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KnuthCERUZZIInternetStanford GraphBaseInternetPREFACE
How an Knuth �nish the series,given all that has happened in omputingsine volume 1 appeared in 1968?| P. E. CERUZZI, Computing Reviews 8805-0370 (May 1988)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is huge; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this pre-fasile ontains Setion 7.1.4 of along, long hapter on ombinatorial algorithms. Chapter 7 will eventually �ll atleast three volumes (namely Volumes 4A, 4B, and 4C), more likely four, assumingthat I'm able to remain healthy. It will begin with a short review of graphtheory, with emphasis on some highlights of signi�ant graphs in the StanfordGraphBase, from whih I will be drawing many examples. Then omes Setion7.1: Zeros and Ones, beginning with basi material about Boolean operationsin Setion 7.1.1 and Boolean evaluation in Setion 7.1.2. Setion 7.1.3 appliesthose ideas to make omputer programs run fast. And Setion 7.1.4, whih you'reabout to read here, disusses the representation of Boolean funtions.The next part, 7.2, is about generating all possibilities, and it begins withSetion 7.2.1: Generating Basi Combinatorial Patterns. Setion 7.2.2 will dealwith baktraking in general. And so it will ontinue, if all goes well; an outlineof the entire Chapter 7 as urrently envisaged appears on the taop webpagethat is ited on page ii. Fasiles for everything that preedes Setion 7.2.2 havealready been published, exept for Setions 7.1.3 and 7.1.4 (whih will soon bepakaged into Volume 4 Fasile 1, �lling the gap between Volume 4 Fasile 0and Volume 4 Fasile 2). The pre-fasile for Setion 7.1.3 is available on theInternet for beta-testing. iii



iv PREFACE deision tablesThis part of The Art of Computer Programming gave me many more sur-prises than anything else so far. It deals with a topi that burst on the sene in1986, long after old-timers like me thought that we had already seen all of thebasi data strutures that would ever prove to be of extraspeial importane.I didn't atually learn about binary deision diagrams until 1995 or so, beauseI was preoupied with other things. At that time I wrote some experimentalprograms and realized that I must try to \shoehorn" this topi into Setion 7.1somehow. I kept seeing more and more papers about it in the literature, andI �led them away with the evergrowing pile of things-to-read-before-revising-Setion-7.1. (My �rst draft of Setion 7.1, written in 1977, inluded a dozen orso pages of material about \deision tables," whih I've now disarded beausethe new ideas are muh more important.)I began to write Setion 7.1.4 in May of 2007, thinking that it wouldeventually �ll roughly 35 pages, and that I ould easily draft it in three months.Now, more than a year later, I'm looking at more than 130 ompleted pages|even though I've onstantly had to ut, ut, ut! Every week I've been omingaross fasinating new things that simply ry out to be part of The Art.Binary deision diagrams (BDDs) are wonderful, and the more I play withthem the more I love them. For �fteen months I've been like a hild with a newtoy, being able now to solve problems that I never imagined would be tratable.(Just last week I was �nally able to answer researh problem 7.1.1{68 for n � 15,resolving a question that had been bugging me for years.) Every time I've trieda new appliation, I've learned more. I suspet that many readers will havethe same experiene, and that there will always be more to learn about suh afertile subjet. Already I know that I ould easily teah a one-semester ollegeourse about binary deision diagrams, at either the undergraduate or graduatelevel, with more than enough important material to over. Many aspets of thissubjet are still ripe for further investigation and improvement.Most of the theory and pratie related to BDDs is due to researhers inthe areas of hardware design, testing, and veri�ation. I have, however, tried topresent it from the standpoint of a programmer who is primarily interested inombinatorial algorithms. The topi of Boolean funtions and binary deisiondiagrams an of ourse be interpreted so broadly that it enompasses the entiresubjet of omputer programming. The real goal of this fasile is to fouson onepts that appear at the lowest levels, onepts on whih we an eretsigni�ant superstrutures. And even these apparently lowly notions turn outto be surprisingly rih, with expliit ties to setions 2.2.1, 2.3.2, 2.3.3, 2.3.4.1,2.3.4.2, 3.2.2, 3.4.1, 4.3.2, 4.6.4, 5.1.4, 5.3.1, 5.3.4, 6.3, and 6.4 of the �rst threevolumes. I strongly believe in building up a �rm foundation, so I have disussedBoolean topis muh more thoroughly than I will be able to do with material thatis newer or less basi. Setion 7.1.4 presented me with an extreme embarrassmentof rihes: After typing the manusript I was astonished to disover that I hadome up with 264 exerises, even though|believe it or not| I had to eliminatequite a lot of the interesting material that appears in my �les. In fat, I knowthat I've only begun to srath the surfae in some areas of this topi.



PREFACE v InternetBryantRudellSomenziKasmarStanfordKnuth
The published literature about binary deision diagrams is vast, and stillgrowing rapidly. Most of it appears in the proeedings of onferenes that I havenever attended, or in speialized journals that I rarely have oasion to read.So I fear that in several respets my knowledge is woefully behind the times,although I've tried my best. Please look, for example, at the exerises that I'velassed as researh problems (rated with diÆulty level 46 or higher), namelyexerises 127, 169, 179, 206, 251, and 264; I've also impliitly mentioned or posedadditional unsolved questions in the answers to exerises 41, 74, 118, 121(), 129,136, 142, 145, 158, 182, 184, 212, 215, 237, 241, and 245. Are those problemsstill open? Please inform me if you know of a solution to any of these intriguingquestions. And of ourse if no solution is known today but you do make progresson any of them in the future, I hope you'll let me know.I urgently need your help also with respet to dozens of ideas that ourredto me as I was preparing this material. I ouldn't help thinking of basi questionswhose answers were not given in any of the publiations I had seen. I ertainlydon't like to reeive redit for things that have already been published by others,and most of these results are quite natural \fruits" that were just waiting to be\pluked." Therefore please tell me if you know who deserves to be redited,with respet to Theorem P, or to the ideas found in exerises 2, 15, 17, 23, 29,30, 32, 33, 34, 36, 38, 40, 55, 59(b), 60, 61, 63, 64, 72, 74, 76, 77, 88, 92, 100,107, 110, 111, 119, 120, 124, 125, 126, 132, 135, 146, 156, 157, 160, 161, 162, 164,174(a,b), 175, 181, 183, 184, 190, 191, 192, 193, 196, 207, 221, 222, 226, 232, 233,244, 247, 252, 254, 258, or 259, and/or the implementation of f ℄ in the answerto exerise 236. Have any of those results appeared in print, to your knowledge?The experimental toolkits that I wrote for working with BDDs and ZDDswhile writing this setion are available (in unpolished form) on the Internet frommy \downloadable programs" page.I owe a great debt of gratitude to Randy Bryant, Rik Rudell, and FabioSomenzi, who helped me signi�antly at several ruial stages as I was preparingSetion 7.1.4. Andy Kasmar generously provided guest aounts on some ofStanford InfoLab's ever-hanging omputers, and held my hand as I ran some ofthe larger programs desribed herein. And as usual I thank dozens of people whohave patiently read what I've written and orreted dozens of dozens of mistakes.I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.28 August 2008



