SafEdge for Residential Networks Privacy from the Bottom Up

Ph.D. Thesis Proposal

Aldo Cassola

College of Computer and Information Science Northeastern University

Committee:

David Choffnes Alan Mislove Guevara Noubir Omprakash Gnawali (U. of Houston)

February 12 2014

Trends in Mobile Networks

- Internet is increasingly mobile. According to [CISCO2013]:
- Mobile data volume grew 70%, (500 Petabytes/month)
- Smartphones: 92% of handset traffic

- Connected mobile tablets online increased 2.5x (36M)
- Network speed, more than doubled
- Over 30% of traffic is offloaded to Femtocell or Wi-Fi, expected to increase [DeviceScape] [3GPP TS 23.261]

The Era of Free Cloud Services

- Increased connectivity: users expect ubiquitous access
 - Providers struggle to deliver large volumes, reduce cell sizes, offload to Wi-Fi
- Offerings for file sharing and synchronization
 - Dropbox (200M users), Google docs (120M), Microsoft SkyDrive (250M)
- Email, communications, streaming
 - Gmail (425M users), Hotmail (420M), Skype (660M), Youtube (1B)
- Social Networks
 - Twitter (218M), Facebook (1B)

What are the privacy implications?

Security and Privacy Concerns

- Network access:
 - Mobile Network operators can access handset data and location
 - Offloading to Open Wi-Fi APs encourages AP impersonation (Evil Twins, credential hijacking)
- Data protection:
 - Free services like plaintext data (plaintext Gmail \rightarrow Ads)
 - Clients may snoop into data (Skype visiting "encrypted" URLs)
 - Encrypted data access can leak information
- User Tracking:
 - Application providers can infer personal information from usage (e.g. weekday usage leaks workplace)

The Residential Space

- Network providers try to bring the network closer to users
- Deployment is hard and expensive
- Residential Broadband continues growth [AkamaiSOTI 2014, PEWINT2013]
- Residential devices: always on, capable, low failure rate (10K) hours)

	Country/Region	% Above 10 Mbps	QoQ Change	Yo Y Change
_	Global	19%	31%	69%
1	South Korea	70%	53%	33%
2	Japan	49%	14%	30%
3	Netherlands	44%	45%	106%
4	Switzerland	39%	6.7%	75%
5	Hong Kong	38%	19%	41%
6	Czech Republic	35%	31%	136%
7	Latvia	34%	3.7%	31%
8	Belgium	34%	36%	117%
9	United States	34%	40%	82%
10	Denmark	28%	38%	64%

Figure 16: High Broadband (>10 Mbps) Connectivity

Home Broadband vs. Dial Up, 2000-2013

Percentage of American adults 18 years and older who access the internet via ...

Thesis Statement

Residential Broadband Network access and infrastructure is a suitable bedrock to build network access and cloud services that are at the same time efficient, secure and privacy-protecting.

Focus of this Work

- Contributions:
 - Development and deployment of platform to study residential broadband
 - Identified potential for impersonation in advanced Wi-Fi technologies, and proposed solutions
 - Building new classes of service for more private network access

3 Main areas of work:

SafEdge Gate Wi-Fi Network Access

SafEdge Store Service

OpenInfrastructure Residential Platform

Focus of this Work

Study Residential Infrastructure

- Low-end devices
- Heterogeneous platforms
- Limited uplink
- > Research and Deployment Platform: OpenInfrastructure
- Extend network coverage to smartphones by allowing AP owners to offer backhaul
 - Home AP owners share network privately
 - Improve network coverage with Wi-Fi
 - > Access Control and Privacy: SafEdge Gate
- Build cloud services running on the Edge: Storage
 - Integrate privacy protection to service
 - Maximize performance over anonymity networks
 - Minimum impact to existing traffic
 - > Minimize exposure to service providers: SafEdge Store

Overview

- 1. Open Infrastructure
- 2. Residential Network Access
- 3. Edge Storage
- 4. Schedule
- 5. Questions

Open Infrastructure Testbed

- Suite of hardware and management tools for residential devices
 - Deploy and host new applications and experiments
 - Gather and analyze experiment data
 - Manage devices
- Goal: Offer a homogeneous platform for residential deployments
 - Other testbeds run on well-provisioned networks (PlanetLab)
 - Residential networks are unique (asymmetric, bandwidth- and hardware-limited)
 - First-hand data on usage and connectivity

Open Infrastructure Testbed

- Customized OpenWrt software
 - Suite of management and data gathering tools
 - Health and bandwidth capacity monitor
- 802.11n Devices
- 16GB USB flash
- 64MB RAM, 32MB on-board flash, 400MHz CPU
- Web-management Portal

