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ABSTRACT
We present Iris, a practical, authenticated file system designed to
support workloads from large enterprises storing data in the cloud
and be resilient against potentially untrustworthy service providers.
As a transparent layer enforcing strong integrity guarantees, Iris
lets an enterprise tenant maintain a large file system in the cloud.
In Iris, tenants obtain strong assurance not just on data integrity,
but also on data freshness, as well as data retrievability in case of
accidental or adversarial cloud failures.

Iris offers an architecture scalable to many clients (on the or-
der of hundreds or even thousands) issuing operations on the file
system in parallel. Iris includes new optimization and enterprise-
side caching techniques specifically designed to overcome the high
network latency typically experienced when accessing cloud stor-
age. Iris also includes novel erasure coding techniques for the first
efficient construction of a dynamic Proofs of Retrievability (PoR)
protocol over the entire file system.

We describe our architecture and experimental results on a pro-
totype version of Iris. Iris achieves end-to-end throughput of up
to 260MB per second for 100 clients issuing simultaneous requests
on the file system. (This limit is dictated by the available network
bandwidth and maximum hard drive throughput.) We demonstrate
that strong integrity protection in the cloud can be achieved with
minimal performance degradation.

1. Introduction
Organizations that embrace cloud computing outsource massive

amounts of data, as well as workloads to external cloud providers.
Cost savings, lower management overhead, and rapid elasticity are
just some of the attractions of the cloud.

But cloud computing entails a sacrifice of control. Tenants give
up configuration and management oversight of the infrastructure
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that contains their data and computing resources. In cloud stor-
age systems today, for example, tenants can only discover corrup-
tion or loss of their data (particularly infrequently accessed data) if
their service providers faithfully report failures or security lapses—
or when a system failure occurs. This integrity-measurement gap
creates business risk and complicates compliance with regulatory
requirements.

We propose a cloud-oriented authenticated file system called Iris
that gives tenants efficient, comprehensive, and real-time data-integrity
verification. The Iris system enables an enterprise tenant—or an
auditor acting on the tenant’s behalf—to verify the integrity and
freshness of any data retrieved from the file system while perform-
ing typical file system operations. Data integrity ensures that data
has not been accidentally modified or corrupted, while freshness
ensures that the latest version of the data is always retrieved (and
thus prevents rollback attacks reverting the file system state to a
previous version). Moreover, tenants in Iris can efficiently audit the
cloud provider on a regular basis and obtain continuous guarantees
about the correctness and availability of the entire file system.

Motivating scenario We envision a scenario in which a large
enterprise migrates its internal distributed file system to a cloud
storage service. An important requirement for our system is that
enterprise users (called herein clients) perform the same file sys-
tem operations as they typically do (e.g., file read, write, update,
and delete operations, creation and removal of directories) without
modifying applications running on user machines. The slowdown
in operation latency should be small enough to be unnoticed by
users even when a large number of clients (on the order of hun-
dreds and even thousands) issue operations on the file system in
parallel.

Design goals in Iris Iris aims to support outsourcing of enterprise-
class file systems to the cloud seamlessly and with minor perfor-
mance degradation. Thus the design goals of Iris stem from the
most common needs of enterprise-class tenants:
- Efficiency: Cloud file systems need to achieve throughputs close
to those offered by local file systems under thousands of operations
issued concurrently by many clients. Individual file system opera-
tion latency overhead should also be minimal.
- Scalability: A cloud file system should be scalable to large en-
terprise file systems under a variety of workloads with potentially
very sensitive performance requirements. The system should also
be scalable to multiple clients issuing operations on the file system
in parallel.
- Transparency: Transparency and backwards compatibility with
existing file system interfaces is important to facilitate migration to
the cloud seamlessly.



- Strong integrity protection: Data and file system meta-data re-
trieved from the cloud need to be both authentic and fresh. Ten-
ants’ ability to verify continuously the integrity and availability of
their data with minimal bandwidth and computation is a desirable
feature, as well.

Contributions of Iris
In more detail, the key technical contributions and novel elements
in Iris are:
- Authenticated file system design: The first contribution of Iris
is to provide data integrity and freshness for an enterprise-class
file system in an efficient way. To that end, we design a balanced
Merkle-tree data structure that authenticates both file system data
and meta-data blocks. The distinctive features of our data structure
design compared to other authenticated file systems is that it effi-
ciently supports updates from multiple clients in parallel (without
blocking) and it handles all existing file system operations (includ-
ing delete, move and truncate) with minimal overhead. Iris further
implements many optimizations for typical file system workloads
(e.g., those involving sequential file accesses).

In addition, Iris is designed to overcome the main economic
barrier in migrating storage to the cloud: the impact of high net-
work latency. Iris implements novel caching techniques locally,
within the enterprise trust boundary. A lightweight (possibly dis-
tributed) trusted entity called the portal mediates file system oper-
ations passing between the enterprise clients and cloud and caches
most recently accessed blocks. We develop techniques to cache
the authentication information (nodes of the Merkle tree), handle
dependencies among nodes, and preserve Merkle tree consistency
when multiple clients simultaneously access nodes from the (par-
tially cached) data structure.
- Continuous auditing of file system correctness (PoR): Iris pro-
vides the first construction for dynamic Proofs of Retreivability
(PoR) [18]; it enables an enterprise tenant to continuously monitor
the operation of the cloud storage service and obtain strong guaran-
tees about the correctness and availability of the entire file system.
With a PoR, a tenant can verify the correctness and availability of
large data collection stored in the cloud with low computation and
bandwidth cost. While previous PoR protocols are designed for
static data (e.g., archival files), our protocol is the first to efficiently
support dynamic PoR protocols over the entire file system. One of
the key innovations in Iris is the design of a sparse randomized era-
sure code over the file system data and metadata. The new erasure
code is specifically crafted to hide the code parity structure (typi-
cally revealed by other codes during file updates) and be resilient
against a potentially adversarial cloud. It enables recovery when
corruptions are detected through auditing.
- End-to-end design and implementation: One of our main con-
tributions is the end-to-end design and full implementation of Iris
consisting of 25,000 lines of code. We show through our perfor-
mance evaluation that the caching mechanism in Iris is effective in
achieving low latency for file system operations (similar to LAN la-
tencies). Moreover, Iris achieves high throughput (up to 260MB for
100 clients issuing simultaneous requests on the file system in our
local testbed), with the bottleneck given by the available network
bandwidth and hard drive throughput. Finally, we demonstrate that
the overall cost of adding strong integrity protection to Iris is mini-
mal.

