now consider the following target language, which we might call “the λ-less calculus”:

ε ::= S | K | x | ε ε

Write an abstraction function A such that A[[x, ε]] is extensionally equivalent to λx. ε (with the
definitions of S and K given above). For example,

A[[x, x′]] = (K x′) (where x 6= x′)

because for all z,
(K x′) z = x′ = (λx. x′) z

(c) Use A to construct a translation C from the complete λ-calculus to the λ-less calculus. Is your
translation the most compact encoding possible?

Bonus factoid: We can define another combinator

X
4
= λx. x K S K

which can represent all closed λ-calculus expressions, because K has the same normal form as (X X) X
and S has the same normal form as X (X X). So any λ-calculus term can be represented as a tree of
applications of just this term!

2