Sannary APCat Nap	-	may	AP List	Map				
44 Online #2 23 Total of 12000.49 C8 transferred in the last 100 days		version		uptime (hr)	WIFI ESSID	PriBW (Kbps)	CuestIW (Khps)	Last Update
		0.63	129.10.115.200	3028.82		0.65	0.00	2012-08-05 03:11:1
Usage over the last 100 days		0.63	65.96.165.130	1946.94		0.59	0.00	2012-08-05 09:11:
		0.63	71.232.32.247	1.22		10.49	0.00	2012-08-05 03:11:
		0.61	129.10.115.200	0.04		0.00	0.00	2012-07-19 18:20
		0.63	24.63.24.189	4117.74		0.59	0.00	2012-08-05 09:11
		0.61	174.62.207.20	471.97		0.23	0.00	2012-08-05 03:11
		0.6	209.6.232.79	47,44		0.00	0.00	2012-04-12 19:41
		0.63	76.175.169.116	773.54		10.30	0.00	2012-08-05 03:11
		0.63	24.34.221.134	1434.77		0.80	0.00	2012-08-05 03:11
Be Be Me Be Be Be Be Me Be		0.63	24.147.69.225	4523.30		2086.77	0.00	2012-05-27 09:24
#20 #20 #20 #20 #20 #20 #20 #20 #20 #20		• 0.63	75.67.17.113	777.22		0.47	0.00	2012-08-05 03:11
Date		0.6	24,218,216,22	0.24		0.00	0.00	2012-02-26 16:12

Open Infrastructure Deployment

- Since Feb 2011:
 - 30 home APs: Boston and SF Bay
 - 1.3TB data trace over 6 months
 - 115 million network usage records and counting
- Spans 2 major ISPs
 - Comcast
 - RCN

Leveraging Residential Devices

- Can residential installations provide these services?
- Network Access Coverage
 - How dense is urban AP deployment?
 - Boston: 17 average, 7 reachable [JinTao2013]
- Cloud Services
 - Is there enough uplink to share?
 - How much latency can be expected?
 - How will services impact home traffic?

Used OpenInfrastructure to provide answers

Residential Backhaul Usage Patterns

Deployment data trace uplink: backhaul is underutilized
 > Results consistent with related, more limited work [Marcon2011]

Testbed RTT

RTT within OpenInfrastructure and CDNs

Background Throughput Impact

Concurrent uplink usage test

Overview

1. Open Infrastructure

2. Residential Network Access

- 3. Edge Storage
- 4. Schedule
- 5. Questions

Providing Network Access

Wi-Fi Access Control Today

- Wi-Fi offloading from carriers is substantial (30% of total) [CISCO2013]
- 4G Standards include offloading mechanisms [3GPP TS 23.261]
- Options for access control:
 - WPA and EAP mechanisms allow confidentiality and control
 - WPA-Enterprise uses username/passwords over tunnel
 - WPA-SIM uses SIM card in handset
 - Open + Captive Portal

Risks in Wi-Fi

- Wi-Fi systems vulnerable to impersonation (Evil Twins)
 - [Damsgaard2006], [Bauer2008], [Gonzales2010]
- WEP, WPA key derivation
 - WEP [Bittau2006]
 - TKIP [Tews2009]
 - WPA Cracking [Marlinspike2012]
- New attacks can exploit multilayer weaknesses to steal credentials [Cassola2013]
 - Jamming prevents other APs on the set to reach client
 - Show new network identity, visually indistinguishable from original
 - Abuse password dialogs to hide creation of new profile
 - MITM, credential exposure

Stealthy Multi-layer Evil Twin Attack

State of Current Solutions

- Wi-Fi hotspots are commonly Open: AT&T, Xfinity, airports, Facebook Wi-Fi, etc.
 - Protection and confidentiality not widely deployed
 - Even if used, vulnerable, identity is revealed, need specialized maintenance
- Residential devices tie single network key to all identities
 - SSID key gives access to all who know the key
 - Second, public SSID and share key to all
 - Unique to device
 - Problem of key distribution
 - Revoking access is hard
 - Same service to all

Goals

Anonymous Authentication

- Provider gives access to a set of users S={U₁, U₂, ..., U_n}
- U_i proves membership to the set without revealing its identity

Geographic untraceability

Protect client- and AP owner's IP from sites clients access

Low-overhead discovery

- Convenient client and provider signup
- Identity establishment or agreement

Fine-grained access control

- Each set in S has a set of access limitations, enforced at AP
- Incentive mechanisms

