
Efficient Software Implementations of Large Finite
Fields GF (2n) for Secure Storage Applications

JIANQIANG LUO

Wayne State University

KEVIN D. BOWERS, and ALINA OPREA

RSA Laboratories

LIHAO XU

Wayne State University

Finite fields are widely used in constructing error-correcting codes and cryptographic algorithms.
In practice, error-correcting codes use small finite fields to achieve high-throughput encoding and
decoding. Conversely, cryptographic systems employ considerably larger finite fields to achieve
high levels of security. We focus on developing efficient software implementations of arithmetic
operations in reasonably large finite fields as needed by secure storage applications.

In this paper, we study several arithmetic operation implementations for finite fields ranging
from GF (232) to GF (2128). We implement multiplication and division in these finite fields by
making use of precomputed tables in smaller fields, and several techniques of extending smaller
field arithmetic into larger field operations. We show that by exploiting known techniques, as well
as new optimizations, we are able to efficiently support operations over finite fields of interest.
We perform a detailed evaluation of several techniques, and show that we achieve very practical
performance for both multiplication and division.

Finally, we show how these techniques find applications in the implementation of HAIL, a highly
available distributed cloud storage layer. Using the newly implemented arithmetic operations in
GF (264), HAIL improves its performance by a factor of two, while simultaneously providing a
higher level of security.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Error control
codes; H.3.4 [Information Storage and Retrieval]: Systems and Software—Performance eval-
uation (efficiency and effectiveness); I.1.2 [Computing Methodologies]: Algorithms—Alge-
braic algorithms

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: Finite field arithmetic, cloud storage systems, cryptographic
algorithms

Author’s address: J. Luo, Wayne State University, 5057 Woodward Avenue, Detroit, MI, 48202;
K. D. Bowers, A. Oprea, RSA Laboratories, 11 Cambridge Center, Cambridge, MA, 02142; L.
Xu, Wayne State University, 5057 Woodward Avenue, Detroit, MI, 48202.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Storage, Vol. V, No. N, Month 20YY, Pages 1–29.

2 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

1. INTRODUCTION

Finite fields are widely used in constructing error-correcting codes and crypto-
graphic algorithms. For example, Reed-Solomon codes [Reed and Solomon 1960]
are based on arithmetic operations in finite fields. Various cryptographic construc-
tions, including the Diffie-Hellman key exchange protocol [Diffie and Hellman 1976],
discrete-log based cryptosystems (e.g., El-Gamal encryption [ElGamal 1985], DSA
signatures [Kravitz 1993]), and schemes based on elliptic curves [Miller 1986] are
implemented in finite fields of large prime order. While practical implementations
of error-correcting or erasure codes use small finite fields to achieve high-throughput
encoding and decoding, cryptographic systems need considerably larger finite fields
for high security guarantees.

In this paper, we provide efficient implementations of arithmetic operations for
finite fields of characteristic two, ranging from GF (232) to GF (2128). The main
reason is that finite fields within this range are very suitable for secure data storage
applications and systems. Most storage systems today employ erasure coding based
on small finite fields (e.g., GF (28) or GF (216)) to provide fault tolerance in case
of benign failures (for instance, drive crashes). They achieve efficiency through the
use of small finite fields, but they have not been designed to sustain adversarial
failures. With the advent of cloud storage, offered by providers such as Amazon
S3 and others, a whole host of new failure models need to be considered, e.g.,
mis-configuration, insider threats, software bugs, and even natural calamities. Ac-
cordingly, storage systems have to be redesigned with robustness against adversarial
failures.

One direct consequence is that reasonably larger finite fields are needed to realize
both fault tolerance and security of storage systems. In general, the larger a finite
field is, more security it offers. Compared to general cryptographic operations,
though, for data storage applications, a finite field of size GF (264) or GF (2128) is
considered to be large enough to achieve desired security degree, while not imposing
too much computational cost for other operations, such as erasure coding for data
reliability. We will show such an example, the HAIL system, later in this paper.
Thus throughout this paper, our focus will be on finite fields up to GF (2128).

To efficiently implement operations over finite fields of the form we are interested
in, we combine well established techniques with novel optimizations. Currently,
several methods are most commonly used for implementing finite field arithmetic.
The binary polynomial method represents finite field elements as polynomials and
translates field arithmetic operations into corresponding operations on polynomials.
While addition and subtraction are extremely fast (as they can be implemented
with exclusive-or operations), polynomial multiplication and division involve op-
erations known to be inefficient in fields of large order (e.g., modular reduction
modulo an irreducible polynomial or finding polynomial inverses). With additional
optimizations (precomputation of lookup tables), the binary polynomial method is
nevertheless very efficient in small fields. For operations on larger finite fields, the
extension field method [Win et al. 1996] uses precomputed tables in the base field
and several techniques [Huang and Xu 2003; Win et al. 1996] for extending small
field arithmetic into larger field operations.

In our algorithms, we use the extension field arithmetic method together with

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 3

novel optimizations for operations in the base field (of small size). We propose to
use certain irreducible polynomial patterns that reduce the complexity of modular
reduction, and then we specifically design an efficient division algorithm for those
polynomial patterns in the base field. We also use precomputed log and antilog
tables and a new method of caching table lookup results for optimizing the mul-
tiplication operation in the base field. Using these techniques, we provide several
optimized implementations of multiplication and division operations in such fields,
compare their performance on various platforms with that of best known arithmetic
operations, and show the practical benefits of our optimizations.
Finally, we show how our work impacts the performance of HAIL (High Avail-

ability and Integrity Layer) [Bowers et al. 2009], a distributed cryptographic cloud
storage system, which directly motivated this work. HAIL provides a new way of
building reliable cloud storage out of unreliable components, by extending the RAID
principle [Patterson et al. 1988] into the cloud. HAIL disperses files across cloud
providers using Reed-Solomon codes applied to file stripes. Since providers are un-
trusted entities, the integrity of file blocks is protected by message-authentication
codes (MACs).
To reduce the amount of additional storage needed for integrity checks, HAIL

introduces a new cryptographic construction that embeds the MACs within the
parity blocks of each stripe. For our implementation of HAIL, we aim to achieve
64-bit security. We can accomplish this by implementing Reed-Solomon codes in
GF (264) using our optimized techniques for arithmetic operations in large Galois
fields. It is possible to obtain the same level of security with arithmetic operations
in smaller fields, at the cost of slower encoding and decoding performance. We
discuss in Section 6 that the cost of achieving 64-bit security using operations in
GF (232) is equivalent to performing four encodings in GF (232). We then show that
by utilizing the newly implemented operations in GF (264), we can achieve 64-bit
security while improving the encoding and decoding performance of HAIL by a
factor of two compared to an implementation based on 32-bit operations.
To summarize, the contributions of our paper include:

(1) We survey the major efficient algorithms that could be used for implementing
arithmetic operations over reasonably large finite fields, as needed by secure
storage applications.

(2) We provide several implementations of arithmetic operations in large finite
fields of characteristic two by extending existing methods with newly proposed
optimizations.

(3) We extensively evaluate and compare different implementations on multiple
platforms and show which ones perform best under specific conditions.

(4) We show how our implementation of 64-bit arithmetic greatly impacts the en-
coding and decoding performance of the HAIL distributed cloud storage pro-
tocol.

2. RELATED WORK

A lot of cryptographic algorithms are based on finite field arithmetic [Diffie and
Hellman 1976; ElGamal 1985; Miller 1986; Kravitz 1993]. Finite fields used in the
design of cryptographic primitives can be classified into three types: prime fields,

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

4 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

binary fields, and optimal extension fields. Prime fields can be represented by Fp,
where p is a prime number. Binary fields are fields of characteristic two F2n or
GF (2n), where n is an integer number greater than 0. Optimal extension fields
are fields of the form Fpn , where p is a prime number and n is an integer number
that has to satisfy some restrictions with respect to p [Bailey and Paar 1998].
Due to differences in the algebraic structure of these finite fields, the arithmetic
operations in different types of fields are also implemented differently. Guajardo
et al. presented a survey of efficient software implementations for general field
arithmetic [Guajardo et al. 2006]. In this paper, we focus on binary fields.

There are efficient multiplication and division approaches for general binary fields.
Lopez et al. [López and Dahab 2000] introduced several multiplication algorithms
for GF (2n). The algorithms include the right-to-left comb method, the left-to-right
comb method, and the left-to-right comb method with windows of width w. These
algorithms have been shown to greatly outperform the traditional shift-and-add
method [Hankerson et al. 2000], and they are among the fastest existing multiplica-
tion algorithms. Widely used efficient algorithms for division include the Extended
Euclidean Algorithm and its two variants: the Binary Extended Euclidean Algo-
rithm [Menezes et al. 1997] and the Almost Inverse Algorithm [Schroeppel et al.
1995]. These algorithms are adapted from the classical Euclidean algorithm. We
will compare our newly proposed algorithms in this paper with the above algo-
rithms.

DeWin et al. [Win et al. 1996] presented a fast software implementation of arith-
metic operations in GF (2n). In their fast implementation, large finite fields are
viewed as extensions of base field GF (216). In [Harper et al. 1992], similar algo-
rithms with base field GF (28) were developed. As the fast implementation was pro-
posed before the algorithms of right-to-left comb method and its variants, DeWin
et al. did not compare their performances. Additionally, the DeWin implemen-
tation was evaluated on a single finite field GF (2176), and it is unknown how the
presented performance results translate to other fields. Our paper tries to address
these limitations, by evaluating the proposed algorithms in a more extensive way.

The previous work most relevant to our paper is by Greenan et al. [Greenan
et al. 2007; 2008]. Greenan et al. [Greenan et al. 2007; 2008] described a variety
of table lookup algorithms for multiplication and division operations over GF (2n),
and evaluated their performance on several platforms. They concluded that the
performance of different implementations of finite field arithmetic highly depends on
the underlying hardware and workload. Our work differs from theirs in two aspects.
First, their table lookup algorithms were implemented in small finite fields, up to
GF (232). Second, they did not perform a comparison with the right-to-left comb
method or its variants, currently the fastest known algorithms for multiplication.
In our work, we study finite fields from GF (232) to GF (2128), and we compare the
performance of our algorithms with the left-to-right comb method with windows of
width w.

