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Abstract. We study the problem of authenticating the content and cre-
ation time of documents generated by an organization and retained in
archival storage. Recent regulations (e.g., the Sarbanes-Oxley act and
the Securities and Exchange Commission rule) mandate secure retention
of important business records for several years. We provide a mecha-
nism to authenticate bulk repositories of archived documents. In our ap-
proach, a space efficient local data structure encapsulates a full document
repository in a short (e.g., 32-byte) digest. Periodically registered with a
trusted party, these commitments enable compact proofs of both docu-
ment creation time and content integrity. The data structure, an append-
only persistent authenticated dictionary, allows for efficient proofs of ex-
istence and non-existence, improving on state-of-the-art techniques. We
confirm through an experimental evaluation with the Enron email corpus
its feasibility in practice.
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1 Introduction

Due to numerous regulations, including the recent eDiscovery laws, the Sarbanes-
Oxley act and the Securities and Exchange Commission rule, electronic data
must be securely retained and made available in a number of circumstances. One
of the main challenges in complying with existing regulations is ensuring that
electronic records have not been inadvertently or maliciously altered. Not only
must the integrity of the records themselves be maintained, but also the integrity
of metadata information, such as creation time. Often organizations might have
incentives to modify the creation time of their documents either forward or
backward in time. For example, document back-dating might enable a company
to claim intellectual property rights for an invention that has been discovered by
its competitor first. A party involved in litigation might be motivated to change
the date on which an email was sent or received.

Most existing solutions offered by industrial products (e.g., [15]) implement
WORM (Write-Once-Read-Many) storage entirely in software and use hard disks
as the underlying storage media. These products are vulnerable to insider at-
tacks with full access privileges and control of the storage system that can easily
compromise the integrity of data stored on the disk. Sion [32] proposes a so-
lution based on secure co-processors that defends against document tampering



by an inside adversary at a substantial performance overhead. External time-
stamping services [21, 3, 2] could be leveraged for authenticating a few important
documents, but are not scalable to large document repositories.

In this paper, we propose a cost-effective and scalable mechanism to estab-
lish the integrity and creation time of electronic documents whose retention is
mandated by governmental or state regulations. In our model, a set of users (or
employees in an organization) generate documents that are archived for reten-
tion in archival storage. A local server in the organization maintains a persistent
data structure containing all the hashes of the archived documents. The server
commits to its internal state periodically by registering a short commitment
with an external trusted medium. Assuming that the registered commitments
are publicly available and securely stored by the trusted medium, the organiza-
tion is able to provide compact proofs to any third party about the existence
or non-existence of a particular document at any moment in time. Our solution
aims to detect any modifications to documents occurring after they have been
archived.

To enable the efficient creation of both existence and non-existence proofs,
we describe a data structure that minimizes the amount of local storage and the
size of commitments. The data structure supports fast insertion of documents,
fast document search and can be used to generate compact proofs of membership
and non-membership. Our data structure implements an append-only, persistent,
authenticated dictionary (PAD) [1] and is of independent interest. Previously
proposed PADs rely either on sorted binary trees [26], red-black trees [1, 27]
or skip lists [1], and use the node duplication method proposed by Driscoll et
al. [14]. By combining ideas from Merkle and Patricia trees in our append-only
PAD, we reduce the total amount of storage necessary to maintain all versions
of the data structure in time, as well as the cost of non-membership proofs
compared to previous approaches.

Another contribution of this paper is giving rigorous security definitions for
time-stamping schemes that offer document authenticity against a powerful in-
side attacker. Our constructions are proven secure under the new security defi-
nitions. Finally, we confirm the efficiency of our optimized construction through
a Java implementation and an evaluation on the Enron email data set [12].

Organization. We start in Section 2 by reviewing related literature. We present
our security model in Section 3 and our constructions in Section 4. We give
the performance evaluation of our implementation in Section 5, and conclude in
Section 6. Full details of the persistent data structure and a complete security
analysis of our constructions can be found in the full version of the paper [31].

2 Related Work

In response to the increasing number of regulations mandating secure retention
of data, compliance storage (e.g., [15, 22]) has been proposed. Most of the indus-
trial offerings in this area enforce WORM (Write-Once-Read-Many) semantics



through software, using hard disks as the underlying storage media, and, as such
are vulnerable to inside attackers with full access privileges and physical access
to the disks. Sion [32] proposes to secure WORM storage with active tamper-
resistant hardware.