vi PREFACE BOSWELLJohnsonnotation hxyzimedian funtionmajority funtionNotationIEEE Transations
I at last deliver to the world a Work whih I have long promised,and of whih, I am afraid, too high expetations have been raised.The delay of its publiation must be imputed, in a onsiderable degree,to the extraordinary zeal whih has been shown by distinguished personsin all quarters to supply me with additional information.| JAMES BOSWELL, The Life of Samuel Johnson, LL.D. (1791)A note on notation. Several formulas in Setion 7.1.4 use the notation hxyzi,for the median funtion (aka majority funtion) that is disussed extensively inSetion 7.1.1. If you run aross other notations that may be unfamiliar, pleaselook at the Index to Notations at the end of Volumes 1, 2, or 3, and/or the entriesunder \Notation" in the index to the present booklet. Of ourse Volume 4 willsome day ontain its own Index to Notations.A note on referenes. Referenes to IEEE Transations inlude a letter odefor the type of transations, in boldfae preeding the volume number. Forexample, `IEEE Trans. C-35' means the IEEE Transations on Computers,volume 35. The IEEE no longer uses these onvenient letter odes, but theodes aren't too hard to deipher: `EC' one stood for \Eletroni Computers,"`IT' for \Information Theory," `SE' for \Software Engineering," and `SP' for\Signal Proessing," et.; `CAD' meant \Computer-Aided Design of IntegratedCiruits and Systems."



PREFACE vii Woelfeluniversal hashingsaturating subtrationmonusAn external exerise. This fasile refers to exerise 6.4{78, whih did notappear in the seond edition of Volume 3 until the 24th printing. Here is a opyof that exerise and its answer. (Please don't peek at the answer until you'veworked on the exerise.)
x 78. [M26 ℄ (P. Woelfel.) If 0 � x < 2n, let ha;b(x) = b(ax + b)=2kmod 2n�k. Showthat the set fha;b j 0 < a < 2n; a odd, and 0 � b < 2kg is a universal family of hashfuntions from n-bit keys to (n� k)-bit keys. (These funtions are partiularly easy toimplement on a binary omputer.)
78. Let g(x) = bx=2kmod 2n�k and Æ(x; x0) = P2k�1b=0 [g(x+ b)= g(x0 + b)℄. ThenÆ(x + 1; x0 + 1) = Æ(x; x0) + [g(x+ 2k)= g(x0 + 2k)℄ � [g(x)= g(x0)℄ = Æ(x; x0). AlsoÆ(x; 0) = (2k .� (xmod 2n)) + (2k .� ((�x) mod 2n)) when 0 < x < 2n, where a .� b =max(a� b; 0). Therefore Æ(x; x0) = (2k .� ((x� x0) mod 2n))+ (2k .� ((x0 � x) mod 2n))when x 6� x0 (modulo 2n).Now let A = fa j 0 < a < 2n; a oddg and B = fb j 0 � b < 2kg. We want toshow that Pa2APb2B [g(ax+ b)= g(ax0 + b)℄ � R=M = 2n�1+k=2n�k = 22k�1 when0 � x < x0 < 2n. And indeed, if x0 � x = 2pq with q odd, then we haveXa2A Xb2B [g(ax+ b)= g(ax0 + b)℄ =Xa2A Æ(ax; ax0) = 2Xa2A(2k .� ((2paq) mod 2n))
= 2p+12n�p�1�1Xj=0 (2k .�2p(2j+1)) = 2p+12k�p�1�1Xj=0 (2k�2p(2j+1))[p<k ℄ = 22k�1[p<k ℄:[See Leture Notes in Computer Siene 1672 (1999), 262{272.℄



0 COMBINATORIAL ALGORITHMS (F1B) BDDROBDDWIKIPEDIAbinary deision diagrams{triesmedian funtion+++rootbranh nodedashed lineLOHIsink node

In popular usage, the term BDDBDDBDD almost always refers toRedued Ordered Binary Deision Diagram (ROBDD in the literature,used when the ordering and redution aspets need to be emphasized).| WIKIPEDIA, The Free Enylopedia (7 July 2007)7.1.4. Binary Deision DiagramsLet's turn now to an important family of data strutures that have rapidly be-ome the method of hoie for representing and manipulating Boolean funtionsinside a omputer. The basi idea is a divide-and-onquer sheme somewhat likethe binary tries of Setion 6.3, but with several new twists.Figure 21 shows the binary deision diagram for a simple Boolean funtionof three variables, the median funtion hx1x2x3i of Eq. 7.1.1{(43). We an un-derstand it as follows: The node at the top is alled the root. Every internal nodekj , also alled a branh node, is labeled with a name or index j = V ( kj ) thatdesignates a variable; for example, the root node k1 in Fig. 21 designates x1.Branh nodes have two suessors, indiated by desending lines. One of thesuessors is drawn as a dashed line and alled LO; the other is drawn as a solidline and alled HI. These branh nodes de�ne a path in the diagram for any valuesof the Boolean variables, if we start at the root and take the LO branh fromnode kj when xj = 0, the HI branh when xj = 1. Eventually this path leadsto a sink node, whih is either ? (denoting FALSE) or > (denoting TRUE).



