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Abstract. Organizations are facing an increasing number of criminal
threats ranging from opportunistic malware to more advanced targeted
attacks. While various security technologies are available to protect orga-
nizations’ perimeters, still many breaches lead to undesired consequences
such as loss of proprietary information, financial burden, and reputation
defacing. Recently, endpoint monitoring agents that inspect system-level
activities on user machines started to gain traction and be deployed in
the industry as an additional defense layer. Their application, though, in
most cases is only for forensic investigation to determine the root cause
of an incident.

In this paper, we demonstrate how endpoint monitoring can be proac-
tively used for detecting and prioritizing suspicious software modules
overlooked by other defenses. Compared to other environments in which
host-based detection proved successful, our setting of a large enterprise
introduces unique challenges, including the heterogeneous environment
(users installing software of their choice), limited ground truth (small
number of malicious software available for training), and coarse-grained
data collection (strict requirements are imposed on agents’ performance
overhead). Through applications of clustering and outlier detection algo-
rithms, we develop techniques to identify modules with known malicious
behavior, as well as modules impersonating popular benign applications.
We leverage a large number of static, behavioral and contextual fea-
tures in our algorithms, and new feature weighting methods that are
resilient against missing attributes. The large majority of our findings
are confirmed as malicious by anti-virus tools and manual investigation
by experienced security analysts.
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1 Introduction

Malicious activities on the Internet are increasing at a staggering pace. The 2015
Verizon DBIR report [36] highlighted that in 2015 alone 70 million pieces of
malware were observed across 10,000 organizations with a total estimated finan-
cial loss of 400 million dollars. Enterprises deploy firewalls, intrusion-detection
systems, and other security technologies on premise to prevent breaches. How-
ever, most of these protections are only in effect within the organization perime-
ter. When users travel or work remotely, their devices lack the network-level
protections offered within the organization and are subject to additional threats.

Recently, many organizations started to deploy endpoint monitoring
agents [34] on user machines with the goal of protecting them even outside
the enterprise perimeter. Mandiant [24] reports that in a set of 4 million sur-
veyed hosts, 2.8 million hosts have endpoint instrumentation installed. These
agents record various activities related to downloaded files, installed applica-
tions, running processes, active services, scheduled tasks, network connections,
user authentication and other events of interest, and send the collected data to
a centralized server for analysis. Since stringent requirements are imposed on
the performance of these tools, they are usually lightweight and collect coarse-
grained information. Today, this data is used mainly for forensic investigation,
once an alert is triggered by other sources.

We believe that endpoint monitoring offers a huge opportunity for detec-
tion and mitigation of many malicious activities that escape current network-
side defenses. Endpoint agents get visibility into different types of events such
as registry changes and creation of executable files, which do not appear in
network traffic. Moreover, existing research in host-based detection methods
(e.g., [1,2,12,19,27,31]) confirms our insight that endpoint monitoring can be
used successfully for proactive breach detection. Nevertheless, to the best of
our knowledge, endpoint monitoring technologies have not yet been used for
this goal, as a number of challenges need to be overcome. Most accurate host-
based detection technologies rely on much finer-grained data (e.g., system calls
or process execution) than what is collected by endpoint agents. Additionally,
production environments in large organizations need to handle up to hundreds of
thousands of machines, with heterogeneous software configurations and millions
of software variants. Ground truth is inherently limited in this setting, since we
aim to detect malware that is already running on enterprise hosts, and as such
has bypassed the security protections already deployed within the enterprise.

In this paper, we analyze endpoint data collected from a large, geographically
distributed organization (including 36K Windows machines), and demonstrate
how it can be used for detecting hundreds of suspicious modules (executables or
DLLs) overlooked by other security controls. Our dataset includes a variety of
attributes for 1.8 million distinct Windows modules installed on these machines.
The enterprise of our study uses multiple tools to partially label the modules
as whitelisted (signed by reputable vendors), blacklisted (confirmed malicious by
manual investigation), graylisted (related to adware), or unknown. Interestingly,
only 6.5% of modules are whitelisted, very small number (534) are blacklisted,
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while the large majority (above 90%) have unknown status. As the ground truth
of malicious modules in our dataset in very limited, well-known techniques for
malware detection such as supervised learning are ineffective.

We use several insights to make the application of machine learning success-
ful in our setting. We first leverage the set of behaviors observed in blacklisted
modules to identify other modules with similar characteristics. Towards that
goal, we define a similarity distance metric on more than 50 static, behavioral
and contextual features, and use a density-based clustering algorithm to detect
new modules with suspicious behavior. Second, while enterprise hosts have rela-
tively heterogeneous software configuration, it turns out that popular Windows
executables or system processes have a large user base. We exploit the homo-
geneity of these whitelisted applications for detecting an emerging threat, that
of software impersonation attacks [26]. We detect a class of attacks impersonat-
ing static attributes of well-known files by a novel outlier-detection method. In
both settings we use new dynamic feature weighting methods resilient to missing
attributes and limited ground truth.

In summary, our contributions are highlighted below.

Endpoint-data analysis for malware detection. We are the first to analyze
endpoint data collected from a realistic deployment within a large enterprise
with the goal of proactively detecting suspicious modules on users’ machines.
We overcome challenges related to (1) lightweight instrumentation resulting in
coarse-grained event capturing; (2) the heterogeneous environment; (3) limited
ground truth; (4) missing attributes in the dataset.

Prioritization of suspicious modules. We propose a density clustering algo-
rithm for prioritizing the most suspicious modules with similar behavior as the
blacklisted modules. Our algorithm reaches a precision of 90.8% and recall of
86.7% (resulting in F1 score of 88.7%) relative to manually-labeled ground truth.
Among a set of 388K modules with unknown status, we identified 327 executable
and 637 DLL modules with anomalous behavior and the false positive rates are
as low as 0.11% and 0.0284% respectively. Through manual investigation, we
confirmed as malicious 94.2% of the top ranked 69 executables and 100% of the
top 20 DLL modules. Among these, 69 malicious modules were new findings
confirmed malicious by manual investigation, but not detected by VirusTotal.

Software impersonation. We propose an outlier-detection algorithm to iden-
tify malware impersonating popular software. Our algorithm detected 44 out-
lying modules in a set of 7K unknown modules with similar characteristics as
popular whitelisted modules, with precision of 84.09%. Among them, 12 mod-
ules are our new findings considered malicious by manual investigation, but not
detected by VirusTotal.

