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ABSTRACT
We present the design and implementation of a compiler that
automatically generates protocols that perform two-party com-
putations. The input to our protocol is the specification of a
computation with secret inputs (e.g., a signature algorithm) ex-
pressed using operations in the field Zq of integers modulo a
prime q and in the multiplicative subgroup of order q inZ�p for
qjp� 1 with generator g. The output of our compiler is an im-
plementation of each party in a two-party protocol to perform
the same computation securely, i.e., so that both parties can
together compute the function but neither can alone. The pro-
tocols generated by our compiler are provably secure, in that
their strength can be reduced to that of the original crypto-
graphic computation via simulation arguments. Our compiler
can be applied to various cryptographic primitives (e.g., sig-
nature schemes, encryption schemes, oblivious transfer proto-
cols) and other protocols that employ a trusted party (e.g., key
retrieval, key distribution).
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1. INTRODUCTION
A central notion in cryptographic key management is that

of (k; n)-secret sharing[32], by which a secret key is divided
into n shareswith the property that only sets of shares of size
k or larger can be used to reconstruct the key. During the
past fifteen years, (k; n)-secret sharing has been extended to
(k; n)-function sharing(or threshold cryptography) (e.g., [9,
13, 14, 17]), whereby k parties, each holding a share, collab-
orate to perform a computation with the key without exposing
their shares (or reconstructing the key). A special case of in-
terest in this paper is two-party (i.e., (2; 2)) function sharing,
in which the key is split between two parties whose collabo-
ration is necessary and sufficient to compute the function with
the key.

In this paper we present the design and implementation of
a compiler for the automatic generation of two-party function
sharing protocols. Our work is primarily motivated by the cur-
rent gap between generic secure two-party computation proto-
cols and efficient hand-tuned two-party protocols for particular
primitives. We propose the first fully automated tool for gener-
ating two-party protocols that are efficient enough to be used
in practical applications. The input to our compiler is a de-
scription of a cryptographic function (e.g., a digital signature
algorithm, or decryption algorithm) written in a high-level lan-
guage of our own design. The output of our compiler is source
code implementing each side of a two party protocol for com-
puting that function. At the time of this writing, the input func-
tions for which our compiler can generate two-party protocols
are restricted to functions in which secrets and randomly gen-
erated values (e.g., permanent and ephemeral keys) are ele-
ments of the field Zq of integers modulo a public prime q, and
that are comprised of field operations in Zq and operations in
the multiplicative subgroup Gq of order q in Z�p with public
generator g and public prime p, qjp � 1. Computations on
public values (e.g., hashing a message in the course of gener-
ating a digital signature) are also supported. These operations
suffice for numerous useful cryptographic algorithms, includ-
ing various public key cryptosystems (e.g., [10]) and signature
schemes (see [20] for a survey) based on the difficulty of com-
puting discrete logarithms in Gq . An area of ongoing work is
extending our protocol to broader sets of computations.

The protocols generated by our compiler are provably se-
cure against arbitrary misbehavior by either party. More specif-
ically, the security of a protocol generated by our compiler can
be reduced to the security of the cryptographic function that is
the input to the compiler, using a simulation argument. Se-
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curity additionally relies on other assumptions, which in our
present implementation includes both random oracles [4] and
cryptographic assumptions such as decision composite residu-
osity [29]. Further, for any function with a secret input param-
eter (typically a long-term private key), the two-party protocol
output from our compiler requires that shares of this secret pa-
rameter be predistributed to the two parties that are to run the
protocol. That is, our compiler generates two party protocols
that assume a trusted third party for sharing long-term secrets;
removing this assumption is an area of ongoing work.

Another motivation of our work is the prior research toward
preventing misuse of a cryptographic key by requiring the con-
sent of a partially [21, 8] or fully [16] trusted server before
the key can be used. A common approach to make the server
non-bypassable is to share the key between its intended user
and the server, and for the user and server to jointly compute
cryptographic operations using (2; 2)-function sharing. A goal
of this research is to provide a tool by which a new crypto-
graphic function (e.g., any of the literally hundreds of signa-
ture schemes in [20]) can be protected in this sense through the
automatic, and even dynamic, generation of a server-assisted
protocol for the function. More generally, we intend to explore
compilation as a means for making two-party (and, in the fu-
ture, multiparty) computation a “commodity tool” for other
cryptographic applications and scientific research.

A precursor to our compilation process is the assembly of
a repertoire of “building block” protocols for basic two-party
computations, e.g., addition of shared secrets (yielding a shared
result), multiplication of shared secrets, multiplicative inver-
sion of a shared secret, and so forth. Additional building blocks
are included to translate shares in one representation to an-
other, i.e., from additive shares to multiplicative shares and
back. These translations are required since, for example, the
most efficient protocol for adding shared secrets employs ad-
ditive shares, whereas the most efficient protocol for inverting
a shared secret employs multiplicative shares. The compila-
tion process itself begins with parsing the input function into a
tree with nodes being operations and edges representing data
flows between operations. In addition, each edge is annotated
with an indication of whether the value on that edge is to be
public or kept secret. Additional nodes are inserted to translate
shared secrets in one representation to the other as necessary,
and to reveal (i.e., make public) values that are allowed to be
revealed. Finally, the tree is traversed to emit building block
protocols that together perform a two-party computation of the
input function.

2. RELATED WORK
Techniques for generic secure two-party computation (e.g.,

[35]) provide a recipe for designing secure two-party proto-
cols for a much larger class of functions than our compiler can
accommodate. However, the protocols that result from these
general techniques are too inefficient to be useful in practice,
and we know of no efforts to implement these techniques (or
more specialized techniques) within a tool for generating pro-
tocol implementations automatically. The goal of our compiler
is to generate practical protocols for a restricted but interest-
ing class of functions, and to explore optimizations that make
them useful even in performance-sensitive applications.