2. Related Work
File systems with integrity support: Early cryptographic file sys-
tems were designed to protect data confidentiality [6] and the in-

tegrity of data [29] in local storage. Later cryptographic networked
file systems provided different integrity guarantees. TCFS [8] and
SNAD [23] provide data integrity by storing a hash for each file
data block. A number of systems construct a Merkle tree over files
in order to authenticate file blocks more efficiently (e.g., [14, 13,
19, 4, 24, 25]).

Many cryptographic file systems to date provide data integrity,
but do not authenticate the file system directory structure (or meta-
data), e.g., [19, 24, 25]. Others, while authenticating both file sys-
tem data and meta-data, do not provide strong freshness guarantees.
SiRiUS [16] does not ensure data freshness, but only partial meta-
data freshness by periodically requiring clients to sign meta-data
entries. SUNDR [21] implements a property called “fork consis-
tency” that detects freshness violations only when clients commu-
nicate out of band. More recently, SPORC [12] supports the build-
ing of collaborative cloud applications, enabling clients to recover
from malicious forks performed by untrusted cloud servers. De-
pot [22] reconciles malicious forks even in the presence of faulty
clients.

To the best of our knowledge, few cryptographic file systems
provide freshness of both file system data and meta-data. SFSRO [14]
and Cepheus [13] build a Merkle tree over the file system directory
tree. While this approach efficiently supports file system operations
like moving or deletion of entire directories, it results in an unbal-
anced authentication data structure and thus has a high authentica-
tion cost for directories with many entries. Athos [17] constructs
a balanced data structure that maps the directory tree of the file
system in a set of node relations represented as a skip list. Athos
abstracts away the hierarchical structure of the directory tree, how-
ever, and doesn’t provide efficient support for some existing file
system operations, e.g., garbage collection. Moreover, its primary,
prototyped design handles only a single client. FARSITE [4] is a
peer-to-peer storage system that uses a distributed directory group
to maintain meta-data information. Meta-data freshness is guaran-
teed when more than two thirds of the directory group members are
correct. Data freshness is provided by storing hashes of file Merkle
trees in the directory group.

Other systems provide data integrity guarantees for key-value
stores. Venus [28] implements strong consistency semantics for
a key-value store with malicious storage in the back-end. Cloud-
Proof [26] provides a mechanism for clients to verify the integrity
and freshness, as well as other properties of cloud-stored data.
PoRs/PDPs: A Proof of Retrievability (PoR) [18] is a challenge-
response protocol that enables a cloud provider to demonstrate to
a client that a file is retrievable, i.e., recoverable without any loss
or corruption. Proofs of data possession (PDP) [5] are related pro-
tocols that only detect a large amount of corruption in outsourced
data. Most existing PDP [5] and PoR [18, 27, 7, 10] protocols are
designed for static data, i.e., infrequently modified data.

Dynamic PDP protocols have been proposed by Erway et al. [11],
but they were not designed to handle typical file system operations.
For instance, Erway et al. [11] support operations like insertion in
the middle of a file, but do not efficiently support moving and delet-
ing entire files or directories. The CS2 system [20] designs and im-
plements an efficient dynamic PDP protocol, as well as techniques
for searching over encrypted data.

Several papers ([30] and [31]) claim to construct dynamic PoRs,
but in fact only provide dynamic PDP schemes. To the best of our
knowledge, designing efficient dynamic PoR protocols is extremely
challenging and has stood as an open problem in the community.



3. System model and overview
Iris is designed as an enterprise file system using back-end cloud

storage. Clients in Iris (enterprise users) issue file system oper-
ations intermediated by Iris and relayed to the public cloud. An
important design consideration is that heavy caching on the enter-
prise side is strictly necessary. There are several reasons for this.
First, if local caching is not performed, the cost of network trans-
fer to and from the cloud will far outweigh any storage costs sav-
ings ([9] points to the extremely high cost of network transfer).
Second, without local caching individual operation latency will be
prohibitive for the system to be usable.

Existing network file systems are not designed with similar re-
quirements in mind. For instance, NFS is not optimized for high
network latency scenarios [15]. Moreover, most cloud storage sys-
tems available today (e.g., Amazon S3) export a key-value store
interface and employ a flat namespace. Our system is unique in
providing a file system interface to enterprise clients (for compat-
ibility with existing applications), and at the same time ensuring
low operation latency. In addition, our main goal is to support in-
tegrity protection of both file system data and meta-data and con-
tinuous verification of full file system correctness and availability
with minimum overhead.

We describe here Iris’s architecture, threat model, and give an
overview of our solution and technical challenges.

3.1 System architecture
In our architecture (shown in Figure 1), a trusted portal residing

within the enterprise trust boundary intermediates all communica-
tion between enterprise clients and the cloud. The portal caches
data and meta-data blocks recently accessed by enterprise clients.
Cached blocks are evicted once the cache is full and they are not
utilized by a pending operation. The portal is also responsible for
checking data integrity and freshness for all file system operations
(with the integrity layer component). Data integrity ensures that
data retrieved from the cloud has been written by authorized clients
and has not been accidentally modified or corrupted at the cloud
side. A stronger property, data freshness, ensures that data accessed
by a client during a file system operation is always the latest version
written to the cloud by any client.

The portal offers a portal service to clients issuing file system
operations, and communicates to the cloud through the storage in-
terface component. The auditing component issues challenges to
the cloud periodically to verify the correctness and availability of
the entire file system. The portal plays a central role in recovering
from data corruptions: The portal caches error-correcting informa-
tion (or more concisely, parities) for the full file system. When
corruption is detected through the auditing protocol, these parities
enable recovery of lost or corrupted data. Parities are backed up to
the cloud on a regular basis (e.g., once a day or once a week).

To scale to large organizations with tens of thousands of clients,
the portal needs to be distributed internally using a tool to ensure
consistency of distributed caches (e.g., memcached [3]). For pur-
poses of our prototype detailed in Section 6, we have instantiated
the portal on a single server machine and show that it can scale
up to 100 clients simultaneously executing sequential workloads in
parallel on the file system.

The cloud maintains the distributed file system, consisting of all
files and directories belonging to enterprise users. Iris is designed
to use any existing cloud storage system transparently in the back
end without modification. In addition, the cloud also stores the
MACs and Merkle tree necessary for authenticating data, as well
as the checkpointed parity information needed to recover from po-
tential corruptions at the portal. As an additional resilience mea-

sure, the parity information could be stored on a different cloud or
replicated internally within the enterprise.