Novel feature weighting methods. To account for missing attributes and
limited ground truth, we propose new feature weighting methods taking into
account the data distribution. We compare them with other well-known feature
weighting methods and demonstrate better accuracy across multiple metrics of
interest.
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2 Background and Overview

In this section we first describe the problem definition, adversarial model, and
challenges we encountered. We then give an overview of our system, provide
details on the dataset we used for analysis, and mention ethical considerations.

2.1 Problem Statement

Organizations deploy network-perimeter defenses such as firewalls, anti-virus
software, and intrusion detection systems to protect machines within their net-
work. To obtain better visibility into user activities and offer protection outside
of enterprise perimeter, organizations started to deploy endpoint agents on user
machines [34]. These agents monitor processes running on end hosts, binaries
downloaded from the web, modifications to system configuration or registries
through lightweight instrumentation, and report a variety of recorded events to
a centralized server for analysis.

In the organization of our study, machines are instrumented with host agents
that perform regular and on-demand scans, collect aggregate behavioral events,
and send them to a centralized server. We address the problem of discovering
highly risky and suspicious modules installed on Windows machines through
analysis of this realistic, large-scale dataset. Specifically, we are looking for two
common types of malicious behavior:

— Starting from a set of blacklisted modules vetted by security experts, we are
interested in discovering other modules with similar characteristics. With the
availability of malware building kits [7], attackers can easily generate slightly
different malware variants to evade signature detection tools. We leverage the
insight that malicious variants produced by these toolkits share significant
similarity in their behavior and other characteristics.

— Starting from a set of whitelisted modules considered legitimate, we look for
malicious files impersonating them. System process impersonation has been
used by Advanced Persistent Threats (APT) campaigns for evasion [25,26].
Detecting this in isolation is difficult, but here we exploit the homogeneity of
whitelisted files in an enterprise setting. These files have a large user base and
should have similar behavior across different machines they are installed on.
Our main insight is that malicious files impersonating these popular modules
are significantly different in their behavior and contextual attributes.

Adversarial model. We assume that endpoint machines are subject to compro-
mise through various attack vectors. An infection could happen either inside the
enterprise network or outside when users travel or take their machines home. In
modern attacks there are multiple stages in the campaign lifecycle, e.g., a piece
of malware is delivered through email followed by download of second-stage
malware that initiates communication with its command-and-control center and
updates its code [23]. We assume that before attackers have complete control
of the machine, the endpoint agent is able to collect and upload information to
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the centralized server. Of course, we cannot make any assumptions about agents
once a machine is completely subverted by attackers. However, our goal is to
detect infection early, before it leads to more serious consequences such as data
leakage or compromise of administrator credentials.

We assume that the server storing the endpoint data is protected within the
enterprise perimeter. Breaches involving a compromise of monitoring tools or
servers are much more serious and can be detected through additional defenses,
but they are not our focus. Here we aim to detect and remediate endpoint
compromise to prevent a number of more serious threats.

Challenges. A number of unique challenges arise in our setting. Our dataset
is collected from a heterogeneous environment with 1.8 million distinct mod-
ules installed on 36K machines. Most users have administrative rights on their
machines and can install software of their choice. Second, we have limited
ground truth with less then 10% of modules labeled as whitelisted, blacklisted
or graylisted and the majority having unknown status. Third, a number of
attributes are missing due to machine reboots or disconnection from corpo-
rate network. Lastly, the monitoring agents collect lightweight information to
minimize their overhead.

Similarity-based detection
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Fig. 1. System diagram.

2.2 System Overview

Our system analyzes data collected from endpoint agents deployed in a large
enterprise. Our goal is to identify among the large set of modules with unknown
status those with suspicious behavior and prioritize them by their risk. In par-
ticular, we are looking for two types of malicious modules: (1) those with similar
behavior as known blacklisted modules; and (2) those impersonating popular,
legitimate whitelisted software. For our analysis, we employ a large number of
features from three categories: static (extracted from the module’s PE head-
ers), behavioral (capturing file access patterns, process creation and network
access events); and conteztual (related to module location on the machines it is
installed).

Our system architecture is illustrated in Fig. 1. After we query the raw data
from the server, we apply some data transformation and aggregation in the
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processing phase and extract features from these three categories. We define a
module distance metric that assigns different feature weights for the two sce-
narios of interest. In case of similarity detection, high-entropy features are given
higher weight and we adapt the DBSCAN algorithm to account for custom-
defined distance metric and missing features. For software impersonation we
favor features that distinguish malicious from benign files best, and design a
novel two-stage outlier detection process. A detailed description of our tech-
niques follows in Sect. 3.

2.3 Dataset

The dataset is collected by end- Table 1. Total number of modules in each cat-
point agents deployed on 367872 egory (BL — blacklisted, WL — whitelisted, UL —
Windows machines. Agents mon- unknown), and those with missing description,
itor executable and DLL mod- ¢company name and signature fields.

ules, and perform scheduled scans

. Status|#Total #Description|#Company Name |#Signature

at intervals of three days. Ana- &t 554 340 145 520
WL 117,128 19,881 13,070 2,430

lyStS COUld alSO requeSt scans UL 1,692,157|1,304,557 1,314,780 1,503,449

on demand. Data generated by
agents is sent to a centralized server. We had access to a snapshot of the database
from August 2015, including 1.8 million distinct modules. Among them, 117K
were marked as whitelisted (through custom tools). A small set (534 modules)
were labeled as blacklisted after detailed manual investigation by experienced
security analysts. Note that we did not augment this set with results from anti-
virus (AV) software, as these tools generate a large amount of alarms on low-risk
modules, such as adware or spyware, which were considered “graylisted” by secu-
rity analysts.

We choose to only use the blacklisted modules as reference of highly risky
malicious activity. The remaining 1.7 million modules have unknown status,
including lesser-known applications and variants of known applications. In total,
there are 301K distinct file names in our dataset.

To illustrate the noisy aspect of our dataset, Table 1 lists the total number
of modules, as well as the number of modules without description, company
name or signature in each category (BL — blacklisted, WL — whitelisted, UL —
unknown). As seen in the table, the large majority of blacklisted modules do not
include these fields, but also a fair number of unknown and whitelisted modules
miss them.