A method proposed in the early 90s to authenticate the content and cre-
ation time of documents leverages time-stamping services [21, 3]. Such services
generate a document time-stamp in the form of a digital signature on the doc-
ument digest and the time the document has been submitted to the service. To
reduce the amount of trust in such services, techniques such as linking [21, 3,
2], accountability [8, 6, 10, 5], periodic auditing [9], and “timeline entanglement”
[27] have been proposed. Time-stamping schemes are useful in preventing back-
dating and establishing the relative ordering of documents, but they do not
prevent forward-dating as users could obtain multiple time-stamps on the same
document. Moreover, time-stamping services are not scalable to a large num-
ber of documents. Our goal is to provide scalable methods to authenticate the
content and creation time of documents archived for compliance requirements.

Our work is also related to research on authenticated data structures. Au-
thenticated dictionaries (AD) support efficient insertion, search and deletion
of elements, as well as proofs of membership and non-membership with short
commitments. First ADs based on hash trees were proposed for certificate revo-
cation [24, 30, 7]. ADs based on either skip lists [18, 20, 17] or red-black trees [1]
have been proposed subsequently. There exist other constructions of ADs with
different efficiency tradeoffs that do not support non-membership proofs, e.g.,
based on dynamic accumulators [11, 19] or skip lists [4].

Persistent authenticated dictionaries (PAD) are ADs that maintain all ver-
sions in time and can answer membership and non-membership proofs for any
time interval in the past. First PADs were based on red-black trees and skip
lists [1], and use the node duplication method of Driscoll et al. [14]. Goodrich
et al. [16] analyzed the performance of different implementations of PADs based
on skip lists. PADs are used in the design of several systems related to our work.
KASTS [26] is a system designed for archiving of signed documents, ensuring that
signatures can be verified even after key revocation. Timeline entanglement [27]
is a technique that leverages multiple time-stamping services for eliminating
trust in a single service. CATS [33] is a system that enables clients of a remote
file system to audit the remote server, i.e., get proofs about the correct execution
of each read and write operation. While KASTS is built using node duplication
and supports all operations of a PAD, neither timeline entanglement nor CATS
support non-membership proofs.

The persistent authenticated data structure that we propose in our system
differs from previous work by only permitting append operations, with no mech-
anism for deletion. This allows us to design a more space efficient data struc-
ture (without reverting to node duplication) and construct very efficient non-
membership proofs.

A different and interesting model of persistent data structures based on
Merkle trees, called history trees, has been developed recently by Crosby and



Wallach [13] in the context of tamper-evident logging. The history tree authen-
ticates a set of logged events by generating a commitment after every event
is appended to the log. To audit an untrusted logger, the history tree enables
proofs of consistency of recent commitments with past versions of the tree called
incremental proofs, and membership proofs for given events. The history tree
bears many similarities with our unoptimized data structure. In both construc-
tions, events (or documents) have a fixed position in the tree, based on their
index, or document handle, respectively. We organize our data structure based
on document handles to enable non-membership proofs and efficient content
searches. We could easily augment our unoptimized data structure with similar
incremental proofs as those supported by history trees. However, generating in-
cremental proofs for our optimized data structure is challenging, as document
handles might change their position in the tree from one version to the next.

Finally, cryptographic techniques to commit to a set of values so that mem-
bership and non-membership proofs for an element do not reveal additional
knowledge have been proposed [29, 25]. Micali et al. [29] introduce the notion
of zero-knowledge sets, and implement it using a tree similarly organized to the
binary trees we employ in our data structure. However, the goal of their system,
in contrast to ours, is to reveal no knowledge about the committed set through
proofs of membership and non-membership.

3 System Model

We model an organization in which users (employees) generate electronic docu-
ments, some of which need to be retained for regulatory compliance. Archived
documents might be stored inside the organization or at a remote storage provider.
We assume that all documents retained in archival storage are received first by
a local server S. There exists a mechanism (which we abstract away from our
model) through which documents are delivered first to the local server before be-
ing archived. S maintains locally some state which is updated as new documents
are generated and reflects the full state of the document repository. Periodically,
S computes a short digest from its local state and submits it to an external
trusted party T .

The trusted party T mainly acts as a reliable storage medium for commit-
ments generated by S. With access to the commitments provided by T and proofs
generated by S, any third party (e.g., an auditor V) could verify the authenticity
and exact creation time of documents. Thus, organizational compliance could be
assessed by a third party auditor. In particular, the external party used to store
the periodic commitments could itself be an auditor, but that is certainly not
necessary.