Figure 1: System architecture.

3.2 Threat model
Iris treats the portal, which is controlled by the enterprise, as a

trusted component, in the sense that it executes client file system
operations faithfully. No trust assumption is required on clients:
They may act arbitrarily within the parameters of the file system.
(The file system may enforce access-control policies on clients through
the portal, but such issues lie outside the scope of Iris.)

The cloud, on the other hand, is presumed to be potentially un-
trustworthy. It may corrupt the file system in a fully Byzantine
manner. The cloud may alter or drop file system operations trans-
mitted by the portal; it may corrupt or erase files and/or metadata;
it may also attempt to present the portal with stale, incorrect, and/or
inconsistent views of file system data. The objective of the portal
in Iris is to detect the presentation of any invalid data by the cloud,
i.e., immediately identify any cloud output that reflects a file sys-
tem state different from that produced by a correct execution of the
operations emitted by the portal.

3.3 Solution overview and challenges
Iris consists of two major components:

Authenticated file system: As already described, the first chal-
lenge we address in building an authenticated enterprise-class file
system is the high cost of network latency and bandwidth between
the enterprise and cloud. Another challenge is efficient manage-
ment and caching of the authenticating information. Integrity and
freshness verification should be extremely efficient for existing file
system operations and induce minimal latency.

Iris employs a two-layer authentication scheme. In its lower
layer, it stores on every file block a message-authentication code
(MAC)—generated by the portal when a client writes to the file
system. These MACs ensure data integrity. To ensure freshness,
it is necessary to authenticate not just data blocks, but also their
versions. Each block has an associated version counter that is in-
cremented every time the block is modified. This version number
is bound to the file-block’s MAC: To protect against cloud replay
of stale file-blocks (rollback attacks), the counters themselves must
be authenticated.

The upper layer of the authenticated data structure in Iris is a
balanced Merkle-tree-based structure that protects the integrity of
the file-block version counters. This data structure embeds the file
system directory tree, and balances each directory for optimization.
Attached to each node representing a file is a sub-tree containing
file-block version counters. The root of the Merkle tree stored at
the portal guarantees the integrity and freshness of both data and
meta-data in the file system.

This Merkle-tree-based structure has two distinctive features com-
pared to other authenticated file systems: (1) Support for existing
file system operations: Iris maintains a balanced binary tree over
the file system directory structure to efficiently support existing



file system calls; and (2) Support for concurrent operations: The
Merkle tree supports efficient updates from multiple clients operat-
ing on the file system in parallel. Iris also optimizes for the com-
mon case of sequential file-block accesses: Sequences of identical
version counters are compacted into a single leaf. We detail the
data structure in Section 4, and the Merkle tree caching mechanism
in Section 6.
Auditing protocol: Iris enables the enterprise tenant to continu-
ously monitor and assess the correctness and availability of the en-
tire file system through the auditing protocol. The auditing pro-
tocol in Iris is an instantiation of a PoR protocol and, in fact, the
first dynamic PoR protocol supporting data updates. Previous PoR
protocols have been designed for static data (files that do not un-
dergo modifications). In any PoR, the tenant samples and checks
the correctness of random data blocks retrieved from the cloud to
detect any large-scale data corruption. To recover from small-scale
damage, parity information computed with an erasure code needs
to be maintained over the data.

The main challenge in designing a dynamic PoR protocol is that
the erasure code structure, i.e., mapping of data blocks to parity
blocks, must be randomized to prevent an adversarial server from
introducing targeted, undetectable file corruptions. File updates are
most problematic as they partially reveal the code structure (in par-
ticular the parity blocks corresponding to updated file blocks). At
the same time, file updates should be efficient and involve only a
small fraction of parity blocks.

We overcome this challenge with two techniques. First, we de-
sign Iris to cache parity information locally at the portal (and only
checkpoint it to the cloud at fixed time intervals). As the cloud does
not perceive individual file updates, but only parity modifications
aggregated over a long time interval, the cloud cannot easily infer
the mapping from file blocks to parity blocks. Second, we design a
new sparse, binary code structure that combines randomly chosen
blocks from the file system into a codeword. The code supports
updates to the file system very efficiently through binary XOR op-
erations. Its sparse structure supports very large file systems. This
novel code construction is carefully parameterized to optimize local
storage at the portal side, update cost, and bandwidth and compu-
tation in the auditing protocol. We describe the auditing protocol
and the erasure code construction in Section 5.

4. Authentication in Iris
We describe in this section how Iris provides strong data protec-

tion, including integrity and freshness, for both file system data and
meta-data. The authentication scheme in Iris is based on Merkle
trees, and designed to support existing file system operations. In
addition, random access to files for both read and write operations
is a desirable feature (offered by existing file systems like NFS)
that we also choose to implement. The tenant needs to maintain at
all times the root of the Merkle trees for checking the integrity and
freshness of data retrieved from the cloud. For reducing operation
latency, recently accessed nodes in the tree are also cached at the
portal (the caching mechanism is described in Section 6).
Figure 2 depicts the main components of our tree-based structure
used for authentication:
Block-level MACs: To provide file-block integrity, we store a MAC
for each file block, and combine block MACs from the same file in
a MAC file. We choose to store MACs for each file block (instead
of a single MAC for each file) to support random accesses to files.
Block MACs are computed by the portal when a client writes to the
file system. For providing freshness, we need to bind a unique ver-
sion number to each file block every time it’s updated and include

the version number in the block MAC. To protect against rollback
attacks (in which clients are presented with an old state of the file
system), version numbers will have to be authenticated as well.
File version trees: We construct a file version tree per file that
authenticates version numbers for all file blocks in a compressed
form. Briefly, the file version tree compresses the versions of a
consecutive range of blocks into a single node, storing the index
range of the blocks and their common version number. File version
trees are optimized for sequential access to files. For instance, if a
file is always written sequentially then its file version tree consists
of only one root node. The compacted version tree essentially be-
haves as a range tree data structure. An example of a compacted
tree is shown in Figure 3.
Directory trees: To authenticate file system meta-data (or the di-
rectory structure of the file system), the file system directory tree is
transformed into a Merkle tree in which every directory is mapped
to a directory subtree. We have chosen to map our authenticated
data structure onto the existing file system tree in order to efficiently
support file system operations like delete or move of entire direc-
tories. To support directories with large number of files efficiently,
we create a balanced binary tree for each directory that contains
file and subdirectory nodes in the leaves, and includes intermedi-
ate, empty internal nodes for balancing. Nodes in a directory tree
have unique identifers assigned to them, chosen as random strings
of fixed length. A leaf for each file and subdirectory is inserted into
the directory tree in a position given by a keyed hash applied to its
name and its parent’s identifier (to ensure tree balancing).

