
PORTFILER: Port-Level Network Profiling for
Self-Propagating Malware Detection

Talha Ongun, Oliver Spohngellert, Benjamin Miller, Simona Boboila, Alina Oprea, Tina Eliassi-Rad
Northeastern University

Jason Hiser, Alastair Nottingham, Jack Davidson, Malathi Veeraraghavan
University of Virginia

Abstract—Recent self-propagating malware (SPM) campaigns
compromised hundred of thousands of victim machines on the
Internet. It is challenging to detect these attacks in their early
stages, as adversaries utilize common network services, use novel
techniques, and can evade existing detection mechanisms. We
propose PORTFILER (PORT-Level Network Traffic ProFILER),
a new machine learning system applied to network traffic for
detecting SPM attacks. PORTFILER extracts port-level features
from the Zeek connection logs collected at a border of a
monitored network, applies anomaly detection techniques to
identify suspicious events, and ranks the alerts across ports
for investigation by the Security Operations Center (SOC). We
propose a novel ensemble methodology for aggregating individual
models in PORTFILER that increases resilience against several
evasion strategies compared to standard ML baselines. We
extensively evaluate PORTFILER on traffic collected from two
university networks, and show that it can detect SPM attacks with
different patterns, such as WannaCry and Mirai, and performs
well under evasion. Ranking across ports achieves precision over
0.94 and false positive rates below 8 × 10−4 in the top 100
highly ranked alerts. When deployed on the university networks,
PORTFILER detected anomalous SPM-like activity on one of the
campus networks, confirmed by the university SOC as malicious.
PORTFILER also detected a Mirai attack recreated on the two
university networks with higher precision and recall than deep-
learning based autoencoder methods.

Index Terms—malware detection, security analytics, self-
propagating malware, traffic profiling

I. INTRODUCTION

Self-propagating malware (SPM) is a prevalent class of mal-
ware that has recently gained in popularity among adversaries.
In 2016, Mirai [6] infected more than 600K IoT devices and
launched devastating denial-of-service attacks against high-
profile websites. In 2017, the WannaCry ransomware attack
impacted more than 300K vulnerable devices in 150 countries
in a few days [31]. SPM attacks have been seen in the wild
since 2001, with famous attacks such as Code Red being
successful at widely propagating and infecting machines on the
Internet [34]. Their recent surge in popularity can be attributed
to an increased number of vulnerabilities being discovered
in network services (such as the EternalBlue vulnerability in
the SMB protocol exploited by WannaCry and NotPetya), the
increasing number of connected devices on the Internet, and
the new monetization mechanisms offered by ransomware.

Defending against SPM campaigns is challenging for mul-
tiple reasons. A widely-adopted response to stopping Wan-
naCry and NotPetya was to block port 445 allocated to the

SMB file-sharing service, a solution adopted today by many
ISPs. However, many other SPM attacks leverage common
network services that cannot be blocked entirely. For instance,
Mirai performed scanning over multiple network protocols,
including Telnet, HTTPS, FTP, SSH, and CWMP [6]. As the
scanning activities of SPM attacks blend in with large volumes
of legitimate traffic, it becomes difficult to distinguish the
malicious traffic and block it. Furthermore, attackers behind
SPM could employ evasive methods to hinder detection.
While the WannaCry and Mirai attacks progressed rapidly to
have a significant global impact, future attacks can be more
targeted or stealthier by propagating at slower rates. Thus, new
techniques are needed to bridge the gap in the defense side
against this new wave of automated, self-propagating attacks.

We design PORTFILER, a machine learning system that
uses network traffic captured at a border of an organizational
network to detect and prioritize emerging SPM attacks. To
the best of our knowledge, we are the first to design a robust
ML system for SPM malware detection that uses network-
level information. The critical insight in this work is that
SPM requires remote probing of a large number of machines
to propagate effectively. This behavior can be viewed as
an invariant characteristic of this class of malware attacks
since the success of the operation significantly depends on
the deployed propagation mechanism. To capture this be-
havior, PORTFILER extracts a set of 35 features from the
Zeek connection logs, mapping communication of internal
hosts in the network with external destinations. At training
time, PORTFILER learns the profile of the normal network
communication on a set of monitored ports, without relying on
traces of existing malware attacks. We design in PORTFILER
novel ensemble methods that train multiple unsupervised ML
models and combine their anomaly scores into a single, unified
score. The base models in the ensembles can be instantiated
with density-based models such as Kernel Density Estimate
(KDE), or unsupervised tree-based methods, such as Isolation
Forest. At testing time, PORTFILER detects traffic anomalies
that exhibit different behavior from training observations, and
prioritizes the anomalies via score ranking for investigation
by security analysts. Security Operations Centers (SOC) have
limited manual investigation budgets, and having a low false
positive rate in the top-ranked alerts is a strict requirement for
an ML model to be deployed.

Another important requirement in the design of PORTFILER
is its resilience to evasion attacks. We experiment with two
evasion strategies a motivated attacker might employ: reduc-
ing the rate of probing external destinations, and leveraging
external destinations already visited by internal machines.
We show that standard ML methods degrade in performance
as the malware becomes more evasive, but our proposed
ensembles are much more robust against evasion. We compare
the performance of PORTFILER’s ensembles with standard
ML models and unsupervised deep learning models based on
autoencoders, and show the advantages of our method.

Finally, we evaluate PORTFILER using Zeek [1] logs col-
lected on two university networks. We use public malware
traces for four SPM families [22] and generate our own
WannaCry malware variants in a virtual environment. We show
that both ensemble strategies result in increased resilience
against evasion, and they have low false positive rates. We
evaluate the top ranked alerts at one of the university networks,
and confirm with the SOC that a detection on port 445 is
malicious. In addition, PORTFILER detected a Mirai attack
recreated on the two university networks with high precision
and recall.