7.1.4 BINARY DECISION DIAGRAMS 1 FALSETRUEBDDbinary deision dagbinary treeshared subtreesdireted ayli graphdagOrdered BDDRedued BDD
? >

12 23 Fig. 21. The binary deision diagram (BDD)for the majority or median funtion hx1x2x3i.
In Fig. 21 it's easy to verify that this proess yields the funtion value FALSEwhen at least two of the variables fx1; x2; x3g are 0, otherwise it yields TRUE.Many authors use 0 and 1 to denote the sink nodes. We use ? and >instead, hoping to avoid any onfusion with the branh nodes k0 and k1 .Inside a omputer, Fig. 21 would be represented as a set of four nodes inarbitrary memory loations, where eah node has three �elds V LO HI .The V �eld holds the index of a variable, while the LO and HI �elds eah pointto another node or to a sink: 12 23? >? >

ROOT (1)
With 64-bit words, we might for example use 8 bits for V, then 28 bits for LOand the other 28 bits for HI.Suh a struture is alled a \binary deision diagram," or BDD for short.Small BDDs an readily be drawn as atual diagrams on a piee of paperor a omputer sreen. But in essene eah BDD is really an abstrat set oflinked nodes, whih might more properly be alled a \binary deision dag"|abinary tree with shared subtrees, a direted ayli graph in whih exatly twodistinguished ars emanate from every nonsink node.We shall assume that every BDD obeys two important restritions. First, itmust be ordered : Whenever a LO or HI ar goes from branh node ki to branhnode kj , we must have i < j. Thus, in partiular, no variable xj will ever bequeried twie when the funtion is evaluated. Seond, a BDD must be redued,in the sense that it doesn't waste spae. This means that a branh node's LOand HI pointers must never be equal, and that no two nodes are allowed to havethe same triple of values (V; LO; HI). Every node should also be aessible fromthe root. For example, the diagrams

? >
12 33 2 and 12 23 3 3 3? ? ? > ? > > > (2)

are not BDDs, beause the �rst one isn't ordered and the other one isn't redued.Many other avors of deision diagrams have been invented, and the liter-ature of omputer siene now ontains a rih alphabet soup of aronyms like



2 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 aronymsEVBDDFBDDIBDDOBDDOFDDOKFDDPBDDZDDtruth table+bead+square+primitivestringologydependeny on a variablerootsubfuntionssubtablesompression of databeads

EVBDD, FBDD, IBDD, OBDD, OFDD, OKFDD, PBDD, : : : , ZDD. In thisbook we shall always use the unadorned ode name \BDD" to denote a binarydeision diagram that is ordered and redued as desribed above, just as wegenerally use the word \tree" to denote an ordered (plane) tree, beause suhBDDs and suh trees are the most ommon in pratie.Reall from Setion 7.1.1 that every Boolean funtion f(x1; : : : ; xn) or-responds to a truth table, whih is the 2n-bit binary string that starts withthe funtion value f(0; : : : ; 0) and ontinues with f(0; : : : ; 0; 1), f(0; : : : ; 0; 1; 0),f(0; : : : ; 0; 1; 1), : : : , f(1; : : : ; 1; 1; 1). For example, the truth table of the medianfuntion hx1x2x3i is 00010111. Notie that this truth table is the same as the se-quene of leaves in the unredued deision tree of (2), with 0 7! ? and 1 7! > .In fat, there's an important relationship between truth tables and BDDs, whihis best understood in terms of a lass of binary strings alled \beads."A truth table of order n is a binary string of length 2n. A bead of order n isa truth table � of order n that is not a square; that is, � doesn't have the form�� for any string � of length 2n�1. (Mathematiians would say that a bead is a\primitive string of length 2n.") There are two beads of order 0, namely 0 and 1;and there are two of order 1, namely 01 and 10. In general there are 22n� 22n�1beads of order n when n > 0, beause there are 22n binary strings of length 2nand 22n�1 of them are squares. The 16� 4 = 12 beads of order 2 are0001; 0010; 0011; 0100; 0110; 0111; 1000; 1001; 1011; 1100; 1101; 1110; (3)these are also the truth tables of all funtions f(x1; x2) that depend on x1, inthe sense that f(0; x2) is not the same funtion as f(1; x2).Every truth table � is a power of a unique bead, alled its root. For if � haslength 2n and isn't already a bead, it's the square of another truth table � 0; andby indution on the length of � , we must have � 0 = �k for some root �. Hene� = �2k, and � is the root of � as well as � 0. (Of ourse k is a power of 2.)A truth table � of order n > 0 always has the form �0�1, where �0 and �1 aretruth tables of order n � 1. Clearly � represents the funtion f(x1; x2; : : : ; xn)if and only if �0 represents f(0; x2; : : : ; xn) and �1 represents f(1; x2; : : : ; xn).These funtions f(0; x2; : : : ; xn) and f(1; x2; : : : ; xn) are alled subfuntions of f ;and their truth tables, �0 and �1, are alled subtables of � .Subtables of a subtable are also onsidered to be subtables, and a table isonsidered to be a subtable of itself. Thus, in general, a truth table of order nhas 2k subtables of order n � k, for 0 � k � n, orresponding to 2k possiblesettings of the �rst k variables (x1; : : : ; xk). Many of these subtables often turnout to be idential; in suh ases we're able to represent � in a ompressed form.The beads of a Boolean funtion are the subtables of its truth table that hap-pen to be beads. For example, let's onsider again the median funtion hx1x2x3i,with its truth table 00010111. The distint subtables of this truth table aref00010111; 0001; 0111; 00; 01; 11; 0; 1g; and all of them exept 00 and 11 arebeads. Therefore the beads of hx1x2x3i aref00010111; 0001; 0111; 01; 0; 1g: (4)



7.1.4 BINARY DECISION DIAGRAMS 3 B(f)size of its BDDpi as random exAnd now we get to the point: The nodes of a Boolean funtion's BDD are inone-to-one orrespondene with its beads. For example, we an redraw Fig. 21by plaing the relevant bead inside of eah node:
0 1
000101110001 011101 : (5)