For small finite fields, the result of an arithmetic operation could be directly
looked up from pre-computed tables [Plank 1997]. The number of lookups depends
on the table lookup algorithm. Huang et al. introduced a couple of efficient ta-
ble lookup implementations [Huang and Xu 2003]. Their implementations do not

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 5

contain any conditional branches and modular operations. This way greatly im-
proves the performance of table lookup. Although their algorithms are designed for
finite fields up to GF (216), they are also useful for implementing large finite fields.
We incorporate some of their techniques in our proposed algorithms introduced in
Section 4.
Besides targeted for a general platform, an implementation can be developed for

a particular platform. Then, the implementation can take advantage of the instruc-
tions available at that platform to achieve high performance [Intel 2007; 2011]. For
example, Aranha et al. [Aranha et al. 2010] introduced a new split form of finite field
elements, and presented a constant-memory lookup-based multiplication strategy.
Their approach made extensive use of parallel table lookup (PTLU) instructions to
perform field operations in parallel. They have shown that their implementation is
effective for finite fields from GF (2113) to GF (21223) on the platforms supporting
PTLU instructions. In this paper, we have a different focus. We aim to optimize
the performance of a general software implementation for finite fields.
There are several open source implementations for finite fields. One implementa-

tion is relic-toolkit provided by Aranha et al. [Aranha 2010]. relic-toolkit

is a cryptographic toolkit that emphasizes efficiency and flexibility. It provides a
rich set of functionalities, including prime and binary field arithmetic. Another
library is Jerasure, implemented by Plank [Plank et al. 2008]. Jerasure supports
erasure coding in storage applications. It implements finite fields from GF (24) to
GF (232), but it does not support larger ones. Nevertheless, Jerasure provides a
good framework for finite field arithmetic, and we utilize it to develop our code for
larger finite fields.

3. ARITHMETIC OPERATIONS IN FINITE FIELDS

In this paper, motivated by our HAIL application [Bowers et al. 2009], we focus on
arithmetic operations for large finite fields of characteristics two GF (2n), with n =
16∗m, such asGF (264) orGF (2128), where field elements can be byte aligned. Most
techniques presented in this paper, however, can be readily applied to general finite
fields GF (2n). In this section, we briefly introduce several well-known algorithms
for arithmetic operations in finite fields, as well as their complexity analysis.

3.1 Binary Polynomial Method

According to finite field theory [Guajardo et al. 2006], elements of a finite field
have multiple representations. In standard basis (or polynomial basis), an element of
GF (2n) can be viewed as a polynomial a(x) = an−1x

n−1+an−2x
n−2+· · ·+a1x+a0

of degree n − 1 with coefficients in GF (2). The same element can be represented
with a bit vector (an−1, an−2 . . . , a1, a0) of length n. To generate efficient machine
representations, bit vectors are grouped into multiple machine words. For instance,
in a 64-bit machine, a single long value holds an element of finite field GF (264).
Elements of larger fields are represented with multiple long values, e.g., two long
values are used for one element in GF (2128).
There are other field representations, e.g., using a normal basis [Lidl and Nieder-

reiter 1997]. A normal basis of GF (2n) is a basis of the form (β, β2, . . . , β2n−1

),

for some β ∈ GF (2n). An element in normal basis is represented as bn−1β
2n−1

+

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

6 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

bn−2β
2n−2

+ . . . b1β
2 + b0β, where bi ∈ GF (2). The normal basis representation

is efficient for speeding up exponentiations used in some cryptographic algorithms.
In our paper, however, we focus on the standard basis representation.

In the standard basis representation, addition and subtraction in GF (2n) can be
simply implemented using bitwise XORs of bit strings of length n. To implement
multiplication and division, we need to consider first an irreducible polynomial f(x)
of degree n over GF (2) [Lidl and Niederreiter 1997]. Then multiplication and
division are defined as follows:

Multiplication of two polynomials a(x) and b(x): A simple multiplication al-
gorithm is the classical shift-and-add method [Schroeppel et al. 1995]. This method,
however, is efficient in hardware, but not in software [Guajardo et al. 2006]. An
efficient software implementation is the left-to-right comb method with windows of
width w [López and Dahab 2000]. This algorithm first multiplies a(x) and b(x),
resulting in a polynomial of degree at most 2n−2. Then, the multiplication result is
reduced modulo the irreducible polynomial f(x) to obtain a polynomial in GF (2n).
More details on this method are provided below. Other similar methods include
the right-to-left comb method and the left-to-right comb method [López and Dahab
2000], but these methods have been shown to be slower than the left-to-right comb
method with windows of width w [López and Dahab 2000].

We give now some details on the left-to-right comb method with windows of width
w for multiplication. This method computes the multiplication of two polynomials
a(x) and b(x) of degree at most n − 1 over GF (2). It is intuitively based on the
observation that if b(x)·xk is computed for a k ∈ [0,W−1], where W is the machine
word size, then b(x) ·xWj+k can be computed by simply appending j zero words to
the right of b(x)·xk ([Hankerson et al. 2000; López and Dahab 2000]). Furthermore,
this method is accelerated significantly at the expense of a little storage overhead.
It first computes b(x) · h(x) for all polynomials h(x) of degree at most w − 1, and
then it can process w bits of a(x) at once rather than only one bit at a time. The
pseudocode of this method is shown in Algorithm 1. In Algorithm 1, a, b, and c
are coefficient vectors representing polynomials a(x), b(x) and c(x). a is a vector
of words of the form (a[s − 1], a[s − 2], · · · a[1], a[0]), where s = ⌈n/W ⌉. Similar
notations are used for b and c. One thing to note is that as Algorithm 1 runs, the
length of c is 2s, while the length of a and b is constant at s. More details of this
method are available in [Hankerson et al. 2000; López and Dahab 2000].

In the multiplication operation, the left-to-right comb method with windows of
width w is followed by a modular reduction step in which the degree of c(x) is
reduced from at most 2n− 2 to at most n− 1. Generally, modular reduction for a
random irreducible polynomial f(x) is performed bit by bit, i.e., the degree of c(x)
is reduced by one in each step. However, if f(x) is a trinomial or pentanomial (i.e.,
it has three or five non-zero coefficients, recommended by NIST in the standards
for public key cryptography [for Standards and Technology 2009]), the reduction
step can be efficiently performed word by word [Guajardo et al. 2006]. Then, the
degree of c(x) is reduced by W in one step, and the modular reduction of c(x) is
greatly sped up. In this paper, we only use trinomial or pentanomial irreducible
polynomials for finite fields ranging from GF (232) to GF (2128), and therefore we
perform the modular reduction of the multiplication result one word at a time.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 7

Algorithm 1 Left-to-right comb method with windows of width w

INPUT: Binary polynomials a(x) and b(x) of degree at most n − 1 represented
with vectors a and b, and s = ⌈n/W ⌉

OUTPUT: c(x) = a(x) · b(x) represented with vector c
1: Precompute bh = b(x) · h(x) for all polynomials h(x) of degree at most w − 1
2: c ← 0;
3: for k from W/w − 1 to 0 do

4: for j from 0 to s− 1 do

5: Let h = (hw−1, hw−2, ..., h1, h0), where ht is bit (wk + t) of a[j]
6: for i from 0 to s− 1 do

7: c[i+ j] ← bh + c[i+ j]
8: end for

9: end for

10: if k 6= 0 then

11: c ← c · xw ;
12: end if

13: end for

Division of two polynomials a(x) and b(x): There are several different ways
to implement the division operation. One method computes the inverse polyno-
mial of b(x) in GF (2n), denoted by b−1(x), and then multiplies a(x) with b−1(x).
Other methods directly compute the division result. Several of the popular divi-
sion algorithms include the Extended Euclidean Algorithm, the Binary Extended
Euclidean Algorithm and the Almost Inverse Algorithm [Hankerson et al. 2000;
Schroeppel et al. 1995]. These algorithms are adapted from the classical Euclidean
algorithm [Beachy and Blair 2006].

Efficient division algorithms, including the Extended Euclidean Algorithm, the
Binary Extended Euclidean Algorithm, and the Almost Inverse Algorithm, are all
based on the Euclidean algorithm. Here, we briefly describe the idea behind the
Extended Euclidean Algorithm. Assume f(x) is an irreducible polynomial of degree
n over GF (2). For any a(x) with coefficients in GF (2), the Euclidean algorithm
computes gcd(a(x), f(x)) = 1 (since f(x) is irreducible). Then, according to algebra
theory [Beachy and Blair 2006],

∃ b(x), c(x) s.t. a(x) · b(x) + f(x) · c(x) = 1 mod f(x) (1)

The Extended Euclidean Algorithm computes both b(x) and c(x) in equation (1)
when calculating gcd(a(x), f(x)). It is easy to see that a−1(x) mod f(x) = b(x).
Hence, the Extended Euclidean Algorithm computes a−1(x) mod f(x), the inverse
of a(x). Moreover, for fields of base 2, the Extended Euclidean Algorithm can
be used to directly compute division without first obtaining a−1(x). The other
two algorithms, the Binary Extended Euclidean Algorithm and the Almost In-
verse Algorithm, are variants of the Extended Euclidean Algorithm optimized for
GF (2n) [Guajardo et al. 2006].
As it is difficult to precisely analyze the time complexity of division, we instead

provide the measured performance of division in Section 5. Interested readers can
find the theoretical analysis of the Binary Extended Euclidean Algorithm in [Vallée

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

8 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

1998].
Using the standard basis representation, we implement the left-to-right comb

method with windows of width w for multiplication and the Binary Extended Eu-
clidean Algorithm for division. We refer to the use of these algorithms for imple-
menting finite field arithmetic as the binary polynomial method.

3.2 Table Lookup Methods

There are various table lookup methods that precompute and store results of arith-
metic operations in tables with the goal of speeding up evaluation of multiplication
and division operations. These methods achieve tradeoffs between the amount of
storage for precomputed tables and operation speed.