We summarize our contributions below:
• We design PORTFILER, a new machine learning system

for detecting SPM attacks. PORTFILER learns the normal
traffic profiles on selected ports in a network at training time
without relying on traces of existing malware attacks, and
can detect suspicious traffic anomalies generated by SPM
campaigns in testing.

• We propose a novel ensemble methodology for increasing
the resilience of PORTFILER against several malware evasion
strategies. For example, the ensemble method maintains an
Area Under the Precision-Recall Curve of 0.93 for a Wan-
naCry variant 64x slower than the original, an improvement
of 31% compared to standard KDE models.

• We develop a methodology for ranking PORTFILER alerts
across ports and generating a unified list for investigation
by SOC security experts. For the top 100 ranked alerts, the
ensemble method achieves a precision above 0.94 with false
positive rates below 8× 10−4 at detecting WannaCry.

• We evaluate PORTFILER on more than 6 billion Zeek logs
collected at two campus networks, and confirm our detec-
tions as malicious with the SOC. Additionally, we detected
a recreated Mirai attack on the two university networks with
high precision and recall.

II. PROBLEM DEFINITION AND THREAT MODEL

Self-Propagating Malware (SPM). In SPM attacks, an in-
fected machine attempts to propagate indiscriminately on the
Internet, with the goal of spreading the infection widely. SPM
attacks involve two phases: (1) probing, in which a large
number of IPs are probed to identify potential victims; and
(2) propagation, in which the malware attempts to infect the
identified targets. After each successful infection, the malware
continues the propagation to other IPs, and also monetizes the
infection through different mechanisms.

We describe two famous SPM attacks, WannaCry and Mirai,
that have been extremely successful at reaching hundreds
of thousands of victims on the Internet. During probing,
WannaCry probes machines on the local network (internal
probing), and also probes pseudorandomly-generated IPs on
the Internet (external probing). WannaCry is mostly known
for its ransomware behavior: after propagation, it encrypts the
files on the victim machine and displays a ransom message to
the user. The Mirai campaign is mostly known for its large-
scale DDoS attacks performed after getting a large victim
base of IoT devices. To get access to these IoT devices,
Mirai performed rapid probing on ports 23 and 2323 (later
expanded to other ports) using pseudorandom IP addresses [6].
After Mirai identifies a potential victim IP, it uses a brute-
force login phase over Telnet, using common user names and
passwords. If the login is successful, device-specific malware
is downloaded to each victim. Once the campaign controls
a large number of victim devices, they are instructed by the
command-and-control center to launch DDoS attacks.

We highlight that while the end goal of these two cam-
paigns is completely different – WannaCry is a ransomware,
while Mirai launches DDoS attacks – both of them use self-
propagating behavior to reach a large number of victims on the
Internet. In fact, other SPM families we surveyed in Table I
exhibit similar behavior as WannaCry and Mirai. We obtained
public data for 5 different examples of SPM malware [22]
and show the scanning rate (IPs probed per minute), as well
as the entropy of the probed IP addresses (split into 4 octets)
in the same table. We observe that all 5 malware families have
entropy close to 8 and the entropy of the uniform distribution
is log2 256 = 8, which implies that the IP addresses they
probe are uniformly distributed. The main differences are in
the scanning rate and ports, two properties that we vary in our
experiments to capture a range of SPM behavior.

Problem definition and threat model. We aim to detect SPM
attacks in their very early stages of operation, during the initial
probing and propagation phases, to prevent the spread of SPM
attacks on the Internet. We assume that the attack compromises
one or several victims inside the monitored network and we
aim to detect SPM behavior without knowledge of the port
and service on which the malware propagates. We rely on Zeek
network logs collected at the border of the monitored network,
which we assume are not compromised by the attacker. Thus,
the information recorded in the logs is reliable and can be used
for analysis. Our goal is to handle advanced SPM attackers,
even those that employ evasion strategies against our detection
methods. We assume that attackers may have knowledge about
the features and ML models used for detection. We design
machine learning models for SPM detection that are robust
against different evasion strategies.

Challenges. ML for malware detection introduces well-
documented challenges, such as limited availability of ground
truth for training supervised models, strict requirements on low
false positive rates, and resilience to evasion [28]. Detecting
new SPM on common network ports (80 or 443) is particularly

Malware Ports Scan Rate
(IPs per min)

Entropy
(IP octets)

Infection
Method

Mirai [9] 23, 2323 50-300k 7.9829 Dictionary attack
Hajime [15] 23, 81 10k 7.9822 Vulnerabity Exploit: Dictionary attack, GoAhead-Webs credentials
Kenjiro [29] 80, 8080, 37215 5k 7.9832 Vulnerabity Exploit: CVE-2016-6563, CVE-2017-17215
WannaCry [31] 445 1750 7.9734 Vulnerabity Exploit: CVE-2017-0143
Hide and Seek [2] 23, 9527 260 7.9726 Dictionary Attack, Vulnerabity Exploit: CVE-2017-11634

TABLE I: Comparison of SPM scanning patterns. We surveyed 5 malware families exhibiting various scanning rates (number
of IPs contacted by a victim per minute) on different ports. A common characteristic of SPM malware is the probing of
randomly distributed IP addresses, demonstrated by the entropy values. In our experiments, these parameters (i.e., scanning
rate and ports) are varied to capture a range of SPM behaviors.

difficult given the vast amounts of network traffic on these
ports and the high variation of traffic patterns.

