
Graph-Coloring
Register Allocation

CS4410: Spring 2013

Last Time:
Dataflow analysis on CFG's
Find iterative solution to equations:

–  Available Expressions (forwards):
•  Din[L] = Dout[L1] ∩ … ∩ Dout[Ln]

 where pred[L] = {L1,…,Ln}
•  Dout[L] = (Din[L] - Kill[L]) ∪ Gen[L]

–  live variable sets (backwards):
•  LiveIn[L] = Gen[L] ∪ (LiveOut[L] - Kill[L])
•  LiveOut[L] = LiveIn[L1] ∪ … ∪ LiveIn[Ln]

 where succ[L] = {L1,…,Ln}

Register Allocation
Goal is to assign each temp to one of k registers.

 In general, an NP-complete problem.
So we use a greedy heuristic:
•  Build interference graph G

–  G(x,y)=true if x & y are live at same point.
•  Simplify the graph G

–  If x has degree < k, push x and simplify G-{x}
–  if no such x, then we need to spill some temp.

•  Once graph is empty, start popping temps and
assigning them registers.
–  Always have a free register since sub-graph G-{x}

can't have >= k interfering temps.

Example from book
{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

j k

h g

d

c

b m

f
e

Simplification (4 regs)
Stack:

j k

h g

d

c

b m

f
e

Simplification
Stack:
g

j k

h g

d

c

b m

f
e

Simplification
Stack:
g

j k

h

d

c

b m

f
e

Simplification
Stack:
g
h

j k

h

d

c

b m

f
e

Simplification
Stack:
g
h

j k
d

c

b m

f
e

Simplification
Stack:
g
h
k

j k
d

c

b m

f
e

Simplification
Stack:
g
h
k

j
d

c

b m

f
e

Simplification
Stack:
g
h
k
d

j
d

c

b m

f
e

Simplification
Stack:
g
h
k
d

j

c

b m

f
e

Simplification
Stack:
g
h
k
d
j

j

c

b m

f
e

Simplification
Stack:
g
h
k
d
j
e

c

b m

f
e

Simplification
Stack:
g
h
k
d
j
e
f

c

b m

f

Simplification
Stack:
g
h
k
d
j
e
f
b

c

b m

Simplification
Stack:
g
h
k
d
j
e
f
b
c

c

m

Simplification
Stack:
g
h
k
d
j
e
f
b
c
m

Select:
Stack:
g
h
k
d
j
e
f
b
c
m

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d
j
e
f
b
c

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d
j
e
f
b

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d
j
e
f

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d
j
e

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d
j

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k
d

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h
k

j k

h g

d

c

b m

f
e

Select:
Stack:
g
h

j k

h g

d

c

b m

f
e

Select:
Stack:
g

j k

h g

d

c

b m

f
e

Use coloring to codegen:

g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b

j k

h g

d

c

b m

f
e

t1 t2 t3 t4

Use coloring to codegen:

t2 := *(t4+12)
t1 := t1 - 1
t2 := t2 * t1
t3 := *(t4+8)
t1 := *(t4+16)
t2 := *(t2+0)
t3 := t3 + 8
t3 := t3
t1 := t1 + 4
t4 := t2

j k

h g

d

c

b m

f
e

Notice that we can simplify
away moves such as this one…

Spilling…
•  Suppose all of the nodes in the graph have

degree >= k.
•  Pick one of the nodes to spill.

–  Picking a high-degree temp will make it more likely
that we can color the rest of the graph.

–  Picking a temp that is used infrequently will likely
generate better code.

•  e.g., spilling a register used in a loop when we could spill
one accessed outside the loop is a bad idea…

•  Rewrite the code:
–  after definition of temp, write it into memory.
–  before use of temp, load it into another temp.

Try it with 3 registers…
{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

j k

h g

d

c

b m

f
e

Simplify:
Stack:
h

j k

h g

d

c

b m

f
e

Simplify:
Stack:
h
c

j k

g

d

c

b m

f
e

Simplify:
Stack:
h
c
g

j k

g

d

b m

f
e

Simplify:
Stack:
h
c
g

j k
d

b m

f
e

3 Regs
Stack:
h
c
g

j k
d

b m

f
e

We're stuck…

3 Regs

j k
d

b m

f
e

Don't want to spill j, it's used a lot.
Don't want to spill f or k, they have
 relatively low degree.
So let's pick m…

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

Rewrite:
{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
*(fp+<moff>) := m
b := *(f+0)
c := e + 8
d := c
m2 := *(fp+<moff>)
k := m2 + 4
j := b
{live-out: d,j,k}

Eliminated this chunk
of code from m's
live range…

New Interference Graph

j k

h g

d

c

b m

f
e

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
*(fp+<moff>) := m
b := *(f+0)
c := e + 8
d := c
m2 := *(fp+<moff>)
k := m2 + 4
j := b
{live-out: d,j,k}

m2

Simplify:

j k

h g

d

c

b m

f
e

Stack:
m2
c

m2

Simplify:

j k

h g

d

b m

f
e

Stack:
m2
c
h

Back to simplification…
Stack:
m2
c
h
m

j k

g

d

b m

f
e

Back to simplification…
Stack:
m2
c
h
m
f

j k

g

d

b

f
e

Back to simplification…
Stack:
m2
c
h
m
f
g

j k

g

d

b

e

Back to simplification…
Stack:
m2
c
h
m
f
g
e

j k
d

b

e

Back to simplification…
Stack:
m2
c
h
m
f
g
e
j

j k
d

b

Back to simplification…
Stack:
m2
c
h
m
f
g
e
j
k

k
d

b

Back to simplification…
Stack:
m2
c
h
m
f
g
e
j
k
d

d

b

Back to simplification…
Stack:
m2
c
h
m
f
g
e
j
k
d
b

b

Then Color
Stack:
m2
c
h
m
f
g
e
j
k
d
b

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f
g
e
j
k
d

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f
g
e
j
k

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f
g
e
j

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f
g
e

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f
g

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m
f

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h
m

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c
h

j k

h g

d

c

b m

f
e

m2

Then Color
Stack:
m2
c

j k

h g

d

c

b m

f
e

m2

m2

Then Color
Stack:
m2

j k

h g

d

c

b m

f
e

Register Pressure
Some optimizations increase live-ranges:

–  Copy propagation
–  Common sub-expression elimination
–  Loop invariant removal

In turn, that can cause the allocator to spill.
Copy propagation isn't that useful anyway:

–  Let register allocator figure out if it can assign the
same register to two temps!

–  Then the copy can go away.
–  And we don't have to worry about register pressure.

Coming Up:
•  How to do coalescing register allocation.
•  An optimistic spilling strategy.
•  Some real-world issues:

– caller/callee-saves registers
–  fixed resources (e.g., mflo, mfhi)
– allocation of stack slots