As discussed in Section 1, we are primarily motivated by the

generation of two-party protocols for computing digital signa-
tures or decrypting ciphertexts of a public key cryptosystem.
As such, the protocols our compiler generates fall within the
general framework of threshold cryptography, which explores
specialized protocols for implementing shared signing or de-
cryption more efficiently than via general secure multiparty
computation (e.g., [9, 13, 14, 17]). Within this category of
work, proposed two-party protocols include those for perform-
ing two-party RSA computations [9] (see also [3]), two-party
DSA [22] and two-party Schnorr [25], for example. At the
time of this writing, our compiler can be used to automati-
cally generate provably secure protocols for two-party DSA
and Schnorr signing, albeit at some loss in performance over
prior hand-tuned proposals, and for all other discrete-log based
signature schemes of which we are aware (notably the hun-
dreds of variations surveyed in [20]). In the future, we plan to
extend our compiler to automatically generate two-party pro-
tocols for RSA-based operations (e.g., [31, 11]).

Implementations of specific threshold cryptosystems and sig-
nature schemes have been developed in the context of several
systems (e.g., [30, 36], and specifically [21, 8, 25] for the two-
party case) and have been built into general-purpose toolkits
for broader use [34, 1]. We know of no such toolkit for two-
party threshold cryptography, much less any prior work on
compilers for automatically generating two-party protocols.

More distantly related is work in the automatic generation
of protocols for establishing a shared cryptographic key be-
tween two parties, possibly with the assistance of a third party
(e.g. [33]). We emphasize that this work involves key exchange
protocols using cryptographic primitives (encryption, signa-
tures) as abstract building blocks, without consideration of
the specific construction of these primitives. In contrast, here
we show how to automatically generate two-party protocols
for implementing specific digital signing or decryption algo-
rithms, as well as other cryptographic algorithms of interest.

3. GOALS
As described in Section 1, the goal of our compiler is to au-

tomatically generate efficient, provably secure two-party pro-
tocols for an interesting class of cryptographic functions. In
our current version of the compiler, the input functionis re-
stricted to computations expressed using selection of random
elements from Zq for q a public prime; multiplication, mul-
tiplicative inversion, addition, and additive inversion over Zq;
and the generation and multiplication of elements of the mul-
tiplicative subgroup Gq of order q in Z�p with public genera-
tor g and public prime p, qjp � 1. In addition, the compu-
tation is permitted to (and will generally) input one or more
“secret” parameters that are elements of Zq, and public aux-
iliary inputs (e.g., a message to be signed in a digital signa-
ture computation). These computations include, for example,
many “discrete-log based” signature schemes and encryption
schemes, i.e., schemes whose security is based on the diffi-
culty of computing discrete logarithms to base g in Gq . The
compiler assumes that all inputs to the computation (except for
g, p and q) and all intermediate results are to be secret; only
the values output from the computation (or that are derivable
from that output) are permitted to be public.

We denote the two participating parties in our protocol by
A and B. The output of the compiler is two algorithms (source

211



code), one for A and one for B. The input to each party con-
sists of the public parameters of the system, its own public
and secret parameters, public parameters of the other party and
commitments of the secret parameters of the other party. More
formally, the A algorithm expects the following inputs:

� common public inputs, including g, q, p, and the auxil-
iary inputs;

� private input xA 2 Zq per “secret” parameter x to the
input function;

� private/public key pair (skA; pkA) of a semantically se-
cure encryption scheme E (with additional properties;
see Section 4.2);

� B’s public key pkB of E ;

� and B’s commitment �xB for each secret parameter x to
the input function, which in our case is an encryption of
xB under pkB, i.e., �xB  EpkB(xB).

B expects an analogous set of inputs.
The execution of the two party protocol is started by A. This

initiates an interactive protocol in which each of the parties
sends messages that contain partial results of its computation
to the other party. The protocol runs until either one of the
parties aborts or A outputs the result of the input computa-
tion. In the case of two-party signature generation, the out-
put value is the signature generated jointly by A and B. If A
and B run to completion without aborting, the output produced
by A is the same as the input function to the compiler would
have produced, provided that for each secret input x, either
xA + xB �q x or xAxB �q x.

We emphasize that A and B require xA and xB as inputs,
respectively, for each input parameter x marked as “secret”
to the function input to the compiler. In addition, B is given
pkA, skB, and �xA, whereas A is given pkB, skA, and �xB. The
generation and distribution of these values is outside the scope
of our compiler, and must be achieved via some other means,
presumably by a trusted third party. Eliminating reliance on a
third party for initialization is a planned area of future work.

4. COMPILER DESIGN
This section describes the design of our compiler and some

implementation choices, using the DSA signature scheme as
an example. Figure 1 presents a high-level overview of the
compiler structure. The output of the compiler (the two algo-
rithms for A and B) is generated from a collection of compo-
nent protocols, called building blocks, and from an input file
specified by the user. The component protocols correspond,
intuitively, to arithmetic operations, and they are further de-
composed into primitive protocolsthat are protocols with at
most one interaction between the two parties. The input file
contains the specification of a computation that will be trans-
formed into a two-party protocol. Below, we take a bottom-up
approach in detailing the compilation process.

4.1 Compiler Input
The input to our compiler is the specification of a compu-

tation given in a high level language that was created for this
purpose. The language consists of keywords p, q, g, PARAMS,
START, RETURN, SECRET, PUBLIC, RANDOM, MULT and ADD,

Output
source code

Composition

Building block
protocols

Primitive
protocols Input file

Parsing trees

Parsing

Code Generation

Figure 1: Compiler structure

and operators + (addition in Zq), �, � (multiplicative inver-
sion in Zq), ^ (exponentiation in Gq with public base), % (re-
duction mod a public parameter) and = (assignment). The
binary operator � is overloaded and can be used to multiply
elements in Zq or in Gq (it can be inferred from the context in
which group the multiplication is done). Keywords MULT and
ADD specify the type of sharing of a secret (multiplicatively or
additively, respectively) and are optional. We require that key-
words PARAMS, START and RETURN appear in the description
file of each function in this exact order. For example, the in-
put file for generating the two-party DSA signature scheme is
given in Figure 2(a).