In general, a funtion's truth tables of order n + 1 � k orrespond to its sub-funtions f(1; : : : ; k�1; xk; : : : ; xn) of that order; so its beads of order n+1� korrespond to those subfuntions that depend on their �rst variable, xk. There-fore every suh bead orresponds to a branh node kk in the BDD. And if kk isa branh node orresponding to the truth table � 0 = � 00� 01, its LO and HI branhespoint respetively to the nodes that orrespond to the roots of � 00 and � 01.This orrespondene between beads and nodes proves that every Booleanfuntion has one and only one representation as a BDD. The individual nodesof that BDD might, of ourse, be plaed in di�erent loations inside a omputer.If f is any Boolean funtion, let B(f) denote the number of beads that it has.This is the size of its BDD|the total number of nodes, inluding the sinks. Forexample, B(f) = 6 when f is the median-of-three funtion, beause (5) has size 6.To �x the ideas, let's work out another example, the \more-or-less random"funtion of 7.1.1{(22) and 7.1.2{(6). Its truth table, 1100100100001111, is abead, and so are the two subtables 11001001 and 00001111. Thus we know thatthe root of its BDD will be a k1 branh, and that the LO and HI nodes below theroot will both be k2 s. The subtables of length 4 are f1100; 1001; 0000; 1111g;here the �rst two are beads, but the others are squares. To get to the next level,we break the beads in half and arry over the square roots of the nonbeads,identifying dupliates; this leaves us with f11; 00; 10; 01g. Again there are twobeads, and a �nal step produes the desired BDD:12 23 34 4 ? >> ? > ?
: (6)

(In this diagram and others below, it's onvenient to repeat the sink nodes ?and > in order to avoid exessively long onneting lines. Only one ? nodeand one > node are atually present; so the size of (6) is 9, not 13.)An alert reader might well be thinking at this point, \Very nie, but whatif the BDD is huge?" Indeed, funtions an easily be onstruted whose BDD isimpossibly large; we'll study suh ases later. But the wonderful thing is that agreat many of the Boolean funtions that are of pratial importane turn outto have reasonably small values of B(f). So we shall onentrate on the good



4 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 evaluationlexiographially smallesttruth tableount the number of solutionsenumeration of solutionsSAT-ounting, see enumeration of solutionsrandom solutionslist all solutionsBoolean programming problemlinear Boolean programminggenerating funtionreliability polynomialsequential representation of BDDs+

news �rst, postponing the bad news until we've seen why BDDs have proved tobe so popular.BDD virtues. If f(x) = f(x1; : : : ; xn) is a Boolean funtion whose BDD isreasonably small, we an do many things quikly and easily. For example:� We an evaluate f(x) in at most n steps, given any input vetor x = x1 : : : xn,by simply starting at the root and branhing until we get to a sink.� We an �nd the lexiographially smallest x suh that f(x) = 1, by start-ing at the root and repeatedly taking the LO branh unless it goes diretlyto ? . The solution has xj = 1 only when the HI branh was neessary at kj .For example, this proedure gives x1x2x3 = 011 in the BDD of Fig. 21, andx1x2x3x4 = 0000 in (6). (It loates the value of x that orresponds to theleftmost 1 in the truth table for f .) Only n steps are needed, beause everybranh node orresponds to a nonzero bead; we an always �nd a downwardpath to > without baking up. Of ourse this method fails when the root itselfis ? . But that happens only when f is identially zero.� We an ount the number of solutions to the equation f(x) = 1, usingAlgorithm C below. That algorithm does B(f) operations on n-bit numbers; soits running time is O(nB(f)) in the worst ase.� After Algorithm C has ated, we an speedily generate random solutionsto the equation f(x) = 1, in suh a way that every solution is equally likely.� We an also list all solutions x to the equation f(x) = 1. The algorithm inexerise 16 does this in O(nN) steps when there are N solutions.� We an solve the linear Boolean programming problem: Find x suh thatw1x1 + � � �+ wnxn is maximum, subjet to f(x1; : : : ; xn) = 1; (7)given onstants (w1; : : : ; wn). Algorithm B (below) does this inO(n+B(f)) steps.� We an ompute the generating funtion a0 + a1z + � � �+ anzn, where thereare aj solutions to f(x1; : : : ; xn) = 1 with x1 + � � �+ xn = j. (See exerise 25.)� We an alulate the reliability polynomial F (p1; : : : ; pn), whih is the prob-ability that f(x1; : : : ; xn) = 1 when eah xj is independently set to 1 with agiven probability pj . Exerise 26 does this in O(B(f)) steps.Moreover, we will see that BDDs an be ombined and modi�ed eÆiently. Forexample, it is not diÆult to form the BDDs for f(x1; : : : ; xn) ^ g(x1; : : : ; xn)and f(x1; : : : ; xj�1; g(x1; : : : ; xn); xj+1; : : : ; xn) from the BDDs for f and g.Algorithms for solving basi problems with BDDs are often desribed mosteasily if we assume that the BDD is given as a sequential list of branh instru-tions Is�1, Is�2, : : : , I1, I0, where eah Ik has the form (�vk? lk:hk). For example,(6) might be represented as a list of s = 9 instrutionsI8 = (�1? 7: 6);I7 = (�2? 5: 4);I6 = (�2? 0: 1); I5 = (�3? 1: 0);I4 = (�3? 3: 2);I3 = (�4? 1: 0); I2 = (�4? 0: 1);I1 = (�5? 1: 1);I0 = (�5? 0: 0); (8)with v8 = 1, l8 = 7, h8 = 6, v7 = 2, l7 = 5, h7 = 4, : : : , v0 = 5, l0 = h0 = 0. Ingeneral the instrution `(�v? l:h)' means, \If xv = 0, go to Il, otherwise go to Ih,"