Our system operates in time intervals or rounds, with the initial round num-
bered 1. S maintains locally a persistent, append-only data structure, denoted
at the end of round t as DataStrt. S commits to the batch of documents created
in round t by sending a commitment Ct to T . Documents are addressed by a
fixed-size name or handle, which in practice could be implemented by a secure



hash of the document (e.g., if SHA-256 is used for creating handles, then their
sizes is 32 bytes). For a document D, we denote its handle as hD.

3.1 System Interface

Our system consists of several functions available to S and another set of func-
tions exposed to an auditor V. We start by describing the interface available to
S, consisting of the following functions.

Init(1κ) This algorithm initializes several system parameters (in particular the
round number t = 1, and DataStr), given as input a security parameter.

Append(t, hD) Appends a new document handle hD (or a set of document han-
dles) to DataStr at the current time t.

GetTimestamp(hD) Returns document hD’s timestamp.
GetAllDocs(t) Returns all documents generated at time t.
GenCommit(t) Generates a commitment Ct to the set of documents that are

currently stored in DataStr and sends it to T . The call to this function also
signals the end of the current round t, and the advance to round t + 1.

GenProofExistence(hD, t) Generates a proof π that document with handle hD

existed at time t.
GenProofNonExistence(hD, t) Generates a proof π that document with handle

hD was not created before time t.

The functions exposed by our system to the auditor are the following.

VerExistence(hD, t, Ct, π) Takes as input document handle hD, time t, commit-
ment Ct provided by T , and a proof π provided by S. It returns true if π
attests that document hD existed at time t, and false otherwise.

VerNonExistence(hD, t, Ct, π) Takes as input document handle hD, time t, com-
mitment Ct provided by T , and a proof π provided by S. It returns true if
π demonstrates that document hD was not created before time t, and false
otherwise.

A time-stamping scheme for archival storage consists of algorithms Init,Append,
GetTimestamp,GetAllDocs, GenCommit, GenProofExistence, GenProofNonExistence
available to S, and algorithms VerExistence and VerNonExistence available to V.
Some of these algorithms implicitly call the trusted party T for storing and
retrieving commitments for particular time intervals.

3.2 Security Definition

To define security for our system, we consider an inside attacker, Alice, modeled
after a company employee. Alice has full access privileges similar to a system
administrator and physical access to the storage system (in particular to the local
server S). In addition, Alice intercepts and might tamper with other employees
documents, and regularly submits her own documents to S for timestamping
and archival. However, Alice as a rational adversary who is consciously trying



to escape internal detection of fraud, behaves correctly most of the time. If she
tampered with a large number of documents periodically, the risk of detection
would be highly increased.

The value of documents generated by an organization is usually established
after they are archived. One such example is a scenario in which a company is
required to submit all emails originating from Alice in a given timeframe as part
of litigation. When the company is subpoenaed, Alice might want to change the
date or content of some of the emails she sent. It is very unlikely, however, that
Alice predicts in advance all emails that will incriminate her later in court and
the exact timeframe of a subpoena. As a second example, consider the scenario
of a pharmaceutical company working on development of a new cancer drug. If
the company finds out suddenly that one of its competitors already developed
a similar drug, it has incentives to back-date some of the technical papers and
patent applications describing the invention.

In both cases we look to prevent the modification of the documents them-
selves, or their creation date, after a commitment has been generated and sent
to the trusted medium. Alice is granted full access to S and may modify the un-
derlying DataStr, but should not be able to make false claims about documents
which have been committed to T . Alice’s goal, then, is to change a document or
falsify its creation time, after a commitment has been generated and received by
T . We assume that commitments sent by the local server to the trusted party
are securely stored and cannot be modified by the adversary.

ExpVer-TS
A (T ): ExpVer-NE

A (T ):
s ← λ s ← λ
for t = 1 to T for t = 1 to T

(Ht, s) ← A1(s, t) (Ht, s) ← A1(s, t)
S.Append(t,Ht) S.Append(t,Ht)
Ct ← S.GenCommit(t) Ct ← S.GenCommit(t)

(D∗, t∗, π) ← A2(s) (D∗, t∗, π) ← A2(s)
hD∗ ← h(D∗) hD∗ ← h(D∗)
if ∃t∗ ≤ t ≤ T such that (hD∗ /∈ ∪t

j=1Hj)∧ if ∃t ≤ t∗ such that (hD∗ ∈ Ht)∧
(V.VerExistence(hD∗ , t∗, Ct∗ , π) = true) (V.VerNonExistence(hD∗ , t∗, Ct∗ , π) = true)

return 1 return 1
else return 0 else return 0

Fig. 1. Experiments that define security of time-stamping schemes.