By convention, every variable is assumed to be secret, un-
less it is declared PUBLIC or returned in RETURN. In the ex-
ample in Figure 2(a), k is secret, whereas r and s are public as
being output of the computation. In addition, every input pa-
rameter is assumed to be an element ofZq, and RANDOM gen-
erates a random element of Zq. The computation itself begins
after START and ends at RETURN. It can consist of arbitrarily
many steps, with the restriction that each expression is gener-
ated by the context-free grammar from Figure 2 (b) (id here
replaces any valid variable name using standard conventions).

PARAMS

SECRET x ADD

PUBLIC m
START

k = RANDOM

r = g ^ k% q
s = � k � (m+ x � r)

RETURN (r; s)

(a)

S ! id = E
E ! T+E j T j RANDOM

T ! F*T j F % T j F
F ! �F j B ^ F j B
B ! id j E

(b)

Figure 2: (a) Input file for DSA signature, (b) Grammar
for generating expressions

4.2 Primitive protocols
The output of our compiler, i.e., the two-party protocol im-

plemented by two algorithms for A and B, is constructed using
a collection of primitive protocols. Intuitively, these primitive
protocols define the “instructions” that are composed to gener-
ate the compiler’s output. Each primitive protocol consists of
at most one message, and has an initiator. The initiator’s input
to a primitive protocol includes one or more of its secret val-
ues, its commitments to those secret values, the other party’s

212



commitments to its secret values, and possibly public values.
The other party can employ corresponding values of its own,
as well, though in most primitive protocols, this party works
only with commitments from the initiator and public values;
in all but two protocols, its own secrets are not employed.

A table specifying each of the primitive protocols is shown
in Figure 3. The terminology we used for protocol names is as
follows: Add, Mult, Inv, Exp, ModQ refer to the arithmetic op-
erations performed; Add2Mult and Mult2Add refer to the con-
version from additive to multiplicative sharing of a secret and
the reverse; Rev means that the protocol has a public output;
S/P stands for one of the input parameters being secret/public
and we can have combinations of the form SS, SP if the pro-
tocol has two parameters; Dup means that the protocol has no
functionality (its output is equal to its input).

This table specifies the primitive protocols in which A is the
initiator. Those when B is the initiator are symmetric. For
each protocol, the number of messages, either zero or one, is
shown; when a message is sent it is always sent by the ini-
tiator. The next columns specify each party’s inputs to the
protocol, and the preconditions that it must know to be true
in order to execute the protocol. Note that in some cases,
the preconditions cannot be directly verified by the party who
must be convinced of them. For example, B may be required
to know that DskA (�xA) (i.e., the decryption of �xA under pri-
vate key skA) is less than some value, even though B does
not know skA. This simply means that this fact will need to
be proven to B (via a zero-knowledge proof) within another
protocol (e.g., ModQ) if B cannot otherwise infer it, before
B will execute the protocol for which this is a precondition.
Each primitive protocol gives each party additional outputs,
also shown, and enables that party to conclude the specified
postconditions for those outputs. As a simple example, con-
sider the second protocol listed in the table, called AddSS(xA,
yA) (adds two secrets). In this protocol, A begins with values
xA and yA with commitments (ciphertexts) �xA and �yA; B also
knows these commitments. Moreover, both A and B know that
DskA (�xA) + DskA(�yA) � R for some value R (more on this
below). After this protocol (involving no messages), A will
possess a new value zA = xA + yA and commitment �zA for it,
and B will also possess �zA. Moreover, each of them will know
that DskA (�zA) � R.

The commitments of shares are generated using a semanti-
cally secure public key encryption scheme E with encryption
algorithm E and decryption algorithm D that in addition have
a homomorphic property. For a given public key pk, we de-
note by Mpk the plaintext space, which we assume is a range
of integers f0; 1; : : : ; tg with t > ql. (Typically l = 6, e.g.,
for q of 160 bits and the public key of 1024 bits.) We use Cpk

to denote the ciphertext space. We require that there exists an
efficient additive operation +pk : Cpk � Cpk ! Cpk and a
multiplicative operation �pk : Cpk �Mpk ! Cpk such that:

� 8m1;m2 2Mpk: m1 +m2 2Mpk )
Dsk(Epk(m1) +pk Epk(m2)) = m1 +m2

� 8m1;m2 2Mpk: m1m2 2Mpk )
Dsk(Epk(m1) �pk m2) = m1m2

We observe that the existence of +pk implies the existence
of �pk. Several examples of cryptosystems supporting these
additional operations exist [5, 24, 28, 29]. In our implemen-
tation, we use the Paillier cryptosystem [29] whose security

is based on the composite residuosity problem, but any of the
above-mentioned cryptosystems could be used instead.

In Figure 3, R denotes the largest number in MpkA \MpkB

and is used to ensure that some values are in the plaintext range
of both the encryption schemes used.

A B

zA  x�1
A

mod q
�zA  Epk

A
(zA)

�A  zkp

2
664
9�; � : � 2 Zq
^ Dsk

A
(�xA) = �

^ Dsk
A
(�zA) = �

^ �� �q 1

3
775

<�z
A
;�

A
>

-

abort if (Veri�er(�A) = 0)

Figure 4: InvS protocol

For illustration, we present an example of a primitive proto-
col: InvS(xA) (inverts a secret) in Figure 4. In the protocol, A’s
input is a value xA and commitment �xA = EpkA(xA), whereas
B’s input is only �xA. After executing the protocol, A will have
a share zA = x�1

A
2 Zq and its commitment �zA = EpkA(zA).