7.1.4 BINARY DECISION DIAGRAMS 5 topologial orderingounting solutionssatis�ability ountingnotation jf jmultipreision arithmetimodular arithmetiChinese remainder algorithmoating point arithmeti
exept that the last ases I1 and I0 are speial. We require that the LO and HIbranhes lk and hk satisfylk < k; hk < k; vlk > vk; and vhk > vk; for s > k � 2; (9)in other words, all branhes move downward, to variables of greater index. Butthe sink nodes > and ? are represented by dummy instrutions I1 and I0, inwhih lk = hk = k and the \variable index" vk has the impossible value n+ 1.These instrutions an be numbered in any way that respets the topologialordering of the BDD, as required by (9). The root node must orrespond to Is�1,and the sink nodes must orrespond to I1 and I0, but the other index numbersaren't so rigidly presribed. For example, (6) might also be expressed asI 08 = (�1? 7: 2);I 07 = (�2? 4: 6);I 06 = (�3? 3: 5); I 05 = (�4? 0: 1);I 04 = (�3? 1: 0);I 03 = (�4? 1: 0); I 02 = (�2? 0: 1);I 01 = (�5? 1: 1);I 00 = (�5? 0: 0); (10)
and in 46 other isomorphi ways. Inside a omputer, the BDD need not atu-ally appear in onseutive loations; we an readily traverse the nodes of anyayli digraph in topologial order, when the nodes are linked as in (1). Butwe will imagine that they've been arranged sequentially as in (8), so that variousalgorithms are easier to understand.One tehniality is worth noting: If f(x) = 1 for all x, so that the BDDis simply the sink node > , we let s = 2 in this sequential representation.Otherwise s is the size of the BDD. Then the root is always represented by Is�1.Algorithm C (Count solutions). Given the BDD for a Boolean funtion f(x) =f(x1; : : : ; xn), represented as a sequene Is�1, : : : , I0 as desribed above, thisalgorithm determines jf j, the number of binary vetors x = x1 : : : xn suh thatf(x) = 1. It also omputes the table 0, 1, : : : , s�1, where k is the numberof 1s in the bead that orresponds to Ik.C1. [Loop over k.℄ Set 0  0, 1  1, and do step C2 for k = 2, 3, : : : , s � 1.Then return the answer 2vs�1�1s�1.C2. [Compute k.℄ Set l lk, h hk, and k  2vl�vk�1l + 2vh�vk�1h.For example, when presented with (8), this algorithm omputes2  1; 3  1; 4  2; 5  2; 6  4; 7  4; 8  8;the total number of solutions to f(x1; x2; x3; x4) = 1 is 8.The integers k in Algorithm C satisfy0 � k < 2n+1�vk ; for 2 � k < s; (11)and this upper bound is best possible. Therefore multipreision arithmeti maybe needed when n is large. If extra storage spae for high preision is problemati,one ould use modular arithmeti instead, running the algorithm several timesand omputing k mod p for various single-preision primes p; then the �nalanswer would be deduible with the Chinese remainder algorithm, Eq. 4.3.2{(24).On the other hand, oating point arithmeti is usually suÆient in pratie.



6 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 yle graphindependentmaximal indep subsetskernelsonseutive 1s forbiddentwo-in-a-row funtionrandom solutions to f(x) = 1+
Let's look at some examples that are more interesting than (6). The BDDs12 23 3 34 4 4 45 5 56

??? ?? ?> ?Independent sets

1 23456The yle C6

12 23 3 34 4 4 45 5 566
?? ?? ?> ?

?
? Kernels (12)represent funtions of six variables that orrespond to subsets of verties in theyle graph C6. In this setup a vetor suh as x1 : : : x6 = 100110 stands for thesubset f1; 4; 5g; the vetor 000000 stands for the empty subset; and so on. On theleft is the BDD for whih we have f(x) = 1 when x is independent in C6; on theright is the BDD for maximal independent subsets, also alled the kernels of C6(see exerise 12). In general, the independent subsets of Cn orrespond to ar-rangements of 0s and 1s in a irle of length n, with no two 1s in a row; the kernelsorrespond to suh arrangements in whih there also are no three onseutive 0s.Algorithm C deorates a BDD with ounts k, working from bottom to top,where k is the number of paths from node k to > . When we apply thatalgorithm to the BDDs in (12) we get12 23 3 34 4 4 45 5 56

??? ?? ?> ?

1813 58 5 55 3 3 23 2 11
000 00 01 0

12 23 3 34 4 4 45 5 566
?? ?? ?> ?

?
?

53 21 2 22 1 1 11 1 111
00 00 01 0

0
0

; (13)
hene C6 has 18 independent sets and 5 kernels.These ounts make it easy to generate uniformly random solutions. Forexample, to get a random independent set vetor x1 : : : x6, we know that 13 ofthe solutions in the left-hand BDD have x1 = 0, while the other 5 have x1 = 1.So we set x1  0 with probability 13/18, and take the LO branh; otherwise weset x1  1 and take the HI branh. In the latter ase, x1 = 1 fores x2  0, butthen x3 ould go either way.Suppose we've hosen to set x1  1, x2  0, x3  0, and x4  0; this aseours with probability 518 � 55 � 35 � 23 = 218 . Then there's a branh from k4 tok6 , so we ip a oin and set x5 to a ompletely random value. In general, a



