
User-Profile-Based Analytics for Detecting Cloud
Security Breaches

Trishita Tiwari∗, Ata Turk∗, Alina Oprea†, Katzalin Olcoz ∗‡ and Ayse K. Coskun∗
∗Electrical and Computer Engineering, Boston University, Boston, MA, USA

Email: {trtiwari,ataturk,acoskun}@bu.edu
†Computer and Information Science, Northeastern University, Boston, MA, USA

Email: a.oprea@northeastern.edu
‡Computer Architecture and Automation, Universidad Complutense de Madrid, Spain

Email: katzalin@ucm.es

Abstract—While the growth of cloud-based technologies has
benefited the society tremendously, it has also increased the
surface area for cyber attacks. Given that cloud services are
prevalent today, it is critical to devise systems that detect intru-
sions. One form of security breach in the cloud is when cyber-
criminals compromise Virtual Machines (VMs) of unwitting
users and, then, utilize user resources to run time-consuming,
malicious, or illegal applications for their own benefit. This
work proposes a method to detect unusual resource usage trends
and alert the user and the administrator in real time. We
experiment with three categories of methods: simple statistical
techniques, unsupervised classification, and regression. So far, our
approach successfully detects anomalous resource usage when
experimenting with typical trends synthesized from published
real-world web server logs and cluster traces. We observe the best
results with unsupervised classification, which gives an average
F1-score of 0.83 for web server logs and 0.95 for the cluster
traces.

Index Terms—Cloud Security, Virtual Machine Resource Us-
age, Machine Learning

I. INTRODUCTION

Cloud users are increasingly becoming lucrative targets for
cyber attacks. A few examples of recent attacks in the cloud
include the iCloud data breach that leaked private images
from celebrity accounts [1], botnets used for crypto-currency
mining in Amazon cloud services [2], malware that stole credit
card information from Chipotle servers [3], and the hack on
Sony pictures in 2014 [4]. Indeed, the number and diversity
of attacks on cloud-based services continue to expand. The
prominent attack vectors used in cloud breaches involve com-
promise of a user’s resources, such as account compromise
due to stolen credentials, or VM infection with malware [5].
According to a recent report, 15% of users accessing cloud
applications have their accounts compromised [6]. As such, it
becomes critical that cloud providers institute more effective
security mechanisms to detect and prevent compromise of
cloud resources of users.

A. Background and Related Work

Standard security protections implemented by cloud
providers (e.g., data encryption, data replication, trusted hard-
ware, and others) offer protection of the cloud infrastructure,
but fail to prevent against breaches of user credentials or user

computing resources. While other methods such as two-factor
authentication attempt to protect cloud users, they are not
effective once an account is already compromised. Intrusion
Detection Systems (IDS, such as Snort [7]) are typically
deployed by cloud providers to detect network-level attacks
(such as denial of service and communications with malicious
destinations), but they are agnostic to cases in which attackers
obtain access to a user’s cloud resources. This leaves users
of the cloud exposed to new attack vectors, currently largely
undetected with existing defense mechanisms.

Machine learning and statistical techniques for attack de-
tection have shown great promise to complement traditional
defenses in enterprise settings and private clouds (e.g., [8], [9],
[10]); thus, we believe that they can be used for proactive cyber
attack detection in public clouds. While there has been some
work in using machine learning to improve IDS systems [11],
[12], [13], [14], they mainly explore network-related metrics.
Other research in this domain includes profiling what a user
enters on the terminal and determining which out-of-character
commands can be flagged [15]. However, such studies are not
targeted towards cloud users and do not explore resource usage
data as a means to detect breaches. Even though machine
learning and statistical techniques have been applied before
in the context of cloud computing to detect performance
anomalies [16], [17], [18], optimize resource allocation [19],
and reduce energy usage [20], these approaches have not, to
the best of our knowledge, been implemented to defend against
resource compromises in public cloud.