3.2.1 Full Multiplication and Division Tables. One simple table lookup method
uses full multiplication and division tables. This algorithm precomputes the multi-
plication and division results for all element pairs in the field (by using, for instance,
the binary polynomial method described in Section 3.1) and stores the results in
tables. The tables are kept in main memory for small fields. To perform a multi-
plication or division operation, this algorithm quickly looks up the result from the
tables with no computation.
While this algorithms involves only one table lookup for both multiplication and

division, its space complexity is quadratic in the size of the field. For GF (2n),
its storage complexity is (n/8) ∗ 22n+1 bytes. For most off-the-shelf machines, this
memory requirement is acceptable for GF (28), but not for larger finite fields. For
example, full multiplication and division tables for GF (216) would already need 234

bytes, i.e., 16GB. Therefore, in this paper, we only use this table lookup algorithm
for GF (28).

3.2.2 Log and Antilog Tables. Since all non-zero elements in a finite field form a
cyclic group under multiplication [Beachy and Blair 2006], there exists a primitive
element α in the field so that any non-zero element in the field is a power of the
primitive element: for any g ∈ GF (2n), there exists an 0 ≤ ℓ < 2n − 1 such that
g = αℓ. ℓ is called the discrete logarithm of element g with respect to α in field
GF (2n).
Based on this observation, a table lookup algorithm can be constructed [Plank

1997]. This algorithm builds two tables called log and antilog. The log table records
the mapping from an element g to its discrete logarithm ℓ. Conversely, the antilog
table records the mapping from power ℓ to a unique element g in the field. These
two tables can be built with the binary polynomial method for implementing expo-
nentiation. After pre-computing these two tables, field operations can be performed
as follows:

Multiplication of two elements g1 and g2: If g1 or g2 is 0, multiplication
returns 0. Otherwise, do a lookup in the log table and get the discrete logarithms
ℓ1 and ℓ2 for g1 and g2, respectively. Then, compute ℓ3 = (ℓ1 + ℓ2) mod (2n − 1).
Finally, use the antilog table to find the field element g3 corresponding to power ℓ3
and return g3 as the multiplication result.

Division of two elements g1 and g2: If g1 is 0, division returns result 0.
Otherwise, use the log table to lookup the discrete logarithms ℓ1 and ℓ2 for g1 and

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 9

g2, respectively. Then, compute ℓ3 = (ℓ1−ℓ2) mod (2n−1). Finally, use the antilog
table to find the field element g3 corresponding to power ℓ3 and return g3 as the
division result.

Both multiplication and division involve four similar steps: (1) determine whether
one element is 0; (2) perform a lookup in the log table; (3) compute the modular
addition or subtraction; (4) use the antilog table to lookup the final result. Steps
(1) and (3) could be optimized. Jerasure, for example, expands the storage of
antilog tables by a factor of three to avoid step (3), which results in improved
performance [Plank et al. 2008]. Huang et al. expand the antilog table by a factor
of four to be able to remove both steps (1) and (3), and improve computation
performance by up to 80% [Huang and Xu 2003].
In this paper, we make use of the optimizations in [Huang and Xu 2003] to

implement this algorithm. The time complexity for both multiplication and division
is then one addition (or subtraction) operation with three table lookups. The space
complexity is 5 · (n/8) · 2n+1 bytes. Hence, this algorithm is applicable only to
GF (28) and GF (216) before memory demands become unreasonable.

3.3 Hybrid of Computational and Table Lookup Methods

The binary polynomial method evaluates the result of an arithmetic operation each
time it is invoked. On the other hand, table lookup methods pre-compute and
store all the results of arithmetic operations, resulting in very fast response time
when an operation is invoked. In this section, we explore hybrid approaches that
combine ideas from both methods to achieve computation efficiency for large finite
fields with reasonable memory consumption.

3.3.1 Split Tables. The split table algorithm has been proposed by Huang and
implemented in Jerasure by Plank [Plank 2007]. This algorithm is designed to
optimize multiplication. To perform multiplication of two elements g1 and g2, this
algorithm breaks each n-bit element in the field into n/8 units of size one byte.
Then, it computes the result of multiplication by combining multiplication results
of all unit pairs containing one byte from each operand. An example is shown
below.

Multiplication of two elements g1 and g2: Suppose, for simplicity, that g1
and g2 are in GF (216). We represent g1 as [a1, a0], where a1 is the high-order byte
of g1 and a0 is the low-order byte of g1. Similarly, we represent g2 as [b1, b0]. By
the distributive property of multiplication over finite fields, we can write:

g1 ∗ g2 = [a1, a0] ∗ [b1, b0]

= [a1, 0] ∗ [b1, 0] + [a1, 0] ∗ [0, b0]

+ [0, a0] ∗ [b1, 0] + [0, a0] ∗ [0, b0] (2)

To perform the above multiplication efficiently, we can first use the binary poly-
nomial method to build three multiplication tables called split tables [Plank 2007].
The tables store the multiplication results of all pairs of the form [a1, 0] ∗ [b1, 0],
[a1, 0] ∗ [0, b0], and [0, a0] ∗ [0, b0]. To evaluate g1 ∗ g2, the results of multiplication
for the four pairs in Equation (2) are looked up in split tables, and combined by
bitwise XORs.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

10 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Division: This algorithm proceeds as in the binary polynomial method, which
uses the Extended Euclidean Algorithm or its variants.

In general, for GF (2n), one multiplication needs (n/8)2 table lookups. In terms
of the space complexity, we need to build n/4− 1 split tables for GF (2n), and the
size of each table is (n/8) ∗ 216 bytes. Thus, the total amount of storage needed is
(n/4− 1) ∗ (n/8) ∗ 216 = 2n(n− 4) KB. For GF (264), this results in 7.5MB storage,
an acceptable memory requirement. Therefore, this algorithm can be considered
for large finite fields.

3.3.2 Extension Field Method. A more scalable algorithm to support large finite
fields is the extension field method. This method makes use of precomputed tables
in a smaller finite field, and several techniques for extending small field arithmetic
into larger field operations.

Extension field theory. Section 3.1 describes the standard basis representation
for elements of finite field GF (2n). In general, a finite field can use any of its proper
base fields to represent its elements [Beachy and Blair 2006; Lidl and Niederreiter
1997]. For example, if n = k ·m, then field GF (2n) is isomorphic to GF ((2k)m). An
element in GF (2n) can be represented as a polynomial am−1x

m−1+am−2x
m−2 · · ·+

a1x + a0 of degree m − 1 with coefficients in GF (2k). We can use an irreducible
polynomial of degree m over GF (2k) to define the field arithmetic for GF (2n).
With this representation, GF (2k) is named a base field of GF (2n), and GF (2n) an
extension field of GF (2k).

For clarity, let us give an example for GF (216). If we consider it an extension
field of GF (28), then it becomes isomorphic to GF ((28)2). We need to find two
irreducible polynomials: one for the arithmetic in the base fieldGF (28) (for instance
f(x) = x8 + x4 + x3 + x2 + 1), and the second for generating the extension field
GF ((28)2) from base field GF (28) (for instance p(x) = x2 + x+ 32).

Multiplication of two elements g1 and g2: Suppose that g1 = (a1, a0) and
g2 = (b1, b0) are two elements in GF ((28)2), with a0, a1, b0 and b1 in GF (28), and
p(x) is an irreducible polynomial of degree 2 over GF (28). Multiplication of g1 and
g2 is performed as follows:

(a1x+ a0) ∗ (b1x+ b0)

= (a1 ∗ b1)x
2 + (a1 ∗ b0 + a0 ∗ b1)x+ a0 ∗ b0 mod p(x)

= (a1 ∗ b0 + a0 ∗ b1 + 32 ∗ a1 ∗ b1)x

+ (a0 ∗ b0 + 32 ∗ a1 ∗ b1)

As all coefficients of g1 and g2 are from GF (28), the multiplications and addi-
tions of coefficients in the above computation are performed in base field GF (28).
Addition is implemented as bitwise XOR, and multiplication in GF (28) as table
lookup.
For a general GF (2n), the time complexity of multiplication depends on the base

field and the irreducible polynomial p(x). One multiplication in the extension field
GF ((2k)m) needs at least m2 multiplications in the base field GF (2k). Let us
give a justification for this theoretical lower bound. There are two steps involved
in the multiplication of two elements in the extension field: multiplication of two

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 11

polynomials of degree m− 1 (resulting in m2 multiplications in the base field), and
reduction modulo the irreducible polynomial generating the extension field. If the
irreducible polynomial used for generating the extension field has coefficients of only
0 or 1, no additional multiplications are needed in the second step. In practice, this
bound may not be reachable since such an irreducible polynomial may not exist
for some combinations of GF (2k) and m. More discussion on how to choose an
irreducible polynomial p(x) that reduces the number of multiplications in the base
field is given in Section 4.
The space complexity for multiplication in extension field GF (2n) with n = k ·m

is exactly the same as that of base field GF (2k), and is thus independent from the
extension field.

Division of two elements g1 and g2: Division in the extension field contains
two steps: finding the inverse of g2, and multiplying g1 with g−1

2 . Computing the
inverse of an element in the extension field can be implemented with the Extended
Euclidean Algorithm. The Binary Extended Euclidean Algorithm and the Almost
Inverse Algorithm used in the binary polynomial method are not applicable for
extension fields.

4. EFFICIENT IMPLEMENTATION OF OPERATIONS IN EXTENSION FIELDS

In this section, we describe the main contribution of the paper, consisting of efficient
implementation techniques for the extension field method.

4.1 Irreducible Polynomials

When implementing the extension field method, one important factor that impacts
the performance of arithmetic operations is the choice of the irreducible polynomial
used to construct the extension field. The irreducible polynomial determines the
complexity of polynomial modular reduction and hence greatly affects multiplica-
tion and division performance. In general, there are multiple choices for irreducible
polynomials, and our goal is to find those that optimize the performance of arith-
metic operations.