7.1.4 BINARY DECISION DIAGRAMS 7 Boolean programming problem++binate overing problem, see Boolean programming problemweightedThue sequene+Morse sequene+
branh from ki to kj means that the j � i� 1 intermediate bits xi+1 : : : xj�1should independently beome 0 or 1 with equal probability. Similarly, a branhfrom ki to > should assign random values to xi+1 : : : xn.Of ourse there are simpler ways to make a random hoie between 18solutions to a ombinatorial problem. Moreover, the right-hand BDD in (13)is an embarrassingly omplex way to represent the �ve kernels of C6: We ouldsimply have listed them, 001001, 010010, 010101, 100100, 101010! But the pointis that this same method will yield the independent sets and kernels of Cn whenn is muh larger. For example, the 100-yle C100 has 1,630,580,875,002 kernels,yet the BDD desribing them has only 855 nodes. One hundred simple steps willtherefore generate a fully random kernel from this vast olletion.Boolean programming and beyond. A bottom-up algorithm analogous toAlgorithm C is also able to �nd optimum weighted solutions (7) to the Booleanequation f(x) = 1. The basi idea is that it's easy to dedue an optimum solutionfor any bead of f , one we know optimum solutions for the LO and HI beadsthat lie diretly below it.Algorithm B (Solutions of maximum weight). Let Is�1, : : : , I0 be a sequeneof branh instrutions that represents the BDD for a Boolean funtion f, as inAlgorithm C, and let (w1; : : : ; wn) be an arbitrary sequene of integer weights.This algorithm �nds a binary vetor x = x1 : : : xn suh that w1x1 + � � �+ wnxnis maximum, over all x with f(x) = 1. We assume that s > 1; otherwise f(x)is identially 0. Auxiliary integer vetors m1 : : :ms�1 and W1 : : :Wn+1 are usedin the alulations, as well as an auxiliary bit vetor t2 : : : ts�1.B1. [Initialize.℄ Set Wn+1  0 and Wj  Wj+1 +max(wj ; 0) for n � j � 1.B2. [Loop on k.℄ Set m1  0 and do step B3 for 2 � k < s. Then do step B4.B3. [Proess Ik.℄ Set v  vk, l  lk, h  hk, tk  0. If l 6= 0, set mk  ml +Wv+1 �Wvl . Then if h 6= 0, ompute m  mh +Wv+1 �Wvh + wv;and if l = 0 or m > mk, set mk  m and tk  1.B4. [Compute the x's.℄ Set j  0, k  s � 1, and do the following operationsuntil j = n: While j < vk � 1, set j  j + 1 and xj  [wj > 0℄; if k > 1,set j  j + 1 and xj  tk and k  (tk=0? lk: hk).A simple ase of this algorithm is worked out in exerise 18. Step B3 does teh-nial maneuvers that may look a bit sary, but their net e�et is just to omputemk  max(ml +Wv+1 �Wvl ; mh +Wv+1 �Wvh + wv); (14)and to reord in tk whether l or h is better. In fat, vl and vh are usually bothequal to v + 1; then the alulation simply sets mk  max(ml;mh + wv), or-responding to the ases xv = 0 and xv = 1. Tehnialities arise only beause wewant to avoid fethingm0, whih is �1, and beause vl or vh might exeed v+1.With this algorithm we an, for example, quikly �nd an optimum set of ker-nel verties in an n-yle Cn, using weights based on the \Thue{Morse" sequene,wj = (�1)�j ; (15)
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here �j denotes sideways addition, Eq. 7.1.3{(59). In other words, wj is �1 or+1, depending on whether j has odd parity or even parity when expressed asa binary number. The maximum of w1x1 + � � � + wnxn ours when the even-parity verties 3, 5, 6, 9, 10, 12, 15, : : : most strongly outnumber the odd-parityverties 1, 2, 4, 7, 8, 11, 13, : : : that appear in a kernel. It turns out thatf1; 3; 6; 9; 12; 15; 18; 20; 23; 25; 27; 30; 33; 36; 39; 41; 43; 46; 48;51; 54; 57; 60; 63; 66; 68; 71; 73; 75; 78; 80; 83; 86; 89; 92; 95; 97; 99g (16)is an optimum kernel in this sense when n = 100; only �ve verties of odd parity,namely f1; 25; 41; 73; 97g, need to be inluded in this set of 38 to satisfy the kernelonditions, hene max(w1x1+� � �+w100x100) = 28. Thanks to Algorithm B, a fewthousand omputer instrutions are suÆient to selet (16) from more than a tril-lion possible kernels, beause the BDD for all those kernels happens to be small.Mathematially pristine problems related to ombinatorial objets like ylekernels ould also be resolved eÆiently with more traditional tehniques, whihare based on reurrenes and indution. But the beauty of BDD methods is thatthey apply also to real-world problems that don't have any elegant struture. Forexample, let's onsider the graph of 49 \united states" that appeared in 7{(17)and 7{(61). The Boolean funtion that represents all the maximal independentsets of that graph (all the kernels) has a BDD of size 780 that begins as follows:MENH NHVT VTMA MA MARI RI RI RICT CT CT CTNY NY NY

?? ? ?? ? ?
(17)

Algorithm B quikly disovers the following kernels of minimum and maximumweight, when eah state vertex is simply weighted aording to the sum of lettersin its postal ode (wCA = 3 + 1, wDC = 4 + 3, : : : , wWY = 23 + 25):
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Minimum weight = 155 ALAZ ARCA CO CTDE
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Maximum weight = 492 (18)This graph has 266,137 kernels; but with Algorithm B, we needn't generate themall. In fat, the right-hand example in (18) ould also be obtained with a smallerBDD of size 428, whih haraterizes the independent sets, beause all weights



7.1.4 BINARY DECISION DIAGRAMS 9 gridonnetedness+spanning subgraphsgenerating funtionreliability polynomial+availability polynomial of a Boolean funtion, see reliabilityharateristi polynomial of a Boolean funtion, see reliabilitypolynomialmultilinearinteger multilinear representationsBoole

are positive. (A kernel of maximum weight is the same thing as an independentset of maximum weight, in suh ases.) There are 211,954,906 independent setsin this graph, many more than the number of kernels; yet we an�nd an independent set of maximum weight more quikly thana kernel of maximum weight, beause the BDD is smaller.1 2 43 5 76 8 9Fig. 22. The grid P3 P3, anda BDD for its onneted subgraphs.
8979 7968 68 6858 58 58 58 5857 57 5736 36 36 363635 35 3525 25 25 2547 47 47 4724 2413 1312

>??
? ??

?
?? ?
?