At the leaves of the directory tree, we insert the file version
trees in compacted form, as described above. Internal nodes in
the Merkle tree contain hash values computed over their children,
as well as some additional information, e.g., node identifiers, their
rank (defined as the size of the subtree rooted at the node), file and
directory names.

Our Merkle tree supports the following operations. Clients can
insert or delete file system object nodes (files or directories) at cer-
tain positions in the tree. Those operations trigger updates of the
hashes stored on the path from the inserted/deleted nodes up to the
root of the tree. Deleted subtrees are added to the free list, as ex-
plained below. Clients can verify a file block version number, by
retrieving all siblings on the path from the leaf corresponding to
that file block up to the root of the tree. Searches of files or direc-
tories in the tree can also be performed, given absolute path names.

We also implement an operation randompath-dir-tree for direc-
tory trees. This feature is needed to execute the challenge-response
protocols of the auditing component in Iris. A (pseudo)-random
path in the tree is returned by traversing the tree from the root,
and selecting at each node a child at random, weighted by rank.
In addition, the authentication information for the random path is
returned, so the tenant can verify that the path has been chosen
pseudo-randomly.

With this Merkle tree construction, we authenticate both file sys-
tem meta-data, as well as file block version numbers. Together
with the file block MACs, this mechanism ensures data integrity
and freshness, assuming that the portal always stores the root of the
Merkle tree.

Free list: As an optimization, we also maintain in the data struc-
ture a free list containing pointers of nodes deleted from the data
structure, i.e., subtrees removed as part of delete or truncate op-
erations. The aim of the free list is to defer garbage collection of
deleted nodes and support remove and truncate file system opera-
tions efficiently. We omit further details due to space limitations.



Figure 2: Authenticated tree. A file system directory on the left
and its mapping to the Merkle tree on the right.

Figure 3: File version tree for a file with 16 blocks. Blocks 0-3 and
10-13 have been written twice, all other blocks have been written
once. White nodes on the left are removed in the compacted ver-
sion on the right. Version numbers are adjacent to nodes.

5. Auditing protocol
The authentication mechanism in Iris presented in the previous

section can be used to verify the correctness of all blocks retrieved
from the file system during the course of normal operations issued
by clients. A challenging question that we address in this section
is how can the enterprise verify infrequently accessed blocks and
detect even small amounts of corruptions spread throughout the file
system. We are particularly interested in offering strong assurances
to the enterprise about the correctness and availability of the entire
file system. An important requirement is that auditing of correct-
ness should be performed with minimal bandwidth and computa-
tion. For instance, downloading a substantial fraction of the file
system to verify its correctness would not be an acceptable solu-
tion. In addition, a recovery mechanism is needed to reconstruct
the original data once corruptions are detected.

Several different protocols that address to some extent this ques-
tion have been proposed in the literature. PoR protocols provide
strong assurances about availability of data outsourced to the cloud,
and a recovery mechanism, but they have only been designed for
static data (files that do not undergo modifications). PDP proto-
cols, while supporting updates to data, ensure only detection of a
certain amount of data corruption, but do not implement a recov-
ery mechanism. To the best of our knowledge, our solution here is
the first dynamic PoR protocol over an entire file system, support-
ing updates and providing an efficient recovery mechanism in case
data corruption is detected.

We start by presenting at a high level how existing PoR protocols
work, and then describe the challenges of adapting these ideas to a
dynamic setting. We then discuss our main insights and contribu-
tions in constructing a dynamic PoR protocol.

5.1 Static PoR protocols
In a PoR protocol, the tenant encodes a single file with an error-

correcting code (ECC) and stores the encoded file in the cloud. The
encoded file contains the original file and some parity blocks, re-
dundant blocks computed with the ECC that are needed in recov-
ering from corruption. To ensure correctness and availability of
the data, the tenant periodically challenges the cloud for a few ran-
domly selected file blocks, and verifies their correctness. Through
this auditing protocol, the tenant can detect large-scale corruption
to the file (exceeding a certain fixed threshold). Small corruptions,
while not detectable through sampling, can be recovered from the
redundancy embedded in the encoded file.

An important parameter in a PoR is the recovery-failure prob-

ability ρ. This is the probability, assuming that the cloud replies
correctly to all challenges during an audit, that the tenant can’t re-
cover the file from the cloud’s storage. The size and frequency of
challenges in a PoR may be calibrated to achieve a target parameter
ρ given the file size, and error-correcting code parameters.

5.2 Challenges for dynamic PoRs
The main challenge in adapting a static PoR protocol to a dy-

namic setting is the construction of an error-correcting code with
several required properties. As a reminder, the error-correcting
code is used to recover from corruptions once the auditing proto-
col detects missing or corrupted data at the cloud. An additional
requirement our system has compared to previous PoR protocols is
that it needs to recover from corruptions of both data and meta-data
in the entire file system (while previous PoR protocols have been
designed for single files).

Our first observation is that we can use in our system an era-
sure code instead of a more expensive error-correcting code. The
reason is that Iris’s main service is authentication of file system
blocks, and, therefore, the portal can verify the correctness of file
blocks and Merkle tree nodes during recovery and determine the
positions of corrupted blocks. We present the remaining challenges
in achieving an efficient dynamic PoR protocol:
Challenge 1: Update efficiency The erasure code has to support
updates to the file system efficiently. In particular a modification
to a file block or Merkle-tree node should require the update of
only a small number of parity blocks. Additionally, it would be
preferable to use cheap Galois field arithmetic in the parity com-
putation, such as GF (2) which essentially consists of XOR opera-
tions. Higher order Galois field arithmetic (as employed by Reed-
Solomon codes, for instance) is too expensive to sustain our desired
throughput of several hundred megabytes per second.

This requirement excludes upfront the use of maximum-distance
separable (MDS) codes. While such codes are attractive for their
correction capability, a parity block in an MDS codes depends on
all message blocks, and therefore updates to the codeword are quite
impractical.