To illustrate the heterogeneity of the environment, the left graph in Fig. 2
shows the CDF for the number of hosts installing the same file name. The large
majority of file names are installed on few hosts relative to the population.
Even among whitelisted file names, 95% of them are installed on less than 100
hosts. 95% of the blacklisted files are installed on less than 20 hosts. Only a
small percentage of files are extremely popular and these are mostly Windows
executables and system processes or libraries (e.g., whitelisted svchost.exe and
unknown presentationcore.ni.dll are installed on 36K and 29K machines,
respectively).
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The right graph in Fig. 2 shows the CDF for the number of file variants with
same name but distinct SHA256 hashes. Whitelisted and unknown file names
include more variants than blacklisted ones. For instance, whitelisted setup.exe
has 1300 variants, unknown microsoft.visualstudio~.d1ll has 26K variants,
while the maximum number of blacklisted variants is 25. This is due to the
limited set of blacklisted modules, as well as the evasive nature of malware
changing file name in different variants.
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Fig. 2. CDFs of hosts (left) and modules (right) sharing same filename.

2.4 Ethical Considerations

The enterprise’s I'T department consented to give us access to a snapshot of the
data for the purpose of this study. We had access to data only within the premises
of the enterprise and were only allowed to export the results presented in the
paper. Our dataset did not include any personal identifying information (e.g.,
username and source IP of employee’s machine) that put users’ privacy at risk.
We also took measures to prevent potential information leakage: for instance,
the behavior and contextual features were aggregated across hosts installing the
same module.

3 System Design

We provide here details on our system design and implementation. Our first
goal is prioritizing the most suspicious unknown modules with similar behavior
as known blacklisted modules. Our second goal is detecting malware impersonat-
ing popular file names (e.g., system processes) through a novel outlier-detection
algorithm. Both techniques can be used to detect suspicious unknown mod-
ules, and enlarge the set of blacklisted modules manually labeled by analysts.
They both utilize the same set of 52 (static, behavioral, and conteztual) features
extracted from the dataset (see Sect.3.1). However feature weights and parame-
ters are customized for the two algorithms, as discussed in Sects. 3.2 and 3.3.
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3.1 Feature Selection

For each module we extract a multi-dimensional feature vector, with features
capturing the module’s attributes according to three distinct categories: static,
behavioral and contextual. Table 7 in Appendix A provides a comprehensive list
of all features.

Static features. These are mainly extracted from the module’s PE header
and include: (1) descriptive features represented as either string values (descrip-
tion and company name) or sets (name of imported DLLs and section names);
(2) numerical features such as file size, PE size, PE timestamp, module entropy;
and (3) binary features denoting attributes such as signature present, signature
valid, icon present, version information present, PE type (32 or 64 bit), PE
machine (e.g., AMD64), and module packed.

Behavioral features. These are related to the module’s behavior on all hosts
where it is installed. We include features related to: (1) file system access —
number of executable files created, deleted or renamed, files read, physical or
logical drives opened; (2) process access — number of regular processes, browser
or OS processes opened, processes or remote threads created; and (3) network
connections such as set of domains and IP addresses the module connects to.
These events are stored cumulatively at the server since the time the module was
first observed on the network. Since a module might exist on many machines,
we compute average number of events per machine for file system and process
access features.

Contextual features. The endpoint agents collect information about the time
when a module is initially installed on a machine, its full file system path, the user
account that created the module and the full path of all files and processes cap-
tured by the behavior events initiated by the module. We parse the file path and
match it to different categories such as Windows, Systems, ProgramFiles, Pro-
gramData, or AppDatalocal. Additionally, the agents monitor if modules have
auto-start functionality and categorizes that into different types (e.g., logon, ser-
vices, startup, scheduled task). We also have access to the user category owning
the module (admin, trusted installer or regular user).

From this information, we extract a number of contextual features related to:
(1) file system path — number of directory levels, the path category, number of
executable and non-executable files in the same folder, and number of sub-folders
in the path; (2) path of destination events — the path category of destination
files, and number of events created by the module in the same and in different
paths; (3) file’s metadata — file owner, hidden attributes, and days from creation;
(4) auto-start functionality — type of auto-start if enabled. We took the average
values across all hosts installing the module.

Final set of features. We initially considered a larger set of 70 features, but we
reduced the list to 52 features that are available in at least 10 blacklisted modules.
Some features related to registry modifications, process and I/O activity were
not encountered in our dataset of blacklisted modules, but could be applicable to
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an enlarged set of malicious modules. The final list of features we used is given
in Table 7 in Appendix A.

3.2 Prioritizing Suspicious Modules

For detecting modules with similar behavior as known blacklisted modules, we
first cluster the set of blacklisted modules, and then identify other unknown mod-
ules in these clusters. We prioritize unknown modules according to their distance
to the blacklisted modules. We describe our definition of module similarity and
distance metric, as well as our feature weighting method that is resilient against
missing features.

Clustering. Many clustering algorithms are available in the literature, and we
choose the DBSCAN [9] algorithm for clustering the blacklisted modules on the
set of 52 features. Its advantages are that it does not require the number of clus-
ters be specified in advance, can find arbitrarily-shaped clusters, and can scale to
large datasets. DBSCAN creates clusters starting from core samples, points that
have at least min_sample points in their neighborhood, and proceeds iteratively
by expanding the clusters with points within distance e (called neighborhood
radius).

We use standard distance metrics for each feature, according to the feature’s
type: L1 distance for integer and real values; binary distance for binary values
(d(z,y) = 0if z = y, and d(z,y) = 1, otherwise); edit distance for strings;
Jaccard distance for sets. The distance between two modules M; = (21,...,2,)
and My = (y1,...,yn) is a weighted sum of distances for individual features:
d(My, M) =" wid(zi,y;), where > 1" w; =1 [14].

Feature weights. One of our main observation is that features should con-
tribute differently to overall modules similarity. While there are many estab-
lished methods for feature selection and weighting in supervised settings [8,15],
the problem is less studied in unsupervised settings like ours.

We tested two methods for setting feature weights. Assume that we have n
features in our dataset X = (Xi,..., X, ). First, a simple method is to set weights
uniformly across all features, w; = 1/n, for ¢ € [1,n]. In the second novel method
we introduce, we choose feature weights proportional to the feature’s entropy
computed from the dataset. If feature 7 is categorical and has m possible values
V1,...,Um, we define p;; as the probability that feature i takes value v;, for
Jj € [1,m]. If feature ¢ is numerical, we need to define a number m of bins
bi,...,by so that the probability of feature ¢ belonging to bin b; is p;;, for

€ [1,m]. Then, the entropy for feature i is H(X;) = — > 7, pi;log(pij). We
assign normalized feature weights proportional to their entropy, according to
our intuition that features with higher variability should contribute more towards
module similarity.

