Graph-Coloring
Register Allocation

CS4410: Spring 2013



Last Time:

Dataflow analysis on CFG's

Find iterative solution to equations:

— Available Expressions (forwards):

Din[L] = Dout[L,] N ... N Dout[L,]
where pred[L] = {L,,...,L}
Dout[L] = (Din[L] - Kill[L]) U Gen][L]

— live variable sets (backwards):
Liveln[L] = Gen[L] U (LiveOut[L] - Kill[L])
LiveOut[L] = Liveln[L,] U ... U Liveln|L,]

where succ[L] = {L,,...,L.}



Register Allocation

Goal is to assign each temp to one of k registers.
In general, an NP-complete problem.

So we use a greedy heuristic:

 Build interference graph G
— G(x,y)=true if x & y are live at same point.
« Simplify the graph G
— If x has degree < k, push x and simplify G-{x}
— if no such x, then we need to spill some temp.
* Once graph is empty, start popping temps and
assigning them registers.

— Always have a free register since sub-graph G-{x}
can't have >= Kk interfering temps.



Example from book

{live-in: 7j, k}
*(9+12)

k -1

g *h

* (£40)

e + 8 {E’
c

m + 4

b

live-out: d,3j,k}

~ W ® Q0 Q0 0O 3 0 Hh P Q

* (3+8)
* (3+16) (3 )—(x d



Simplification (4 regs)

Stack:




Simplification

Stack:
g




Simplification
Stack:




Simplification
Stack:




Simplification

Stack:

g
h




Simplification

Stack:

g
h

k




Simplification

Stack:

g
h

k




Simplification

Stack:
g

h
k
d




Simplification

Stack: e
- (&)
(5) “(m)

h
k
d )
O



Simplification
Stack:

“ QA D5 Q

QQ (m,



Simplification

Stack: e e

® w9 Q0 & 5 Q



Simplification

Stack: @/_\

g

h Q Q
k

d

) (o)

e

f



Simplification

o2,
.
Q
Q
=~

O Hh 0 W 0 & 0 Q



Simplification

o))
—
Q)
@)
N

QO Hh O QO & 5 Q



Simplification

)]
~=
Q
O
Y

S Q 0O Hh 0w O & 5 Q



Select:

Stack:

oa M OO nmMNr0oOwWH Q 0O E



Select:

Stack:

oOoa M8 MmN 0O0wHH Q0



Select:

o2,
.
Q
Q
=~

O Hh 0 W 0 & 0 Q



Select:
Stack:

Hh 0 49 Q & 5 9



Select:
Stack:

® w9 Q0 & 5 Q




Select:
Stack:

U QA P Q




Select:

Stack:
g

h
k
d




Select:

Stack:

g
h

k




Select:

Stack:

g
h




Select:

Stack:
g




Use coloring to codegen:

*(J+12)
k -1
g *h
*(J+8)
*(J+16)
* (£40)
e + 8
c

m + 4
b

& QA0 D03 0 Hh DWW




Use coloring to codegen:

£2 = *(t4+12) (e)
tl = t1 -1
t2 = t2 * t1

t3 := *(t4+8)
tl := *(t4+16)

£2 = * (£240) d

t3 := t3 + 8 (c)
t3 := t3

tl := t1‘:\2\\\\\\

t4 := t2 Notice that we can simplify

away moves such as this one...



Spilling...

« Suppose all of the nodes in the graph have
degree >= K.
* Pick one of the nodes to spilll.

— Picking a high-degree temp will make it more likely
that we can color the rest of the graph.

— Picking a temp that is used infrequently will likely
generate better code.

* e.g., spilling a register used in a loop when we could spill
one accessed outside the loop is a bad idea...

* Rewrite the code:
— after definition of temp, write it into memory.
— before use of temp, load it into another temp.



Try it with 3 reqisters...
{1:'!.ve—in: j, k} e e

* (3+12)
k -1

g * h

* (§+8) QVQ
*(J+16) ﬂ Q

* (£4+0) d Q

e + 8

. G

m + 4

b
live-out: d,3j,k}

~ W ® Q0 Q0 0O 3 0 Hh P Q



Simplify:

Stack:
h




Simplify:

Stack:
h

C




Simplify:

Stack:
h

C

g




Simplify:

Stack:
h

C

g




We're stuck...




3 Regs

{live-in: j, k}
g = *(j+12)
=k -1
:= g * h
:= *(j+8)
:= *(j+16)
:= *(£40)
e + 8
1= C
:=m + 4
b
live-out: d,j,k}

~ W ® A0 O3 0 H P
It

‘}

Don't want to spill j, it's used a lot.

Don't want to spill f or k, they have
relatively low degree.

So let's pick m...




Rewrite:

{live-in: j, k}

g = *(j+12)
h :=k -1
f :=g * h
e := *(j+8)
m := *(j+16)
* (fp+<moff>) :=m
= % \
2 = e(f+g) Eliminated this chunk
d = c (_)f code from m's
> live range...
m2 := *(fp+<moff>)
k :=m2 + 4
J :=Db J

{live-out: d,3j,k}



New Interference Graph

{live-in: j, k}

g = *(j+12)
h =k -1

f : =g * h

e := *(j+8)

m := *(j+16)

* (fpt+<moff>) :=m
b := *(£+0)

c := e + 8

d := c

m2 := *(fp+<moff>)
k :=m2 + 4

J :=b

{live-out: d,3j,k}



Simplify:

C




Simplify:

Stack:
m2

C
h




Back to simplification...

Stack: e

m2 a

Ny (m)
q@

h
3

m




Back to simplification...

Stack: e
m2 ’Q
q@

Hh 8 5 0



Back to simplification...

Stack:
m2 /@
q@

3
)

Q Hh 3 P 0



Back to simplification...

Stack:
m2 /@
q@

OO

P Q H 3 5 0



Back to simplification...

Stack:
q@

m2

O 0 Q Hh 3 5 0



Back to simplification...

7‘@

m2

AU D Q H B P50



Back to simplification...

m2

Q. AW O Q H 8 &5 N



Back to simplification...

Stack:
m2

O O &AW 0D Q H 3 & 0



Then Color

Stack:
m2 ’GQ
()
5
ONAIRNIO

O O &AW 0D Q H 3 & 0



Then Color

Stack:
m2 ’GQ
()
500
ONAIRNIO

Q. AW O Q H 8 &5 N



Then Color

Stack:
m2

AU D Q H B P50




Then Color

Stack:
m2

O 0 Q Hh 3 5 0




Then Color

Stack:
m2

P Q H 3 5 0




Then Color

Stack:
m2

Q Hh 3 P 0




Then Color

Stack:
m2

Hh 8 5 0

vy



Then Color

Stack:
m2

@

h

oo




Then Color

Stack:
m2
C




Then Color

Stack:
m2
C

vy



Then Color

Stack:
m2

Toleh e



Register Pressure

Some optimizations increase live-ranges:
— Copy propagation
— Common sub-expression elimination
— Loop invariant removal

In turn, that can cause the allocator to spill.

Copy propagation isn't that useful anyway:
— Let register allocator figure out if it can assign the
same register to two temps!

— Then the copy can go away.
— And we don't have to worry about register pressure.



Coming Up:

 How to do coalescing register allocation.
* An optimistic spilling strategy.
« Some real-world issues:

— caller/callee-saves registers

— fixed resources (e.g., mflo, mthi)
— allocation of stack slots