Thus we must use a non-MDS code, with a lower error-correction
capability. For instance, we might stripe the file system, that is, par-
tition it into a number of smaller components, called stripes, and
apply an erasure code individually to each stripe (striping is a com-
mon technique employed in most storage systems today). With
this approach, updates would be more efficient as an update to a
file block or Merkle tree node would involve updating only parity



blocks within a single stripe.
Challenge 2: Hiding code structure Nevertheless, striping intro-
duces a problem. When a client updates a block of the file sys-
tem along with the corresponding stripe parities, it reveals code-
structure information to the cloud, namely the correspondence be-
tween the file blocks and the parity blocks. A malicious cloud can
then create a targeted corruption against the file system, e.g., it can
corrupt a single stripe and its corresponding parity blocks. Such
corruption, being focused, will be hard to detect by sampling (since
sampling detects only a large amount of corruption).

We overcome this challenge with two key techniques:

1. Cache parities at the portal We cache the parity information
at the enterprise side and only transmit parities to the cloud
at regular time intervals for back up (e.g., at the end of the
week). With this approach, the cloud does not perceive indi-
vidual updates to the file system, but only the aggregate par-
ity structure over a large number of updates and can not infer
the exact code structure. Moreover, updates are extremely
efficient if parities are stored in main memory at the portal.

2. Randomize code structure Even when parities are stored at
the portal, it is important that the stripe structure is not re-
vealed to the cloud to avoid targeted corruptions. To enforce
this, we randomize the assignment of file blocks to stripes.

If these two design principles are employed, it might seem that
after caching the parities locally and randomizing the assignment of
file blocks and tree nodes to stripes, any erasure code could be used
for computing the parity blocks within a stripe. But our system has
to overcome another subtle challenge:
Challenge 3: Variable-length encoding Typically, the code pa-
rameters for an erasure code, including the message size, and the
size of parity information are fixed and known in advance (before
encoding is performed). However in Iris we need to compute parity
blocks over an entire file system data and meta-data blocks without
knowing in advance the total size of the file system. At the same
time, we have to enforce a randomization of the mapping of file
system blocks to parity blocks at any given time. Therefore, ap-
proaches in which new parity blocks are created as more data is
added to the file system in a streaming fashion (e.g., LDPC codes)
would not be applicable here.

New sparse randomized erasure code construction. Our solu-
tion is to set an upper bound on the total size of the file system,
and design a novel erasure code construction that is sparse in the
sense that it supports incremental updates to the codeword very ef-
ficiently, even when only a fraction of the maximum size is used by
the file system. The construction randomizes the mapping of file
system blocks to parity blocks, and uses binary XOR operations.
The size of the parity information is also constrained to fit into the
main memory of typical servers today (an important consideration
for efficient updates). We are able to prove for this construction an
exponentially small bound for the recovery-failure probability.

If the file system needs to be expanded, the error correcting codes
can be rebuilt, but a more bandwidth efficient solution would be to
double the ECC data structure when the file system doubles in size.

5.3 Our erasure code
Parameter overview: We first set an upper bound for the entire
file system size, denoted n. In our example parameterization, n is
the number of 4KB blocks needed for a file system of size 1PB.
Our erasure code construction is scalable up to that size, but once
the file system exceeds the upper bound, the code parameters need
to be changed and the file system has to be re-encoded.

To correct a fraction α of erasures, the storage for parities must

be at least s ≥ αn blocks—a coding-theoretic lower bound. Here
s is limited by the sizes of current memories to about s = O(

√
n)

for practical file system sizes and thus α = Ω(1/
√
n). (To obtain

a probabilistic guarantee that at most an α-fraction of all stored
file blocks is missing or corrupted, the tenant must challenge c =
O(1/α) = O(

√
n) randomly selected file blocks.)

To support updates efficiently we split the huge codeword into
m ≈ αn stripes; each stripe being a codeword itself with p parities.
With high probability, given an α-fraction of erasures, each stripe
is affected by only O(logn) erasures. Thus to correct and recover
stripes, we need p = O(logn) parity blocks per stripe, leading
to s = O(αn logn) = O(

√
n logn) memory. Each write only

involves updating u = O(logn) parities within the corresponding
stripe. By using a sparse parity structure, though, we are able to
reduce u to O(log log n).
Details on our erasure-code construction: Our erasure code is a
sparse one based on efficient XOR operations. Although the new
construction is probabilistic in that successful erasure decoding is
not guaranteed for any number of erasures, its main advantage is
that it is a binary efficient code scalable to large codeword lengths.

The portal computes parities over both file blocks and Merkle
tree nodes when block values are updated by a client operation. For
the purpose of erasure coding, we view data blocks or tree nodes as
identifier-value pairs δ = (δid; δval), where δid is a unique identi-
fier (a unique block ID in the file system) and δval = (δ1, . . . , δb)
is a sequence of b bits denoting the change in block value. (We as-
sume all blocks are initialized with 0.) To randomize the mapping
from data blocks to parity blocks, we use a keyed hash function
Hk(.) that maps an identifier δid to a pair (θind, θ), where θind is
a random stripe index and θ = (θ1, . . . , θp) is a binary vector of p
bits. The randomization is graphically depicted in the full version
of this paper [1].

The 1s in vector θ indicate the parity bits that need to be updated.
Each update modifies at most u of the p parities of the stripe to
which δ belongs. That is, Hk(δid) is designed to produce a binary
random vector θ of length p with at most u entries equal to 1. For
u = O(log p) = O(log log n) this leads to a sparse erasure code
that still permits decoding, but entails relatively few parity updates.
Encoding: We maintain a parity matrix P [i] for each stripe i,
1 ≤ i ≤ m. To change the value of block δid with δval, the
portal computes Hk(δid) = (θind; θ); constructs A = δval ⊗ θ =
{δiθj}i∈[1,b],j∈[1,p]; and updates P [θind] ← P [θind] ⊕ A. The
change in parity structure is shown graphically in the full version
of this paper [1].

Since vector θ has at most u non-zero positions, the number of
XOR operations for updating a block is u. The total storage for all
parities is s = bpm bits.
Decoding: Erasure decoding of the multi-striped structure involves
decoding each stripe separately. Gaussian elimination is performed
m times, each time computing the right inverse of a (≤ p) × p
matrix–at a cost of at most p2 = O((logn)2) XOR operations. As
an additional benefit of our construction, decoding can be done in
place, and thus within memory at the portal.
Analysis: The full version of this paper [1] provides a detailed
analysis. E.g., with a block size of 4KB, 5KB communication
per challenged block, 5.8GB total communication per challenge-
response round, 16GB of main memory at the portal for parity stor-
age, and 1PB file system size, we achieve recovery failure proba-
bility ρ ≤ 0.74%.