A quite di�erent sort of graph-related BDD is shown inFig. 22. This one is based on the 3�3 grid P3 P3; it haraterizesthe sets of edges that onnet all verties of the grid together. Thus,it's a funtion f(x12; x13; : : : ; x89) of the twelve edges 1��� 2, 1��� 3, : : : ,8��� 9 instead of the nine verties f1; : : : ; 9g. Exerise 55 desribes one way toonstrut it. When Algorithm C is applied to this BDD, it tells us that exatly431 of the 212 = 4096 spanning subgraphs of P3 P3 are onneted.A straightforward extension of Algorithm C (see exerise 25) will re�ne thistotal and ompute the generating funtion of these solutions, namelyG(z) = Xx z�xf(x) = 192z8 + 164z9 + 62z10 + 12z11 + z12: (19)Thus P3 P3 has 192 spanning trees, plus 164 spanning subgraphs that areonneted and have nine edges, and so on. Exerise 7.2.1.6{106(a) gives a formulafor the number of spanning trees in Pm Pn for general m and n; but thefull generating funtion G(z) ontains onsiderably more information, and itprobably has no simple formula unless min(m;n) is small.Suppose eah edge u��� v is present with probability puv, independent ofall other edges of P3 P3. What is the probability that the resulting subgraphis onneted? This is the reliability polynomial, whih also goes by a varietyof other names beause it arises in many di�erent appliations. In general, asdisussed in exerise 7.1.1{12, every Boolean funtion f(x1; : : : ; xn) has a uniquerepresentation as a polynomial F (x1; : : : ; xn) with the properties thati) F (x1; : : : ; xn) = f(x1; : : : ; xn) whenever eah xj is 0 or 1;ii) F (x1; : : : ; xn) is multilinear: Its degree in xj is � 1 for all j.This polynomial F has integer oeÆients and satis�es the basi reurreneF (x1; : : : ; xn) = (1� x1)F0(x2; : : : ; xn) + x1F1(x2; : : : ; xn); (20)where F0 and F1 are the integer multilinear representations of f(0; x2; : : : ; xn)and f(1; x2; : : : ; xn). Indeed, (20) is George Boole's \law of development."Two important things follow from reurrene (20). First, F is preiselythe reliability polynomial F (p1; : : : ; pn) mentioned earlier, beause the reliability
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polynomial obviously satis�es the same reurrene. Seond, F is easily alulatedfrom the BDD for f , working upward from the bottom and using (20) to omputethe reliability of eah bead. (See exerise 26.)The onnetivity funtion for an 8� 8 grid P8 P8 is, of ourse, muh moreompliated than the one for P3 P3; it is a Boolean funtion of 112 variables andits BDD has 43790 nodes, ompared to only 37 in Fig. 22. Still, omputationswith this BDD are quite feasible, and in a seond or two we an omputeG(z) = 126231322912498539682594816z63+ 1006611140035411062600761344z64+ � � �+ 6212z110 + 112z111 + z112;as well as the probability F (p) of onnetednessand its derivative F 0(p), when eah of the edges ispresent with probability p (see exerise 29):F (p): 0 p 1 ; F 0(p): 0 p 1 : (21)
*A sweeping generalization. Algorithms B and C and the algorithms we'vebeen disussing for bottom-up BDD sanning are atually speial ases of a muhmore general sheme that an be exploited in many additional ways. Consideran abstrat algebra with two assoiative binary operators Æ and �, satisfying thedistributive laws� � (� Æ ) = (� � �) Æ (� � ); (� Æ ) � � = (� � �) Æ ( � �): (22)Every Boolean funtion f(x1; : : : ; xn) orresponds to a fully elaborated truth tableinvolving the symbols Æ, �, ?, and >, together with �xj and xj for 1 � j � n, ina way that's best understood by onsidering a small example: When n = 2 andwhen the ordinary truth table for f is 0010, the fully elaborated truth table is(�x1 � �x2 � ?) Æ (�x1 � x2 � ?) Æ (x1 � �x2 � >) Æ (x1 � x2 � ?): (23)The meaning of suh an expression depends on the meanings that we attah tothe symbols Æ, �, ?, >, and to the literals �xj and xj ; but whatever the expressionmeans, we an ompute it diretly from the BDD for f .For example, let's return to Fig. 21, the BDD for hx1x2x3i. The elaborationsof nodes ? and > are �? = ? and �> = >, respetively. Then the elaborationof k3 is �3 = (�x3 ��?) Æ (x3 ��>); the elaborations of the nodes labeled k2 are�l2 = (�x2�(�x3Æx3)��?)Æ(x2��3) on the left and �r2 = (�x2��3)Æ(x2�(�x3Æx3)��>)on the right; and the elaboration of node k1 is �1 = (�x1 � �l2) Æ (x1 � �r2).(Exerise 31 disusses the general proedure.) Expanding these formulas via thedistributive laws (22) leads to a full elaboration with 2n = 8 \terms":�1 = (�x1��x2��x3�?) Æ (�x1��x2�x3�?) Æ (�x1�x2��x3�?) Æ (�x1�x2�x3�>)Æ (x1��x2��x3�?) Æ (x1��x2�x3�>) Æ (x1�x2��x3�>) Æ (x1�x2�x3�>): (24)
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Algorithm C is the speial ase where `Æ' is addition, `�' is multipliation,`?' is 0, `>' is 1, `�xj ' is 1, and `xj ' is also 1. Algorithm B arises when `Æ' is themaximum operator and `�' is addition; the distributive laws�+max(�; ) = max(�+�; �+); max(�; ) + � = max(�+�; +�) (25)are easily heked. We interpret `?' as �1, `>' as 0, `�xj ' as 0, and `xj ' as wj .Then, for example, (24) beomesmax(�1;�1;�1; w2 + w3;�1; w1 + w3; w1 + w2; w1 + w2 + w3);and in general the full elaboration under this interpretation is equivalent to theexpression maxfw1x1 + � � �+ wnxn j f(x1; : : : ; xn) = 1g.Friendly funtions. Many families of funtions are known to have BDDs ofmodest size. If f is, for example, a symmetri funtion of n variables, it's easyto see that B(f) = O(n2). Indeed, when n = 5 we an start with the triangularpattern 12 23 3 34 4 4 45 5 5 5 5�=0 �=1 �=2 �=3 �=4 �=5

