
Coalescing Register Allocation

CS4410: Spring 2013

Recap:
Basic Graph-Coloring Register Allocation
•  Build interference graph G

–  use liveness analysis
•  Simplify the graph G

–  If x has degree < k, push x and simplify G-{x}
–  if no such x, then we need to spill some temp.
–  spilling involves rewriting the code, and then start

all over with a new interference graph.
•  Once graph is empty, start popping temps and

assigning them registers.
–  Always have a free register since sub-graph G-{x}

can't have >= k interfering temps.

Spilling…
•  Pick one of the nodes to spill.

–  Picking a high-degree temp will make it more likely
that we can color the rest of the graph.

–  Picking a temp that is used infrequently will likely
generate better code.

•  e.g., spilling a register used in a loop when we could spill
one accessed outside the loop is a bad idea…

•  Rewrite the code:
–  after definition of temp, write it into memory.
–  before use of temp, load it into another temp.
–  simplifies things to reserve a couple of registers.

Coalescing Register Allocation
•  If we have "x := y" and x and y have no

edge in the interference graph, we might
be able to assign them the same color.
– so this would translate to “ti := ti" which we

could simplify away.
•  One idea is to optimistically coalesce

nodes in the interference graph.
–  just take the edges to be the union.
– but of course, this may make a k-colorable

graph uncolorable!

Example from book
{live-in: j, k}
g := mem[j+12]
h := k - 1
f := g * h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

j k

h g

d

c

b m

f
e

Brigg's Strategy:

It's safe to coalesce x & y if the resulting

node will have fewer than k neighbors
with degree >= k.

George's strategy:

We can safely coalesce x & y if for every

neighbor t of x, either t already interferes
with y or t has degree < k.

New Algorithm:
•  Build: construct the interference graph.

–  label each node as move-related or not
move-related.

– move-related: source or destination of a
move.

•  Simplify: remove a non-move-related
node of low degree from the graph & push
on stack. Continue until all nodes are
move related and/or have high degree.

New Algorithm Continued
•  Coalesce: coalesce nodes on the

reduced graph using either Briggs' or
George's conservative strategy.
– Simplifying will hopefully have reduced the

degree on many of the nodes.
– Possibly re-mark the nodes that were

coalesced as non-move-related.
– go back to simplifying non-move-related, low-

degree nodes.

New Algorithm Continued
•  Freeze: if we have some nodes x & y of

low degree, but they are move-related
and cannot be safely coalesced, we
freeze the move involving x & y.
–  i.e., we can't coalesce x & y.
– so go back and treat them as non-move-

related.
–  then, hopefully we can remove them with

simplify, then do more coalescing, etc.

Algorithm Continued:
•  Spill: we've gotten down to only high-

degree nodes. Pick a potential spill
candidate and push it on the stack.
– We don't actually do the spill yet, but rather

record that this node may need to be spilled.
– Just assume that it will no longer interfere

with any other temp, so remove their edges.
– Go back and try to simplify/coalesce/freeze

the graph some more.

Algorithm Continued.
•  Select: once we get the empty graph,

start popping nodes off the stack and
assign them colors.
– we may not have a free color when we run

into a potential spill nodes.
–  in this case, record that this node needs to be

actually spilled.
–  if we reserve two registers, then we don't

have to iterate, but if we re-use fresh temps,
then we need to iterate constructing a fresh
interference graph, etc.

Example from book

j k

h g

d

c

b m

f
e

Stack:

j & b,c & d are move-related

Example from book

j k

h g

d

c

b m

f
e

Stack:

Example from book

j k

h

d

c

b m

f
e

Stack:
g

Example from book

j k

h

d

c

b m

f
e

Stack:
g
h

Example from book

j k
d

c

b m

f
e

Stack:
g
h
k

Example from book

j
d

c

b m

f
e

Stack:
g
h
k
f

Example from book

j
d

c

b m

e

Stack:
g
h
k
f
e

Example from book

j
d

c

b m

Stack:
g
h
k
f
e
m

Example from book

j
d

c

b

Stack:
g
h
k
f
e
m

At this point, all nodes are move-related.
So start coalescing...

Example from book

jb
d

c

Stack:
g
h
k
f
e
m

Example from book

d

c

Stack:
g
h
k
f
e
m
jb

Example from book

dc

Stack:
g
h
k
f
e
m
jb

Example from book
Stack:
g
h
k
f
e
m
jb
dc

Now Select…
Stack:
g
h
k
f
e
m
jb
cd

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h
k
f
e
m
jb

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h
k
f
e
m

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h
k
f
e

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h
k
f

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h
k

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g
h

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Select…
Stack:
g

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Now Rewrite Code…

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

g := mem[j+12]
h := k - 1
f := g * h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e + 8
d := c
k := m + 4
j := b

Now Rewrite Code…

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

t2 := mem[t4+12]
t1 := t1 - 1
t3 := t2 * t1
t1 := mem[t4+8]
t2 := mem[t4+16]
t4 := mem[t3]
t3 := t3 + 8
t3 := t3
t1 := t1 + 4
t4 := t4

…and simplify moves

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

t2 := mem[t4+12]
t1 := t1 - 1
t3 := t2 * t1
t1 := mem[t4+8]
t2 := mem[t4+16]
t4 := mem[f]
t3 := t1 + 8
t1 := t1 + 4

Some Practicalities
•  The IL often includes machine registers

– e.g., FP, $a0-a3, $v0-v1
– allows us to expose issues of calling

convention over which we don't have control.
•  We can treat the machine registers as

pre-colored temps.
– Their assignment to a physical register is

already determined.
– But note that select & coalesce may put a

different temp in the same physical register,
as long as it doesn't interfere.