B. Our Contributions

In this paper, we take the first steps in applying machine
learning and statistical methods for detecting resource com-
promises in public clouds. We propose the use of anomaly
detection techniques in user behavior profiling with the goal
of detecting various types of breaches that end up with a user’s
VM’s resources being acquired by the attacker. Our method-
ology involves continuous monitoring of resource usage data
(e.g., CPU, disk, memory usage, etc.) and representing it
as time-series data. Our algorithms then intelligently analyze
the user’s short and long-term typical behavior and identify
not only extreme outliers, but also many other subtle usage

patterns that do not conform to the user’s usual behavior.
Our techniques learn “legitimate” user profiles over time
across multiple dimensions and automatically identify devi-
ations from users’ typical observed behavior. These methods
require minimal human intervention (i.e., limited mainly to
investigate the findings produced by the anomaly detection
algorithms), and have the advantage of providing a multi-
dimensional, longitudinal view of the cloud infrastructure,
which can be extended with other monitored metrics (e.g.,
power consumption, network usage, etc.).

We experiment with three different techniques: (1) simple
statistical approaches such as moving average, exponential
average, and percentile-based thresholds; (2) unsupervised
classification via One-Class SVM; and (3) regression through
Long Short-Term Memory (LSTM) networks, which are recur-
rent neural network architectures. We test our framework using
synthetic data that emulates two real-world published datasets:
a NASA web server’s logs and Google traces collected from
a production cluster. In our experiments, unsupervised clas-
sification produces the best results in identifying injected
anomalies, with F1-scores ranging from 0.83 to 0.95, but
methods like regression based prediction with LSTMs also
perform relatively well, with 84% of the data being correctly
classified. Other statistical techniques such as moving and
exponential averages or percentile based thresholding do not
seem to work well with complex patterns found in real world
datasets, thereby generating F1-scores as low as 0.40.

The rest of the paper is organized as follows: Section II
describes the proposed approach for detecting anomalies.
Section III explains how the data used to test our approach
has been obtained. Section IV presents the experiments and
results. Finally, conclusions are presented in Section V.

II. PROPOSED ANOMALY DETECTION APPROACH

In this section, we first introduce our system and threat
models and then describe how the proposed anomaly detection
engine operates. As seen in Figure 1, the monitoring system
collects several metrics (CPU, memory usage, network traffic
data, etc.) about user VMs that are critical to their performance
on the cloud. Metrics are collected periodically and stored as
time-series data. These are then processed to determine if they
are sufficiently close to the particular user’s “typical” trends
or are anomalous. Our assumption is that compromised VMs
will most often lead to resource usage trends that are different
than the compromised user’s typical trends.

We investigate two types of approaches for anomaly de-
tection. The first approach labels entire datasets as regular
or anomalous using One-Class SVM. The second approach
is more fine grained; instead of classifying entire datasets as
regular or anomalous, individual data points are classified.
Regression and statistical approaches are investigated at the
level of individual data point labeling.

A. System and Threat Models

We consider a public infrastructure-as-a-service (IaaS) cloud
in which users can pay and request compute and storage

Fig. 1: Overall anomaly detection model.

resources. The cloud provider fully controls the cloud in-
frastructure (compute, storage, networking) and is responsible
for protecting the infrastructure against breaches. We assume
that the provider itself is trustworthy, but we do not have
any guarantees about the cloud physical infrastructure, which
might be targeted by various attacks (e.g., denial-of-service
attacks, malware, side-channel attacks, etc.).

While we expect most of the users to run legitimate
workloads in their virtual machines, we would like to be
resilient against potentially malicious users or users whose
resources might get compromised. We assume that attackers
could get access to legitimate cloud resources, such as user
credentials (e.g., through leakage in public code repositories),
or users’ VMs (e.g., by installing malware and escalating
privileges). Our goal is to detect these resource compromise
attacks proactively.

B. Monitoring VMs

Our dataset includes the following metrics: CPU usage,
memory usage, and network usage data (i.e., the intensity
of the network traffic), as these metrics are highly likely to
reflect changes in a compromised VM. Cloud providers can
also easily monitor other metrics that might be enlightening:
disk usage, number of VMs associated with a particular user’s
account, number of processes on the VM, disk and memory
I/O frequency, disk and memory read-write frequency. In fact,
using as many metrics as possible is beneficial as it increases
the probability of even stealthy attacks showing up in at least
one of the metrics.

C. One-Class SVM for Anomaly Detection

One-Class SVM is an unsupervised learning model that per-
forms novelty detection. Essentially, it treats all of its training
data as “normal”, and fits a boundary that encompasses these
training sets. When testing the model, One-Class SVM checks
whether the testing dataset fits within the boundary it had
found during training. If it does, then the dataset is classified
as normal, else it is labeled anomalous.