5.4 Erasure-coding for Dynamic PoR
We now explain how our erasure code functions in Iris.
PoR encoding and update: During encoding, the portal constructs
two parity structures: the data parity structure constructed over
the file system data blocks (including the data blocks in the free
list) and the meta-data parity structure over the meta-data blocks
(internal nodes in the data structure comprising the Merkle tree and
free list).
The challenge-response protocol: The portal challenges the cloud
to return a set of c (again c = O(

√
n) randomly selected file system

data blocks, including data blocks from the free list. These blocks
are all leaf nodes in the authenticated data structure containing the
Merkle tree and free list. As an optimization, the portal sends a
seed from which the challenge set is derived pseudo-randomly.

The c selected random blocks together with the authenticating
paths from the authenticated data structure are transmitted back to
the portal. The portal verifies the correctness of the responses by
performing two checks. First, it verifies the integrity and freshness
of the selected blocks, checking the block MACs and the path to
the root in the authenticated data structure. Second, it verifies that
the blocks have been correctly indexed by the challenges according
to the node ranks/weights. (This proves that the file system data
blocks are selected with uniform probability.) As a byproduct of
these checks the challenge-response protocol also verifies the in-
tegrity and freshness of the meta-data blocks (internal nodes in the
authenticated data structure). We can immediately infer that if a
fraction α of file system data blocks don’t verify correctly, then at
most a fraction α of internal nodes in the Merkle tree and free list
are either missing or corrupted.
Recovery: See the full version of this paper [1] for the recovery
algorithm.

6. Implementation
Our implementation of Iris is a 25,000-line end-to-end system

with all integrity checking in place. The system is fully asyn-
chronous and never holds a lock while waiting for network or disk
I/O operations. The code runs in user space as a transparent layer
that can take advantage of any existing storage system at the cloud
provider. Our implementation uses the open-source .NET frame-
work Mono, which is advantageously platform-independent: Iris
can run on Linux, Windows, and MAC OS.

Our implementation includes the Portal, a simple Cloud storage
server, and clients that run traces and benchmarks, as depicted in
the detailed system architecture in Figure 1.

6.1 Cloud
The cloud stores not only regular file system data, but also au-

thenticating meta-data, including MAC files and our Merkle tree
authenticated data structure, as well as checkpointed parities needed
for recovery. The repositories for these data types are shown at the
top of Figure 1.

The portal performs reads and writes to the various data reposi-
tories by invoking their respective cloud-side services. The Cloud
File System Service handles requests for file blocks, MAC files, and
the Merkle tree (stored in our implementation in an NTFS file sys-
tem). Operations on file blocks are executed asynchronously at the
portal. Sequential access operations to the same file can potentially
arrive out of order at the cloud. (Re-ordering can occur in transit on
the network, as our portal and cloud machines are each equipped
with three network cards.) To reduce disk spinning, the Cloud File
System Service orders requests to the same file in increasing order
by block offset.

6.2 Portal
The portal interacts with multiple clients which issue file sys-

tem calls to the Portal Service. The portal executes client opera-
tions in parallel: Each operation is executed in a thread pool as a
user-scheduled task with asynchronous steps. When an operation
is waiting for a long running step such as disk or network I/O, the
task is paused and the current thread switches to another task. This
allows thousands of simultaneously active operations to be handled
by the thread pool with a small number of threads. In our setup,
the thread pool had 16 threads—one for each virtual CPU core, for
maximum parallelism.

Operations don’t interact directly with the cloud, but instead with
the Merkle Tree and Block Caches. All data and meta-data re-
quested by the caches is downloaded from the cloud via the Storage
Interface in the portal. While in use by an active operation, blocks
and nodes are retained in the cache. Prior to being cached, how-
ever, blocks and nodes downloaded from the cloud are checked for
integrity by the Integrity Checker components.

Our implementation benefits from multi-core functionality avail-
able in most modern computers. Operations performed on active
blocks in the cache are split into atomic operations (e.g., hash up-
date for a tree node, check MAC for a data block or compact nodes
in file version trees). These are inserted into various priority queues
maintained at the portal. Multiple threads seize blocks from these
queues, lock them and execute the atomic operations. Operations
are always started in order, but may complete out of order. How-
ever, our implementation ensures that the effect of the operations on
the system is the same as if they were executed by a single thread
in order. If multiple clients issue conflicting operations simulta-
neously, they are executed in the order in which they arrive to the
Portal. It is the responsibility of the clients to perform locking out-
of-band.

Distributing the Portal. For scalability, the portal can be dis-
tributed across multiple machines. Each portal machine would then
be responsible for a subtree of the file system. When clients first
mount the file system, they can contact any one of the portals to
get the assignment of portal machine to subtrees. As the file sys-
tem changes over time, a subtree may grow or shrink substantially,
and then the subtree assignment will need to be rebalanced by split-
ting a subtree and copying one part of it onto another portal. Our
current implementation does not support this, but we would like to
point out that even with a single portal, Iris can achieve a through-
put of up to 260 MB/s, which already exceeds the bandwidth to the
cloud for many enterprises. Additional challenges (e.g., caching to
reduce latency) arise when the portal is geographically distributed,
but these are out of the scope of this paper.

6.2.1 Merkle tree cache
The Merkle Tree Cache in the portal is Iris’s most complex com-

ponent. Much of the design effort and complexity of Iris lies in
the caching strategy for recently accessed portions of the tree. We
designed a generic, efficient Merkle Tree Cache that ensures con-
sistency across thousands of simultaneous asynchronous client op-
erations.

When an operation accesses the cache, it first locks it using a mu-
tex and unlocks it when it’s done. All of the operations are designed
such that they access the cache for a very short period of time for
tasks such as changing the value of a few fields of a Merkle tree
node. To ensure a high degree of parallelism, the Merkle tree mu-
tex is never locked while an operation waits for a long running step
such as network or disk I/O.