To formalize our security definition, our adversary A = (A1,A2) is partici-
pating in one of the two experiments described in Figure 1. A maintains state s,
and sends to the local server a set of document handles Ht in each round (gener-
ated by both legitimate employees and by the adversary herself). After T rounds
in which documents are inserted in DataStr, and commitments are generated, A
is required to output a document, a time interval and a proof. The adversary is
successful if either: (1) she is able to claim existence of a document at a time
at which it was not yet created (i.e., outputs 1 in experiment ExpVer-TS); or (2)
she is able to claim non-existence of a document that was in fact committed in
a previous time round by the server (i.e., outputs 1 in experiment ExpVer-NE).



4 Time-Stamping Construction

In this section we present the design of a time-stamping scheme for archival stor-
age. We start with a quick background on Merkle trees, tries and Patricia trees.
We then describe in detail our append-only persistent authenticated dictionary,
and how it can be used in designing time-stamping schemes.

4.1 Merkle Trees

Merkle trees [28] have been designed to generate a constant-size commitment to
a set of values. A Merkle tree is a binary tree with a leaf for each value, and
a hash value stored at each node. The hash for the leaf corresponding to value
v is h(v). The hash for an internal node with children v and w is computed as
h(v||w). The commitment for the entire set is the hash value stored in the root
of the tree. Given the commitment to the set, a proof that a value is in the set
includes all the siblings of the nodes on the path from the root to the leaf that
stores that value. Merkle trees can be generalized to trees of arbitrary degree.

4.2 Tries and Patricia Trees

Trie data structures [23] are organized as a tree, with branching performed on
key values. Let us consider a binary trie in which each node is labeled by a
string as follows. The root is labeled by the empty string λ, a left child of node
u is label by u0 and a right child of node u is labeled by u1. This can be easily
generalized to trees of higher degree, and we explore such tries constructed from
arbitrary degree trees further in our implementation.

When a new string is inserted in the trie, its position is uniquely determined
by its value. The trie is traversed starting from the root and following the left
path if the first bit of the string is 0, and the right path, otherwise. The process
is repeated until all bits of the string are exhausted. When traversing the trie,
new nodes are created if they do not already exist. Siblings of all these nodes
with a special value null are also created, if they do not exist. Figure 2 shows an
example of a trie based on a binary tree containing strings 010, 011 and 110.

For our application, we insert into the data structure fixed-size document
handles, computed as hashes of document contents. In the basic trie structure
depicted in Figure 2, document handles are inserted only in the leaves at the
lowest level of the tree. In consequence, the cost of all operations on the data
structure is proportional to the tree height, equal to the size of the hash when
implemented with a binary tree.

For more efficient insert and search operations, Patricia trees [23] are a vari-
ant of tries that implement an optimized tree using a technique called path
compression. The main idea of path compression is to store a skip value skip at
each node that includes a 0 (or 1) for each left (or right, respectively) edge that
is skipped in the optimized tree. The optimized tree then does not contain any
null values.



D1 D2
D3

null null

null

0 1

10 11

110
111

00 01

010 011

Fig. 2. Unoptimized trie for strings
D1 = 010, D2 = 011 and D3 = 110.

D1
D2

D3

0 110

010 011

skip=10

skip=1

Fig. 3. Optimized Patricia tree for
strings D1 = 010, D2 = 011 and D3 =
110.

For instance, the null leaves with labels 00, 10 and 111 in Figure 2 could be
eliminated in an optimized Patricia tree, as shown in Figure 3. In the optimized
tree, we have to keep track of node labels, as they do not follow directly from
the position of the node in the tree. A node label can be obtained from node’s
position in the tree and skip values for nodes on the path from the root to that
particular node.

Knuth [23] proves that, if keys are distributed uniformly in the key space,
then the time to search a key in a Patricia tree with N strings is O(log N).