We extract 10 features from each time-series before feeding
it into the SVM. These include percentiles (25th, 50th, 75th),
average, standard deviation, minimum, maximum, skew, kur-
tosis and the period (specifically, the period of the component

signal that contributes the maximum power to the time-series
as seen in the discrete Fourier transform). Utilizing features
as opposed to training the SVM on raw data-points from
each time-series helps both to improve the accuracy of the
classification, and also reduces overhead by compressing each
time-series into a selected set of features representing the most
important attributes.

We trained the SVM with numerous instances of regular
time-series data corresponding to each metric (CPU, memory,
etc.) for certain fixed time windows (e.g., one day’s data, one
week’s data, etc.). Note that a separate model of the SVM was
developed for each time window and metric pair. We then
tested each model of the SVM with regular and anomalous
data that corresponded to the same metric and time window
(e.g., if we trained the SVM with regular data corresponding
to one day’s CPU usage of user X, we tested it with both
regular and anomalous one day CPU usage corresponding to
the same user).

D. Regression via LSTMs

LSTM stands for Long Short Term Memory, and it is a
special type of recurrent neural network (RNN) with better
long-term retention than traditional neural networks. Our ap-
proach in this paper involves feeding the LSTM a subsection
of the time-series data representing the regular resource usage
from the past (e.g., last 3 week’s CPU usage), and then asking
it to forecast the remaining data points. This forecast should
reflect the patterns seen in the regular training data. However,
the remaining part of the time-series could either represent
regular or anomalous data. Then, for each forecasted data-
point in the LSTM’s prediction, we compute its deviation
from the corresponding actual data-point. If the actual data
point deviates from the forecast beyond a certain threshold
(empirically chosen to be 10% for these experiments), then
we classify the actual data as anomalous. Note that like the
SVM, we had separate LSTM models for each metric.

E. Statistical Approaches for Anomaly Detection

We have implemented the following simple statistical ap-
proaches: (1) moving averages, (2) exponential averages,
and (3) percentile-based thresholding. Like LSTMs, these
approaches also classify individual data points within a time-
series as regular or anomalous. Generally speaking, in order
to classify the current data-point, we compute a few statistics
on a sliding window of data points (e.g. 100) previous to the
current point. Based on how the current point compares to
these statistics, we can classify it as regular or anomalous.

1) Moving averages: In this approach, the moving average
and standard deviation of the sliding window of the 100 most
recent data points are calculated. If the current data point does
not lie within 2.5 standard deviations of the sliding window, it
is labeled as anomalous. We determined the threshold of 2.5
standard deviation empirically.

2) Exponential averages: This approach is similar to the
moving average, except that the sliding window of the 100
most recent data points is exponentially smoothed before

0 100 200 300 400 500 600 700
time (h)

0

1000

2000

3000

4000

5000

6000

re

qu
es

ts
 to

 w
eb

se
rv

er

(a) Original logs

0 500 1000 1500
time (h)

0

200

400

600

re

qu
es

ts
 to

 w
eb

se
rv

er

(b) Synthetic week-long data

Fig. 2: NASA Web server logs from August 1995 and synthetic
logs created to obtain a larger dataset.

calculating the average and standard deviation. Exponential
smoothing re-weighs the data-points to ensure that the recent
data is given more weight than older data. Again, we then
check to see if the data point to be classified falls within 2.5
standard deviations of the weighted sliding window. If it falls
outside of this range, it is labeled as anomalous.

3) Percentile-based thresholding: This is a simple tech-
nique which flags the current data-point as anomalous if it falls
outside the 10th and 90th percentile of the sliding window of
the 100 previous data-points.

III. DATA COLLECTION

We tested our approach with two types of test cases: (1)
detecting attacks on web servers, and (2) detecting attacks on
user machines. In this section we will explain how we obtained
the datasets needed for both.

A. Network Traffic Data: NASA Web Server Logs

In order to detect web-server based attacks, we took inspira-
tion from two instances of published month long apache web-
server logs from July 1995 and August 1995 at NASA [21].
The data within the logs was parsed and converted to a time-
series that represented the number of HTTP requests to the
server as a function of time (in hours). Figure 2a shows a
time series representation of the dataset.