B’s output will consist only of the commitment �zA. A gener-
ates a zero knowledge proof �A, in which it proves to B that
DskA(�zA) = (DskA(�xA))

�1 mod q. B verifies the proof us-
ing the polynomial time algorithm Verifier. The proof �A is
omitted due to space limitations, but will be included in the
full version of this paper.

4.3 Building Block Protocols
The fine granularity of the primitive protocols described in

Section 4.2 offers many opportunities for experimenting with
how to construct the most efficient two-party protocols for a
given input computation. As an initial exploration into this
space, however, our work so far has focused on only one sim-
ple way of combining them to reach the given input compu-
tation. The technique we have explored thus far is to com-
pose primitive protocols into larger two-party building block
protocols that implement certain operations on shared secrets.
Then, our compiler emits its output using building blocks,
rather than emitting instances of primitive protocols directly.

Working with building blocks is more intuitive—and easier
to prove things about—than working with primitive protocols
directly, since each building block corresponds to a basic oper-
ation on shared secrets such as addition, multiplication, inver-
sion, modular reduction, exponentiation or generation of ran-
dom secrets in the input computation. Two additional building
blocks perform conversion from additive shares to multiplica-
tive shares of a secret and the other way around. These are
necessary as each building block requires the input secret(s)
to be shared in the proper way (either additively or multiplica-
tively). Building blocks are constructed via composition of
primitive protocols:

DEFINITION 4.1. Let P1 and P2 be two-party protocols.
ThenP = P1 k P2 is a two-party protocol in which protocols
P1 andP2 are executed sequentially, starting withP1 . We
call P the sequential composition ofP1 andP2.
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Protocol Msgs Party Input Preconditions Output Postconditions
Generate() 1 A - zA; �zA Dsk

A
(�zA) = zA

zA 2 Zq
B - �zA

AddSS(xA , yA) 0 A xA, �xA Dsk
A
(�xA) = xA zA , �zA zA = xA + yA

yA, �yA Dsk
A
(�yA) = yA Dsk

A
(�zA) = zA

xA + yA � R
B �xA Dsk

A
(�xA) +Dsk

A
(�yA) � R �zA Dsk

A
(�zA) = Dsk

A
(�xA) +Dsk

A
(�yA)

�yA
AddSP(xA , y) 0 A xA, �xA Dsk

A
(�xA) = xA zA , �zA zA = xA + y

y xA + y � R Dsk
A
(�zA) = zA

B �xA Dsk
A
(�xA) + y � R �zA Dsk

A
(�zA) = Dsk

A
(�xA) + y

y
MultSS(xA , yA) 1 A xA, �xA Dsk

A
(�xA) = xA zA , �zA zA = xAyA mod q

yA, �yA Dsk
A
(�yA) = yA Dsk

A
(�zA) = zA

xAyA � R
B �xA Dsk

A
(�xA)Dsk

A
(�yA) � R �zA Dsk

A
(�zA) �q Dsk

A
(�xA)Dsk

A
(�yA)

�yA
MultSP(xA , y) 0 A xA, �xA Dsk

A
(�xA) = xA zA , �zA zA = xAy

y xAy � R Dsk
A
(�zA) = zA

B �xA Dsk
A
(�xA)y � R �zA Dsk

A
(�zA) = Dsk

A
(�xA)y

y

InvS(xA) 1 A xA, �xA Dsk
A
(�xA) = xA zA , �zA zA = (xA)

�1 mod q
Dsk

A
(�zA) = zA

B �xA Dsk
A
(�xA) < R=2q3 �zA Dsk

A
(�zA) = (Dsk

A
(�xA))

�1 mod q

RevExp(xA, y) 1 A xA, �xA Dsk
A
(�xA) = xA zA zA = yxA mod p

y

B �xA zA zA = y
Dsk

A
(�x
A
)
mod p

y
Add2Mult(xA, xB) 1 A xA, �xA Dsk

A
(�xA) = xA zA , �zA zA 2 Zq

�xB Dsk
B
(�xB) + xA < R=q3 �zB Dsk

A
(�zA) = zA

zADsk
B
(�zB) �q xA +Dsk

B
(�xB)

B xB, �xB Dsk
B
(�xB) = xB zB , �zB Dsk

B
(�zB) = zB

�xA �zA Dsk
A
(�zA)zB �q Dsk

A
(�xA) + xB

Mult2Add(xA, xB) 1 A xA, �xA Dsk
A
(�xA) = xA zA , �zA zA 2 Zq

�xB Dsk
B
(�xB)xA < R=q2 �zB Dsk

A
(�zA) = zA

zA +Dsk
B
(�zB) �q xADsk

B
(�xB)

B xB, �xB Dsk
B
(�xB) = xB zB , �zB Dsk

B
(�zB) = zB

�xA �zA Dsk
A
(�zA) + zB �q Dsk

A
(�xA)xB

ModQ(xA) 1 A xA, �xA Dsk
A
(�xA) = xA zA , �zA zA = xA mod q

Dsk
A
(�zA) = zA

B �xA �zA Dsk
A
(�zA) = Dsk

A
(�xA) mod q

Rev(xA) 1 A xA, �xA Dsk
A
(�xA) = xA

B �xA xA Dsk
A
(�xA) = xA

Dup(xA) 0 A xA, �xA zA , �zA zA = xA
�zA = �xA

B �xA �zA �zA = �xA

Figure 3: Primitive protocol specifications

In addition to the primitive protocols discussed in Section 4.2,
we need some local computation protocols that perform oper-
ations only on public values, so we employ one such proto-
col for each arithmetic operation: Add2Pub (adds two pub-
lic values), Mult2Pub (multiplies two public values), InvPub
(computes the multiplicative inverse of a public value in Zq),
ModQPub (computes the reduction mod q of a public value)
and so forth. Our building blocks, enumerated in Figure 5,
are compositions of primitive protocols and local computation
protocols. The preconditions and postconditions of each build-
ing block protocol are accumulated from the preconditions and
postconditions of the primitive protocols that comprise it.