Using Physical Registers
Within a procedure:

–  move arguments from $a0-a3 (and Mem[$fp+offset])
into fresh temps, move results into $v0-$v1.

–  manipulate the temps directly within the procedure
body instead of the physical registers, giving the
register allocation maximum freedom in assignment,
and minimizing the lifetimes of pre-colored nodes.

–  register allocation will hopefully coalesce the
argument registers with the temps, eliminating the
moves.

–  ideally, if we end up spilling a temp corresponding to
an argument, we should write it back in the already
reserved space on the stack…

Note:
•  We cannot simplify a pre-colored node:

–  removing a node during simplification
happens because we expect to be able to
assign it any color that doesn't conflict with
the neighbors.

– but we don't have a choice for pre-colored
nodes.

– Trick: treat physical nodes as having "infinite
degree" in interference graph.

•  Similarly, we cannot spill a pre-colored
node.

Callee-Saves Registers
•  Callee-Saves register r:

–  it's "defined" upon entry to the procedure
–  it's "used" upon exit from the procedure.
–  trick: move it into a fresh temp
–  ideally, the temp will be coalesced with the

callee-saves register (getting rid of the move.)
– otherwise, we have the freedom to spill the

temp.

Caller Saves Registers
•  Want to assign a temp to a caller-saves

register only when it's not live across a
function call (for then we have to save/
restore it.)

•  So treat a function call as "defining" all of
the caller-saves registers.
–  (callee might move values into them.)
– now any temps that are live across the call

will interfere, and assignment will try to find
different registers to assign the temps.

Example (p. 238 in book)
We're compiling the following C procedure:

int f(int a, int b) {
 int d = 0;
 int e = a;
 do {
 d = d+b;
 e = e-1;
 } while (e > 0);
 return d;
}

Assume we have a
target machine with
3 registers, where r1
and r2 are caller-saves
and r3 is callee-saves.

Generated CFG:
f: c := $r3 ; preserve callee
 a := $r1 ; move arg1 into a
 b := $r2 ; move arg2 into b
 d := 0
 e := a
loop: d := d + b
 e := e - 1
 if e > 0 loop else end
end: r1 := d ; return d
 r3 := c ; restore callee
 return ; $r3,$r1 live out

Interference Graph
f: c := $r3
 a := $r1
 b := $r2
 d := 0
 e := a
L: d := d + b
 e := e - 1
 if e > 0 L
 else E

E: r1 := d
 r3 := c
 return

r3

r1

r2

a

b

c

d

e

move-related

No simplify, freeze, or coalesce is possible…

Spilling:

r3

r1

r2

a

b

c

d

e

Node c is a good
candidate for
spilling.

So push it as a

potential spill.

Stack: sp(c)

After Spilling c:

r3

r1

r2

a

b

d

e

Now we can safely
coalesce a & e.

Stack: sp(c)

After Coalescing a & e:

r3

r1

br2

d

ae

Now we can safely
coalesce b & r2.

Stack: sp(c)

r2

b

After Coalescing b & r2:

r3

r1

br2

d

ae

Now we can safely
coalesce r1 & ae.

Stack: sp(c)

Constrained Nodes:

r3

r1ae

br2

d

We cannot safely
coalesce r1ae &
d because they
are constrained.

When we coalesce,

and we have both
a non-move edge
and a move-
edge, we can't
drop the non-
move edge…

Simplify:

r3

r1ae

br2

d

At this point, we

can simplify d.

Stack: sp(c)

Start Selecting:

r3

r1ae

br2

Now we only have
pre-colored
nodes left…

Stack: sp(c), d

Start Selecting:

r3

br2

We pop d and
assign it a color.

Stack: sp(c)

r3

r1

r2

a

b

c

d

e

Optimism Failed

r3

br2

We pop c but find
out that we must
do an actual spill.

Stack: sp(c)

r3

r1

r2

a

b

c

d

e

Rewrite Code
f: c := $r3
 a := $r1
 b := $r2
 d := 0
 e := a
L: d := d + b
 e := e - 1
 if e > 0 L
 else E

E: r1 := d
 r3 := c
 return

r3

br2

r3

r1

r2

a

b

c

d

e

Rewrite Code
f: $res := $r3
 Mem[fp+i] := $res

 $r1 := $r1
 $r2 := $r2
 $r3 := 0
 $r1 := $r1
L: $r3 := $r3 + $r2
 $r1 := $r1 - 1
 if $r1 > 0 L
 else E

E: $r1 := $r3
 $res := Mem[fp+i]
 $r3 := $res
 return

r3

br2

r3

r1

r2

a

b

c

d

e

Alternatively:
f: c := $r3
 Mem[fp+i] := c
 a := $r1
 b := $r2
 d := 0
 e := a
L: d := d + b
 e := e - 1
 if e > 0 L
 else E

E: r1 := d
 f := Mem[fp+i]
 r3 := f
 return

r3

br2

r3

r1

r2

a

b

c

d

e

Get Rid of Stupid Moves:
f: $res := $r3
 Mem[fp+i] := $res

 $r3 := 0
L: $r3 := $r3 + $r2
 $r1 := $r1 - 1
 if $r1 > 0 L else E
E: $r1 := $r3
 $res := Mem[fp+i]
 $r3 := $res
 return