4.1.1 Impact of Irreducible Polynomials. We give an example to demonstrate
the great impact of irreducible polynomials on multiplication performance. Con-
sider the extension field GF ((28)4). When using f(x) = x8+x4+x3+x2+1 as the
irreducible polynomial over GF (2) for GF (28), there are two irreducible polynomi-
als of degree 4 over GF (28): p1(x) = x4+x2+6x+1 and p2(x) = x4+2x2+5x+3.
Either of them can be used to construct GF ((28)4). The multiplication complexity
in GF ((28)4), however, is significantly different for these two irreducible polynomi-
als and is shown in Table I.

Irreducible polynomial Multiplication Addition

x4 + x2 + 6x+ 1 16+3 18
x4 + 2x2 + 5x+ 3 16+9 18

Table I. Multiplication complexity in GF ((28)4) when using two different irreducible polynomials.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

12 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

In Table I, the second column shows the number of multiplications in the base
field, and the third shows the number of additions in the base field. As multipli-
cation is a much slower operation than addition, the number of multiplications in
the base field dominates the performance.

In the second column, each number consists of two terms: the first term is the
number of multiplications in the base field when multiplying two polynomials, and
the second term is the number of multiplications performed when reducing the
multiplication result modulo the irreducible polynomial. In our example, when
multiplying two polynomials in GF ((28)4), the cost of the first term is fixed, i.e.,
42 = 16 multiplications in GF (28) (in this paper, we exclude the low probability
of having the same multiplication pairs in the base field when performing a single
multiplication for the extension field.) This number is independent of the irreducible
polynomial p(x) we are using. The cost of the second term, however, is determined
by p(x), and it can vary dramatically. In Table I, this cost is 3 multiplications for
p1(x), but 9 multiplications for p2(x). Hence, the multiplication complexity for
using p1(x) is 19 multiplications compared to 25 multiplications for p2(x), resulting
in a 24% improvement in performance.
For larger finite fields, such as GF (2128), the difference in performance between

using a carefully chosen irreducible polynomial and a random one would be even
more significant. Therefore, it is important to find efficient irreducible polynomials
for optimizing performance.

4.1.2 Test of Irreducible Polynomials. There are many efficient irreducible poly-
nomials over base field GF (2) listed in the literature [Seroussi 1998]. However, for
an arbitrary field, we have to search for good irreducible polynomials. During the
search process, one key step is testing whether a polynomial is irreducible or not. A
fast test algorithm is the Ben-Or algorithm [Ben-Or 1981; Gao and Panario 1997].
With the Ben-Or algorithm, we developed a test program using the NTL library
[Shoup 1996]. Our experience shows that combing the Ben-Or algorithm with NTL
leads to an efficient algorithm for testing polynomial irreducibility.

4.1.3 Efficient Irreducible Polynomial Patterns. Section 4.1.1 shows that the
choice of irreducible polynomial greatly affects modular reduction efficiency. Par-
ticularly, it determines the number of multiplications in the base field. There is one
key parameter of the irreducible polynomial that decides the number of multipli-
cations performed in the base field: the number of coefficients not in GF (2) (i.e.,
the number of coefficients different from 0 and 1, the only elements in GF (2)). We
develop heuristics to search for irreducible polynomials that have the least number
of coefficients not in GF (2). In addition, we try to reduce the number of coefficients
of 1 to decrease the number of additions during modular reduction.
We present some efficient irreducible polynomial patterns that we found through

our search heuristics in Table II.
The 1st column of Table II is the value of n in extension field GF (2n). The 2nd

column is irreducible polynomials over base field GF (28) for GF (2n), and the 3rd

column is over base field GF (216). The irreducible polynomial used to construct
GF (28) is f(x) = x8+x4+x3+x2+1 overGF (2), and it is f(x) = x16+x12+x3+x+1
for GF (216).

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 13

n GF (28) GF (216)

32 x4 + x2 + 6x+ 1 x2 + x+ 8192
48 x6 + x2 + x+ 32 x3 + x+ 1
64 x8 + x3 + x+ 9 x4 + x2 + 2x+ 1
80 x10 + x3 + x+ 32 x5 + x2 + 1
96 x12 + x3 + x+ 2 x6 + x3 + 8192
112 x14 + x3 + x+ 33 x7 + x+ 1
128 x16 + x3 + x+ 6 x8 + x3 + x+ 8

Table II. Irreducible polynomials for extension fields GF (2n) over base field GF (28) and GF (216)

It can be proved that above irreducible polynomials are optimal in terms of the
number of coefficients not in GF (2). We consider two cases. 1) When constructing
GF (2k)m, k and m are relative prime. For such k and m, the presented irreducible
polynomials in Table II only contain coefficients in GF (2), so they are optimal. 2)
k and m are not relative prime. A fact is that if a polynomial of degree m that is
irreducible over GF (2), is also irreducible over GF (2k), then gcd(m, k)=1 [Lidl and
Niederreiter 1997, ch. 3.3]. Thus, when k and m are not relative prime, equation
gcd(m, k)=1 does not hold, and then any irreducible polynomial with degree m
over GF (2k) must have at least one coefficient not in GF (2). In this case, because
the presented irreducible polynomials in Table II contain only one coefficient not
in GF (2), they are also optimal.
With the above irreducible polynomials, one multiplication in GF ((2k)m) can be

performed with m2 or m2 +m− 1 multiplications in base field GF (2k). If k and m
are relative prime, the multiplication number is m2; otherwise, it is m2+m−1. As
explained in Section 3.3.2, there are two steps involved in the multiplication of two
elements in the extension field. The first is the multiplication of two polynomials
of degree m−1 (resulting in m2 multiplications in the base field), and the second is
the modular reduction modulo the irreducible polynomial generating the extension
field. If the irreducible polynomial only contains coefficients in GF (2), the second
step needs 0 multiplication; otherwise, if there is one coefficient not in GF (2), the
second step results in m− 1 multiplications.

4.2 Multiplication Implementation

This section presents the multiplication implementation for the extension field
method. For simplicity, we focus on the implementation for extension fieldsGF ((2k)m)
where gcd(m, k) 6=1. The implementation for the simpler case where gcd(m, k)=1
can be easily derived.
In Section 4.1.1, we gave an example showing how the choice of the irreducible

polynomial generating an extension field affects the efficiency of multiplication. Ta-
ble I shows that with polynomial p1(x), we need to perform 19 multiplications in
the base field GF (28) for each multiplication in the extension field GF ((28)4). If
multiplication in the base field is implemented with full multiplication and divi-
sion tables, this corresponds to 19 table lookups in the base field GF (28) as one
multiplication needs only one table lookup.
However, if log and antilog tables are used for multiplication in the base field, the

number of lookups increases by a factor of three. This is because one multiplication

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

14 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

now involves three table lookups, two to the log table and one to the antilog table.
In this section, we provide an efficient multiplication algorithm for using log and
antilog tables in the base field. The implementation greatly decreases the number
of table lookups from 3(m2+m−1) to m2+4m−1 for fields of the form GF ((28)m)
and GF ((216)m). This is achieved by caching table lookup results and using them
repeatedly.
The implementation contains two algorithms: the multiplication algorithm using

log and antilog tables and the modular reduction algorithm specifically designed
for the irreducible polynomials presented in Section 4.1.3. In the multiplication
algorithm given in Algorithm 2, we multiply two polynomials a(x) and b(x) of
degree at most m − 1 with coefficients in the base field and output as a result a
polynomial c(x) of degree at most 2m− 2.
In Algorithm 2, a, b, and c are coefficient vectors of polynomials a(x), b(x), and

c(x), respectively. Each element of these vectors represents a single coefficient in
the base field. The variables logtable and antilogtable are lookup tables in the base
field. They are built in advance.

Algorithm 2 Multiplication using log and antilog tables

INPUT: Polynomials a(x) and b(x) of degree at most m− 1
OUTPUT: Polynomial c(x) = a(x) · b(x) of degree at most 2m− 2
1: c ← 0;
2: for k from 0 to m− 1 do

3: alog[k] = logtable[a[k]];
4: blog[k] = logtable[b[k]];
5: end for

6: for k1 from 0 to m− 1 do

7: for k2 from 0 to m− 1 do

8: c[k1 + k2] ⊕= antilogtable[alog[k1] + blog[k2]];
9: end for

10: end for

As the output c(x) of Algorithm 2 may have degree more than m, it has to be
modularly reduced. Here, we provide an efficient modular reduction algorithm.
Suppose the irreducible polynomial is of the form p(x) = xm + x3 + x + v. The
powers x2m−2, . . . , xm can be reduced modulo p(x) as follows:

x2m−2 ≡ (x3 + x+ v) · xm−2 mod p(x)

x2m−3 ≡ (x3 + x+ v) · xm−3 mod p(x)

x2m−4 ≡ (x3 + x+ v) · xm−4 mod p(x)

. . .

xm+1 ≡ (x3 + x+ v) · x mod p(x)

xm ≡ x3 + x+ v mod p(x)

Our developed reduction method is presented in Algorithm 3, which is similar to
the modular reduction approach in [Win et al. 1996]. In Algorithm 3, c and d are
coefficient vectors of input polynomial c(x) of degree 2m−2 and output polynomial

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 15

d(x) of degree m− 1, respectively. Similarly efficient algorithms could be given for
other patterns of p(x). Note that this algorithm reduces the degree of c(x) by one
each time the loop is executed (lines 2-6).

Algorithm 3 Modular reduction

INPUT: Polynomial c(x) of degree at most 2m− 2
OUTPUT: Polynomial d(x) = c(x) mod p(x) of degree at most m− 1
1: vlog = logtable[v];
2: for k from 2m− 2 to m do

3: c[k − (m− 3)] ⊕ = c[k];
4: c[k − (m− 1)] ⊕ = c[k];
5: c[k −m] ⊕ = antilogtable[logtable[c[k]] + vlog];
6: end for

7: d ← 0;
8: for k from 0 to m− 1 do

9: d[k] = c[k];
10: end for

We proceed to analyze the complexity of our multiplication method. In Algo-
rithm 2, 2m table lookups are performed in lines 2-5, and m2 table lookups are
performed in lines 6-10. In Algorithm 3, 2m − 1 table lookups are performed in
lines 1-6. Adding all operations in Algorithms 2 and 3, we obtain the multiplication
complexity: m2 + 4m− 1 table lookups.
Similar multiplication and modular reduction algorithms can be derived by using

full multiplication and division tables to implement operations in the base field.
The corresponding time complexity is m2 +m− 1 table lookups.