We can see that there are day/night patterns from the peaks
and valleys, and also weekly patterns from the higher peaks
on weekdays and lower ones on weekends. Since this data set
was too small to train machine learning models, we sought
to synthetically generate a larger version of the dataset. We
experimented with different functions and parameters and
found that the following function emulates weekly cycles of
the data (Note that square(x, 0.7) in the equation represents
a square wave with a duty cycle of 0.7):

100sin(7x) + 200 + 200square(x, 0.7) + 200

Of course, noise was added to all parameters of the function in
order to simulate real world variations in the dataset. We chose
a combination of a sine and square wave because the peaks and
valleys of the sine wave represent the day-night fluctuations,
and on-off behavior of the square wave represents weekday

(a) Original data (b) Synthetically generated data

Fig. 3: CPU usage from Google trace and synthetically gen-
erated CPU usage data.

and weekend trends. Figure 2b shows what the generated data
looks like for a 1 week window.

B. CPU and Memory Data: Google Traces

Users tend to run specific types of jobs on their machines,
which consequently result in certain patterns in their resource
usage data. In order to capture this, we used published user
level data collected from a Google 12.5k-machine cluster.
The trace spans a month-long period in May 2011 [22].
Each trace included hashed usernames (of Google engineers)
and timestamps for mean CPU usage rate, canonical memory
usage, and mean disk I/O time, etc., and so it was possible to
extract a user level time-series for each of these metrics. Out
of these available metrics, we used CPU and memory usage
for our analysis, as suggested by the documentation for the
traces. Figure 3a shows a sample of CPU usage for a user in
the trace that spans 4500 seconds.

Interestingly, the pattern shown in Figure 3a seems to be
prevalent for many users, each application run appears in
the form of a peak in CPU usage, interspersed by times of
inactivity. Furthermore, these patterns observed in CPU usage
also manifest themselves in the memory usage data.

Similar to the previous dataset on Web-servers, we had to
synthetically emulate this data in order to get a dataset large
enough to train models. We used the following equation that
generates one peak (representing a single application run):

x−2 + 1000log(x− 720) + 1000

Again, noise was added to all parameters of this function
as well in order to simulate real world variations in the
dataset. This specific combination of a negative exponent and
logarithmic functions was chosen because the first part of
each application run shows a logarithmic like increase, and
the second part shows a decay that could be modeled by x−2.
Figure 3b shows what the generated data looks like for CPU
usage of a different number of application runs.

C. Anomalous Data

To generate anomalous time-series, we varied each param-
eter one-by-one in the generating function in 10% increments
(starting from -100% variation, to -90% variation, all the way
up to -30%. We then did the same for the positive variations,
i.e., we started at +30% variation, then 40% variation, going
all the way up to +100% variation). We created 500 anomalous

datasets per variation. Each dataset had 1440 data-points.
Note that we omitted parameter variations in the range -
30% to +30% as such small variations would typically be
characteristic of healthy data, not anomalous data.

IV. EXPERIMENTS AND RESULTS

In this section we present the results obtained for the three
classification methods applied to the two test cases. All of
the data generation and experimentation was conducted on an
Ubuntu 16.04 LTS machine with 4 CPUs and 8GB memory.

A. Implementation Details

For our One-Class SVM classifier we used Python Scikit
Sklearn library [23]. We trained the classifier with numerous
instances of regular time-series data, and tested it with both
regular and anomalous datasets. Our LSTM model has 1 input
layer, 1 hidden layer with 4 neurons, and 1 output layer. Each
neuron uses the sigmoid activation function. This network
has been implemented with the Keras library [24] using
the TensorFlow [25] backend. The statistical techniques are
implemented using the Numpy [26] and Scipy [27] libraries
in Python.

B. Classification: One-Class SVM

For One-Class SVM, features were extracted from all 500
instances of each group of anomalous datasets and also from
500 instances of regular datasets used for testing. These 1000
feature sets were then fed one-by-one to the SVM, which
then labeled each one as regular or anomalous. This process
was repeated for time-series spanning a number of different
windows for both test cases, as outlined below.

1) Classifying Web-server logs: The classifier was tested
with three windows of data for this use case: (1) daily, (2)
five consecutive week days, and (3) weekly data.