Our algorithms need to be resilient against missing features since a large frac-
tion of behavior features are not available (as machines are offline for extended
periods of time, or machines are sometimes rebooted before sending behavior
events to the server). When computing the distance between two missing values,
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rather than setting it at 0 we choose a fixed, penalty value which is a parameter
of our algorithm (the distance between a missing value and any other existing
value is set at the maximum value of 1). Higher penalty results in lower simi-
larity when computing the distance metric, thus the value of the penalty needs
to be carefully calibrated. We elaborate more on optimal parameter selection in
Sect. 4.

Prioritizing unknown modules. After clustering blacklisted modules with
DBSCAN and the distance metric described above, our next goal is to identify
unknown modules that belong to these clusters. The algorithm is run on 388K
unknown modules and assigns some of them to blacklisted clusters according
to their distance to cluster points. To prioritize the most suspicious ones, we
order the unknown modules that belong to a blacklisted cluster based on their
minimum distance to known blacklisted modules. We describe our results in
Sect. 4.1.

3.3 Impersonation of Popular Software

For detecting malware impersonating popular, legitimate software, we leverage
the large machine base in our dataset to determine a set of popular modules
and their common characteristics across machines. While it is relatively easy
for malware to inherit some of the static features of popular modules to appear
legitimate, in order to implement its functionality malware will exhibit differ-
ences in its behavioral and contextual features. We leverage this observation to
detect a set of modules impersonating popular file names (e.g., system processes
or software installers).

Our algorithm proceeds in two steps. First, we generate a set of “coarse”
clusters whose large majority of modules are popular whitelisted files. Second,
we identify a set of outliers in these clusters whose distance to other whitelisted
modules is larger than the typical distance between legitimate modules in the
cluster. The list of detected outliers is prioritized by the largest distance from
legitimate ones. We elaborate on weight selection, distance computation, and
our outlier detection algorithm below.

Weights and distance computation. As described in Sect. 3.2, the distance
between modules is a sum of feature distances adjusted by weights. However,
feature weights are computed differently in this case since we would like to give
higher weights to features distinguishing benign and malicious modules. Towards
this goal, we compute the information gain of the whole set of features over all
whitelisted and blacklisted modules and define static weights proportional to the
feature’s information gain.

Assume that X = (X3,...,X,,y) is our dataset with n features and label y
(blacklisted or whitelisted). Assume that feature ¢ takes m values vy, ..., v,, and
let S;; be the set of records having X; = v;. The information gain for feature ¢
in dataset X is:

Sy
IGX, X)) =H(X)— Y ||XJ||H(Sij)
jE{l,'--,m}
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Here the entropy values H(X) and H(S,;) are computed from two bins (mali-
cious and benign). We further refine our method to increase the weights of fea-
tures with relative stability within the set of whitelisted modules in a cluster.
In particular, we compute the average distance for feature ¢ for all pairs of
whitelisted modules (denoted Avg;) per cluster and use 1/Avg; as a factor pro-
portional to feature i’s stability. We set Min(1/Avg;, Mazw ) as dynamic weights
(Mazw is a threshold that limits the maximum weight — set at 20). The final
feature weights for a cluster are defined as the product of static (global) and
dynamic (cluster-specific) weights and normalized to sum up to 1. For missing
values, we use a penalty value as in Sect. 3.2.

Coarse cluster selection. We create clusters of modules with popular file
names. We select file names present on a large number of machines (more than
a parameter O,). We enforce that our coarse clusters include sufficient benign
samples through two conditions: (1) the clusters include minimum O,, whitelisted
modules; and (2) the ratio of whitelisted modules to all modules in a cluster is at
least a threshold Og. Coarse clusters should also include at least one unknown
(or blacklisted) module for being considered.

To account for generic file names (e.g., setup.exe or update.exe) with vari-
able behavior, we compute the average distance of all pairs of whitelisted mod-
ules in a cluster (denoted Avgy,gist) and remove the clusters with Avgyqis: larger
than a threshold Oy. We also remove the modules developed by the company
providing us the dataset, as most of the internal builds exhibit diverse behavior.

Detecting outliers. Figure4 shows distance CDFs between whitelisted mod-
ules, as well as between whitelisted and blacklisted, and whitelisted and unknown
modules in the coarse clusters. This confirms that blacklisted modules imper-
sonating legitimate file names are at a larger distance from other whitelisted
modules compared to the typical distance between legitimate modules. Based
on this insight, our goal is to identify unknown modules substantially different
from whitelisted ones in the coarse clusters.
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Our approach involves measuring the neighborhood distance in a coarse clus-
ter. For each whitelisted module, we compute the minimum distance to other
whitelisted files, and the neighborhood distance (denoted Distyy 1) is the maxi-
mum of all the minimum distances. For an unknown module U the distance to

the closest whitelisted module is Disty. Module U is considered an outlier if the
Dist
ratio R = ——2 > O). We illustrate this process in Fig.3. We experiment

with different values of Oy > 1 (see our results in Sect. 4.2).

4 Evaluation

We evaluated the effectiveness of our system using a snapshot of data from
August 2015. Our dataset includes information about 534 blacklisted, 117K
whitelisted and 1.7 million unknown modules installed on 36K Windows
machines.

For prioritizing modules with known malicious behavior, we use 367 black-
listed modules whose static features have been correctly extracted. These mod-
ules were labeled by security experts with the corresponding malware family
and we use them as ground truth to evaluate our clustering-based algorithm.
Next, we selected a set of 388K unknown modules (79K executable and 309K
DLL) installed on at most 100 machines (popular modules have lower chance
of being malicious) and identified those that belong to the clusters generated
by our algorithm. For validating the new findings, we used external intelligence
(VirusTotal), internal AV scan results, as well as manual investigation by tier 3
security analysts. The results are presented in Sect. 4.1.