5. PERFORMANCE EVALUATION

In this section we evaluate the algorithms described above for large finite fields
ranging from GF (232) to GF (2128). We present performance results for different
multiplication and division algorithms within a field. Section 6 describes a cloud
storage application which utilizes erasure coding over such large fields. We evaluate
its performance improvement from the use of our newly implemented algorithms
compared to previous implementations.

5.1 Experiment Setup

5.1.1 Platforms. The multiplication and division tests were run on a variety of
platforms in order to observe how their performances vary on different processors.
We tested our implementations on four platforms, all using Intel 64-bit proces-
sors, spanning their current offering from low to high-end. Table III details the
specifications of each platform.
All tests were run on a 64-bit version of Linux. As a result, one int value

represents one element in GF (232); one long value, i.e., a computer word, holds an
element in GF (248) and GF (264); two long values represent an element in fields
from GF (280) up to GF (2128).

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

16 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Platform CPU speed L2 cache Model

P4 3.0GHz 2MB Pentium 4
Pd 2.8GHz 2 · 1MB Dual Core (D820)
Pc2d 2.1GHz 3MB Core 2 Duo (T8100)
Pc2q 2.4GHz 2 · 4MB Core 2 Quad (Q6600)

Table III. Platforms under test.

5.1.2 Implementations. We evaluated five implementations listed in Table IV,
representing three distinct methods. Throughout the rest of the paper, we simply
use the names in the first column of Table IV to refer to various implementations. bi-
nary is based on the binary polynomial method from Section 3.1; specifically, it uses
the left-to-right comb method with windows of width w (w = 4) [López and Dahab
2000] for multiplication and the Binary Extended Euclidean Algorithm [Menezes
et al. 1997] for division. Similar to [López and Dahab 2000; Avanzi and Thériault
2007; Aranha 2010], we chose width w = 4, which we expect provides optimum
performance. split uses the split table method for multiplication from Section 3.3.1
and the same division algorithm as binary. gf8 (full), gf8 (log) and gf16 (log) are
based on the extension field method from Section 3.3.2. gf8 (full) uses base field
GF (28), with arithmetic operations based on full multiplication and division tables.
gf8 (log) also uses base field GF (28), but it implements arithmetic operations in
GF (28) by log and antilog tables. gf16 (log) is based on GF (216) with operations
implemented using log and antilog tables.

Implementation Method

binary binary polynomial
split split table

gf8 (full) extension field
gf8 (log) extension field
gf16 (log) extension field

Table IV. Evaluated implementations for GF (2n) .

We developed all implementations for finite fields of interest, and borrowed the
implementations of arithmetic operations in GF (28) and GF (216) from Jerasure.
The code is written in C and compiled using gcc with the -O2 optimization flag,
which is recommended for most applications [gentoo wiki 2010]. The code is single-
threaded, and thus does not take advantage of multiple cores when present.
In addition to compiler optimizations, many manual optimizations are applied to

each individual implementation for best performance. One common optimization
is that we do not use one general multiplication or division function for all tested
finite fields, but instead develop specific implementations for each field. This allows
us to determine the size of data structures at compile time, rather than runtime,
which improves performance significantly. Another two important optimizations are
performed in the implementation of the left-to-right comb method with windows
of width w (w = 4) for implementation binary. First, in Algorithm 1, we manually
unroll the loop from line 6 to line 8. Second, line 11 is actually an iteration. We also

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 17

manually unroll this loop. We found that these two optimizations greatly improve
multiplication performance. For instance, we achieve an improvement of 20% for
GF (296) and 35% for GF (2128) on platform Pc2q.

5.2 Comparison of All Implementations Using Table Lookups

This section compares the performance of all implementations heavily using table
lookups. Regarding these implementations, table lookup is a dominant performance
factor, so we first present table lookup numbers of each implementation in Table V.
The table lists the number of table lookups needed for one multiplication (column
2). Table V shows that gf16 (log) performs the least number of table lookup op-
erations and is followed by split. gf8 (full) and gf8 (log) need more table lookups
than the previous two. It is worth noting that for implementation gf16 (log), if
gcd(n/16, 16)6=1, the table lookup number is n2/256 + 4n/16− 1; otherwise, it is
n2/256 + 2n/16.
The space complexity of each implementation is given in the 3rd column of Ta-

ble V. The size listed here is the combined space needed for both the multiplication
and division algorithms. Note that the implementations based on the extension field
method (gf8 (full), gf8 (log), and gf16 (log)) all use one int value to represent an
element in GF (28) or GF (216), which over-estimates the minimum space require-
ment, but leads to faster arithmetic operations. The table shows that the memory
requirements for implementations based on the extension field method are indepen-
dent of the size of the finite field. However, split consumes memory quadratic in n,
limiting its practicality for large finite fields.

Implementation Table lookups Memory needed
split n2/64 2n(n− 4) KB

gf8 (full) n2/64 + n/8− 1 0.5 MB
gf8 (log) n2/64 + 4n/8− 1 5 KB
gf16 (log) n2/256 + 4n/16− 1 (or n2/256 + 2n/16) 1.25 MB

Table V. Table lookup number and memory needed of various implementations.

We now compare the measured performance of all these implementations. To
measure the raw performance of an implementation, we randomly pick 36,000,000
element pairs from a finite field. The values of all element pairs are generated
randomly. We then either multiply the pair, or divide one element by the other,
and measure the elapsed time through the use of the gettimeofday() system call.
Finally, we calculated how many operations are performed per second (operations
per second). Each experiment is run 30 times and the average result is plotted in
the graphs that follow. When the confidence level is set at 95%, the margin of error
to the average value is less than 5% for all data points. As the margin of error is
so small, we do not display error bars in the following figures.

5.2.1 Multiplication. Figure 1 displays the absolute multiplication performance
on all four platforms. In the figure, the X-axis is the value of n. The Y-axis is the

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

18 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

105

105.5

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(a) Multiplication performance on P4

105

105.5

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(b) Multiplication performance on Pd

105.5

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(c) Multiplication performance on Pc2d

105.5

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

split
gf8 (full)
gf8 (log)
gf16 (log)

(d) Multiplication performance on Pc2q

Fig. 1. Multiplication performance of GF (2n) on various platforms.

number of multiplications performed in one second, in base-10 log scale. Below are
some observations that can be drawn from the data.

(1) Among table lookup intensive implementations, gf16 (log) outperforms all other
implementations in most cases. The reason is that gf16 (log) performs about a
quarter of the table lookups compared to other implementations, as shown in
Table V. The performance gap is not significant in platform P4 and Pd due to
their small L2 caches.

(2) gf8 (full) performs better than gf8 (log), but the difference depends on plat-
forms. gf8 (full) needs less table lookups than gf8 (log), but its greater memory
needed result in higher CPU cache miss ratio on platforms with small CPU
cache, and thus these two implementations achieve similar performance on
platforms P4 and Pd. However, on other two platform Pc2d and Pc2q, gf8
(full) outperforms gf8 (log) due to their large CPU caches.

(3) split has the worst performance of all the implementations in most cases. Al-
though it uses a similar number of table lookups as gf8 (full) and gf8 (log), it
uses memory quadratic in n. This causes a large number of cache misses in
larger fields, resulting in much worse performance.

(4) As the size of our finite fields grows, the absolute performance of all table
lookup intensive implementations decreases due to the increasing number of
table lookups. All these implementations heavily depend on table lookups, and

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 19

105

105.5

106

106.5

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf8 (full)
gf8 (log)
gf16 (log)

(a) Division performance on P4

105

105.5

106

106.5

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf8 (full)
gf8 (log)
gf16 (log)

(b) Division performance on Pd

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf8 (full)
gf8 (log)
gf16 (log)

(c) Division performance on Pc2d

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf8 (full)
gf8 (log)
gf16 (log)

(d) Division performance on Pc2q

Fig. 2. Division performance of GF (2n) on various platforms.

thus, their performance degrades almost linearly as the number of table lookups
increases.

5.2.2 Division. Figure 2 displays the absolute division performance for all im-
plementations except split. We omit split here as it uses the same division algorithm
as binary. We observe the following:

(1) gf16 (log) performs best among table lookup intensive implementations. As
with multiplication, the performance advantage is highlighted on platforms
with larger L2 caches.

(2) gf8 (full) performs worse than gf8 (log) on platforms with small L2 caches, but
they perform similarly on platforms with large L2 caches.

(3) As with multiplication, as finite field size increases, the division performance
of table lookup intensive implementations also decreases. However, the rate of
decrease in division is slower than that of multiplication. For example, in plat-
form Pc2q, the division performance of gf16 (log) on finite field GF (232) is 7%
of its performance on finite field GF (2128), while this number of multiplication
performance is 10%.

5.2.3 Summary. The above results show that, among table lookup intensive
implementations, gf16 (log) performs best and in most cases, by a large margin.
This observation is consistent with the analysis shown in Table V, which indicates

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

20 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

that gf16 (log) performs about a quarter of the table lookups and bitwise operations
compared to other multiplication implementations. The memory requirements for
split cause it to perform the worst, while the performances of gf8 (full) and gf8
(log) are between that of split and gf16 (log).

5.3 Comparison of binary and gf16 (log)

This section focuses on comparing the multiplication and division performance of
binary and gf16 (log), the best one among table lookup implementations.

5.3.1 Multiplication. In Figure 3, graphs 3(a) - 3(d) display the multiplication
performance comparison of binary and gf16 (log). We have the following observa-
tions:

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(a) Multiplication performance on P4

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(b) Multiplication performance on Pd

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(c) Multiplication performance on Pc2d

106

106.5

107

107.5

108

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(d) Multiplication performance on Pc2q

Fig. 3. Multiplication performance of binary and gf16 (log) on various platforms.