III. PORTFILER SYSTEM OVERVIEW AND METHODOLOGY

A. Overview

Figure 1 shows an overview of our system. PORTFILER
trains newly-introduced unsupervised ensemble models that
learn the legitimate network traffic distribution, and applies
them at testing time to identify and rank anomalies. A priori-
tized list of alerts is presented to SOC for investigation.
Network data monitoring. Zeek [1] is a well-known network
monitor that processes raw packet captures to generate network
logs. For PORTFILER, we use the Zeek connections logs
(conn.log files) that record connection metadata for both TCP
and UDP connections crossing the border of two university
networks we monitor. The fields recorded in conn.log include
a timestamp of connection start, source and destination IP
and port, transport protocol, duration of connection, source
and destination payload bytes, number of packets, as well as
connection state.
Model training. For the ports of interest, PORTFILER profiles
the traffic and trains ensemble models for learning the regular
communication patterns. We define a set of 35 features for
each port and time window of fixed length. To learn the
distribution of the traffic features per port, we introduce a new
methodology for creating ensembles of anomaly detectors that
combine anomaly scores produced by multiple ML models,
increasing resilience against evasion. The individual models in
the ensemble can be either density estimation models, such as
Kernel Density Estimation (KDE) [26] or tree-based models,
such as Isolation Forest (IF) [19].
Ranking alerts. At testing time, we apply the trained en-
semble models on new Zeek conn.log data. We also develop
methodology to rank the alerts across ports and prioritize them
for investigation by SOC.
Ethical considerations. The IP addresses of the internal
machines are anonymized in a consistent manner to protect
personal information about the machines or users on the
network. We performed all our analysis on servers within
the university network, without downloading the data locally.
The IRB office at one of the universities reviewed our data
collection and anonymization process and determined that our
research does not qualify as Human Subject Research.

B. Port-Based Traffic Features

We would like to capture the traffic patterns generated on the
monitored network, and create features that distinguish SPM
behavior from regular communication patterns. An important
consideration when defining our set of features is to profile
the traffic characteristics of different applications running in
a network. As applications are assigned specific ports, we
choose to define the PORTFILER features at the port level.
This also enables our system to be lightweight, instead of
computing features for each individual host in the network,
which would be computationally expensive. We consider five
ports of interest: 445 (the SMB port, used originally by the
WannaCry malware), 80 (HTTP), 443 (HTTPS), 22 (SSH),
and 23 (Telnet, used by Mirai). We selected these ports after
analyzing several SPM malware (see Table I), but our models
can be easily extended to monitor a larger set of ports for
SPM-like behavior.

We aggregate all logs for a fixed time window and extract
a set of 35 features. These capture the following statistics on
the set of connections on a particular port:
Traffic statistics features: We extract several traffic statistics
features: number of distinct internal and external IPs commu-
nicating on that port, number of connections, and number of
new distinct external IPs (that have not been contacted before)
per port. We expect to observe an increase in these features
during periods with high SPM activities.
Duration features: We extract max, min, variance and mean
of connection duration values during each time window. SPM
connections have a lower duration than most legitimate traffic.
Bytes and packets features: We extract max, variance, and
mean of sent and received byte and packet values. The distri-
bution of bytes sent and received during SPM infection might
be different compared to normal periods, and similarly for the
packet distribution. We also define “number of connections
with no bytes received” as most of SPM connections are for
non-responding IPs and result in zero bytes received.
Connection state: We define the number of connections for
each state (e.g., S0, S1, OTH, etc.). In particular, a large num-
ber of failed connections might be indicative of a large number
of SPM probing and propagation attempts. We also define
the number of failed connections, a feature that aggregates
multiple connection failure states.

Zeek
Connection

Logs

Port-Based
Feature

Generation

Generate Features
for Test Data

Run the model on
the Test Data

Identify
Anomalous

Time Windows
per Port

SOC Analysis

Unlabeled Data

Training

Testing

Rank the alerts
across ports

Feature 1
KDE

model

Ensemble Model

Feature d
KDE

model
...

Fig. 1: PORTFILER System Overview. PORTFILER extracts a set of 35 features for a fixed time window and port. During
training, it learns the legitimate distribution of network traffic on each port, using our ensemble methodology. During testing,
anomaly scores are generated on new network logs, and the most anomalous connections are prioritized for SOC investigation.

Feature
Extraction

𝑥1
𝑥2
…
𝑥𝑑

Mean Ensemble

S1

Model Feature 1

Si

Model Feature i

Sd

Model Feature 𝑑
Weighted Ensemble

Ensemble Model Scores Final Anomaly Scores

Fig. 2: PORTFILER overview of the novel ensemble methods
we introduce. At training, features are extracted per port and
time window. A separate ML model is trained on each of the
d features. At testing, new data is evaluated against all the
d models, to produce anomaly scores S1, . . . , Sd. The scores
are combined into a final anomaly score S either by a mean
ensemble (using equal weights) or weighted ensemble (using
pre-defined weights).

We highlight an engineered feature that consistently shows
highest feature importance in our evaluation. The new external
IPs feature represents the number of new external IPs, (i.e.,
IPs that have not been seen before) contacted per port within
each time interval. To compute this feature, we create a history
of visited external IPs and update it over time. This feature
captures the randomness in SPM propagation behavior, which
results in many new, previously unvisited IP destinations.

C. Novel Unsupervised Ensemble Models

Network traffic profiling can be performed using a range of
unsupervised ML models. One of our main design criteria,
as mentioned, is the resilience of our models to advanced
malware evasion strategies. As we show in our evaluation,
standard ML models fail in the face of evasive SPM. This
motivates us to introduce our new ensemble methodology for
learning network traffic distribution, while achieving resilience
against evasion. We implement and evaluate several existing
ML models for comparison to PORTFILER’s ensembles. These

include a simple threshold-based baseline method, standard
Kernel Density Estimate (KDE), Isolation Forest (IF), and an
unsupervised deep learning method based on autoencoders.