For validating our software impersonation detection algorithm, we used two
datasets. First, we extracted all coarse-clusters with at least one whitelisted and
one blacklisted module, and tested the effectiveness in identifying the blacklisted
modules. This dataset (referred as DS-Outlier-Black) contains 15 clusters and
2K whitelisted, 19 blacklisted, and 2K unknown modules. Second, for higher
coverage, we extracted all popular coarse-clusters (file names installed on more
than 10K machines) that had at least one whitelisted and one unknown module.
This dataset (DS-Outlier-Unknown) contains 314 clusters and a total of 11K
whitelisted, 14 blacklisted, and 5K unknown modules. Unknown modules at
large minimum distance from other whitelisted modules in these clusters were
detected as outliers. The results are presented in Sect. 4.2.

Finally, both approaches are able to detect malicious modules ahead of off-
the-shelf anti-virus tools. Initially only 25 out of 327 unknown executables and
463 out of 637 unknown DLLs were flagged by VirusTotal but eight months
later (in May 2016), we uploaded the hashes of detected modules to VirusTotal
again and noticed that 2 executables and 23 DLLs were detected in addition to
previous findings (from August 2015). We identified a total of 81 modules (69
by clustering and 12 by outlier detection) confirmed malicious through manual
investigation, but still not flagged by VirusTotal.
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4.1 Results on Prioritizing Malicious Modules

Results on Blacklisted Modules. Table 2. Parameters in DBSCAN clustering.
We use the 367 blacklisted modules :

. Number of modules 367 Blacklisted (273 EXE, 94 DLL)
as ground truth to select optimal val-  Features Static only, All Features
ues of the penalty and e parameter in ot reins i, Sropygne
DBSCAN (We set min_sample = 2 ~DBSCAN Paramcters[min-sample = 2 ¢ € [0.05,0.3]
since we observed clusters with 2
malware samples). Our goal is to optimize a metric called F1 score that is a
weighted average of precision and recall, but we also consider other metrics
(precision, recall, false positives, false negatives). In our ground truth dataset,
147 modules are labeled as noise (they do not belong to any cluster). To account
for these, we measure coverage, defined as the percentage of blacklisted modules
(excluding the ones in the noise set) that belong to a cluster of size at least
min_sample.

We experiment with different parameters in DBSCAN, as detailed in Table 2.
We vary € in DBSCAN between 0.05 and 0.3 and the penalty of missing features
in the [0.1,0.8] range at intervals of 0.01. We consider and compare four models:
(1) Static-Unif: static features with uniform weights; (2) Static-Ent: static features
with entropy weights; (3) All-Unif: all features with uniform weights; (4) All-Ent:
all features with entropy weights. Most of the features with highest entropy are
static features but some context (time since creation, path-related features) and
behavior features (set of contacted IP addresses and created processes) are also
highly ranked. We used bins of 7 days for PE timestamp and Days since creation,
and bins of 64 KB for File Size and PE Size.

Penalty choice. We first fix the value of € and show various tradeoffs in our
metrics depending on penalty (the distance between a missing feature and any
other feature value). Figure5 (left) shows the dependence on penalty for three
different metrics (precision, recall and coverage) for the Static-Unif model when e
is set at 0.1. As we increase the penalty, the distance between dissimilar modules
increases and the coverage decreases as more modules are classified as noise.
Also, smaller clusters are created and the overall number of clusters increases,
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Fig. 5. Penalty dependence for Static-Unif with € = 0.1 (left) and All-Ent with € = 0.2
(right).
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Table 3. Optimal performance metrics for 4 models.

Model Penalty | € Clusters | Single clusters | FP | FN | Precision | Recall | Coverage | F1
Static-Unif | 0.3 0.13 |50 150 55 |42 |84.67 87.86 |99.16 86.24
Static-Ent | 0.3 0.15 |59 173 34 |67 |90.52 82.9 |92.75 86.55
All-Unif 0.2 0.17 |37 215 28 |89 |92.2 78.8 |81.05 84.98
All-Ent 0.1 0.16 | 49 172 33 |50 [90.8 86.7 |93.03 88.7

resulting in higher precision and lower recall. In Fig. 5 the increase in precision
is faster than the decrease in recall until penalty reaches 0.3, which gives the
optimal F1 score for the Static-Unif model.

As we include more features in our models (in the All-Unif and All-Ent mod-
els), the penalty contribution should be lower as it intuitively should be inversely
proportional to the space dimension (particularly as a large number of behavior
features are missing). Figure 5 (right) shows how penalty choice affects our met-
rics in the All-Ent model for € fixed at 0.2. Similar trends as in Static-Unif are
observed, but a penalty of 0.1 achieves optimal F1 score. In both cases, results
are consistent for different values of e.

Choice of e. For optimal penalty values as described above, the graph in Fig. 6
shows the F'1 score as a function of the neighborhood size in DBSCAN (¢) for the
four models considered. The optimal € value is slightly larger in models with all
features (0.16 for All-Unif and 0.17 for All-Ent) compared to models using static
features only (0.13 for Static-Unif and 0.15 for Static-Ent). When more features
are used, naturally the value of the neighborhood size in a cluster needs to be
enlarged to account for larger distances between modules and more noise in the
feature vectors.

Model comparison. Table 3 gives all metrics of interest for the four models
with choice of ¢ and penalty parameters achieving optimal F1 score. Several
observations based on Table 3 and Fig. 6 are described below:

— Feature weights make a difference. Choosing feature weights proportional to
the feature’s entropy in the blacklisted set improves our metrics compared
to choosing weights uniformly. For static models, precision is increased from
84.97% for uniform weights to 90.52% for entropy-based weights. For models
considering all features, the recall is improved from 78.8% for uniform weights
to 86.7% for entropy weights. The overall F1 score for All-Ent is maximum at
88.7% (with precision of 90.8% and recall of 86.7%) compared to Static-Unif
at 86.24% and All-Unif at 84.98%.

— Benefit of behavioral and contextual features. Augmenting the feature list
with behavioral and contextual features has the effect of increasing the F1
score from 86.55% (in Static-Ent) to 88.7% (in All-Ent). While precision is
relatively the same in Static-Ent and All-Ent, the recall increases from 82.9%
in Static-Ent to 86.7% in All-Ent. An additional benefit of using behavioral
and contextual features (which we can not though quantify in our dataset) is
the increased resilience to malware evasion of the static feature list.
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— Coverage and noise calibration. The coverage for the optimal All-Ent model is
relatively high at 93.03%, but interestingly the maximum coverage of 99.16%
was achieved by the Static-Unif model (most likely due to the smaller dimen-
sion of the feature space). The model All-Unif performs worse in terms of
noise (as 215 single clusters are generated) and coverage (at 81.05%). This
shows the need for feature weight adjustment particularly in settings of larger
dimensions when missing features are common.