Authentication

User1	f(Key1) Permission1
User2	f(Key2) Permission2
User3	f(Key3) Permission3

Authentication

User1	f(Key1) Permission1
User2	f(Key2) Permission2
User3	f(Key3) Permission3

Anonymous Authentication

User2 PubKey2	Permission2
User3 PubKey3	Permission3

Authentication

User1	f(Key1) Permission1
User2	f(Key2) Permission2
User3	f(Key3) Permission3

Anonymous Authentication

Permission2
Permission3

Group g, Key K

User1 PubKey1	{K} _{PK1}
User2 PubKey2	{K} _{PK2}
User3 PubKey3	{K} _{PK3}

- Group signatures [Chaum91]
 - Supervising entity to reveal identities in case of dispute
 - Linear in size of anonymity set
- Ring Signatures [Rivest2001]
 - No supervisor
 - Also linear in |S|
- Computational Private Information Retrieval
 - First [Kushilevitz97]
 - Amortized O(log² n) comm. complexity [Gentry2005]
 - O(n/log n) pubkey ops [Lipmaa2009]

Fine-Grained Access Control

- Anonymity-only is easy to obtain: WPA-PSK
 Not flexible
- Residential users may not wish to unrestricted access to all
 - Different service levels for users
 - Still maintain anonymity
- Dynamic membership
 - Service may be terminated
 - New users may enter the set of served users

Low-Overhead Discovery Mechanism

- Users and providers need to meet before service is used
 - Establish identity
 - Exchange keys
 - Negotiate terms of use (payment, exchange, incentives)
- Leverage information in Online Social Networks
 - Public information as a directory of people and contact information (think PGP)
 - Still potential for impersonation

Features, Limitations and Future Work

SNEAP Features:

- Solves the SSID-Certificate problem
- Uses OSN API features to decide link between user/AP
- Provides encrypted link early
- >Facebook-Cisco's Wi-Fi is plaintext
- Limitations
 - User and AP owner identities are revealed to each other when connecting
 - OSN knows User-Provider link
- Future Work
 - Anonymous authentication method, Sybill protection, perfomance
 - OSN as directory
 - Incentives

Overview

- 1. Open Infrastructure
- 2. Residential Network Access

3. Edge Storage

- 4. Schedule
- 5. Questions

Cloud Storage Today

- Large providers (GDrive, Dropbox, Microsoft, Wuala, etc)
 - Heterogeneous privacy protection
 - Centrally managed storage (own infrastructure)
 - Delegated storage (S3, Azure)
- Personal Cloud / File sharing (owncloud, BTSync, WD MyCloud)
 - Storage is user-hosted
 - Mostly single user / some hosting capabilities (owncloud)
 - Some privacy

34/42

Privacy Pitfalls

- Clients access services directly, exposing IP
- IP Anonymizing (TOR) is not straightforward
 - No support for UDP communications
 - Side-channel leaks (DNS queries)
- Service + EncFS/Truecrypt + TOR
 - User identity revealed to service provider through authentication
 - Client program can leak or reveal information
 - Local daemon can read IP and already monitors FS activity
 - Access patterns

SafEdge Storage Services

- Goal: Private and efficient anonymous storage
- Performance
 - High throughput, low-impact
 - Low overhead
 - Incentive mechanisms
- Untraceability: session endpoint hiding
- Content Protection
 - Transport encryption
 - Data confidentiality
 - Resiliency
 - Access Pattern Protection

SafEdge Storage Architecture

37/42

SafEdge Throughput

- SafEdge Storage runs on uplink-limited residential links
 Prioritize regular home traffic
- Two scenarios
 - Component runs with full view of last mile link.
 - Component runs behind another device (typically NAT)
 - >Application must back-off when gateway saturated
- Onion routing can be slow
 - TCP throughput over TOR is limited by node owners
 - Large latency
 - > Have Master Copy coordinate, client aggregates links

Characterizing Shared Throughput

Bandwidth Probind

Existing and Future work

- Client-provided cloud storage [Zhou2012] [Zhang2013]
- Performance
 - Speed over the Onion aggregating storage providers:
 - Throughput aggregation [Kandula2008] [Jin2013]
 - Performance of hidden services [Loesing2009] [Snader2009,2011]
 - Uplink congestion detection
 - Available Bandwidth [Jain2002]
 - > Performance measurement over OpenInfrastructure
- Privacy Protection
 - Endpoint hiding, hidden services [TOR2004], ORAM [Stefanov2013]
 - Storage and transport confidentiality

Summary and Takeaway

- Cloud services and wireless network access as they stand today offer uneven privacy guarantees
- Edge services that leverage large numbers of participants can help mitigate privacy risks
- Research in this area brings about interesting services and research problems
 - Characterization of urban residential networks
 - Anonymous Wi-Fi authentication
 - Efficient, well-behaved Edge storage

Proposed Schedule

Proposed Task	Completion Date (by end of)
Anonymous Wi-Fi Authentication Design and Implementation	February 2014
Storage, Throughput Aggregation Design	March 2014
Storage and Throughput Implementation	April 2014
Performance Evaluation	May 2014
Dissertation defense	June 2014

Thank you!

Density and Residential Round-Trip Time

- Wardriving ping test (Urban Boston) [JinTao2013]
 - 17 visible APs at any time, 7 reachable on avg.

Bandwidth Usage (Nov '12-Feb '14)