4.3 Overview of the Data Structure

To construct a time-stamping scheme for archival storage, the local server needs
to maintain a persistent data structure DataStr that supports insertions of new
documents, enables generation of proofs of membership and non-membership of
documents for any time interval, and has short commitments per interval. In the
terminology used in the literature, such a data structure is called a persistent
authenticated dictionary [1]. Other desirable features for our PAD is to enable
efficient search by document handle, and also to enumerate all documents that
have been generated in a particular time interval.

A Merkle-tree per time interval. A first, simple idea to build our PAD is to con-
struct a Merkle tree data structure for each time interval that contains the han-
dles of all documents generated in that interval. Such a simple data structure en-
ables efficient appends, and efficient proofs of membership and non-membership.
However, searching for a document handle is linear in the number of time inter-
vals.

A trie or Patricia tree indexed by document handles. To enable efficient search
by document handles, we could build a trie (or more optimized Patricia tree),
indexed by document handles. We could layer a Merkle tree over the trie by
computing hashes for internal nodes using the hash values of children. The com-
mitment for each round is the value stored in the root of the tree. At each time



interval, the hashes of internal nodes might change as new nodes are inserted into
the tree. In order to generate membership and non-membership proofs at any
time interval, we need a mechanism to maintain all versions of node hashes. In
addition, we need an efficient mechanism to enumerate all documents generated
at time t.

Our persistent authenticated dictionary. In constructing our PAD, we show how
the above data structure can be augmented to support all features of a time-
stamping scheme. Our data structure is a Merkle tree layered over a trie (or
Patricia tree, in the optimized version). Each node in the tree stores a list of
hashes (computed similarly to Merkle trees) for all time intervals the hash of the
node has been modified. The list of hashes is stored in an array ordered by time
intervals. In the optimized version, the hashes at each node are computed over
the skip value of the node, in addition to the children’s hashes (for an internal
node), and the document handle (for a leaf node).

To prove a document’s existence at time t, the server provides evidence that
the document handle was included in the tree at its correct position at time t.
Similarly to Merkle trees, the server provides the version t hashes of the sibling
nodes on the path from the leaf to the root and the auditor computes the root
hash value and checks it is equal to the commitment at time t. In addition, in
the optimized version, the proof includes skip values of all nodes on the path
from the leaf to the root, and the auditor needs to check that the position of the
document handle in the tree is correct, using the skip values sent in the proof.

A document’s non-existence at time t needs to demonstrate (for the trie
version) that one of the nodes on the path from the root of the tree to that
document’s position in the tree has value null. For the optimized Patricia tree
version, non-existence proofs demonstrate that the search path for the docu-
ment starting from the root either stops at a leaf node with a different handle,
or encounters an internal node with both children’s labels non-prefixes of the
document handle. Again, in the optimized version, skip values on the search
path are included in the proof so that the auditor could determine if the tree is
correctly constructed.

To speed the creation of existence and non-existence proofs in the past, we
propose to store some additional values in each node. Specifically, each node u
maintains a list of records Lu, ordered by time intervals. Lu contains one record
vt

u for each time interval t in which the hash value for that node changed. vt
u.hash

is the hash value for the node at time t, vt
u.lpos is the index of the record at time

t for its left child in Lu0, and vt
u.rpos is the index of the record at time t for its

right child in Lu1. If one of the children of node u does not contain a record at
time t, then vt

u.lpos or vt
u.rpos store the index of the largest time interval smaller

than t for which a record is stored in that child.
By storing these additional values, the subtree of the current tree for any

previous time interval t can be easily extracted traversing the tree from the root
and following at each node v the lpos and rpos pointers from record vt

u. The
cost of generating existence and non-existence proofs at any time in the past
is then proportional to the tree height, and does not depend on the number of



time intervals. In addition, all documents generated at a time interval t can be
determined by traversing the tree in pre-order and pruning all branches that do
not have records created at time t.
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Fig. 4. Tree at interval 3.

Let us consider an example. Figure 4 shows a data structure with four docu-
ments. A record vt

u for node u at time t has three fields: (vt
u.hash, vt

u.lpos, vt
u.rpos).

After the first round, documents D1 and D2 with handles 011 and 101 are in-
serted. Document D3 with handle 000 is inserted at interval 2, and document
D4 with handle 010 is inserted at time 3.