Results on unknown mod-
ules. We empirically created the
blacklisted clusters with All-Ent
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ules. As an optimization, we first
compute the distance between
blacklisted and unknown mod-
ules using only static features and
filter out the ones with distance
larger than e, leaving 1741 exe-
cutables and 2391 DLLs. Then,
we compute the distance between the remaining unknown and blacklisted mod-
ules using all features. If an unknown module is within the distance threshold e
to one blacklisted module, we consider it similar but continue to find the closest
blacklisted module. The detected modules are prioritized based on their mini-
mum distance to a blacklisted module. In the end, 327 executables and 637 DLLs
were detected.

For verification, we uploaded the hashes of these modules to VirusTotal in
August 2015 and 25 out of 327 unknown executables and 463 out of 637 unknown
DLLs were flagged by at least one anti-virus engine. The reason for such low
match on executable files is that most of them were not available in VirusTotal
and company policies did not allow us to submit binary files to VirusTotal.
When combining VirusTotal with the results from internal AV scan, we identified
239 out of 327 unknown executable and 549 out of 637 DLLs as suspicious,
corresponding to a precision of 73% and 86%, respectively. Among the set of 79K
executable and 309K DLLs, there were 88 executable and 88 DLL legitimate
modules detected by our algorithm, corresponding to a false positive rate of
0.11% and 0.0284%, respectively.

To further confirm our findings, we selected a number of 89 modules with
highest score (69 executables and 20 DLLs) and validated them with the help of
a tier 3 security analyst. The analyst confirmed 65 out of 69 executables and all
20 DLL modules as malicious, resulting in a precision of 94.2% on executables
and 100% on DLLs. Another interesting finding is that our techniques detected
new malicious modules confirmed by the security analyst, but not flagged by
VirusTotal. In total 60 executables and 9 DLLs from the set of 89 investigated
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Fig.6. F1 score as a function of e for four
models.
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modules were confirmed malicious by the security analyst, but not detected by
VirusTotal. These new findings demonstrate the ability of our techniques to com-
plement existing anti-virus detection technologies, and add another protection
layer on endpoints.

4.2 Results of Outlier Detection

We evaluated the effectiveness of our approach in detecting software imperson-
ation on two separate datasets (DS-Outlier-Black and DS-Outlier-Unknown).
Before describing the results, we discuss how the parameters of the algorithm
are selected.

Parameter selection. In the coarse cluster selection stage, we select popular
file names by comparing the number of module installations to O,. We set O to
10K, representing 25% of our set of monitored machines. This setting captures
popular software (e.g., system processes, common browsers, Java). To ensure
that the coarse clusters include enough benign samples for learning legitimate
behavior, we use O, and Og as the lower-bounds for the number and ratio
of whitelisted modules. We set O, = 5,03 = 0.2 in DS-Outlier-Black for
larger coverage and O, = 10,0g = 0.1 in DS-Outlier-Unknown. As illustrated
in Fig. 4, the pairwise distances between whitelisted modules are usually small
(below 0.05 for >95% pairs), while distances from whitelisted to unknown and
blacklisted modules are much larger. Hence, we only include stable clusters whose
Avgyaist 18 smaller than the threshold Oy set at 0.05.

Results on DS-Outlier-Black. We examined the 15 clusters in DS-Outlier-
Black (including at least one blacklisted module) and inspected the 19 black-
listed and 2K unknown modules in these clusters. We found most filenames tar-
geted by malware being Windows system files, such as svchost.exe, 1lsass.exe,
dwm.exe, services.exe and explorer.exe. Malware impersonates these files
to avoid causing suspicion as these processes are always present in Windows
Task Manager. Additionally, file names belonging to popular software, includ-
ing wmplayer.exe (Windows Media Player), reader_sl.exe (Adobe Acrobat
SpeedLauncher) and GoogleUpdate.exe (Google Installer), are also targets for
impersonation.

After coarse cluster selection, we obtained 5 clusters that met our selection
criteria. These include 12 blacklisted and 12 unknown modules. We first evaluate
the coverage of our algorithm in detecting blacklisted modules. To this end,
our outlier detection algorithm captures all 12 blacklisted modules in these 5
clusters, as their distance from whitelisted modules is above 4, much larger than
the threshold O set at 1 (see Sect.3.3). Among the 12 unknown modules, 8
modules in 4 clusters are alarmed and are all confirmed to be either malicious
(flagged by VirusTotal) or suspicious (experiences unusual behavior, but is not
yet confirmed as malicious by domain experts). In particular, a malicious module
impersonating services.exe is detected one week ahead of VirusTotal, but
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Table 4. Summary of modules detected as outliers.

Dataset #FileName | #Blacklisted | #Malicious | #Suspicious | # Unknown | #Modules | Precision%
DS-Outlier-Black 5 12 1 7 0 20 100
DS-Outlier-Unknown | 10 0 5 12 7 24 70.8

other instances of this file are also suspicious (one of them is the ZeroAccess
rootkit [26]). The summary of our results is in Table 4.

Results on DS-0Outlier-Unknown. We use the data from DS-Outlier-Unknown
to evaluate our approach on a larger set of clusters including at least one
unknown module, but not necessarily any blacklisted modules. DS-Outlier-
Unknown includes 314 clusters with 5K unknown modules, and we show that our
approach can still achieve high precision in this larger dataset.

After applying our filtering steps, Taple 5. Detection results based on dif-
14 clusters (with 30 unknown and no ferent O,.
blacklisted modules) were handed to the

outlier detection algorithm. New sys- Dataset Count Ox
1 |4 7|10
tem processes (e'g" mpcmdrun.exe) a‘nd DS-Outlier-Black Confirmed | 20 | 18 | 8 | 4
new applications (e.g., installflash Unknown | 0| 000
. : . : DS-Outlier-Unknown | Confirmed | 17 |13 |5 | 4
player.exe) were identified in this Unknown T 7T 413132

dataset. Among the 30 unknown mod-
ules, 24 were flagged as outliers based on
their distance to the closest whitelisted module. Among them, 17 were confirmed
malicious, but only 5 were detected by VirusTotal. Thus, our outlier detection
technique identified 12 modules not detected by VirusTotal as malicious.We did
not find enough information to validate the remaining 7 modules and we labeled
them as unknown. By considering the malicious and suspicious instances as true
positives, the overall precision is 70.8%. In total, 44 modules were detected (com-
bining the results on DS-Outlier-Black) with an overall precision of 84.09%. We
summarize our findings in Table 4, provide more details on the detected modules
in Table 6, and present a case study in Appendix B.

