
CS7400 Problem Set 5 Due: 19 Mar 2020

You can turn in handwritten solutions to this assignment. Please write clearly and use standard-sized
(8.5 by 11in) paper. If you choose to typeset your solutions using LaTeX, you may find the mathpartir.sty
package useful.

1. Induction (30 pts.)

Prove the following assertions using well-founded induction. Make sure to clearly identify what you
are performing induction on, to state the induction hypothesis and point out where it is being used.

(a) (10 pts) Given a term e in the untyped lambda calculus, show that it doesn’t matter in what
order you substitute closed terms. Specifically, prove the following lemma:

Lemma A: Given a term e and closed terms e1 and e2, if x 6= y, then

e[e1/x][e2/y] = e[e2/y][e1/x]

(b) (10 pts) In class, we said that e −→∗ e′ if and only if there exists some natural number n such
that e0 −→ e1 −→ . . . −→ en where e = e0 and e′ = en. We call −→∗ the multi-step evaluation
relation.

For this problem, consider an alternative definition of multi-step evaluation for the untyped,
call-by-value lambda calculus, where the relation e −→∗ e′ is defined by the following set of rules:

e −→∗ e
(M-Refl)

e −→ e′ e′ −→∗ e′′

e −→∗ e′′
(M-Step)

Note that the first premise of the M-Step rule uses the call-by-value, small-step relation (−→)
for the untyped lambda calculus.

Prove that the relation −→∗ is transitive—that is, prove the following lemma:

Lemma B: If e1 −→∗ e2 and e2 −→∗ e3, then e1 −→∗ e3.

(c) (10 pts) Here is a fact that we use in the type soundness/safety proof of the simply-typed lambda
calculus: the free variables of a well-typed term are always found in its typing environment. Prove
the following lemma:

Lemma C: In the simply-typed lambda calculus with boolean values and conditionals, we have
that

Γ ` e : T =⇒ FV(e) ⊆ dom(Γ)

2. CPS translation (30 pts.)

In class we saw how to translate lambda-calculus terms to terms in continuation-passing style. For this
problem, let us consider CPS translation of the following source language:

Source Terms e ::= n | x | λx. e | e1 e2 | e1 ⊕ e2 | if0(e0, e1, e2) |
(e1, e2) | fst e | snd e

Source Values v ::= n | λx. e | (v1, v2)

Primitive Operations ⊕ ::= + | − | ×

The source language terms include: integer literals (n); primitive operations (⊕) on integers; a condi-
tional if0(e0, e1, e2) that tests if e0 evaluates to 0, and evaluates the first branch (e1) if it does, or else
evaluates the second branch (e2) if e0 evaluates to an integer other than 0; pairs (e1, e2); and constructs
(fst, snd) to extract the first and second components of a pair.

1

The small-step operational semantics of the source language is as follows:

Source Evaluation Contexts E ::= [·] | E e2 | v1 E | E ⊕ e2 | v1 ⊕ E | if0(E, e1, e2) |
(E, e2) | (v1, E) | fst E | snd E

Source Reductions

(λx. e) v −→ e[v/x]

n1 ⊕ n2 −→ n3 (where n3 = n1⊕̂n2)

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)

fst (v1, v2) −→ v1

snd (v1, v2) −→ v2

The continuation-passing style language that we’ll use as the target of CPS translation is as follows:

Target Values v ::= n | x | (v1, v2) | λ(x, k). e | λx. e | halt

Target Declarations d ::= v | v1 ⊕ v2 | fst v | snd v

Target Terms e ::= let x = d in e | v0 (v1, v2) | v0 v1 | if0(v, e1, e2) | halt v

Primitive Operations ⊕ ::= + | − | ×
There are a few things to note about the target language. First, lambda abstractions that correspond
to continuations are marked with an underline. Second, note that declarations cannot have declarations
as subexpressions—d does not occur in its own definition. Third, ignoring the if0 construct, terms in
the target language are nearly linear in terms of control flow—that is, they consist of a series of let
bindings followed by an application. The only exception to this is the if0 construct, which forms a tree
containing two subexpressions.

The small-step operational semantics of the target language is as follows:

Target Reductions

let x = v in e −→ e[v/x]

let x = n1 ⊕ n2 in e −→ e[n3/x] (where n3 = n1⊕̂n2)

let x = fst (v1, v2) in e −→ e[v1/x]

let x = snd (v1, v2) in e −→ e[v2/x]

(λ(x, k). e) (v1, v2) −→ e[v1/x][v2/k]

(λx. e) v −→ e[v/x]

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)

halt v −→ v

The CPS translation C[[e]] takes a continuation k, computes the value of e, and passes that value to
k. To translate a full program—a source term with no free variables—we define the CPS translation
Cprog[[e]], which calls the translation C[[e]] with the special top-level continuation halt that accepts a
final answer and halts. (An aside: Instead of adding the special continuation halt as a primitive to our
target language, we could have defined the halt continuation as λx. x.)