(1) gf16 (log) performs better than binary from GF (232) to GF (248) on platforms
P4 and Pd which only have at most 2MB L2 caches; on platforms Pc2d and Pc2q
that have at least a 3MB L2 cache, gf16 (log) performs better from GF (232) to
GF (2112). For example, on Pc2q, the performance of gf16 (log) is higher than
that of binary by 200% for field GF (232) and 35% for field GF (2112).

(2) gf16 (log) outperforms binary for finite field GF (232) in all platforms, but as
the finite field size grows, the performance gap between gf16 (log) and binary
gradually decreases, with binary eventually outperforming gf16 (log). This

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 21

transition occurs in all graphs. We could explain this effect using the analysis
in Table V. The performance of gf16 (log) is dominated by table lookups,
which is quadratic in the value of n, and thus its performance greatly decreases
when n grows. The binary implementation, however, is a computation intensive
implementation and thus degrades less significantly.

(3) gf16 (log) starts performing slower than binary from finite field GF (264) on
platforms P4 and Pd, while the starting field is GF (2128) on platforms Pc2d
and Pc2q. This is because P2d and Pc2q contains much larger CPU caches than
P4 and Pd, and large cache size improves the performance of gf16 (log), a table
lookup intensive implementation. As L2 caches are currently increasing in size
faster than CPU speed, gf16 (log) has the potential to surpass binary, for larger
finite fields, in the near future. Nonetheless, the performance trend of binary
makes it the best choice for extremely large finite fields for the foreseeable
future.

5.3.2 Division. Graphs 4(a) - 4(d) display the division performance comparison.
The figure shows that in all cases, gf16 (log) greatly outperforms binary. For
example, on platform Pc2q, the performance of gf16 (log) is 100% higher than
that of binary for field GF (2128) and 300% for field GF (232). Similar performance
improvement can be observed on all other platforms. The reason is that the division
algorithm of binary i.e., Binary Extended Euclidean Algorithm, works on one bit at
a time since its base field is GF (2). The division algorithm of gf16 (log), however,
works on 16 bits at a time due to its base field being GF (216). Hence, gf16 (log) is
much more efficient than binary on division.

5.3.3 Throughput Comparison. To better understand the performance of finite
fields from application perspective, we compared the performance of gf16 (log)
with binary by throughput, i.e., how much data can be processed per second. As
throughput is visible to applications, the performance comparison would be more
useful in practice. The multiplication/division throughput is calculated as:

Throughput =
Operations per second * n

8
(3)

This is derived as follows. Let O be Operations per second. Then, On is how many
bits processed per second for multiplication or division, and On

8
is bytes processed

per second, or Equation 3 for throughput.
The throughput comparison is presented in Figure 5. Here, we only show compar-

ison results on platform Pc2d. Interested readers can easily do the same conversions
for other platforms from Equation 3. As for each finite field GF (2n), n is the same
to gf16 (log) and binary, operations per second determines the throughput of the
implementations. Hence, Figure 5(a) shows the same performance comparison re-
sults of the two implementations as Figure 3(c). This also applies to the division
performance shown in Figure 5(b) and 4(c). However, Figure 5(a) and 5(b) display
different performance trends from their counterparts. In both figures, gf16 (log)
degrades as n grows, but binary keeps almost constant for all n. Because gf16
(log) achieves much higher performance than binary for GF (232), gf16 (log) can
keep its performance advantage over GF (232) for a wide range of n values. But for
multiplication, binary performs better when n starts from 128.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

22 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(a) Division performance on P4

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(b) Division performance on Pd

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(c) Division performance on Pc2d

105

105.5

106

106.5

107

32 48 64 80 96 112 128

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

n

gf16 (log)
binary

(d) Division performance on Pc2q

Fig. 4. Division performance of binary and gf16 (log) on various platforms.

 0

 50

 100

 150

 200

 250

32 48 64 80 96 112 128

M
ul

tip
lic

at
io

n
th

ro
ug

hp
ut

 (
M

B
/s

)

gf16 (log)
binary

(a) Multiplication performance

 0

 5

 10

 15

 20

 25

 30

32 48 64 80 96 112 128

D
iv

is
io

n
th

ro
ug

hp
ut

 (
M

B
/s

) gf16 (log)
binary

(b) Division performance

Fig. 5. Throughput comparison on platform Pc2d.

5.3.4 Comparison of Division and Multiplication. Because of the use of the Eu-
clidean algorithm and its variants for implementing division, it is difficult to analyze
the exact theoretical complexity of division. Here we focus on comparing the mea-
sured performance of division relative to that of multiplication. Figure 6 shows
the normalized division performance for binary and gf16 (log), computed as the
division throughput divided by the multiplication throughput for each finite field.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 23

We make the following observations:

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

32 48 64 80 96 112 128

N
or

m
al

iz
ed

 d
iv

is
io

n
pe

rf
or

m
an

ce P4
Pd

Pc2d
Pc2q

(a) binary implementation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

32 48 64 80 96 112 128

N
or

m
al

iz
ed

 d
iv

is
io

n
pe

rf
or

m
an

ce P4
Pd

Pc2d
Pc2q

(b) gf16 (log) implementation

Fig. 6. Normalized division performance on various platforms.

(1) For binary, the normalized division performance decreases from about 0.08 to
0.03 across all test platforms. This is because the Binary Extended Euclidean
Algorithm used in binary contains several conditional branches and iterations,
and these greatly affect the division efficiency. The left-to-right comb method
with windows of width w (w = 4), however, has few conditional branches
and only one iteration, allowing it to scale better as field size increases. This
effect can be observed in Figure 3 too, which shows that the multiplication
performance of binary degrades slower than that of division on all platforms.

(2) For gf16 (log), the normalized division performance is fairly constant at about
0.15, regardless of finite field size. As table lookup operations dominate the
multiplication and division performance, this result suggests that the table
lookup complexity for division is Θ(n2).

5.3.5 Comparisons with Existing Implementations. We compared the multipli-
cation performance (in operations per second) observed from our implementations
with the performance reported in existing literature. The comparison results are
presented in Table VI.

n gf16 (log) LD-lcomb(w) n
LD-lcomb(w) LD-lcomb(w)
[Avanzi 2007] [Aranha 2010]

48 39,820,605 12,149,787 47 15,625,000 2,969,642
64 16,375,242 10,579,802 59 8,547,009 2,836,374
80 12,889,563 7,328,084 79 5,847,953 1,981,301
96 7,340,030 5,474,563 89 4,830,918 1,946,795
112 6,883,625 5,073,405 109 3,649,635 1,902,230
128 4,440,471 5,046,587 127 3,278,689 1,958,632

Table VI. Multiplication performance comparison with existing implementations for GF (2n)

In Table VI, column 1 to column 3 shows the performance results from our ex-
periments on platform Pc2d. The 1st column is the value of n in finite field GF (2n).

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

24 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

The 2nd column and the 3nd column are the implementations performance of gf16
(log) and LD-lcomb(w), i.e., left-to-right comb method with windows of width w
(w = 4). The 5th column is the performance of LD-lcomb(w) reported in [Avanzi
and Thériault 2007] for finite fields listed in 4th column. The 6th column is our
measured performance of the open source library relic-toolkit [Aranha 2010],
a cryptographic library with emphasis on both efficiency and flexibility [Aranha
2010]. The tested field sizes for this library are in column 4.
First we compare our performance results with those in [Avanzi and Thériault

2007]. Avanzi et al. reported the performance of finite fields from GF (243) to
GF (2283), but we only list here their results for finite fields whose sizes are close
to the ones we tested. As the performance presented in [Avanzi and Thériault
2007] is given in timing units, we translate their results to operations per second
for comparison. Table VI shows that our implementation of LD-lcomb(w) achieves
much higher performance (column 3) than those reported in [Avanzi and Thériault
2007] (column 5) in most cases. While we employ a slightly faster platform (Core
2 Duo with 2.1 GHz CPU compared to Core 2 Duo with 1.83 GHz CPU used by
Avanzi et al.), we believe that the improvement is mainly due to our optimizations.
We also compare the performance of our implemented LD-lcomb(w) with that

developed in relic-toolkit [Aranha 2010]. relic-toolkit is a general library,
which supports arithmetic operations for any finite field when its irreducible poly-
nomial is specified. We collected the performance of relic-toolkit by running
it on platform Pc2d. Although relic-toolkit provides a framework to measure
performance of field operations, we did not use their framework. Instead, we used
our test framework and measured the performance of their implementation of LD-
lcomb(w). Column 3 of Table VI shows that our implementation of LD-lcomb(w)
greatly outperforms relic-toolkit (column 6). By looking into the source code of
relic-toolkit, we found that relic-toolkit uses a general multiplication func-
tion, named fb mul lodah, to perform multiplication for all finite field sizes. The
generality of this solution unavoidably sacrifices performance as it is not optimized
for specific field sizes. In contrast, in our implementation the multiplication oper-
ation is tailored for different size fields. This confirms that manual optimizations
are still necessary to optimize performance, as observed in [Avanzi and Thériault
2007].
Again, Table VI shows that the performance of gf16 (log) (column 2) is much

higher than that of LD-lcomb(w) (column 3) in finite fields with sizes between
GF (248) and GF (2112).

6. HAIL AND 64-BIT ARITHMETIC

In this section, we show how the HAIL distributed cloud storage protocol introduced
by Bowers et al. [Bowers et al. 2009] can benefit from using 64-bit finite field
operations. We start by giving an overview of HAIL, and a new cryptographic
primitive (an integrity-protected dispersal code) that is used by HAIL to reduce the
amount of storage overhead for integrity checking. We describe two methods of
constructing such codes that offer 64-bit security. One is based on 32-bit finite field
arithmetic implemented in the Jerasure library, and the other on 64-bit operations
developed in this paper. Finally, we evaluate and compare the two methods using

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 25

HAIL as our testbed.

6.1 HAIL overview

HAIL (High Availability and Integrity Layer) is a distributed cloud storage protocol
for static data offering high availability guarantees to its users. The design of HAIL
has been introduced recently by Bowers et al. [Bowers et al. 2009].