2) Classifying user application runs: Here, we train the
SVM on 2 windows: datasets representing (1) one application
run, and (2) multiple consecutive application runs.

We train separate models for each of dataset window (for
both web server data and application runs), and each model
is trained with 1000 datasets of 1440 data points each. For
instance, with daily web server data, each model is trained
with 1000 generated datasets, with each dataset representing
one day’s web server traffic. We also ensured that all 1000
datasets had sufficient variation by varying each parameter
(amplitude, offset, period, etc.) in the generating function from
0-30% (parameters were varied randomly). Each group of
testing datasets included 500 instances of regular data (healthy,
without anomalies), and 500 instances of anomalous data. The
anomalous datasets were generated by systematically varying
the same parameters of the generating function (amplitude,
period, offset, etc.) by more than 30%, as outlined in section
III C.

Figure 4 shows the F1-score as a function of variations
in each parameter for the one day window of web server

100 50 0 50 100
% variation of parameter

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

period
amplitude
offset

Fig. 4: One-Class SVM results: 1 Day’s web server traffic.

data. The F1-scores were computed according to the following
equation:

F1Score =
Precision ∗Recall

Precision+Recall
(1)

where Precision and Recall are defined as follows:

Precision =
#True Positives

#True Positives+#False Positives
(2)

Recall =
#True Positives

#True Positives+#False Negatives
(3)

We see that typically, the F1-scores increase as the variation
in the parameters deviates more from the normal range. This
gives most graphs somewhat of a ”U” shaped curve. However,
interestingly, two of the parameters (offset and amplitude)
generated near-perfect F1-scores of approximately 0.9 for the
web server data spanning one day (Figure 4), regardless
of how much variation there was in those parameters. This
could perhaps happen because the one day pattern was simple
enough for even subtle variations to be spotted easily. We
also see that there are some differences in trends seen for
each parameter. This is because the features extracted from
the time-series capture variations in each parameter to different
extents.

C. Regression: LSTMs

We first trained the LSTM with regular time-series data to
learn the legitimate behavior, and then tested with anomalous
data. To generate the anomalous time-series, each of the
500 instances from each group of anomalous datasets was
appended to a regular time-series. So in essence, the first part
of each of the testing time-series data was regular, and the
latter, appended part, was anomalous. The LSTM was then
trained on the regular part of each time-series, and asked to
predict the remainder of the time-series. This forecast reflected
the patterns seen in the regular training data. And so, for
each predicted data point within the remainder of the time-
series, the deviation between the corresponding data point
in the actual series is measured. If this deviation surpassed
a certain threshold (empirically chosen to be 10% for these
experiments), then we labeled the actual measured datapoint
as anomalous. Figure 5 shows the percentage of datapoints

1.0 0.5 0.0 0.5 1.0
% variation of parameter

20

40

60

80

100

%
 p

oi
nt

s l
ab

el
le

d
an

om
al

ou
s offset

peak
app_run_spacing

Fig. 5: LSTM result: CPU usage for 1 user application run.

classified as anomalous for a sample anomaly case. Here,
we see that the LSTM result shows an “inverted U” shaped
trend, which is expected as the anomalies are more likely
to be detected if they are more conspicuous. The percentage
of points identified as anomalous is over 90% for 80-100%
variation in the parameters and, as expected, gets much lesser
than 20% when the anomalous data is similar to the legitimate
data.

D. Statistical Approaches

Within statistical approaches, each testing time-series was
generated the same way as they were in LSTMs – by ap-
pending an anomalous time-series to a regular time-series.
During testing, each data-point in the appended anomalous
time-series was subject to classification. This classification
was based on some statistics (moving average, exponential
average, and percentile thresholds) computed on the previous
100 datapoints in the time series. In Figure 6, we show the
F1-scores for a select few anomalous cases. Precision and
recall (the two metrics required to obtain an F1-score) were
computed based on the percentage of false positives, false
negatives, true positives, etc. (as shown in Eq. 2 and Eq. 3)
that the statistical approaches caught within each anomalous
time-series.