Ensembles of multiple ML models have been used exten-
sively in supervised learning tasks for improved generalization,
but not as much in unsupervised learning tasks like ours. The
distribution learning task is particularly challenging due to
feature correlation, which can degrade performance of multi-
feature models. When analyzing the network logs, we observed
that many of PORTFILER features are naturally correlated. An
ensemble of models trained on individual features addresses
this issue, since each individual ML model learns a single-
dimensional distribution, a much more tractable task. Similar
to standard bagging methods for supervised learning, our
proposed ensembles generalize better at testing time [8], which
also implies more resilience under adversarial evasion, as
shown in our experiments.

Figure 2 gives an overview of our proposed ensemble
method for network traffic profiling. During training, indi-
vidual ML models are trained on each traffic feature and
an ensemble of all these models is generated. If training
data samples xi = (xi1, . . . , xid) are d-dimensional for i ∈
{1, . . . , N}, we train d unsupervised ML models: f1, . . . , fd,
each fj taking feature j of a sample as input. In our best-
performing ensemble, we instantiate the individual base mod-
els fj with KDE models (but we experimented with ensembles
of Isolation Forest models as well). Model fj estimates the
distribution’s density by averaging the outputs of a kernel
function K, applied to data centered at each point xij in
the sample, and having the same bandwidth h. The estimated
density fj is: fj(x) = 1

nh

∑n
i=1 K(

x−xij

h). A common choice
for kernel functions is the Gaussian kernel, which uses the
standard normal density as the kernel function.

At testing time, each model generates an anomaly score:
Sj = fj(x) for a new sample x. If the probability density
falls below a threshold T (fj(x) < T), we consider x as an
anomaly. The threshold T is determined at training time based
on the legitimate data to fix the false positive rate, and we
vary it in our experiments. Finally, we combine the anomaly

scores generated by individual models into a single ensemble
anomaly score using weights wi:

AnomalyScore(x) =
d∑

i=1

wiSi

We consider two ensemble methods, which differ in model
weight assignments:
1) Mean Ensemble: Each ML model contributes equally to
the final anomaly score. This is useful when no a priori
information is known about the attack.
2) Weighted Ensemble: This uses a weighted combination
of models for computing anomaly scores. This method has
significant advantages in cases in which some information
about the attack becomes available, and some features have
higher relevance for a particular attack.
Model weight computation. An interesting property of
weighted ensembles is that they can be adapted to different
attacks, by assigning higher weights to more relevant features.
The model weights can be computed with a variety of methods.
For instance, domain experts could assign weights manually
based on attack forensic analysis. Instead, we wanted to
find an automated procedure to assign model weights. That
led us to a supervised approach for weight computation, in
which we assume the availability of an attack trace, which
is a variant of the attack we are interested in (we generate
multiple variants of WannaCry in our experiments by varying
propagation rate and interval between probes). We use the
labeled attack variant merged with one day of legitimate data
and train a Random Forest classifier. We compute feature
importance for the classifier and assign weights proportional
to these values. This procedure identifies the features that have
high importance for the attack, and assigns higher weights to
the corresponding models in the ensemble.

D. Ranking

Motivated by constraints on SOC investigation time, our
goal is to prioritize the alerts generated by our models and
provide the highly ranked alerts to human experts. When each
port is analyzed individually, ranking alerts is based directly
on anomaly scores: the lower the score, the more anomalous a
sample is. In reality, SOC analysts might not know in advance
which ports are exploited by SPM, and analyzing alerts on
each port is time consuming. To address this issue, we rank
the alerts across all ports to generate a unified list of the most
suspicious alerts an analyst should investigate. The standard
KDE model returns probability densities, which are aggregated
by the ensemble, but are not directly comparable across ports.
To address this issue, we normalize the probability densities
by computing the Complementary Cumulative Distribution
Function (CCDF) for each sample x.

For ensembles using KDE as the base ML model, we
compute weighted combinations of CCDF scores for ranking.
If f1, . . . , fd are the d base models in the ensemble, the score
of a data point x = (x1, . . . , xd) is:

C(x) =
∑d

i=1 wiCCDF(xi) =
∑d

i=1 wi(1−
∫ xi

−∞ fi(x))dx

Thus, we aggregate the CCDF values using the ensemble
weights. We use this normalized anomaly score to rank across
ports and prioritize the alerts with the lowest scores across
all ports. For ensembles using Isolation Forest as the base
ML model, normalization is not necessary, since the score
represents the path length from the root node to the terminating
node (rather than a probability density). The shorter the path,
the more anomalous a sample is. Thus, we can compare and
rank the weighted ensemble scores directly across ports.

IV. EXPERIMENTAL SETUP

A. Datasets for Evaluation

Network logs at two university networks. The network traf-
fic used for evaluation is the anonymized Zeek conn.log data
provided by two universities: University of Virginia (UNIV-1)
and Virginia Tech (UNIV-2). Our experimental setup consists
of one week of training and one day of testing, resulting in a
total of 1.5 TB of data and 9.64 billion events for UNIV-1, and
1.2 TB of data and 9.69 billion events for UNIV-2. For each
day of training and testing, we extract the 35 features on the
five ports of interest. Processing one day to extract features
takes on average 1.7 hours for UNIV-1 traffic and 0.4 hours
for UNIV-2 traffic.
Malicious Datasets. We obtained access to a public dataset
including the SPM families from Table I [22]. We determined
that all malware families have entropy of the external IPs
close to that of the uniform distribution, confirming that the
IP addresses they connect to are chosen pseudorandomly.
The scanning rate and ports vary across families. In these
traces, the attack is limited to a single infected IP and usually
has small duration (less than an hour). We determined that
WannaCry is a representative SPM family, with relatively slow
scanning rate compared to others, and decided to use it to
generate more realistic SPM samples. We set up a virtual
network with 50 virtual machines running on three physical
machines. Each VM ran a vulnerable version of Windows,
which can be exploited by EternalBlue. We isolate the virtual
environment by blocking the external network traffic, but we
allow internal connections between the virtual machines. We
run the original WannaCry attack for two hours and infect 48
machines on a subnet. We also generate other variants with
different scanning rates to test the resilience of our methods
to evasion. We capture full pcaps of the network traffic, from
which we generate Zeek conn.log.