A proof of existence of D4 at time 3 consists of records v3
010, v

1
011, v

2
00, v

1
1 and

the commitment C3 = h(v3
λ||3). This path includes all the siblings of nodes from

root to leaf D4 for the subtree at time 3.
A non-existence proof for D4 at time 2 consists of records v1

010, v
1
011, v

2
00, v

1
1

and the commitment C2 = h(v2
λ||2). This is also a Merkle-like proof, but one

that shows a null value in the leaf corresponding to D4 for the subtree at time 2.

For lack of space, we omit full details of our data structure, and refer the
reader to the full version of our paper for complete algorithm description and
security analysis [31].

Probabilistic proofs of creation time. Starting from the basic functionality we
have provided in a time-stamping scheme, we could implement an algorithm
that attests to the creation time of documents. One simple method for its im-
plementation is to include a proof of document’s existence at a time t and its
non-existence at all previous time intervals 1, . . . , t− 1. To reduce the complex-
ity, probabilistic proofs can be used in which the server provides non-existence
proofs only for a set of intervals chosen pseudorandomly by the auditor.



4.4 Efficiency

In this section, we provide a detailed comparison of the cost of the relevant met-
rics for our optimized compressed tree construction based on Patricia trees, and
previous persistent authenticated dictionaries, based either on red-black trees
and skip lists [1], or authenticated search trees [33]. Table 1 gives the comparison
for the worst-case cost of Append, GenProofExistence and GenProofNonExistence
algorithms at time t (assuming that document handles are uniformly distributed).
Table 2 compares the tree growth rate of Append, the total number of nodes in
the tree, and the sizes of existence and non-existence proofs at time t for our
data structure and previous schemes. In these tables, nt represents the number
of nodes in the data structure at time t.

Append at time t GenProofExistence(hD, t) GenProofNonExistence(hD, t)

Compressed tree O(1) node creation log nt tree ops. log nt tree ops.
log nt hash comp.

Previous schemes log nt node creation log nt tree ops. 2 log nt tree ops.
[1, 33] log nt hash comp.

Table 1. Worst-case cost of Append, GenProofExistence and GenProofNonExistence al-
gorithms at time t for compressed trees and previous schemes.

All previously proposed persistent authenticated dictionaries we are aware
of use the node duplication method of Driscoll et al. [14] in order to insert or
delete nodes in the data structure. This adds a O(log nt) space overhead to the
data structure for every append or delete operation. The main improvements
that our data structure achieves over previous schemes is the reduction in the
total number of nodes in the tree, and the reduction in the size, construction and
verification time of non-existence proofs. We are able to reduce the tree growth
to only a constant value because in our archival storage model we only support
append operations, and we disallow deletions from the data structure.

Tree growth at Total number of Size of existence Size of non-existence
Append nodes in tree proofs proofs

Compressed tree O(1) O(nt) (log nt)|h| (log nt)|h|
Previous schemes [1, 33] log nt O(nt log nt) (log nt)|h| 2(log nt)|h|

Table 2. Tree growth rate of Append, total number of nodes in the tree, and the size of
existence and non-existence proofs at time t for compressed trees and previous schemes.

5 Experimental Evaluation

To assess the practicality of our constructions, we have implemented the time-
stamping scheme using the optimized data structure in Java 1.6 and performed
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Fig. 6. Data structure storage requirements.

some experiments using the Enron email data set [12]. From this email corpus,
we only chose the emails sent by Enron’s employees, which amount to a total of
about 90,000 emails, with average size 1.9KB. The emails were created between
October 30th, 1998 and July 12th, 2002. We inserted the emails into our data
structure in increasing order of creation time. For our tree data structure imple-
mentation, we vary the degree of the tree by powers of two between 2 to 32. We
use SHA1 for our hash function implementation.

We report our performance numbers from an Intel Core 2 processor run-
ning at 2.32 GHz. The Java virtual machine has 1 GB of memory available for
processing. The results we give are averages over five runs of simulation.

Performance of Append and GenCommit. We present in Figure 5 the performance
of Append and GenCommit operations for different tree degrees, as a function of
the number of emails in the data structure. The Append graph only includes
the time to append a new hash to the data structure, and not the time to hash
the email. Our experiments show that the time to hash the email is about 2.28
larger than the time to append a hash to the data structure. We get an append
throughput of 42,857 emails per second for a binary tree, and 60,120 emails
per second for an eight-ary tree. If we include the hash computation time, then



the total append throughput is 18,699 emails per second for a binary tree, and
20,491 emails per second for an eight-ary tree. The Append operation becomes
more efficient with the increase of the tree degree, as its cost is proportional to
the tree height.