The CPS translation for programs, integers, variables, λ-abstractions, and application is defined as
follows:

Cprog[[e]]
def
= C[[e]](λx. halt x)

C[[n]]k
def
= k n

C[[x]]k
def
= k x

C[[λx. e]]k def
= k (λ(x, k′). C[[e]]k′)

C[[e1 e2]]k
def
= C[[e1]](λx1. C[[e2]](λx2. x1 (x2, k)))

2

In the above translation, in order to avoid variable capture, we assume that x is fresh in the Cprog[[]]
case, that k′ is fresh in the λ-abstraction case, and that x1 and x2 are fresh in the application case.

(a) (10 pts) Consider the following source language program:

(λz. z 3) (λy. y)

Show the CPS translation of the above program. Once you have completed the CPS translation,
show the evaluation of the resulting target-level term. (You should show intermediate steps for
both the translation and the evaluation.)

(b) (20 pts) The above definition of C[[e]]k is incomplete—it only shows how to translate source-
language integers, variables, λ-abstractions and application. Define the missing cases of the CPS
translation.

3. Well Typed (20 points)

Below is the syntax, call-by-value operational semantics, and typing rules for the simply-typed λ-
calculus with booleans.

Types τ ::= Bool | τ1 → τ2

Terms e ::= x | λx : τ. e | e1 e2 | true | false | if e then e1 else e2

Values v ::= true | false | λx : τ. e

Evaluation contexts E ::= [·] | E e | v E | if E then e1 else e2

Evaluation rules:

E[λx : τ. e v] −→ E[e[v/x]] (E-Beta)
E[if true then e1 else e2] −→ E[e1] (E-IfTrue)
E[if false then e1 else e2] −→ E[e2] (E-IfFalse)

Typing rules:
Term environments Γ ::= · | Γ, x : τ

Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ
(T-Var)

Γ, x : τ1 ` e : τ2

Γ ` λx : τ1. e : τ1 → τ2
(T-Lam)

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
(T-App)

Γ ` true : Bool
(T-True)

Γ ` false : Bool
(T-False)

Γ ` e : Bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ
(T-If)

For each of the following expressions, say if the expression is well typed or not. If it is well typed,
provide a typing derivation; if it is not well typed, explain why in no more than 30 words.

(a) λx :Bool. λy :Bool. if y then x else y.

(b) λx :Bool. λy :Bool→ Bool. if (y x) then x else y.

(c) λx :Bool. λy :Bool→ Bool. if x then (y x) else y.

(d) λx :Bool. λy :Bool→ Bool. if x then y else λz :Bool. x.

3

4. Type Soundness (20 points)

Read Chapters 8 and 9 of Types and Programming Languages (TAPL). Make sure you understand the
details of proving type soundness for Arith and STLC via progress and preservation.

We saw that the simply-typed λ-calculus (λ→) has a sound type system because it preserves types and
guarantees progress of well-typed terms. Thus, well-typed terms do not get stuck (i.e., evaluation is
safe). Let us add tagged sums to the call-by-value simply-typed λ-calculus.

Types τ ::= . . . | τ1 + τ2

Terms e ::= . . . | inlτ1+τ2 e | inrτ1+τ2 e | case e of inl x1 ⇒ e1 || inr x2 ⇒ e2

Values v ::= . . . | inlτ1+τ2 v | inrτ1+τ2 v

New evaluation rules:

e −→ e′

inlτ1+τ2 e −→ inlτ1+τ2 e
′ (E-Inl)

e −→ e′

inrτ1+τ2 e −→ inrτ1+τ2 e
′ (E-Inr)

e −→ e′

case e of inl x1 ⇒ e1 || inr x2 ⇒ e2 −→ case e′ of inl x1 ⇒ e1 || inr x2 ⇒ e2
(E-Case)

case (inlτ1+τ2 v) of inl x1 ⇒ e1 || inr x2 ⇒ e2 −→ e1[v/x1]
(E-Case-Inl)

case (inrτ1+τ2 v) of inl x1 ⇒ e1 || inr x2 ⇒ e2 −→ e2[v/x2]
(E-Case-Inr)

New typing rules:

Γ ` e : τ1

Γ ` inlτ1+τ2 e : τ1 + τ2
(T-Inl)

Γ ` e : τ2

Γ ` inrτ1+τ2 e : τ1 + τ2
(T-Inr)

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e of inl x1 ⇒ e1 || inr x2 ⇒ e2 : τ
(T-Case)

For this problem, you must extend the proofs of progress and preservation for STLC (λ→)—as well as
the proofs of lemmas that these rely on—to demonstrate type soundness for this extended language
(λ→+).

(a) State the inversion lemma.

(b) State and prove the canonical forms lemma.

(c) State the permutation and weakening lemmas.

(d) State and prove the substitution lemma.

(e) Prove the progress and preservation lemmas; their statements are as follows:

Lemma (Progress): If ` e : τ then either e is a value or there exists some e′ such that
e −→ e′.

Lemma (Preservation): If ` e : τ and e −→ e′, then ` e′ : τ .

Note: When proving preservation, use induction on the derivation of e −→ e′.

Note: For the proof portions only of parts (b), (d), and (e), you do not need to show the cases
involving functions, application, and function types.

4