4.4 Emitting the Two-Party Protocol
The emitted two-party protocol is a sequential composition

of building blocks described in Section 4.3. In this section, we
describe how the sequence of building blocks is determined by
the compiler, given the specification of the input function.

The compilation process has three important phases: pars-
ing, construction of the sequence of interactive building blocks
and generation of the output source code for each party. Below
we will detail each of the three steps.

4.4.1 Parsing
During the parsing process, the compiler checks that the in-

put file has the required format, signaling for existing errors.
In addition, for each step in the computation (these are given
by expressions between keywords START and RETURN), it will
generate an associated parsing tree as in Figure 6. The nodes
in the parsing trees represent operations: GENq (generation
of random secrets in Zq), +q (addition of elements in Zq),
�q (multiplication of elements in Zq), �1q (inversion of a Zq

element), ^p (exponentiation of an element in Gq to an expo-
nent in Zq), %q (reduction mod q), Conv (conversion from
multiplicative shares of a secret to additive shares of the same
secret or the reverse), Rev (reveal a secret). Terminal nodes
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Building block Description Composition
Generate Generates a random

shared secret
zA Generate()
zB Generate()

Add2Secrets Adds two secrets
(x; y), additively
shared

zA AddSS(xA ,yA)
zB AddSS(xB ,yB)

AddSecretPub Adds a public value (y)
and a secret additively
shared (x)

zA AddSP(xA , y)
zB Dup(xB)

Mult2Secrets Multiplies two secrets
(x; y) multiplicatively
shared

zA MultSS(xA ,yA)
zB MultSS(xB ,yB)

MultSecretPub Multiplies a public
value (y) and a secret
(x) multiplicatively
shared

zA MultSP(xA ,y)
zB Dup(xB)

InvSecret Inverts a secret (x),
multiplicatively shared

zA InvS(xA)
zB InvS(xB)

RevealExp Generates yx mod p
where y is public andx
is an additively shared
secret

zA RevExp(xA, y)
zB RevExp(xB, y)
z Mult2Pub(zA , zB)

Add2Mult Generates a multiplica-
tive sharing of an addi-
tively shared secret (x)

hzA; z
0

B
i  

Add2Mult(xA , xB)
zB ModQ(z0

B
)

Mult2Add Generates an additive
sharing of a multiplica-
tively shared secret (x)

hzA; z
0

B
i  

Mult2Add(xA , xB)
zB ModQ(z0

B
)

ModQ Reduces a secret mod q zA ModQ(xA)
zB ModQ(xB)

RevealAdd Reveals a secret (x) ad-
ditively shared

xA Rev(xA)
xB Rev(xB)
x Add2Pub(xA , xB)

RevealMult Reveals a secret (x)
multiplicatively shared

xA Rev(xA)
xB Rev(xB)
x Mult2Pub(xA , xB)

Figure 5: Building block protocols

in the tree (leaves) are either input variables to the compiler
or output variables of previous trees. Each node has one or
two entering edges corresponding to the input of the building
block the node represents and one leaving edge, corresponding
to the output of the building block. The edges are labelled with
the type of the corresponding variable: P (public), SM (secret
shared multiplicatively) or SA (secret shared additively).

During the parsing phase, the compiler constructs a list of
all secrets whose sharing type is unknown (it is not explicitly
specified in the input file and it can not be determined from
the execution of the protocol) and then for each possible as-
signment of sharing types to secrets, compute the number of
convert protocols required in the protocol. Our compiler then
chooses the assignment that minimizes the number of convert
protocols, as the convert protocols are the most computation-
ally expensive building blocks. This algorithm is exponential
in the number of secrets considered, but this number is typi-
cally fairly small.

4.4.2 Construction of building block sequence
In the second phase, each arithmetic operation is replaced

with the corresponding building block, e.g., addition with
Add2Secrets, AddSecretPub or Add2Pub, depending
on the type of operands. Convert protocols are inserted when-
ever secrets are not shared properly for subsequent building
blocks. If the left hand side of an assignment is secret, but
at the same time is part of the computation output, then a Re-
veal protocol must be executed. In addition, a ModQ protocol
is executed whenever a share might exceed the range specified
by a precondition of a subsequent building block. An example
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Sequence of building blocks:

T2 : k
0 = Mult2Add(k)

r = ModQPub(r)

RevealMult(s)
s = Mult2Secrets(k00 ,a4)
a4 = Add2Mult(a3)
a3 = AddSecretPub(m,a2)
a2 = Mult2Add(a1)

T1 : k = Generate()

T3 : k
00 = InvSecret(k)

r = RevealExp(g,k0)

a1 = MultSecretPub(r,x)

Figure 6: Parsing trees for generating a DSA signature

for constructing the sequence of building blocks for the DSA
signature scheme is given in Figure 6.

4.4.3 Generation of Java code
In this phase, Java source code for A and B is automati-

cally generated by our compiler, using the sequence of build-
ing block protocols determined previously. During the inter-
active execution of the protocol, the two parties can exchange
messages of four types: PARAMS (one party sends the output
of its computations to the other party), REQ-PROOF (a party
requests a zero knowledge proof of correctness of a compu-
tation from the other party), PROOF (one party sends a zero-
knowledge proof to the other party as a response to the REQ-
PROOF message) and DONE (one party informs the other that
it has finished the protocol). The model we adopt in the im-
plementation is that of “pulling the proofs” (generating zero
knowledge proofs on request) as opposed to the theoretical
building blocks where proofs are generated immediately after
each computation. We believe that this model can lead to op-
timizations in our protocol, by allowing aggregation of proofs
and minimization of the number of interactions. We intend to
experiment with this in future work.