B. Evasion Strategies

In reality, advanced attackers can employ evasion strategies
to make the detection of SPM traffic more difficult. We
experiment with two evasion strategies:
Method 1: Slowing down the probing rate. An adversary
with no knowledge about the ML models could attempt a
straightforward strategy to lower the scanning rate and become
more stealthy. The original WannaCry attack contacts on av-
erage 14K external IPs per minute and runs for two hours. We
generate new variants, where each infected machine decreases

its probing rate by a factor of 2, 4, 8, 16, 32, 64, or 128 by
dropping a fraction of connections uniformly at random.
Method 2: Leveraging IP destinations from history. One of
the most relevant features in our models is the number of “new
IP” destinations, which are IP addresses not visited before on
that particular port. SPM is likely to generate a large number
of new IPs if the probed IPs are generated at random, as done
by both WannaCry and Mirai. An attacker with knowledge of
our feature set could attempt to evade this feature by probing
already visited IP addresses. Starting from the malware variant
4 times slower than the original, we select variants that use a
factor 2, 4, 8, 16, 32, 64, or 128 new IPs, while the rest are
are previously-visited IPs from the history.

V. EVALUATION

We perform an in-depth evaluation of our proposed en-
semble methods against several baselines for detecting SPM
and show the higher resilience of ensembles against evasion
strategies. Given that our data is imbalanced, we use Area
Under the Precision Recall Curve (PR-AUC) for evaluation.
We are also interested in minimizing the false positive rate to
account for the limited budget of SOC investigations.

A. Baselines and Standard ML Detectors

Setup. For these experiments, we merge the malicious traces
at testing time to generate controlled experiments with attack
ground truth. We overlay the malicious traces onto the network
traffic from the testing day by selecting random internal IPs
in the network, and merging the legitimate and malicious
conn.log data. When merging the malicious traffic, we pre-
serve all the attributes of the connections.
Baseline Threshold Detector. We first experiment with a
threshold-based baseline detector that marks a time window
as anomalous if the number of connections on the monitored
port exceeds a threshold. The connection threshold is varied
in order to obtain a full precision-recall (PR) curve. The
threshold-based detector performs poorly even on the original
WannaCry variant. For instance, on port 22 the PR-AUC is as
low as 0.39, while for port 443 the PR-AUC is 0.5. The only
port where the threshold-based approach performs well is 445
because it is blocked at UNIV-1 and there is very little regular
traffic. These numbers reduce considerably for the 8x slower
variant, resulting in an PR-AUC of just 0.09 on port 23.
Dimensionality Reduction. Dimensionality reduction meth-
ods, such as PCA, UMAP, and t-SNE, are used extensively
for anomaly detection. We performed experiments with both
t-SNE and UMAP, but only present results for t-SNE. Fig-
ure 3 shows a scatterplot of the two principal components
of malicious and background samples after t-SNE for slow
variants (1/128 rate) of both WannaCry and Mirai on port
80. We observe that most of the malicious samples overlap
with background samples, and there is no clear separation. The
results were similar for other ports and SPM variants. These
results indicate that off-the-shelf anomaly detection algorithms
are less likely to find malicious samples with high accuracy,
and more guided approaches are required for our system.

−60 −40 −20 0 20 40 60 80
Dimension 1

−100

−75

−50

−25

0

25

50

75

Di
m

en
sio

n
2

Stealthy WannaCry on port 80

Malicious
Background

−100 −50 0 50 100
Dimension 1

−100

−50

0

50

100

Di
m

en
sio

n
2

Stealthy Mirai on port 80

Malicious
Background

Fig. 3: t-SNE visualization of the 35-feature representation of
slow WannaCry (left) and Mirai (right) at UNIV-1 on different
ports. Malicious samples overlap with background samples,
indicating that off-the-shelf anomaly detection algorithms are
less likely to find malicious samples with high accuracy.

Baseline ML Models. As simple methods are ineffective for
our problem of detecting SPM attacks, we are motivated to
employ ML-based approaches for learning the distribution
of network traffic on each port. We evaluate the standard
KDE and Isolation Forest (IF) ML models trained with our
35 features previously described, using the UNIV-1 dataset,
after doing an extensive hyper-parameter search. In all our
experiments, we selected a time window for feature extraction
of one minute (after experimenting with several values: 30
sec, 1 min, 2 min, 5 min, and 10 min). Thus each day of data
has 1440 time windows per port. We discuss here results on
UNIV-1, but results on UNIV-2 are similar.

We found that the KDE model performs better than IF, and
both methods improve upon the threshold-based detector. IF
has the lowest PR-AUC on port 443, which is the highest
volume port, with PR-AUC reaching 0.58 for WannaCry and
0.62 for Mirai. KDE has PR-AUC scores higher than 0.99
on all ports for the original WannaCry and Mirai attacks.
Similarly, we obtained PR-AUC score of 1.0 using the Kenjiro
and Hajime malware samples described in Table I.