6.1.1 RAID in the cloud. HAIL provides a new way of building reliable cloud
storage out of unreliable components. In that regard, it extends the principle of
Redundant Arrays of Independent Disks (RAID) [Patterson et al. 1988] to the
cloud. Similar to how RAID builds reliable storage at low cost from inexpensive
drives, HAIL combines multiple, cheap cloud storage providers into a more robust
and cost effective cloud storage offering.
One of the main challenges in designing HAIL was to handle a strong adversarial

model, and still retain the system efficiency in terms of storage overhead, computing
costs and bandwidth requirements. While RAID has been designed to tolerate only
benign failures (e.g., hard drive failures or latent sector errors in drives), we can not
assume that cloud providers behave in a benign way. HAIL needs to deal with a
strong, Byzantine adversarial model that models progressive corruption of providers
over time. The adversarial model defined in [Bowers et al. 2009] is mobile in the
sense that the adversary is allowed to corrupt b out of n providers in an epoch (an
epoch is a time interval of fixed length, e.g. a week or a month).

6.1.2 HAIL protocols. HAIL includes the following protocols:

(1) File Encoding: Invoked by a client, this protocol distributes a file across n
providers and adds sufficient redundancy to enable recovery from provider fail-
ures.

(2) File Decoding: Reconstructs the file from a sufficient number of correct file
fragments.

(3) Challenge-Response: Invoked periodically by the client, this protocol checks
the availability of the file. The client contacts all providers, but needs only a
threshold of responses in order to determine the status of the file.

(4) Fragment Reconstruction: Invoked when the challenge-response protocol de-
tects corruption in at least one of the providers, this protocol recovers the
corrupted fragments using the encoded redundancy.

6.1.3 HAIL encoding. A file F is divided into fixed-size blocks, viewed as ele-
ments in a finite field GF (2α). The file is dispersed by the client across providers
using a systematic (n, ℓ) erasure code [MacWilliams and Sloane 1977]. Striping is
used for encoding efficiency: a stripe consists of ℓ file blocks and n−ℓ parity blocks,
as depicted in Figure 7(a).
In addition, integrity checks are needed for file blocks to guarantee data integrity.

HAIL introduces a new cryptographic primitive to reduce the amount of storage
overhead for integrity checking, called an integrity-protected dispersal code. The
main intuition for this construction is that message authentication codes (MACs)
are embedded into the parity blocks of the dispersal code, and thus, do not use
additional storage.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

26 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Server−code parity block

1 S2 S3 S4 S5

bits
α

1
m

2
m

3
m p

5
p

4Stripe i

Dispersal−code parity block

server−code parity blocks
Dispersal−code parity block over

Original file block

S

(a) Generic encoding for file blocks in GF (2α)

Server−code parity block

1 S2 S3 S4 S5

2
m

3
m p

5
p

4 bits
32

bits
32

1
m

1
m’

3
m’ p’

4
p’

52
m’

Dispersal−code parity block

server−code parity blocks

Stripe i

Dispersal−code parity block over

Original file block

S

(b) 64-bit encoding combining two 32-bit rows

Fig. 7. HAIL encoding.

As Figure 7 shows, HAIL makes use of an additional layer of encoding besides the
dispersal code. Each file fragment stored at a provider after dispersal is encoded
a second time with a server code. The role of the server code is to correct a small
amount of corruption (which can not be detected through the challenge-response
protocol). We can view the encoding of a file as a matrix with n columns (n is the
total number of providers) and |F |/ℓ rows, with the dispersal code applied on rows,
and the server code on columns.

6.1.4 Integrity-protected dispersal code. The integrity protected dispersal code
is constructed, intuitively, from a Reed-Solomon erasure code and the addition of
a unique random value per block computed from the file, row index, and column
index. To generate a secure MAC, the parity symbols of the Reed-Solomon erasure
code are obtained from the polynomial generated from message blocks evaluated at
random points in the field.

6.2 Implementing a 64-bit integrity-protected dispersal code

The security level of the MACs embedded into the integrity-protected dispersal
code depends on the finite field in which the Reed-Solomon encoding is performed.
Most open source libraries implement encoding algorithms for symbols of length
at most 32 bits. However, a 32-bit security level is weak from a cryptographic
standpoint. We aim to obtain at least 64-bit security. In this section, we show
two methods of achieving 64-bit security: the first using 32-bit arithmetic; and the
second using the newly implemented 64-bit operations.
Assume that we divide the file into 64-bit blocks. As depicted in Figure 7(b),

consider stripe i consisting of data blocks (m1||m
′

1, . . . ,mℓ||m
′

ℓ) and parity blocks
(pℓ+1||p

′

ℓ+1, . . . , pn||p
′

n). Blocks mi,m
′

i, pj, p
′

j are all in GF (232) for i ∈ {1, . . . , ℓ}

and j ∈ {ℓ+ 1, . . . , n}. Denote ~m = (m1, . . . ,mℓ) and ~m′ = (m′

1, . . . ,m
′

ℓ).
Operating with polynomials over GF (232), we can obtain 64-bit security by con-

sidering the polynomial f of degree 2ℓ generated by ~m||~m′. To obtain parity blocks
pj and p′j , we evaluate the polynomial f at two different 32-bit random points.

Alternatively, if we operate with polynomials overGF (264), we can treat (mi||m
′

i)
as a single 64-bit value. To obtain parity block pj ||p

′

j , for j ∈ {ℓ + 1, . . . , n}, we
evaluate the degree ℓ polynomial generated by (m1||m

′

1, . . . ,mℓ||m
′

ℓ) at a random

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 27

64-bit point.

6.3 Performance evaluation

We evaluate the performance of the two possible implementations of HAIL to
achieve 64-bit security. The first uses the 32-bit arithmetic provided by Jerasure
as described above, and the second our newly implemented 64-bit library. The
two libraries use different algorithms and our goal is to assess the efficiency of our
highly optimized implementation. We compare performance, specifically encoding
and decoding throughput, across a number of parameters, including the size of the
file, the number of servers over which the file was split, and the amount of parity
information that was generated.
Tests were run on an Intel Xeon E5506, 2.13 GHz. quad-core processor which has

a 4MB L2 cache. The system has 3GB of RAM available for processing and runs
Red Hat Enterprise Linux WS v5.3 x86 64. All reported results are averages over
10 runs. Performance was measured during encoding of 400MB files, but reported
numbers only indicate the throughput of the encoding/decoding functions, so are
not affected by disk access time. Throughput is computed as the amount of data
processed (400MBs), divided by the time spent performing the encoding/decoding
function (clock time taken for the function call to return) after the data has been
loaded into memory and properly formatted. As both encoding algorithms are
single-threaded, performance is not improved by the additional cores.
Encoding performance can be drastically affected by a few key factors. These

include the amount of data processed per call, or packet size (generally the more
data per call the higher the throughput [Plank et al. 2009]), the encoding matrix
(fewer ones leads to faster encoding), and obviously the amount of memory avail-
able. In our attempt to maximize performance we encode 512 rows of data per call
(packet size = 8 bytes * 512 rows = 4096 bytes). Consistent with the application’s
usage, each encoding matrix is randomly generated and no optimizations are done
to improve it.

6.3.1 Encoding Performance. We first show in Figure 8(a) how the throughput
of the 64-bit HAIL encoding using the new arithmetic library (denoted (64,64)
HAIL) is dependent on both the number of inputs to the erasure code, as well as
the number of outputs to be generated. The encoding throughput varies between
22 and 88 MB per second. We notice that the number of outputs has a slightly
larger effect on performance than the number of inputs.
As we have shown, it is possible to achieve 64-bit security using a 32-bit encod-

ing function. We denote the version of HAIL using 32-bit Jerasure arithmetic to
achieve 64-bit security as (32,64) HAIL. To achieve 64-bit security using elements
in GF (232) requires that the encoding matrix be doubled in both the number of
rows as well as the number of columns, making it four times larger. The tradeoff is
that, typically, operations in GF (232) require much less computational effort than
operations in GF (264).
We compare real-world performance of the two possible implementations of HAIL

encoding. Figure 8(b) shows the throughput of both 64-bit security versions of
HAIL encoding, as well as the throughput achieved by a 32-bit secure encoding
using Jerasure. The 32-bit encoding giving 32-bit security (denoted (32,32) HAIL)

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

28 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Encoding Throughput
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

88.7

22.0

51.5

33.2

 2
 3

 4
 5Inputs

 2
 3

 4
 5 Outputs

 20

 40

 60

 80

 100

(a) Encoding throughput by inputs and outputs
for (64,64) HAIL

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Inputs

2 Output Encoding Throughput

(32,32)
(64,64)
(32,64)

(b) Algorithmic differences in encoding
throughput

Fig. 8. Encoding throughput.

has the highest throughput, ranging from 70 to 100 MB per seconds, depending
on the number of inputs. We are able to achieve 64-bit security with our newly
implemented library ((64, 64) HAIL) with only about 10% reduction in throughput
compared to the 32-bit Jerasure implementation ((32, 32) HAIL). In addition, we
are able to double the encoding throughput compared to the version using the
Jerasure 32-bit arithmetic operations to achieve 64-bit security ((32, 64) HAIL).
We thus demonstrate the efficiency of our highly optimized arithmetic operations
for large field arithmetic.

6.3.2 Decoding Performance. We show in Figure 9(a) the average decoding time
to recover from two erasures for the (64,64) HAIL version. The decoding throughput
is determined primarily by the number of erasures and the number of inputs to a
lesser degree, and varies between 49 and 64 MB per second.

Decoding Throughput

T
hr

ou
gh

pu
t (

M
B

/s
ec

) 64.4

49.1

49.665.0

 2
 3

 4
 5Inputs

 2
 3

 4
 5 Outputs

 20

 40

 60

 80

 100

(a) Decoding throughput by inputs and outputs
for (64,64) HAIL

 0

 20

 40

 60

 80

 100

 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Inputs

2 Erasure Decoding Throughput

(64,64)
(32,32)
(32,64)

(b) Algorithmic differences in decoding
throughput

Fig. 9. Decoding throughput.