When executing operations in parallel, a real challenge is to han-
dle dependencies among tree nodes and maintain data structure



consistency and integrity. We do this by imposing several order-
ings of operations. Nodes are brought into the cache in a top-down
order and are evicted in a bottom-up order. The top-down ordering
is necessary because when a node is read from the untrusted stor-
age, it can only be verified once all of its ancestors have also been
cached in and verified. Likewise, a node can only be written out
to the untrusted storage after the hash of its subtree has been com-
puted. If multiple nodes in a sub-tree are modified, the Merkle Tree
Cache will only hash the shared path to the root once, thereby sig-
nificantly reducing the number of hashes that need to be performed.
Phases. To enforce the ordering, each node is always in one of the
following phases: Reading, Verifying, Neutral, Compacting, Up-
datingHash, or Writing. A node always traverses these phases in
order and only after its parent or children have reached a certain
phase. For example, a node only enters the verifying phase after its
parent has completed the verifying phase. The Reading and Veri-
fying phases are applied top-down and the Compacting, Updating-
Hash, and Writing phases are applied bottom-up. When a node is
in the Neutral phase, it is in the cache and available to be used by
operations.
Pinning. Operations oftentimes need to access multiple nodes. For
example, a WriteFile operation needs to access the path in the ver-
sion tree that descends all the way to the version node correspond-
ing to a specific block. The operations first pin all of the nodes
they need and then proceed to execute. If a node is needed by an
operation and is not currently in the cache, the operation is paused
and resumed when all of its pinned nodes have been loaded into
the cache. Once a node is pinned, it is not cached out until it is
unpinned (e.g., when the operation completes). A node may be
pinned multiple times, in which case it must be unpinned the same
number of times until it is considered in the unpinned state and may
be cached out.

If a node is pinned, its ancestors, sibling, and siblings of the
ancestors are automatically indirectly pinned. This is necessary be-
cause if the node is modified, the indirectly pinned nodes will be
needed when updating the hashes of the path to that node.
Eviction. When the cache reaches its maximum allowed size, it
repeatedly evicts least-recently-used (LRU) leaf nodes, causing a
bottom-up wave of evictions. Evicting a node consists of transi-
tioning its phase from the Neutral to Compacting. The node then
goes through the UpdatingHash and Writing phases until it is fi-
nally removed from the cache. If a node and its subtree were not
modified, then the UpdatingHash and Writing phases are skipped.
If all of the nodes are pinned, then new operations block until the
currently executing operations complete and unpin more nodes.

6.2.2 Other components
The Block Cache functions much like the Merkle Tree Cache

except that blocks don’t have parents/children so there are no de-
pendencies between blocks.

The Merkle Tree and Block Caches keep track of two items per
node/block: The old and new data. The old data is the value of the
node/block when it was fetched from the cloud. The new data is
its value after it was (possibly) modified by an operation. When a
node/block is evicted, the portal computes the difference of the byte
representations of the old and new data and updates the parities.

Another component of the portal is the auditing module. This
service, periodically invoked by the portal, transmits a PoR chal-
lenge to the cloud and receives and verifies the response, consisting
simply of a set of randomly selected data blocks in the file system
and their associated Merkle tree paths. The portal also maintains
a repository of Parities to recover from file system corruptions de-

tected in a PoR, seen in the portal cache module in Figure 1. Parities
undergo frequent modification: Multiple parities are updated with
every file-block write. Thus, the Parities repository sits in the main
memory of the portal.

The portal can include a checkpointing service that backs up data
stored in the main memory at the portal to local permanent storage.
To enable recovery in the event of a portal crash, checkpointed data
can be periodically transmitted to the cloud (with a MAC for in-
tegrity). While we have not implemented this component, it can
rely on well-known checkpointing techniques.

7. Experimental evaluation
We ran several experiments to test different aspects of Iris. We

first describe our setup and then present our results. Two machines
ran the full end-to-end system implementation described in Sec-
tion 6: The Portal and the Cloud.

Portal Computer. The Portal computer has an Intel Core i7 pro-
cessor and 12 GB of RAM. The experiments were run on Windows
7 64-bit installed on a rotational disk, but no data was written to the
Portal’s hard drive for the purpose of our experiments.
Cloud Computer. The Cloud computer has seven rotational hard
drives with 1TB of storage each. The file system and MAC files
reside on these disks. The disks are used as separate devices and
are not configured as a RAID array. This configuration mimics a
cloud where each disk could potentially be on a separate physical
machine. The operating system (Windows 7 64-bit) runs on an sep-
arate additional hard drive to avoid interfering with our experiment.
Networking. Because our file system can handle very large through-
put, we used three 1Gbps cables to connect the two computers.
Each computer had one network port on the motherboard and two
additional network cards. After accounting for networking over-
head, the 3 Gbps combined connections between the two comput-
ers can handle about 280 MB/s of data transfer as our experiments
show.
Configuration. In our configuration, write operations originate
from clients (simulated as threads on the Portal). Then they are
processed by the Portal and multiplexed over the three network con-
nections. Finally, data reaches the Cloud computer and is written
to the appropriate disk. Reads are similarly processed, but the data
flow is in the opposite direction (from the Cloud machine to the
Portal).
Simulated Latency. To obtain more realistic results, we deliber-
ately simulated 20ms round-trip time (RTT) latency between the
clients and Portal, and 100ms RTT latency between the Portal and
Cloud. This setting aims to resemble the scenario where the clients
and Portal are both part of the same corporate network and the
Cloud is a data center located elsewhere on the same continent.

7.1 Workloads
To evaluate Iris, we used the following workloads. Each work-

load was recorded as a trace and played back exactly under different
parameterizations of our system.
• Tar/Untar (directory structure): Benchmarks access and mod-

ify operations on a tarball consisting of the entire Linux ker-
nel source (420 MB, 37,000 files, and 2,300 directories).
• IOZone (various file access patterns): IOZone [2] bench-

mark of combining various operations (reread/rewrite, ran-
dom read/write, backwards read, and strided read).
• Sequential Read/Write (throughput): Measures the perfor-

mance of sequentially reading/writing ten files simultane-
ously, each of size 10 GB.
• Random Read/Write (seeks): Measures the performance of



Figure 4: Workloads under different Merkle Tree Cache sizes. Time for the
workload to complete vs the Merkle Tree Cache size.

Figure 5: Avg sequential read &
write speed.

Figure 6: PoR Encoding Rate.