In our implementation, we defer the computation of hashes for tree nodes
until the end of each round. Then, we traverse the tree top-down and compute
new version of hashes for the nodes that change (i.e., at least one of their children
is modified). We compute a new commitment for that round, even if no new
nodes are added in the tree at that interval. We call the time of both these
operations the commit time. The right graph in Figure 5 shows the commit time
for intervals of one day. As some time intervals contain few emails, we choose to
plot this graph as a function of the number of emails in the data structure. For
x > 0 number of documents on the horizontal axis, the commit time includes the
time to compute commitments for the time intervals spanned by the previous
1000 documents. The results show that the commit operation is efficient, e.g.,
for the eight-ary if there are 89,000 emails in the data structure, then the total
commit time for 1,000 new emails is 15ms.

Storage requirements. Second, we evaluate the storage requirements of our data
structure. The left graph in Figure 6 shows the total size of the data structure
for different tree degrees. It turns out that the data structure size is optimal for
trees of degree 8, and increases for trees of larger degree. In fact, the memory
usage of the data structure with trees of degree 32 surpasses that of the binary
tree data structure. The reason for this is an artifact of our implementation: to
optimize the search in the tree, we store all the children of a node in a fixed-size
array. For a large degree tree, a lot of nodes are empty and unused memory is
allocated. We could alternatively store children of a node in a linked-list, but
this choice impacts the search efficiency.

We show how the memory usage of the data structure varies for different
commit intervals in the right graph in Figure 6. The data structure is space-
efficient, as it requires less than 25MB for a 12-hour commit interval, and about
20MB for a weekly commit interval, in order to store the hashes of all sent emails.

Proof cost. Finally, we evaluate the cost of proof generation and verification, as
well as proof sizes, for both existence and non-existence proofs. We add emails
to an eight-ary tree in batches of 1000. After a batch of 1000 emails is added,
we generate existence proofs for all these 1000 emails. We also generate non-
existence proofs for the 1000 emails that will be inserted in the next round. In
the left graph of Figure 7, we show the average proof size over the last (or next)
1000 emails inserted in the tree, as a function of the total number of emails in
the data structure. In the right graph of Figure 7, we show the average proof
generation and verification time. We have performed experiments with different
tree degrees, but we choose to include only the results for an eight-ary tree,
which turned out to be optimal.

The experiments demonstrate that our proofs are compact in size, reaching
800 bytes for a data structure of 90,000 emails, and efficient in generation and



 400

 500

 600

 700

 800

 900

 1000

5000 20000 40000 60000 80000

A
ve

ra
ge

 p
ro

of
 s

iz
e 

(b
yt

es
)

Number of emails

Average Proof Size for the 8-ary Tree

Existence
Non-existence

 0

 10

 20

 30

 40

 50

 60

 70

5000 20000 40000 60000 80000

A
ve

ra
ge

 p
ro

of
 ti

m
e 

(m
s)

Number of emails

Average Proof Generation and Verification Time for the 8-ary Tree

Generation existence
Generation non-existence

Verification existence
Verification non-existence

Fig. 7. Proof size and proof generation and verification time for an eight-ary tree.

verification time. Non-existence proofs are in general shorter and faster to gen-
erate and verify than existence proofs, since the path included in a proof does
not usually reach a leaf node. Our work improves upon previous persistent au-
thenticated dictionaries that have the cost of non-existence proofs about twice
as large as that of existence proofs. As we have explained previously, we are
able to reduce the cost of non-existence proofs and the size of the data structure
because we implement an append-only data structure.

6 Conclusions

We have proposed new techniques to authenticate the content integrity and
creation time of documents generated by an organization and retained in archival
storage for compliance requirements. Our constructions enable organizations to
prove document existence and non-existence at any time interval in the past.
There are several technical challenges in the area of regulatory compliance that
our work does not address. Regulations mandate not only that documents are
stored securely, but that they are properly disposed of when the expiration period
is reached. An interesting question, for instance, is how to prove that documents
have been properly deleted.

Also of interest is the ability to offload the storage of S to a remote server
without compromising integrity of the data structure. The remote server could
periodically be audited to show that it correctly commits to all received docu-
ments. For our unoptimized data structure, auditing could be performed with
a mechanism similar to the incremental proofs from [13]. Designing an efficient
auditing procedure for our optimized data structure is more challenging and
deserves further investigation.
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