Again, it is also interesting to compare the effect of the newly developed 64-bit
arithmetic library in HAIL with other implementations built on 32-bit Jerasure.
Figure 9(b) shows the average decoding performance of (64,64) HAIL compared

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 29

to the decoding throughput achieved by (32,64) HAIL and (32,32) HAIL. The
optimizations in the newly developed 64-bit finite field operations achieve similar
performance to Jerasure’s native 32-bit decoding, at an increased security level.
The decoding performance of the 64-bit new implementation is improved by a
factor of two compared to (32,64) HAIL. This is due to the larger matrix necessary
to achieve 64-bit security using 32-bit finite field operations, as well as the highly
effective optimizations to arithmetic operations in GF (264) developed in this paper.
One thing the graph in Figure 9(a) hides is the effect of the location of erasures

on decoding time. Since the erasure code used is systematic, errors in input (data)
symbols require more work to recover from than errors in output (parity) symbols.
This can be seen in Figure 10 where the effect of erasure location is demonstrated
for the (64,64) HAIL decoding. For this graph, the encoding generates two outputs
symbols, making the two erasures the maximum recoverable number of errors. Fig-
ure 10 shows the decoding throughput for the two erasures, comparing erasures in
the outputs only (out,out), one each in the input and output (in,out), and erasures
that only appear in the inputs (in,in). We notice that the decoding throughput can
vary by more than a factor of two depending on erasure location.

 0

 20

 40

 60

 80

 100

 2 3 4 5

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Inputs

2 Erasure Decoding Throughput

(out,out)
(in,out)

(in,in)

Fig. 10. Effect of erasure location on decoding throughput.

7. CONCLUSIONS

This paper provides new optimizations and efficient implementations of arithmetic
operations for large finite fields GF (2n), ranging from GF (232) to GF (2128) tailored
for secure storage applications. We consider five different implementations based
on three general methods for field arithmetic. We analyze the time and space
complexity for these implementations, showing tradeoffs between the amount of
computation and amount of memory space they employ. We also evaluate the raw
performance of these implementations on four distinct hardware platforms, and
present an application of our large field arithmetic implementation for distributed
cloud storage.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

30 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Among the table lookup intensive implementations, we show that an implementa-
tion called gf16 (log), based on the extension field method, achieves the best perfor-
mance. The implementation uses precomputed log and antilog tables in GF (216) to
speed up multiplication. We also compare the performance of gf16 (log) with that of
the computation intensive implementation based on the binary polynomial method,
called binary. The binary implementation uses the left-to-right comb method with
windows of width w for multiplication and the Binary Extended Euclidean Algo-
rithm for division. We show that in platforms with small CPU cache, multiplication
in gf16 (log) outperforms binary up to finite field GF (248). In platforms with large
CPU cache, the range extends to GF (2112). For division, gf16 (log) performs best
in all cases. We conclude that gf16 (log) is an efficient implementation for large
finite fields, particularly for modern CPUs with large CPU caches.
Finally, we show that our library is beneficial for HAIL, a distributed cloud

storage protocol whose security relies on employing large field Reed-Solomon erasure
coding. Our newly implemented 64-bit arithmetic operations speed up the encoding
and decoding throughput of HAIL by a factor of two. We anticipate many secure
storage applications requiring large finite field operations will directly benefit from
our implementations presented in this paper. As future work, we plan to investigate
further applications of large field arithmetic for erasure coding and cryptographic
operations.

REFERENCES

Aranha, D. F. 2010. RELIC is an Efficient Library for Cryptography, version 0.2.3.
http://code.google.com/p/relic-toolkit/.

Aranha, D. F., López, J., and Hankerson, D. 2010. Efficient Software Implementation of Binary
Field Arithmetic Using Vector Instruction Sets. In LATINCRYPT ’10: The First International
Conference on Cryptology and Information Security in Latin America.

Avanzi, R. and Thériault, N. 2007. Effects of Optimizations for Software Implementations of
Small Binary Field Arithmetic. In WAIFI ’07: International Workshop on the Arithmetic of
Finite Fields. 21–22.

Bailey, D. V. and Paar, C. 1998. Optimal Extension Fields for Fast Arithmetic in Public-Key
Algorithms. In CRYPTO ’98: Proc. of the Annual International Cryptology Conference.

Beachy, J. A. and Blair, W. D. 2006. Abstract Algebra. Waveland Press, Inc.

Ben-Or, M. 1981. Probabilistic Algorithms in Finite Fields. In Symposium on Foundations of
Computational Science. 394–398.

Bowers, K., Juels, A., and Oprea, A. 2009. HAIL: A High-Availability and Integrity Layer for
Cloud Storage. In CCS ’09: Proc. of the 16th ACM Conference on Computer and Communi-
cations Security.

Diffie, W. and Hellman, M. E. 1976. New Directions in Cryptography. IEEE Transactions on
Information Theory 22 (6), 644–654.

ElGamal, T. 1985. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory 31, 4, 469–472.

for Standards, N. I. and Technology. 2009. FIPS 186-3: Digital Signature Standard (DSS).
http://www.itl.nist.gov/fipspubs/by-num.htm.

Gao, S. and Panario, D. 1997. Tests and constructions of irreducible polynomials over finite
fields. In FoCM’97: Foundations of Computational Mathematics.

gentoo wiki. 2010. http://en.gentoo-wiki.com/wiki/CFLAGS.

Greenan, K. M., Miller, E. L., and Schwarz, T. J. E. 2007. Analysis and Construction of
Galois Fields for Efficient Storage Reliability. In Technical Report UCSC-SSRC-07-09.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

Efficient Implementations of Large Finite Fields for Secure Storage Applications · 31

Greenan, K. M., Miller, E. L., and Schwarz, T. J. E. 2008. Optimizing Galois Field Arith-

metic for Diverse Processor Architectures and Applications. In MASCOTS ’08: International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems.

Guajardo, J., Kumar, S. S., Paar, C., and Pelzl, J. 2006. Efficient Software-Implementation
of Finite Fields with Applications to Cryptography. Acta Applicandae Mathematicae 93, 3–32.

Hankerson, D., Hernandez, J. L., and Menezes, A. 2000. Software Implementation of Elliptic
Curve Cryptography Over Binary Fields. In CHES ’00: Workshop on Cryptographic Hardware
and Embedded Systems.

Harper, G., Menezes, A., and Vanstone, S. 1992. Public-Key Cryptosystems with Very Small
Key Lengths. In Eurocrypt ’92: Proc. of the Annual International Conference on the Theory
and Applications of Cryptographic Techniques.

Huang, C. and Xu, L. 2003. Fast Software Implementation of Finite Field Operations. Technical
report, Washington University .

Intel. 2007. Intel SSE4 Programming Reference. http://software.intel.com/file/18187/.

Intel. 2011. Intel Advanced Encryption Standard (AES) Instructions Set.
http://software.intel.com/file/24917.

Kravitz, D. W. 1993. Digital signature algorithm. U.S. Patent 5,231,668.

Lidl, R. and Niederreiter, H. 1997. Finite Fields. Cambridge University Press.

López, J. and Dahab, R. 2000. High-speed Software Multiplication in F2m . In INDOCRYPT
’00: Proc. of the Annual International Conference on Cryptology in India.

MacWilliams, F. J. and Sloane, N. J. A. 1977. The Theory of Error Correcting Codes. Ams-
terdam: North-Holland.

Menezes, A., van Oorschot, P., and Vanstone, S. 1997. Handbook of Applied Cryptography.
CRC Press.

Miller, V. S. 1986. Use of Elliptic Curves in Cryptography. In CRYPTO 85’: Proc. of the
Annual International Cryptology Conference.

Patterson, D. A., Gibson, G., and Katz, R. H. 1988. A Case for Redundant Arrays of In-
expensive Disks (RAID). In SIGMOD ’88: Proc. of the 1988 ACM SIGMOD International
Conference on Management of Data.

Plank, J. S. 1997. A Tutorial on Reed-Solomon Coding for Fault Tolerance in RAID-like Systems.
Software – Practice and Experience 27 (9), 995–1012.

Plank, J. S. 2007. Fast Galois Field Arithmetic Library in C/C++.
http://www.cs.utk.edu/~plank/plank/papers/CS-07-593/.

Plank, J. S., Luo, J., Schuman, C. D., Xu, L., and Wilcox-O’Hearn, Z. 2009. A Performance
Evaluation and Examination of Open-Source Erasure Coding Libraries For Storage. In FAST
’09: Proc. of the 7th Usenix Conference on File and Storage Technologies.

Plank, J. S., Simmerman, S., and Schuman, C. D. 2008. Jerasure: A Library in C/C++
Facilitating Erasure Coding for Storage Applications. Tech. Rep. CS-08-627, University of
Tennessee. August.

Reed, I. S. and Solomon, G. 1960. Polynomial Codes over Certain Finite Fields. Journal of the
Society for Industrial and Applied Mathematics 8 (10), 300–304.

Schroeppel, R., Orman, H., Malley, S. O., and Spatscheck, O. 1995. Fast Key Exchange
with Elliptic Curve Systems. In CRYPTO ’95: Proc. of the Annual International Cryptology
Conference.

Seroussi, G. 1998. Table of Low-Weight Binary Irreducible Polynomials.
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf.

Shoup, V. 1996. A New Polynomial Factorization Algorithm and Its Implementation. Journal
of Symbolic Computation 20, 363–397.

Vallée, B. 1998. The Complete Analysis of the Binary Euclidean Algorithm. In ANTS ’98:
Proc. of the Third International Symposium on Algorithmic Number Theory Symposium.

Win, E. D., Bosselaers, A., Vanderberghe, S., Gersem, P. D., and Vandewalle, J. 1996.
A Fast Software Implementation for Arithmetic Operations in GF (2n). In ASIACRYPT ’96:

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

32 · L. Luo, K. D. Bowers, A. Oprea, and L. Xu

Proc. of the Annual International Conference on the Theory and Application of Cryptology

Information Security.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.