However, neither of these standard ML models are resilient
against the evasion strategies described in Section IV-B:
Method 1: Slowing down the scanning rate, and Method 2:
Leveraging IP destinations from history. To evaluate evasion
resilience, we use the representative WannaCry malware we
generated and its evasive variants. Figure 4 shows the change
in the KDE PR-AUC score as we decrease the probing rate
of WannaCry (Method 1), and the new IP rate (Method 2).
It is apparent that the standard KDE model is not resilient to
these evasion methods. For example, by slowing down by a
factor of 64, the PR-AUC score of KDE reaches around 0.2
on ports 23, 80, and 443. While ports 445 and 22 show less
impact, the scores decrease more significantly on ports with
large amount of traffic. We obtained similar results for Mirai,
and we believe that other SPMs will exhibit similar behavior
under evasion.

B. PORTFILER: Ensemble Models

Resilience to Evasion. We designed ensembles of multiple
models with the goal of increasing the system’s resilience
to evasion. Experiments in Figure 5 use weighted ensembles

0 20 40 60 80 100 120
Evasion Factor (Method 1)

0.0

0.2

0.4

0.6

0.8

1.0
AU

C
Pr

ec
isi

on
-R

ec
al

l

Port: 80
Port: 443
Port: 22
Port: 23
Port: 445

0 20 40 60 80 100 120
Evasion Factor (Method 2)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Pr
ec

isi
on

-R
ec

al
l

Port: 80
Port: 443
Port: 22
Port: 23
Port: 445

Fig. 4: Baseline KDE model. Robustness against evasion
is generally low for Evasion Method 1 (slowing down the
probing rate) and 2 (leveraging IP destinations from history).
Performance drops significantly as the evasion factor increases.

0 20 40 60 80 100 120
Evasion Factor (Method 1)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Pr
ec

isi
on

-R
ec

al
l

Port: 80
Port: 443
Port: 22
Port: 23
Port: 445

0 20 40 60 80 100 120
Evasion Factor (Method 2)

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Pr
ec

isi
on

-R
ec

al
l

Port: 80
Port: 443
Port: 22
Port: 23
Port: 445

Fig. 5: Weighted Ensemble of KDEs. Ensemble model is more
resilient against evasion as we learn how to weight each model
properly. Evasion Method 1 (slowing down the probing rate)
and 2 (leveraging IP destinations from history) are examined.

of KDEs, where the weights represent normalized feature
importance coefficients. These coefficients are computed using
a variant of WannaCry that we generated (see Section III-C).
Figure 5 shows that the weighted ensemble is resilient against
both evasion strategies on all ports. For instance, at a prop-
agation rate 128 times slower than the original WannaCry, it
still maintains PR-AUC above 0.8 for ports 80 and 443.

Figure 6 presents a direct comparison of weighted ensem-
bles against the baseline KDE model. The PR curves demon-
strate the significant improvement of weighted ensembles on
port 443 using the WannaCry variant with the evasion factor
64. The weighted ensemble achieves PR-AUC of 0.93 and 0.86
for the two evasion methods, compared to values of 0.62 and
0.27 for baseline KDE. We also evaluated the mean ensemble
method, which uses uniform weights for all models. Mean
ensembles are more resilient than baseline KDE on ports 80
and 443, which are the most challenging to protect against
evasion, given the large volume of legitimate traffic on these
ports. However, of all methods explored, weighted ensembles
are the most resilient against evasion. We obtained similar
results for ensembles of IF models and for evasive Mirai
variants, which we omitted here for lack of space.
Ranking Evaluation. We evaluate our method for ranking the
alerts across all ports, as described in Section III-D. In this
experiment, the attack sample is merged on one of the ports,
and the most suspicious samples on all five ports are ranked
to provide a unified alert list. Table II shows the statistics of
the top-100 ranked alerts, which are ranked using the weighted

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Ensemble, Port: 443, AUC: 0.93
KDE, Port: 443, AUC: 0.62

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Ensemble, Port: 443, AUC: 0.86
KDE, Port: 443, AUC: 0.27

Fig. 6: Precision-Recall curves demonstrate the improved
performance of weighted ensembles compared to the baseline
KDE model on port 443 using the WannaCry variant with eva-
sion factor 64. Graphs for both evasion methods are included.

Original Wannacry Slow WannaCry
Port Prec FPR Prec FPR
80 1.0 0 0.93 0.0009

443 1.0 0 1.0 0
22 0.95 0.0007 0.94 0.0008
23 0.94 0.0008 0.73 0.005

445 1.0 0 0.99 0.0001

TABLE II: Precision (Prec) and False Positive Rate (FPR)
in the top-100 ranked alerts across the ports for the original
and slow WannaCry (1/8 rate), demonstrating the strength of
weighted ensembles of KDEs with low FPR.

ensembles of KDE models to detect the original and 8x slower
WannaCry variant. The metrics are defined based on 7200
samples over 5 ports, with 116 of them malicious. We observe
that precision in the top-100 alerts is very high (100% on
ports 80, 443, and 445), and the minimum is 94% on port 23.
In addition, the False Positive Rate is lower than 8 × 10−4

for the original WannaCry. Results are similarly promising
on the slower variant. We also experimented with weighted
ensembles of IF models, and the results are slightly worse.

C. Deployment on Two University Networks

Malware Detection “in the Wild”. We deployed PORTFILER
on two university networks, UNIV-1 and UNIV-2, in order to
evaluate our system in a real setting. No merging of malicious
traffic was performed in this experiment. We rank the alerts,
and consider the top 10 highest risk alerts on both networks.
At UNIV-2, PORTFILER detected a series of anomalies on
September 9 on port 445, between 11:29am and 12:51pm. Dur-
ing this time period, the new IP feature significantly increased.
After additional investigation, we discovered that all the top
10 detections were part of the same attack. A single internal
IP attempted to connect to over 15K external destinations, of
which at least 14K failed. This probing behavior appears to
be identical to what we observe in the WannaCry logs we
collected (in terms of timing patterns, random IP selection,
and packet sizes), and we thus suspect this internal IP was
infected with WannaCry. The SOC at UNIV-2 confirmed that
the activity was indeed malicious.
Mirai Attack Recreation and Detection. We extended our
evaluation by leveraging an actual Mirai attack recreated on
the two university networks that lasted 5 days. At UNIV-1, two
Openstack networks were set up, consisting of 142 vulnerable
VM nodes. At UNIV-2, 3 vulnerable VMs with public IPs
were configured. In coordination with the security teams at

Fig. 7: Detection performance by scanning rate for ports 2323
and 23 using Mirai attack recreation. PORTFILER detects the
attack successfully on port 2323 for scanning rates higher than
250 connections per minute. On port 23, it exhibits increased
recall at higher scanning rates.