We also assess the impact of the threshold Oy on the result. We increase O
incrementally from 1 to 10 and measure the number of confirmed (malicious and
suspicious) and unknown modules for both datasets. The results shown in Table 5
suggest that setting Oy to 1 achieves both high accuracy and good coverage.

5 Limitations

An adversary with knowledge of the set of features employed by our algorithms
might attempt to evade our detection. Most static features (e.g., description,
size) can be modified easily. Even if the attacker is successful in evading a subset
of static features, our dynamic feature weighting method still provides resilience
against this attack. Since feature weights are adaptively adjusted in our case,
other features (behavior and contextual) get higher weights, and static features
become less significant.
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Table 6. Summary of the modules alarmed by outlier detection algorithm.

Dataset FileName #Blacklisted |#Malicious|#Suspicious|# Unknown|Anomalous
features

DS-Outlier-Black |services.exe 2 1 2 0 Unsigned, path,
DLLs

svchost.exe 4 0 0 0 Unsigned, path,
DLLs, size,
description,
company name,
Auto_Logon,
hidden
attribute

googleupdate.exe 1 0 1 o] Invalid
signature,
DLLs, newly
created, ssdeep

similar
dwm.exe 4 0 1 0 Unsigned, path,

DLLs
wmplayer.exe 1 0 3 0 Unsigned,

description,

DLLs, ssdeep
similar to

malware
DS-Outlier-Unknown|udaterui.exe 0 0 0 1 Invalid
signature
googleupdatesetup.exe 0 0 3 0 Unsigned, path,

version info,
similar to
malicious by
ssdeep
installflashplayer.exe 0 5 5 0 5 Confirmed by
VirusTotal,
similar to

malicious by
ssdeep

intelcphecisve.exe 0 0 1 0 Unsigned, size,
entropy, ssdeep
similar to
malware

mpcmdrun.exe 0 0 1 0 Unsigned, size,
network
connections,
ssdeep similar
to malware

pwmewsvc.exe 0 0 0 1 Unsigned, no
version info,
size, compile
time
tphkload.exe 0 0 2 0 Invalid
signature, size,

compile time,
creates remote

thread
flashplayerupdateservice.exe |0 0 0 3 Invalid

signature
vpnagent.exe 0 0 0 1 Invalid

signature
vstskmgr.exe 0 0 0 1 Invalid

signature

To evade the behavior and contextual features, malware authors need to
adjust multiple functionalities like processes creation, file access and communi-
cations which could incur high cost in the malware development process. For
example, we consider abnormal remote IPs as one behavior feature and evading
this requires changes to the attacker’s or target’s network infrastructure. At the
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same time, most contextual features (e.g., file path, number of executables in
the same folder, auto-start functionality) are dependent on the organization’s
configuration, typically not known by attackers.

Another concern is that behavior-based techniques could be vulnerable to
mimicry attacks [5], in which malware simulates system call sequences of legiti-
mate software to avoid detection. We argue that mimicry attacks are less likely
to succeed in our setting as we collect a more diverse set of behavioral and
contextual features.

Advanced attackers could suppress events generated by the monitors or even
inject fake events for evasion. Approaches that protect the agent integrity, like
PillarBox [4], could be deployed to defeat against these attacks.

6 Related Work

Malware clustering. To automatically detect malware variants and reduce
the security analysts’ workload, malware clustering techniques (e.g., [1,2,17,18,
27,29,31,37]) were proposed by the security community. These techniques per-
form static and dynamic analysis by running known malware samples in con-
trolled environments. They extract fine-grained features related to file system
access, registry modification, OS activities, and network connections. Our work
differs from these approaches in the following aspects. First, our features are
extracted from data collected by agents installed on a large set of user machines
in an enterprise network. Second, we only have access to coarse-grained aggre-
gated behavioral events as stringent performance constraints are imposed on the
agents. Moreover, our ground truth is limited with the large majority of mod-
ules (more than 90%) having unknown status. Lastly, we introduce a new set of
contextual features (e.g., location of files on user machines, file metadata, auto-
start functionality) that leverage the large, homogeneous user base in enterprise
settings.

Host-based anomaly detection. Many previous works proposed algorithms
for detection of unusual program behavior based on runtime information col-
lected from hosts. So far, system calls [11,16,21,22,32], return addresses from
call stack [10], system state changes [1], memory dumps [3], and access activi-
ties on files and registries [20] have been used to detect suspicious behavior. We
used a more comprehensive set of features, extracted from a much larger realistic
deployment.

Recently, researchers proposed malware detection systems based on data
collected from a large number of endpoints (e.g., Polonimum [6], AESOP [35],
MASTINO [30]). These approaches rely on file-to-machine and file-to-file affini-
ties, and cannot detect isolated infections. In contrast, our approach is exempted
from such restrictions. Gu et. al. [13] developed a detection system against cam-
ouflaged attacks (malicious code injected in legitimate applications at runtime).
Our system covers camouflage attacks as part of software impersonation, but
addresses a larger set of attacks. A recent trend in this area is to combine net-
work and host-based behavioral features for anomaly detection [33,40].
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Enterprise security analytics. Previous research showed that security logs
collected in a large enterprise, such as web proxy, Windows authentication, VPN,
and DHCP, can be leveraged to detect host outliers [39], predict host infec-
tion [38], and detect malicious communications in multi-stage campaigns initi-
ated by advanced persistent threats [28]. We focus here on analyzing a different
source of data (collected by monitoring agents deployed on Windows machines)
with the goal of identifying suspicious modules installed on user machines. We
believe that combining endpoint and network-based monitoring data is most
promising for identifying increasingly sophisticated threats in the future.

7 Conclusions

In this paper, we present the first study analyzing endpoint data collected from
Windows monitoring agents deployed across 36K machines in a large organiza-
tion with the goal of identifying malicious modules. We had to address some
unforeseen challenges encountered in a large-scale realistic deployment as ours.
Using a large set of static, behavioral and contextual features, we propose algo-
rithms to identify modules similar to known blacklisted modules, as well as
modules impersonating popular whitelisted software applications. Our valida-
tion based on internal AV scanning, VirusTotal and manual investigation by
security experts confirms a large number of detected modules as malicious, and
results in high precision and low number of false positives. In future work, we
plan to extend our techniques to obtain higher coverage and identify other types
of suspicious activities in this environment.
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A Feature Set

Our feature set includes features with different types, such as string, set, binary,
and numerical attributes. Table 7 displays the full set of features used for our
analysis, as well as their category and type.