Most of the graphs show us the expected “U” shaped trends,
as the F1-scores should be lowest when anomalous datasets
are not very different from the regular datasets. However,
interestingly, we see a lop-sided pattern in some of the graphs,
where the F1-scores are a lot higher when the argument
deviation is positive as opposed to negative (or vice-versa).
For instance, one sees this in the 1 Day data for percentile
thresholding (Figure 6) , where the F1-scores are around
0.05 when the parameter deviations are at -100%, and are
at 0.80 when the deviations are at +100%. This may be
because the respective techniques that show such results might
not be able to capture the essence of the data when its
arguments differed in a negative sense. Lastly, the reason why
the statistical approaches underperform the above two methods
is that the classification of the datapoints depends entirely on
one statistic. It does not take into account any patterns or long
term trends while making the decision.

1.0 0.5 0.0 0.5 1.0
% variation of parameter

0.1

0.2

0.3

0.4

0.5

F1
-s

co
re

period
amplitude
offset

(a) Moving avg. 1 Day

1.0 0.5 0.0 0.5 1.0
% variation of parameter

0.45

0.50

0.55

0.60

F1
-s

co
re

period
amplitude
offset

(b) Exponential avg. Week days

1.0 0.5 0.0 0.5 1.0
% variation of parameter

0.0

0.2

0.4

0.6

F1
-s

co
re

period
amplitude
offset

(c) Percentile threshold 1 Day

Fig. 6: Moving average, exponential average and percentile thresholding results over web server logs.
TABLE I: Web Server Logs

One day Consecutive One week
weekdays

F1-Score F1-Score F1-Score
CCR % CCR % CCR %
avg lag avg lag avg lag

One-Class SVM 0.87 0.89 0.74
LSTM 85% 83% 82%
Moving Avg 0.38,11.0 0.38,90.7 0.55, 42
Exponential Avg. 0.40,13.6 0.48,10.2 0.51,20
Percentile threshold 0.31,19.1 0.31,33 0.40,25

TABLE II: User Application Runs
One application Multiple applications

F1-Score F1-Score
CCR % CCR %
avg lag avg lag

One-Class SVM 0.93 0.96
LSTM 87% 83%

Moving Avg. 0.57,15.8 0.32,18.5
Exponential Avg. 0.50,11.3 0.23,10.9

Percentile threshold 0.36,33.5 0.25,24.4

E. Aggregate Results

Table I summarizes the aggregated statistics for each ap-
proach (when averaged over all trials–including all experi-
ments with all variations) on Web server logs and Table II
shows the ones corresponding to user application runs. For
LSTMs, we show the Correct Classification Rate (CCR) as a
percentage, and for One-Class SVM, we show the F1-score.
For statistical approaches, the first number in each cell is
the F1-score and the second number represents how long it
took for each metric to detect the first anomalous datapoint in
the anomalous datasets for different parameter variations. For
instance, a value of 20 would mean that the first anomalous
point was detected 20 datapoints after the beginning of the
actual anomalous section of the time-series. We see that for
our statistical approaches, the lag between when the anomalies
start and when they are detected is reasonable (detection
happens between 10-90 data points after the anomaly ensues).

We also executed a 5-fold cross validation on our One-
Class SVM model, whose results classified 21% of the data
incorrectly. We observed the best results with One-Class SVM,
which gave an average F1-score of 0.83 for the web server

case, and 0.95 for the latter. However, while the LSTM net-
work underperforms One-Class SVM, it is capable of learning
and forecasting much more complex patterns in the time-series
data. Finally, even the statistical approaches discussed have
their own strengths as they do not require training/re-training
and so take considerably lesser time in identifying anomalous
data.

V. CONCLUSIONS AND FUTURE WORK
Our overall motivation for this research was to go beyond

traditional rule based intrusion detection systems, and employ
a sophisticated mathematical model specifically for VM re-
source usage on the cloud. Indeed, our approach seems to
work well; we see the best results with LSTMs and One-
Class SVM, as they are capable of learning the most complex
patterns. Statistical techniques applied on a sliding window of
previous data do not seem to work very well as classifying
current data based on a single statistic forces us to disregard
other valuable information.

The next steps involved would be to test such an approach
with real resource usage data instead of generated data. An-
other interesting aspect comes within the statistical techniques,
where we had to assign thresholds above which data points
were declared anomalous. While our thresholds were fixed
for all types of data, it would be interesting to see how the
optimal values for these would vary based on different data.
Indeed, some types of data can be a lot noisier than others,
and so such data should have higher tolerance thresholds than
other types of data. If implemented in commercial systems,
such a program could help safeguard cloud users from a wide
variety of threats, thereby saving data and resources.