Fig. 8: Recall per day showing superior performance of PORT-
FILER (mean ensemble method) compared to an unsupervised
deep learning approach (autoencoders) on ports 2323 and 23
using Mirai attack recreation.

both UNIV-1 and UNIV-2, the open source Mirai malware
was modified to prevent any potential security side effects
on the network by allowing infection only in the intended,
vulnerable VMs. After infection, nodes communicated to a
command-and-control server under our control and attempted
to infect other nodes through bi-directional scanning between
UNIV-1 and UNIV-2. The entire public IP space of 500K IPs
at both networks was scanned during the attack. Mirai was
configured to have a fast scanning behavior on port 2323 (90%
of scanning) and a slow scanning behavior on port 23 (10% of
scanning). The legitimate and malicious traffic was captured
at the network edge via Zeek logs for the entire duration of
the experiments. We added capability to Mirai to label the
malicious scanning traffic to obtain ground truth for evaluation.

We deployed PORTFILER directly on UNIV-1 using the
mean ensemble model, attempting to detect the recreated Mirai
attack. The attack starts slowly with a single infected node
and the scanning rate (total number of scanning requests per
minute) increases as the attack progresses. Figure 7 shows the
precision and recall metrics at various scanning rates. On port
2323, which has less legitimate traffic, PORTFILER is able to
detect the attack very well throughout the experiment, even
at low scanning rates. On port 23, performance improves as
the scanning rate increases, reaching almost 0.8 recall at a
scanning rate of 6000 connections per minute.
Comparison with Unsupervised Deep Learning Models.
Using the recreated Mirai attack, we further deepened our
analysis of unsupervised malware detection methods. To this

end, we conducted several experiments to provide a baseline
comparison between PORTFILER and an off-the-shelf unsu-
pervised deep learning approach. We designed a feature space
equivalent to PORTFILER’s, by using the same fields from
Zeek connection logs. Numerical fields (i.e., duration, bytes,
packets) were imported directly and categorical fields (i.e.,
connection state) were one-hot encoded. IP fields were omitted
given the difficulty of one-hot encoding the extremely large
sample space. This resulted in 19 features per connection log.
Following a standard autoencoder architecture, we vectorize
the input by concatenating a number of feature rows (i.e., 100
connection logs) together, resulting in 1900 features. Through
an extensive hyperparameter search we established that a one-
layer architecture with 128 hidden nodes and no regularization
leads to the smallest train/validation loss and reconstruction
error. We compare this baseline deep learning approach against
PORTFILER’s mean ensemble method, which does not require
any information about the attack. We assume a fixed budget
of false positive alerts and evaluate the precision-recall metric
for the two methods. We experimented with multiple false
positive alert budgets, and the findings were consistent across
the board: while precision is high for both methods, the recall
metric is much lower for autoencoders due to a high number of
misclassifications as false negatives. Figure 8 shows detection
results for a fixed budget of 144 false positive alerts per day.

There are also practical limitations for deep learning ap-
proaches, including higher execution times and memory re-
quirements. The input of autoencoders is not aggregated, in
contrast to PORTFILER, which uses aggregated features. For
ports with a high traffic volume, processing the entire train/test
data in memory on a system with 64GB of RAM was not
possible, which prompted us to employ batching strategies.
These experiments indicate that a basic unsupervised deep
learning model is not sufficient to effectively detect SPM
attacks. Moreover, deep learning models are much more
resource intensive compared to PORTFILER.

VI. RELATED WORK

ML malware detection. ML for security has been an active
area of research, focusing on various attacks and malware
types. Perdisci et al. [23] and Rafique et al. [24] investigate
unsupervised network analysis to build a malware detection
system. Botnet detection has been proposed based on network
behavior [11], [12], [5] and C&C patterns [7], [14], [25].
Alahmadi et al. [5] use connection state patterns to detect bots
using Markov models. Enterprise security analytics has been
an active research area [16], [21], [33] and ML solutions have
been deployed in the industry [3].
Self-Propagating Malware detection. Internet worms have
been studied in the past as early examples of SPM [30].
Detection mechanisms based on payload signatures [27], [17],
[20], and fine-grained host-level network monitoring [13], [32]
have been proposed. Our system is designed independently of
specific malware, and is more scalable compared to host-level

monitoring. Recent work proposed detection models for SPM
such as WannaCry [4], [10] and Mirai [18], focusing mostly
on binary analysis, host-based signals or fingerprinting certain
network behavior using DNS requests. Akbanov et al. [4]
propose detection methods against WannaCry using software-
defined networking to mitigate the threat. Kumar et al. [18]
discuss detection of Mirai at the probing phase by leveraging
Mirai traffic signatures. They sample the packets transmitted
by IoT devices both across time and device to find probing
activities matching Mirai’s behavior.