B Case Studies

In this section, we present several detailed case studies of our findings. First, we
detail two clusters of similar modules we identified, one with executable modules
and another with DLLs, and we highlight the features that our new findings share
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Table 7. Final list of features. To note, all contextual features and numerical behavior
features are computed by averaging the corresponding values across all hosts including
the module.

Category Sub-category Feature Description Type
Static Descriptive Description File description String
Company name Name of company String
Imported DLLs Name of all imported DLLs Set
Section names Name of all section names Set
Numerical File size Size of module Integer
PE size Size from PE header Integer
PE timestamp Time when PE file was created Date
Entropy Module code entropy Real
DLL count Number of imported DLLs Integer
Attributes Icon present Is icon present? Binary
Version information present Is version information present? Binary
PE type Type of PE (32 or 64 bit) Binary
PE machine Type of targeted CPU (Intel 386, AMD64 etc.) Categorical
Packed Is module obfuscated by a packer? Binary
NET Is it built with NET? Binary
Signature Signature name String
Signature valid Is signing certificate issued by a trusted authority? Binary
Behavior  File-system access Written/Renamed executables Avg. number of executables written/renamed Real
Process access Created processes Avg. number of created processes Real
Opened processes Avg. number of opened processes Real
Network connections Set of domains Set of domain names connected to Set
Set of IPs Set of IP addresses connected to Set
Context Module path Path level Avg. number of levels in path Real
Path_System Is located in System folder? Real
Path_Windows Is located in Windows folder? Real
Path_ProgramFiles Is located in ProgramFiles folder? Real
Path_ProgramData Is located in ProgramData folder? Real
Path_AppDataLocal Is located in AppDataLocal folder? Real
Path_AppDataRoaming Is located in AppDataRoaming folder? Real
Path_User Is located in user-specific folder? Real
Number executables Avg. number of executables in same folder Real
Number executables same company Avg. number of executables with same company in same folder Real
Number non-executables Avg. number of non-executables in same folder Real
Number sub-folders Avg. number of sub-folders in same folder Real
Machine count Number of installations Integer
Destination path  Dest_SamePath Is destination path same as the module path? Real
Dest_DifferentPath Is destination path different than the module path? Real
Dest_System Is destination in System(syswow64/system32) folder? Real
Dest_-Windows Is destination in Windows folder? Real
Dest_ProgramFiles Is destination in ProgramFiles folder? Real
Dest_ProgramData Is destination in ProgramData folder? Real
Dest_AppDataLocal Is destination in AppDataLocal folder? Real
Dest_AppDataRoaming Is destination in AppDataRoaming folder? Real
Dest_User Is destination in user-specific folder? Real
Dest_Temp Is destination in Temp folder? Real
Metadata Administrator Does owner have administrator privileges? Real
Hidden attribute Does file have hidden attribute set? Real
Days since creation Avg. days since first observed on hosts Real
Auto-start Auto_Services Does the module have auto-start for services? Real
Auto_ServiceDLL Does the module have auto-start for service DLL? Real
Auto_Logon Does the module have auto-start for logon? Real
Auto_ScheduledTasks Does the module have auto-start for scheduled tasks? Real

with blacklisted modules. Second, we give more details on some of the detected
outliers and emphasize the difference from the legitimate whitelisted modules
they impersonate.

B.1

Similarity

We found 12 unknown modules all with different file names, but similar to a
blacklisted module house of cards s03e01~.exe. These modules imperson-
ate popular movie or application names such as Fifty Shades of Grey~.exe
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and VCE Exam Simulator~.exe to deceive users. They all imported a single
DLL (KERNEL32.d11) and used the same very common section names (.text,
.rdata, .data, .rsrc, .reloc).One of them is even signed with a rogue cer-
tificate. Interestingly, these modules could not be grouped together only based on
their static features, as these are common among other modules. However, when
we consider the behavioral and contextual features, they are similar in some
unusual ways. For instance, these modules write executables to a temp directory
under AppData and create processes from that location. Moreover, they used the
same autostart method (AutoLogon) to be persistent in the system and they
reside in the same path under the ProgramData folder.

Another DLL cluster including 15 unknown and 1 blacklisted mod-
ules is intriguing as they have randomized 14-character file names (e.g.
oXFV21bFU7dgHY .x64.d11). The modules are almost identical in their fea-
tures except for slightly different entropy values and creation dates. VirusTotal
reported 10 of them, but different modules were detected by different number
of AVs. One of them was not detected initially, but when we queried VirusTotal
later the module was detected by 29 AVs. After eight months, the remaining 5
modules have not yet been detected by any AVs in VirusTotal but confirmed
manually by the security analysts.

B.2 Outlier Detection

Our system identified 2 blacklisted and 3 unknown modules of services.exe
as outliers. We found out that one of them was infected by ZeroAccess [26], a
Trojan horse that steals personal information, replaces search results, downloads,
and executes additional files. This module was confirmed by VirusTotal one week
later after our detection. For the remaining two, we performed manual analysis.
One of the modules has a description in Korean without a company name and
signature. It has additional section names .itext, .bss, .edata, .tls com-
pared to the legitimate process. The module imports some common DLLs such
as kernel32 .dll, user32.d1l1, oleaut32.d1ll, but also imports shell32.d11
and wsock32.d11, which is unusual for benign variants of services.exe mod-
ules. In addition, the module size is ~1 MB whereas other whitelisted modules
have sizes between 110 KB to 417 KB. Unfortunately, no behavior features were
captured in this module but it has several suspicious contextual features. The
module is installed in only a single machine with hidden attributes and it is
located in C:\Windows\winservice instead of C:\Windows\System32. The sec-
ond detected services.exe module is missing the signature field and imports
different set of DLLs. Even though the module is 32 bit, the DLLs it imports
are usually included in 64-bit versions of benign services.exe. It also has some
suspicious contextual features since it is installed only in a single machine rela-
tively recently and its file system path is ~\Download\ffadecffa baffc instead
of the usual C:\Windows\System32. Both of these modules were confirmed as
malicious by security experts in the organization.
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