Your solutions to this assignment should be typeset using LaTeX; see the course website for instructions and resources. A pdf file containing the solutions should be submitted by 11:59pm on the due date. Submission instructions will be posted on the course website.

Read Pierce, Chapter 5.

1. **Warmup** (25 pts.)

- (a) Write the following λ -calculus terms in their fully parenthesized, curried forms. Change all bound variable names to names of the form a_0, a_1, a_2, \ldots where the first λ binds a_0 , the second a_1 , and so on.
 - i. $\lambda x, y, z \lambda y, z, z y x$
 - ii. $\lambda x. (\lambda y. y. x) \lambda x. y. x$
 - iii. $(\lambda x. y \ \lambda y. x \ y) \ \lambda y. x \ y$
- (b) We defined capture-avoiding substitution into a lambda term using the following three rules:

$$\begin{array}{lll} (\lambda x.\,e_0)\{e_1/x\} & = & \lambda x.\,e_0 \\ (\lambda y.\,e_0)\{e_1/x\} & = & \lambda y.\,e_0\{e_1/x\} & (\text{where } y \neq x \land y \notin FV(e_1)) \\ (\lambda y.\,e_0)\{e_1/x\} & = & \lambda z.\,e_0\{z/y\}\{e_1/x\} & (\text{where } z \neq x \land z \notin FV(e_0) \land z \notin FV(e_1)) \end{array}$$

In these rules, there are a number of conjuncts in the side conditions whose purpose is perhaps not immediately apparent. Show by counterexample that each of the above conjuncts of the form $x \notin FV(e)$ is independently necessary.

2. Equivalence and normal forms (15 pts.)

For each of the following pairs of λ -calculus terms, show either that the two terms are observationally equivalent or that they are not. Note that for part (a), we are assuming the following definitions:

$$\begin{array}{lll} 0 & \stackrel{\triangle}{=} & \lambda s.\,\lambda z.\,z \\ 1 & \stackrel{\triangle}{=} & \lambda s.\,\lambda z.\,s\,\,z \\ \mathrm{succ} & \stackrel{\triangle}{=} & \lambda n.\,\lambda s.\,\lambda z.\,s\,\,(n\,\,s\,\,z) \end{array}$$

- (a) (succ 0) and 1
- (b) $\lambda x. x y$ and $\lambda x. y x$

3. Encoding arithmetic (20 pts.)

Pierce (Section 5.2, Church Numerals) presents one way to represent natural numbers in the λ -calculus. However, there are many other ways to encode numbers. Consider the following definitions:

$$\begin{array}{cccc} \mathsf{tru} & \stackrel{\triangle}{=} & \lambda x.\,\lambda y.\,x \\ \mathsf{fls} & \stackrel{\triangle}{=} & \lambda x.\,\lambda y.\,y \\ 0 & \stackrel{\triangle}{=} & \lambda x.\,x \\ n+1 & \stackrel{\triangle}{=} & \lambda x.\,(x\;\mathsf{fls})\;n \end{array}$$

(a) Show how to write the pred (predecessor) operation for this number representation. Reduce (pred (pred 2)) to its $\beta\eta$ normal form, which should be the representation of 0 above. pred need not do anything sensible when applied to 0.

(b) Show how to write a λ -term zero? that determines whether a number is zero or not. It should return tru when the number is zero, and fls otherwise. Use the definitions of tru and fls given above.

4. Encoding lists (15 pts.)

Pierce (Section 5.2, Pairs) shows how to implement pairs with a pair constructor pair, defined as $pair = \lambda x$. λy . λb . b x y. Or equivalently, we could define pair by writing pair x $y = \lambda b$. b x y. Lists can be implemented using pairs based roughly on the following idea (similar to a $tagged\ union$). If the list is non-empty (i.e., $cons\ h\ t$, a $cons\ cell\ with a head\ and\ a\ tail$), we would like represent it as a pair of (i) a $tag\ to\ remember\ that\ it$ is a $tag\ to\ remember\ that\ it$ is empty (i.e., $tag\ to\ remember\ that\ it$), we would like to represent it as a $tag\ to\ remember\ that\ it$ is nil and (ii) some arbitrary value (we don't $tag\ to\ tag\ to\ tag\ to\ tag\ to\ tag\ to\ remember$

- (a) Show how to implement nil, cons, and nil? with the property that nil? nil = tru and nil? (cons h t) = fls for any h, t.
- (b) Show how to implement the functions head and tail that when applied to a non-empty list return the head and tail of the list, respectively.

5. S and K combinators (25 pts.)

Consider the following definitions:

$$\mathbf{S} \stackrel{\triangle}{=} \lambda x, y, z. (x \ z) \ (y \ z)$$
$$\mathbf{K} \stackrel{\triangle}{=} \lambda x, y. x$$

In this problem you will show that any λ -calculus expression can be expressed as a series of applications of the **S** and **K** combinators. In particular, if we think of **S** and **K** as part of the syntax, we can remove all of the λ 's from the lambda calculus!

- (a) Show that the **S** and **K** combinators can be used to construct an expression with the same normal form (under β and η reductions) as the identity expression $\lambda x. x$.
- (b) Now consider the following target language, which we might call "the λ -less calculus":

$$\epsilon$$
 ::= **S** | **K** | x | ϵ ϵ

Write an abstraction function \mathcal{A} such that $\mathcal{A}[\![x,\epsilon]\!]$ is extensionally equivalent to $\lambda x.\epsilon$ (with the definitions of \mathbf{S} and \mathbf{K} given above). For example,

$$\mathcal{A}[x, x'] = (\mathbf{K} \ x') \quad \text{(where } x \neq x'\text{)}$$

because for all z,

$$(\mathbf{K} \ x') \ z = x' = (\lambda x. \, x') \ z$$

(c) Use \mathcal{A} to construct a translation \mathcal{C} from the complete λ -calculus to the λ -less calculus. Is your translation the most compact encoding possible?

Bonus factoid: We can define another combinator

$$\mathbf{X} \stackrel{\triangle}{=} \lambda x. x \mathbf{K} \mathbf{S} \mathbf{K}$$

which can represent all closed λ -calculus expressions, because **K** has the same normal form as $(\mathbf{X} \ \mathbf{X}) \ \mathbf{X}$ and **S** has the same normal form as $\mathbf{X} \ (\mathbf{X} \ \mathbf{X})$. So any λ -calculus term can be represented as a tree of applications of just this term!