VII. CONCLUSION

Self-propagating malware is a prevalent threat on the Inter-
net. Recent campaigns demonstrate that SPM can propagate
fast and cause global disruption. We propose PORTFILER, an
ML-based anomaly detection system on network traffic for
detecting SPM. PORTFILER extracts port-based features from
network logs, profiles legitimate activity on network ports us-
ing newly designed unsupervised ensemble methods, and ranks
anomalies for SOC investigation. We evaluate PORTFILER
using Zeek network logs from two university networks and
several SPM families, and show its ability at detecting SPM
with high precision and recall, and low false positives. We also
show the resilience of our newly-introduced ensemble methods
against evasion and its benefits compared to standard ML and
deep learning methods.

ACKNOWLEDGEMENTS

This research was sponsored by the contract number
W911NF-18-C0019 with the U.S. Army Contracting Com-
mand - Aberdeen Proving Ground (ACC-APG) and the De-
fense Advanced Research Projects Agency (DARPA), and by
the U.S. Army Combat Capabilities Development Command
Army Research Laboratory under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA). The
views contained in this document are those of the authors
and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the ACC-APG, DARPA,
Combat Capabilities Development Command Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. This
project was also funded by NSF under grant CNS-171763.

REFERENCES

[1] The Zeek Network Security Monitor. https://zeek.org.
[2] Tracking the Hide and Seek Botnet - MalwareTech, 2019.
[3] Machine Learning: Symantec’s Past, Present, and Future, Jun

2020. https://symantec-enterprise-blogs.security.com/blogs/feature-
stories/machine-learning-symantecs-past-present-and-future [accessed
11. Jun. 2021].

[4] M. Akbanov, V. G. Vassilakis, and M. D. Logothetis. Ransomware
detection and mitigation using Software-Defined Networking: The case
of WannaCry. Computers & Electrical Engineering, 76:111–121, 2019.

[5] B. A. Alahmadi, E. Mariconti, R. Spolaor, G. Stringhini, and I. Marti-
novic. BOTection: Bot detection by building Markov Chain models of
bots network behavior. In ACM ASIA CCS, 2020.

[6] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al. Understanding the Mirai botnet. In USENIX Security Symp., 2017.

[7] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel.
DISCLOSURE: Detecting botnet command-and-control servers through
large-scale NetFlow analysis. In ACSAC, pages 129–138, 2012.

[8] P. Bühlmann, B. Yu, et al. Analyzing bagging. The Annals of Statistics,
30(4):927–961, 2002.

[9] E. Bursztein. Inside the infamous Mirai IoT Botnet: A Retrospective
Analysis. Cloudflare Blog, Aug 2020.

[10] Q. Chen and R. A. Bridges. Automated behavioral analysis of malware:
A case study of WannaCry ransomware. In ICMLA. IEEE, 2017.

[11] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection. In USENIX Security Symp., 2008.

[12] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee.
BotHunter: Detecting malware infection through IDS-driven dialog
correlation. In USENIX Security Symp., volume 7, pages 1–16, 2007.

[13] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley. Worm
detection, early warning and response based on local victim information.
In 20th Annual Computer Security Applications Conference, pages 136–
145. IEEE, 2004.

[14] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet command
and control channels in network traffic. In NDSS, 2008.

[15] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin. Mea-
surement and analysis of hajime, a peer-to-peer iot botnet. In NDSS,
2019.

[16] X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and
J. R. Rao. Baywatch: robust beaconing detection to identify infected
hosts in large-scale enterprise networks. In DSN. IEEE, 2016.

[17] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In USENIX security symposium, volume 286.
San Diego, CA, 2004.

[18] A. Kumar and T. J. Lim. Early detection of mirai-like iot bots in large-
scale networks through sub-sampled packet traffic analysis. In Future of
Information and Communication Conf., pages 847–867. Springer, 2019.

[19] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 8th IEEE
Int’l. Conf. on Data Mining, pages 413–422. IEEE, 2008.

[20] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 226–241. IEEE, 2005.

[21] A. Oprea, Z. Li, R. Norris, and K. Bowers. MADE: Security analytics
for enterprise threat detection. In ACSAC, pages 124–136, 2018.

[22] A. Parmisano, S. Garcia, and M. J. Erquiaga. Stratosphere labora-
tory. a labeled dataset with malicious and benign IoT network traffic.
https://www.stratosphereips.org/datasets-iot23, January 2019.

[23] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of HTTP-
based malware and signature generation using malicious network traces.
In NSDI, 2010.

[24] M. Z. Rafique and J. Caballero. Firma: Malware clustering and network
signature generation with mixed network behaviors. In RAID, 2013.

[25] C. Rossow and C. J. Dietrich. Provex: Detecting botnets with encrypted
command and control channels. In DIMVA, pages 21–40. Springer, 2013.

[26] B. W. Silverman. Density estimation for statistics and data analysis,
volume 26. CRC press, 1986.

[27] S. Singh, C. Estan, G. Varghese, and S. Savage. The earlybird system for
realtime detection of unknown worms (technical report cs2003-0761).
University of California, San Diego, USA, 2003.

[28] R. Sommer and V. Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In 2010 IEEE Symp. on security
and privacy, pages 305–316. IEEE, 2010.

[29] A. Spadafora. Hakai IoT botnet infects popular router brands. ITPro-
Portal, Sep 2018.

[30] S. Staniford, V. Paxson, N. Weaver, et al. How to own the internet
in your spare time. In USENIX security symposium, volume 2, pages
14–15, 2002.

[31] Symantec Security Response. What you need to know about the
wannacry ransomware. https://symantec-blogs.broadcom.com/blogs/
threat-intelligence/wannacry-ransomware-attack, 2017.

[32] J. Xia, S. Vangala, J. Wu, L. Gao, and K. Kwiat. Effective worm
detection for various scan techniques. Journal of Computer Security,
14(4):359–387, 2006.

[33] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda. Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks. In ACSAC, pages 199–208, 2013.

[34] C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation
modeling and analysis. In CCS, page 138–147. ACM, 2002.