5. SECURITY FOR TWO-PARTY SIG-
NATURE SCHEMES

The two-party protocols generated by our compiler preserve
the security of the original input function to the compiler. The
proofs of security are built on the simulatability property of
the underlying building blocks (Theorem A.2 from Appendix
A). The security of the two-party protocols additionally relies
on the security of the encryption scheme used for the commit-
ments of secret shares and on the security of the zero knowl-
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edge proofs involved. In this section, we give an example of
such a proof when the input function to the compiler is a sig-
nature scheme.

Let SIG be a generic signature scheme and S-SIG = P1 k
� � � k Pn be our two-party protocol S-SIG for generating a
signature (a sequential composition of n building blocks). In
the security analysis of S-SIG, we require that SIG is secure
against chosen message attack [19] and the encryption scheme
E is semantically secure [18]. We also require non-interactive
zero-knowledge proofs, for which formal definitions can be
found in [6, 12]. Informally, we remind the reader that a non-
interactive zero-knowledge proof system for a language L is
measured by its soundness error(the probability that a mali-
cious prover convinces a verifier to accept a w 62 L) and its
simulation error(for any simulator holding w 2 L and an-
swering random oracle queries, the probability with which a
verifier can distinguish the simulator from the real prover).

We consider two types of adversaries for S-SIG. An A-
compromising adversary is a probabilistic polynomial-time ad-
versary that is given the public key of SIG and access to the B
oracle. The B oracle can be queried by invoking n oracles:
BQ

1; : : : ;BQn, where a query to the ith oracle, BQi, corre-
sponds to the execution of the Pi building block by B. The
query to the BQ1 oracle must have as input the message m
to be signed. An A-compromising adversary has access in ad-
dition to all the secret computation of A. A B-compromising
adversary is defined analogously.

DEFINITION 5.1. A two-party signature scheme is secure
against anA-compromising adversaryA if A has a negligible
probability in outputting a pair(m;�) such that� is a valid
signature form and the messagem was not sent to theB ora-
cle in aBQ1 query.

Below we state the security theorem of the S-SIG proto-
col against an A-compromising adversary. A similar defini-
tion of security of a two-party signature scheme against a B-
compromising adversary and a proof of security of S-SIG against
this type of adversary could be given.

THEOREM 5.2. If an A-compromising adversary forges a
signature in theS-SIG scheme with non-negligible probability,
then:

1. There exists an attacker that forges a signature inSIG

with non-negligible probability; or

2. There exists an attacker that breaks the semantic secu-
rity of E with non-negligible probability; or

3. One of the zero knowledge proofs used in theS-SIG pro-
tocol has a non-negligible simulation error; or

4. One of the zero knowledge proofs used in theS-SIG pro-
tocol has a non-negligible soundness error.

The proof of the theorem is given in Appendix A.

6. PERFORMANCE RESULTS
We implemented our compiler in Java. To optimize some

of the expensive operations performed in our implementation
(such as exponentiations or generation of random numbers)
we used the gmp C library. In our system, A is a client of

Scheme Signature A (sec) B (sec) sharing of x
EG I.1 s �q k

�1(m+ xr) 1.019 1.151 additive
EG I.2 s �q x

�1(m+ kr) 0.828 0.882 multiplicative
EG I.3 s �q xr + km 0.129 0.141 additive
EG I.4 s �q xm+ kr 0.130 0.143 additive
EG I.5 s �q x

�1(r + xm) 0.837 0.896 multiplicative
EG I.6 s �q k

�1(r + xm) 1.022 1.144 additive

Figure 7: Performance results

server B. A initiates the communication and B responds to A’s
messages until a signature is generated. The client and server
communicate through sockets.

We ran our implementation on a two-processor machine,
each a 2.4 GHz Intel Xeon, and tested it on the various sig-
nature schemes proposed in [20]. Figure 7 shows the unop-
timized computation time for both A and B for generating a
two-party signature. The signature schemes used are the six
basic types of signatures from [20]. All these schemes have
the same key generation algorithm, they differ only in the sig-
nature generation and verification. Signature generation is of
the form: k  R Zq; r = gk mod p; s = :::; output (r; s)
with different relations for the computation of s. The table
shows the specific equation for s for each of the schemes and
the verification relation. Scheme EG I.1 is a variant of DSA in
which r is not reduced mod q.

As already mentioned in [20], types 3 and 4 are the most
efficient schemes, as they do not require the computation of an
inverse mod q. Our experiments confirm that this is also true
for the two party case, types 3 and 4 being nearly an order of
magnitude more efficient than the other four types.

For each of the types, we have generated two party protocols
utilizing both additive and multiplicative sharing of the secret
key x. An interesting observation is that the most efficient
protocol for DSA is one in which x is shared additively, but
the hand-tuned two-party DSA [22] employs a multiplicative
sharing of x.

We are planning to explore future optimizations in our com-
piler, such as parallelizing computation or using pre-computed
tables for exponentiations with the same base [23]. While we
expect that the protocols generated by our compiler will not be
as efficient as hand-tuned approaches, the performance results
are already promising.

7. APPLICATIONS
The initial focus of our compiler has been for transforming

discrete-log based signature schemes and encryption schemes
into secure two-party implementations. However, our com-
piler can be applied to a much broader range of applications
that are also of interest. Here we list two such applications.

7.1 Password hardening
In [15], a password hardeningprotocol is described to en-

able a user to obtain a strong secret from a password � by inter-
acting with a server (which does not learn the secret obtained).
The protocol uses public primes p; q such that p = 2q + 1
and a public function f that maps passwords to elements in
Zq. The server initially selects a secret value d for the user,
and the user interacts with the server using her password � to
retrieve the stronger secret f(�)d mod p as follows: (i) The
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user picks k  R Zq, computes r  f(�)k mod p and sends
it to the server; (ii) the server computes s  rd mod p and

sends it to the user; and (iii) the user computes sk
�1

mod p,
which is the strong secret.