Total Latency (ms) Network I/O Cloud Disk I/O Portal Processing
Portal Cache: Hot Cold Hot Cold Hot Cold Hot Cold

Create file in directory of depth 0 20.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0
Create file in directory of depth 1 20.0 144.0 20.0 120.0 0.0 9.6 0.0 14.4
Create file in directory of depth 2 20.0 254.0 20.0 220.0 0.0 16.5 0.0 17.5
Create file in directory of depth 3 20.0 363.0 20.0 320.0 0.0 23.4 0.0 19.6
List directory with 10 files at depth 1 27.7 678.9 20.0 620.3 0.0 32.6 7.7 26.0
Write 1 MB file at depth 1, wait completed 24.8 138.8 20.0 120.0 0.0 0.0 4.8 18.8
Read 1 MB file at depth 1 20.0 284.2 20.0 220.0 0.0 43.7 0.0 20.5

Figure 7: Latency for different operations in Iris.

randomly reading/writing ten files simultaneously, each of
size 1 GB. Reads and writes are uniformly random, and trig-
ger seeks with almost every operation. For the random read
workload, the file is first randomly written and then only the
random read portion of the trace is benchmarked.

7.2 Results
Our experimental results show how Iris performs under the above

workloads on the full end-to-end system described in Section 6. We
note that even with seven hard drives for storage and three 1 Gbps
network links between the Portal and Cloud, under no workload
was the Portal the bottleneck. Depending on the workload, the lim-
iting factor was either the network or hard drives.

Varying the Merkle Tree Cache Size: The parallel Merkle Tree
Cache is crucial for the performance of our system. The cache al-
lows the Portal to perform file operations without having to read
and write entire Merkle tree paths from the server for each oper-
ation. The asynchronous cache also allows for pausing operations
that are waiting to retrieve Merkle tree nodes while other operations
actively use the cache.

Multiple paths can be loaded into the Merkle Tree Cache at once
while maintaining consistency. In order to demonstrate the useful-
ness of the cache, in this experiment we varied its size (i.e., how
many nodes it can hold at once) and we timed each of the work-
loads under different cache sizes. The results are in Figure 4.

Interpretation: As demonstrated in the figure, the Tar, Untar, and
IOZone workloads greatly benefit from having a Merkle tree cache

of 5 to 10 MB (about 10,000 to 20,000 nodes), whereas the sequen-
tial and random read/write workloads are mostly unaffected by the
cache size.

The reason is quite simple: The Tar, Untar, and IOZone bench-
marks frequently revisit the same part of the Merkle tree. For exam-
ple, the Tar/Untar workloads often read/write multiple files within
the same directory (and hence their Merkle tree paths share many
nodes). Likewise, the random write portion of the IOZone bench-
mark creates a file with a large uncompactable Merkle tree which is
then read sequentially and the sequential read portion of the work-
load yields an in-order traversal of the Merkle tree that is signifi-
cantly sped up by the cache.

On the other hand, the sequential read and write workloads gen-
erate version tree nodes that are quickly compacted. Hence the
Merkle Tree Cache only needs to hold a few dozen nodes at a time.
The random read/write workloads are extremely intensive on the
Cloud’s disks. Almost every operation causes a seek, so the Cloud’s
disks are the bottleneck. Because the random read/write operations
are executed very slowly by the Cloud’s disks and the Portal paral-
lelizes requests for the Merkle tree nodes, there is plenty of time for
the Merkle tree nodes to be fetched without delaying the workload.

Scalability: In Iris, all operations are handled by the same thread
pool and each file has its own queue of pending/active operations.
From the Portal’s perspective, there is little difference between each
operation being issued by a different client and all operations being
issued by the same client. Most of the overhead of having multiple
clients comes from having to manage multiple TCP sockets and



their associated buffers.
We wanted then to show that Iris can easily scale to 100 clients

accessing it simultaneously. To maximize both strain on the Por-
tal’s CPU and the number of cryptographic operations performed,
each client generated a sequential access pattern. (With more seek-
intensive access, the bottleneck would be disk seeks on the Cloud.)

We averaged the sequential read and sequential write speeds for
10 to 100 clients. Figure 5 shows the results. As can be seen,
Iris consistently reads/writes at 250 MB/s to 280 MB/s. The slight
performance degradation for 100 clients is due to the fact that many
files are accessed at once and that causes a larger portion of disk
seeks.

Latency: Figure 7 shows the latency for several basic operations in
Iris. The latency is measured under two scenarios: when the portal
cache is hot and cold. A hot cache means that the cache already
contains all of the data (Merkle tree nodes and blocks) necessary to
perform the operation on the portal alone. A cold cache means that
all of the data has been evicted from the portal’s cache.

The bulk of the latency (over 84%) comes from the portal-cloud
and client-portal network latencies. Our results show that the la-
tency introduced by the portal for integrity checking and cache
management (denoted as portal processing time) is much smaller
in comparison: less than 14% for a cold cache and less than 29%
for a hot cache.

The 1 MB read operation takes about half of the time of the 1
MB write operation because the portal notifies the client that the
write operation has completed while uploading the file to the cloud
in the background. For the read operation, the portal must first read
the file from the cloud.

The high cold cache latency for high depth operations (e.g., cre-
ate depth 3 and list directory) is due to the fact that each file is
represented as a separate node in the Merkle tree and tree paths are
fetched one node at a time. It should be noted that this latency can
be significantly reduced by having the portal fetch all nodes in a
path in parallel or grouping multiple files into a single file node.

PoR Encoding Rate: Finally, we measure the rate at which the
Portal can perform erasure-encoding for file system recovery if au-
diting detects corruption. Figure 6 shows encoding speeds for data
blocks of different sizes. As can be seen, the PoR encoding rate
is sufficiently fast in order to sustain a throughput of 500 MB/s for
4 KB blocks.

8. Conclusions
We have presented Iris, an authenticated file system designed to

outsource enterprise-class file systems to the cloud. Iris goes be-
yond basic data-integrity verification to achieve two stronger prop-
erties: File freshness and retrievability. Using a lightweight, tenant-
side portal as a point of aggregation, Iris efficiently processes asyn-
chronous requests from multiple clients transparently, i.e., with no
underlying file system interface changes.

Iris achieves a degree of end-to-end optimization possible only
through a carefully crafted, holistic architecture, one of the sys-
tems’s major contributions. Iris’s architecture also relies on several
technical novelties: The authenticating data-structure design and
management, caching techniques, sequential-file-access optimiza-
tions, and a new erasure code enabling the first efficient dynamic
PoR protocol.
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