ACKNOWLEDGMENT

This work has been partially funded by the Undergradu-
ate Research Opportunities Program (UROP) at Boston Uni-
versity; by the National Science Foundation under Grants
Numbered 1347525 and 1149232; the EU (FEDER) and
the Spanish MINECO, under grant TIN 2015-65277-R; the
MassTech Collaborative Research Matching Grant Program
and the commercial partners of the Massachusetts Open Cloud,
which include Brocade, Cisco, Intel, Lenovo, Red Hat and Two
Sigma; and by the NSF grant CNS-1717634.

REFERENCES

[1] D. Chronicle., “The fappening’s list of celebrities whose
private pics got leaked,” Aug 2017. [Online]. Available:
http://www.deccanchronicle.com/technology/in-other-news/270817/the-
fappenings-list-of-celebrities-whose-private-pics-got-leaked.html

[2] A. Greenberg, “How hackers hid a money-mining botnet in
the clouds of amazon and others,” Jun 2017. [Online].
Available: http://www.wired.com/2014/07/how-hackers-hid-a-money-
mining-botnet-in-amazons-cloud/

[3] J. Renfeldt, “Chipotle hit with malware that stole credit cards,” Jun
2017. [Online]. Available: http://www.jr-tech.com/2017/06/12/chipotle-
hit-with-malware-that-stole-credit-cards/

[4] A. Peterson, “The sony pictures hack,
explained,” Dec 2014. [Online]. Available:
https://www.washingtonpost.com/news/the-switch/wp/2014/12/18/the-
sony-pictures-hack-explained/?utm term=.8c5a0634122d

[5] Cloud Security Alliance, “The notorious nine: Cloud computing top
threats in 2013,” Report available from www.cloudsecurityalliance.org,
2013.

[6] Netskope, “Cloud report,” Report available from
www.netskope.com/netskope-cloud-report, 2015.

[7] B. Caswell, J. Beale, and A. Baker, Snort intrusion detection and
prevention toolkit, 2007. [Online]. Available: https://www.snort.org/

[8] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda, “Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks,” in Proc. 29th Annual Computer Security
Applications Conference (ACSAC), 2013, pp. 199–208.

[9] T. Nelms, R. Perdisci, and M. Ahamad, “ExecScent: Mining for new
command-and-control domains in live networks with adaptive control
protocol templates,” in Proc. 22nd USENIX Security Symposium, 2013.

[10] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “Detection
of early-stage enterprise infection by mining large-scale log data,” in
Proc. 25th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2015.

[11] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Security and Privacy (SP),
2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 305–
316.

[12] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994–12 000, 2009.

[13] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning approaches
to network anomaly detection,” in Proceedings of the 2nd USENIX
workshop on Tackling computer systems problems with machine learning
techniques. USENIX Association, 2007, pp. 1–6.

[14] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network
anomaly detection with the restricted boltzmann machine,” Neurocom-
puting, vol. 122, pp. 13–23, 2013.

[15] T. Lane and C. E. Brodley, “An application of machine learning to
anomaly detection,” in Proceedings of the 20th National Information
Systems Security Conference, vol. 377, 1997, pp. 366–380.

[16] H. Nguyen, Y. Tan, and X. Gu, “PAL: Propagation-aware anomaly
localization for cloud hosted distributed applications,” in Proc. ACM
Workshop on Managing Large-Scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques (SLAML),
2011.

[17] D. Dean, H. Nguyen, and X. Gu, “UBL: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems,” in
Proc. ACM International Conference on Autonomic Computing (ICAC),
2012.

[18] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut, “Per-
fcompass: Online performance anomaly fault localization and inference
in infrastructure-as-a-service clouds,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2015.

[19] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
on Hot Topics in Networks (HotNets), 2016.

[20] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual ma-
chines consolidation in cloud data centers using reinforcement learning,”
in Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on. IEEE, 2014, pp. 500–
507.

[21] J. Dumoulin, “Nasa http webserver logs.” [Online]. Available:
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

[22] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2014-11-17 for version 2.1. Posted at
https://github.com/google/cluster-data.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2078195

[24] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[26] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[27] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001, [Online; accessed today]. [Online]. Available:
http://www.scipy.org/