The full paradigm proposed by [15] involves a client per-
forming this password hardening protocol with multiple servers
independently. An alternative that enables the service to be
distributed transparently to the client (i.e., the client still com-
municates with only one server) would be to automatically im-
plement a distributed server using our compiler, consisting of
two servers that jointly compute s using shares of d. Client
transparency is beneficial if the server must be distributed with-
out changing legacy clients, for example.

7.2 Oblivious transfer
Some oblivious transfer (OT) protocols (e.g., [2, 27]) can be

transformed into distributed oblivious transfer protocols [26],
using our compiler. The goal of a 1-out-of-N OT protocol
is to allow a receiver R to retrieve one of N secrets from a
sender S so that S does not learn which of the N secrets R
retrieved and so that R receives only one of the N secrets (and
learns no information about the others). In a distributed OT
protocol, the sender is distributed into multiple senders and
each of them holds shares of the secrets. Our compiler enables
the distribution of S into two senders automatically for the
protocols mentioned above.

8. CONCLUSIONS
We have described the construction of a compiler that au-

tomatically generates two-party computation protocols start-
ing from the specification of a computation involving one or
more secret values. The two-party protocol is generated by
composing building blocks for the fundamental arithmetic op-
erations: addition, multiplication, exponentiation, inversion,
modular reduction. Each building block protocol consists of
two or more primitive protocols, that intuitively are “one-way”
protocols (are initiated by one of the parties and the initiator
can transmit at most one message to the receiver). As future
work, we would like to explore further methods of combining
directly the primitive protocols, parallelizing the computation.

The two-party protocols generated by our compiler are sim-
ulatable. This property allows us to prove that the security of
the input function to the compiler is preserved by our two-
party protocol against arbitrary misbehavior of either party.
The security of the two-party protocol additionally relies on
the security of the encryption scheme used for the commit-
ments of secret shares and on the security of the zero knowl-
edge proofs involved. For illustration, in Appendix A we show
a proof of security in the case when the input function is a
signature scheme. There are also other applications of our
compiler in the context of protocols that require a trusted third
party or trusted server (e.g. key distribution, fair exchange, key
retrieval). The trusted party could be replaced by two parties,
eliminating the single point of failure.
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APPENDIX

A. SIMULATABILITY OF THE BUILD-
ING BLOCK PROTOCOLS

In defining simulatability of a two-party building block pro-
tocol, we consider two cases, depending on the output param-
eter of the protocol being secret or public.

DEFINITION A.1. (Simulatability for Building Block Pro-
tocols with Secret Output) LetP = P1 k P2 k : : : Pi be
a composition ofi building block protocols. The last build-
ing block protocolPi with secret output is simulatable if given
an adversaryA=(A1; A2) that compromises one of the par-
ties C, there exists a simulatorSIMU for the uncompromised
party U such that:DistAi (U; SIMU) = Pr(EXPind�sr

A;1 = 1)�

Pr(EXPind�sr
A;0 = 1) is negligible, where:

EXPind�sr
A;b :

(Su; Sc; Ps) I(1�)

z  A
U(Su;Sc;Ps)
1 (1�; Sc; Ps)

b0  A
LR(Su;Sc;Ps;L;b)
2 (z)

outputb0

Here Su denotes the secret parameters of the uncompro-
mised partyU, Sc the secrets of the corrupted partyC, Ps
the public parameters of the system,� the security parame-
ter, I the initialization algorithm;U(Su; Sc; Ps) is an oracle
that givenSu; Sc; Ps executes the uncompromised party in the
protocolP up to building blockPi�1, z is the state of the ad-
versary andL is a list of commitments produced by calls to the
U oracle; the oracleLR is defined asLR(Su; Sc; Ps; L; b) =
UPi(Su; Sc; Ps; L) if b = 0 (UPi is the execution of the uncom-
promised party in building blockPi), andLR(Su; Sc; Ps;
L; b) = SIMU;Pi

(Sc; Ps; L) if b = 1 (SIMU;Pi
is the simula-

tion of the uncompromised party in building blockPi).

The definition of simulatability for building block protocols
with public output is similar to this definition, with the only
difference that the simulator SIMU is also given as input the
public output of the protocol.

Notation. Consider a protocol P = P1 k P2 k : : : Pi.
Throughout the rest of the paper we use the following nota-
tion: SIMERR�iB is the simulation error of proof �iB used in
the B protocol from Pi; wiA denotes the set of A’s commit-
ments of its secret shares from protocol Pi; SERR�iA(wiA) is
the soundness error of the proof �iA used in the A protocol
from Pi; SIM�iB is the simulator for the proof �iB; AdvE(A)
is the advantage of A for the encryption scheme E , as defined
in [7, Property IND-CPA]. B0 denotes the protocol B, except
that in addition to checking all the zero knowledge proofs gen-
erated by A, it decrypts A’s commitments (having access to
A’s secret key) and checks explicitly the predicates of the zero
knowledge proofs.

The general simulatability theorem for an A-compromising
forger is given below (the theorem for a B-compromising forger
is similar to this).

THEOREM A.2. LetA be anA-compromising attacker for
P = P1 k � � � k Pi . Then there is a simulationSIM-B of the
B protocol inP and a distinguisher algorithmD such that:
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1. If Pi is one ofGenerate, Mult2Secrets, InvSe-
cret, ModQ, Add2Mult or Mult2Add then:

DistDi (B,SIM-B) � AdvE(A) + SIMERR�iB+Pi
j=1 SERR�jA(wjA)

DistDi (B
0,SIM-B) � AdvE(A) + SIMERR�iB

2. If Pi is one ofAdd2Secrets, AddSecretPub or
MultSecretPub then:

DistDi (B, SIM-B) � AdvE(A) +
Pi

j=1 SERR�jA(wjA)

DistDi (B
0,SIM-B) � AdvE(A)

3. IfPi is one ofRevealMult,RevealAdd or Reveal-
Exp then:

DistDi (B, SIM-B) � SIMERR�iB+
Pi

j=1 SERR�jA (wjA)

DistDi (B
0, SIM-B) � SIMERR�iB

The proof of this theorem is omitted due to space limita-
tions, but will appear in the full paper. We have now all the
tools to complete the proof of Theorem 5.2:

Proof of Theorem 5.2.Assume an A-compromising forger
F forges a signature in the S-SIG scheme with probability �.
Let (BQ1

1; : : : ;BQ
1
q1B

), : : :, (BQn
1 ; : : : ;BQ

n
qnB

) denote all the
queries made to the B oracle, and let qB denote the total num-
ber of queries to the B oracle. Hence qB must be polynomial
in the security parameter and

Pn
i=1 qiB = qB.

We construct a simulation SIM of S-SIG that takes as input
a SIG public key, a corresponding signature oracle, a public
key/secret key pair (pkA; skA) of the encryption scheme E and
a public key pkB for E . SIM responds to query BQi to the B
oracle as follows:

1. If Pi = P1, then the signature oracle is queried on mes-
sage m and the output signature � = (�1; : : : ; �t) is
saved. Each �j corresponds to the output of one public
output building block Pij , j = 1; : : : ; t. (We made the
convention that only values that are part of the computa-
tion output are public.)

2. If Pi is a secret output building block, use the simulator
SIM-B for Pi with input all the input parameters for SIM

and the public output and commitments of all Pi0 , i
0 < i,

and output whatever the simulator outputs.

3. If Pi = Pij is a public output building block, then use
the simulator SIM-B for Pij with input all the input pa-
rameters for SIM, the public output and commitments of
all Pi0 , i

0 < i, and �j and output whatever the simulator
outputs.

Now consider a forger F � that takes as input a SIG pub-
lic key and corresponding signature oracle, generates a public
key/secret key pair (pkA; skA) and a public key pkB for E , runs
SIM using these parameters as inputs, and outputs whatever F
outputs. If F produces a forgery with probability at least �

3

in SIM, F � produces a forgery in the underlying SIG signature
scheme with probability at least �

3
.

Otherwise F produces a forgery with probability less than
�
3

in SIM. Then, an algorithm D that distinguishes between
the execution of S-SIG and SIM with probability greater than
2�
3

can be constructed.
Let S-SIG be an intermediate protocol that differs from the

original S-SIG in that in addition to verifying the zero knowl-

edge proofs generated by A, it decrypts A’s commitments (hav-
ing access to A’s secret key) and checks explicitly the predi-
cates of the zero knowledge proofs. Then, S-SIG = B0. If
we denote by S � f1; : : : ; qBg the subset of building blocks
in which party A generates a zero knowledge proof, then the
distinguishing probability between S-SIG and S-SIG depends
only on the soundness error of the proofs from S. We define �
to be DistDn (S-SIG; S-SIG) =

P
i2S SERR�iA(wiA).

We have thus 2�
3
� DistDn (S-SIG,SIM) � DistDn (S-SIG,

S-SIG)+DistDn (S-SIG,SIM))DistDn (S-SIG,SIM) � 2�
3
��.

This implies that there is at least one building block Pi
such that D distinguishes between B0 and the simulation of
P1 k � � � k Pi, SIM-B, with probability greater than 2�

3qB
� �

qB
.

To prove this, we use a hybrid argument: we construct a series
of simulators SIMj ; j = 0; : : : ; qB such that in SIMj the first
j building blocks are executed as in the protocol S-SIG and all
the other building blocks are executed as in the simulation SIM.
SIM0 corresponds to SIM and SIMqB corresponds to S-SIG. We
can write two inequalities for the distinguishing probability
between S-SIG and SIM: 2�

3
� � < DistDn (S-SIG,SIM) �

DistDn (SIMqB ;SIMqB�1) + � � � + DistDn (SIM1;SIM0). From
this, it follows that there is at least one i; 1 � i � qB such that
DistDn (SIMi;SIMi�1) >

2�=3��
qB

. ButDistDn (SIMi;SIMi�1) =

DistDi (B
0;SIM-B) > 2�

3qB
� �

qB
.

We further distinguish three cases:

1. Pi is one of: Generate, Mult2Secrets, InvSe-
cret, ModQ, Add2Mult or Mult2Add
Then, from theorem A.2: 2�

3qB
� �

qB
� DistDi (B

0;SIM-
B) � AdvE (A)+SIMERR�iB and it follows thatAdvE(A)
� �

3qB
� �

2qB
or SIMERR�iB �

�
3qB
� �

2qB
. A simple anal-

ysis shows that AdvE(A) � �
6qB

or SIMERR�iB �
�

6qB
or � � �

3
. If the last is true, then there exists at least one

j 2 S such that SERR�jA (wj) �
�

3qB
.

2. Pi is one of: Add2Secrets,AddSecretPub or Mult-
SecretPub

Then, from theorem A.2: 2�
3qB
� �

qB
� DistDi (B

0;SIM-
B) � AdvE (A) and it follows that either AdvE(A) �
�

3qB
or � � �

3
.

3. Pi is one of: RevealMult, RevealAdd or Reveal-
Exp

Then, from theorem A.2: 2�
3qB
� �

qB
� DistDi (B

0;SIM-
B) � SIMERR�iB and it follows that either SIMERR�iB �
�

3qB
or � � �

3
.

The conclusion of the theorem follows from the three cases.
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