(26)
and set the leaves to ? or > depending on the respetive values of f when thevalue of �x = x1+� � �+x5 equals 0, 1, 2, 3, 4, or 5. Then we an remove redundantor equivalent nodes, always obtaining a BDD whose size is �n+22 � or less.Suppose we take any funtion f(x1; : : : ; xn) and make two adjaent variablesequal: g(x1; : : : ; xn) = f(x1; : : : ; xk�1; xk; xk; xk+2; : : : ; xn): (27)Exerise 40 proves that B(g) � B(f). And by repeating this ondensationproess, we �nd that a funtion suh as f(x1; x1; x3; x3; x3; x6) has a small BDDwheneverB(f) is small. In partiular, the threshold funtion [2x1+ 3x3 + x6� t℄must have a small BDD for any value of t, beause it's a ondensed version ofthe symmetri funtion f(x1; : : : ; x6) = [x1 + � � �+ x6� t℄. This argument showsthat any threshold funtion with nonnegative integer weights,f(x1; x2; : : : ; xn) = [w1x1 + w2x2 + � � �+ wnxn� t℄; (28)an be obtained by ondensing a symmetri funtion of w1 + w2 + � � � + wnvariables, so its BDD size is O(w1 + w2 + � � �+ wn)2.Threshold funtions often turn out to be easy even when the weights growexponentially. For example, suppose t = (t1t2 : : : tn)2 and onsiderft(x1; x2; : : : ; xn) = [2n�1x1 + 2n�2x2 + � � �+ xn� t℄: (29)
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This funtion is true if and only if the binary string x1x2 : : : xn is lexiographiallygreater than or equal to t1t2 : : : tn, and its BDD always has exatly n+ 2 nodeswhen tn = 1. (See exerise 170.)Another kind of funtion with small BDD is the 2m-way multiplexer ofEq. 7.1.2{(31), a funtion of n = m+ 2m variables:Mm(x1; : : : ; xm;xm+1; : : : ; xn) = xm+1+(x1:::xm)2 : (30)Its BDD begins with 2k�1 branh nodes kk for 1 � k � m. But below that om-plete binary tree, there's just one kk for eah xk in the main blok of variableswith m < k � n. Hene B(Mm) = 1+2+ � � �+2m�1+2m+2 = 2m+1+1 < 2n.A linear network model of omputation, illustrated in Fig. 23, helps tolarify the ases where a BDD is espeially eÆient. Consider an arrangementof omputational modules M1, M2, : : : , Mn, in whih the Boolean variable xkis input to module Mk; there also are wires between neighboring modules, eaharrying a Boolean signal, with ak wires from Mk to Mk+1 and bk wires fromMk+1 to Mk for 1 � k � n. A speial wire out of Mn ontains the output ofthe funtion, f(x1; : : : ; xn). We de�ne a0 = b0 = bn = 0 and an = 1, so thatmoduleMk has exatly k = 1+ak�1+bk input ports and exatly dk = ak+bk�1output ports for eah k. It omputes dk Boolean funtions of its k inputs.The individual funtions omputed by eah module an be arbitrarily om-pliated, but they must be well de�ned in the sense that their joint values areompletely determined by the x's: Every hoie of (x1; : : : ; xn) must lead toexatly one way to set the signals on all the wires, onsistent with all of thegiven funtions.TheoremM. If f an be omputed by suh a network, thenB(f)�Pnk=0 2ak2bk.Proof. We will show that the BDD for f has at most 2ak�12bk�1 branh nodeskk , for 1 � k � n. This is lear if bk�1 = 0, beause at most 2ak�1 subfuntionsare possible when x1 through xk�1 have any given values. So we will show thatany network that has ak�1 forward wires and bk�1 bakward wires betweenMk�1and Mk an be replaed by an equivalent network that has ak�12bk�1 forwardwires and none that run bakward.For onveniene, let's onsider the ase k = 4 in Fig. 23, with a3 = 4 andb3 = 2; we want to replae those 6 wires by 16 that run only forward. SupposeAlie is in harge ofM3 and Bob is in harge ofM4. Alie sends a 4-bit signal, a,to Bob while he sends a 2-bit signal, b, to her. More preisely, for any �xedvalue of (x1; : : : ; xn), Alie omputes a ertain funtion A and Bob omputes afuntion B, where A(b) = a and B(a) = b: (31)Alie's funtion A depends on (x1; x2; x3), so Bob doesn't know what it is; Bob'sfuntion B is, similarly, unknown to Alie, sine it depends on (x4; : : : ; xn).But those unknown funtions have the key property that, for every hoie of(x1; : : : ; xn), there's exatly one solution (a; b) to the equations (31).
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Fig. 23. A generi network of Boolean modules for whih Theorem M is valid.So Alie hanges the behavior of module M3: She sends Bob four 4-bitvalues, A(00), A(01), A(10), and A(11), thereby revealing her A funtion. AndBob hanges the behavior of M4: Instead of sending any feedbak, he looks atthose four values, together with his other inputs (namely x4 and the b4 bitsreeived from M5), and disovers the unique a and b that solve (31). His newmodule uses this value of a to ompute the a4 bits that he outputs to M5.Theorem M says that the BDD size will be reasonably small if we anonstrut suh a network with small values of ak and bk. Indeed, B(f) will beO(n) if the a's and b's are bounded, although the onstant of proportionalitymight be huge. Let's work an example by onsidering the three-in-a-row funtion,f(x1; : : : ; xn) = x1x2x3_x2x3x4_� � �_xn�2xn�1xn_xn�1xnx1_xnx1x2; (32)whih is true if and only if a irular neklae labeled with bits x1, : : : , xn hasthree onseutive 1s. One way to implement it via Boolean modules is to giveMkthree inputs (uk; vk; wk) from Mk�1 and two inputs (yk; zk) from Mk+1, whereuk = xk�1; vk = xk�2xk�1; wk = xn�1xnx1 _ � � � _ xk�3xk�2xk�1;yk = xn; zk = xn�1xn: (33)Here subsripts are treated modulo n, and appropriate hanges are made at theleft or right when k = 1 or k � n� 1. Then Mk omputes the funtionsuk+1 = xk; vk+1 = ukxk; wk+1 = wk _ vkxk; yk�1 = yk; zk�1 = zk (34)for nearly all values of k; exerise 45 has the details. With this onstrution wehave ak � 3 and bk � 2 for all k, hene Theorem M tells us that B(f) � 212n =4096n. In fat, the truth is muh sweeter: B(f) is atually< 9n (see exerise 46).Shared BDDs. We often want to deal with several Boolean funtions at one,and related funtions often have ommon subfuntions. In suh ases we anwork with the \BDD base" for ff1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)g, whih isa direted ayli graph that ontains one node for every bead that ourswithin the truth tables of any of the funtions. The BDD base also has m\root pointers," Fj , one for eah funtion fj ; the BDD for fj is then the set ofall nodes reahable from node Fj . Notie that node Fj itself is reahable fromnode Fi if and only if fj is a subfuntion of fi.For example, onsider the problem of omputing the n + 1 bits of the sumof two n-bit numbers,(fn+1fnfn�1 : : : f1)2 = (x1x3 : : : x2n�1)2 + (x2x4 : : : x2n)2: (35)



14 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 arrybinary deision diagramSielingWegenerMMIXorderedredution to a BDD++AVAIL stak+
The BDD base for those n+ 1 bits looks like this when n = 4:

x1x3x5x7+ x2x4x6x8f5f4f3f2f1
1 12 2 2 23 3 34 4 4 4 4 45 5 56 6 6 6 6 67 7 78 8

? >
? > ? >
? > ? >? >? >

F1
F2
F3
F4F5

(36)
The way we've numbered the x's in (35) is important here (see exerise 51). Ingeneral there are exatly B(f1; : : : ; fn+1) = 9n�5 nodes, when n > 1. The nodejust to the left of Fj , for 1 � j � n, represents the subfuntion for a arry j outof the jth bit position from the right; the node just to the right of Fj representsthe omplement of that arry, �j ; and node Fn+1 represents the �nal arry n.Operations on BDDs. We've been talking about lots of things to do when aBDD is given. But how do we get a BDD into the omputer in the �rst plae?One way is to start with an ordered binary deision diagram suh as (26) orthe right-hand example in (2), and to redue it so that it beomes a true BDD.The following algorithm, based on ideas of D. Sieling and I.Wegener [InformationProessing Letters 48 (1993), 139{144℄, shows that an arbitrary N -node binarydeision diagram whose branhes are properly ordered an be redued to a BDDin O(N + n) steps when there are n variables.Of ourse we need some extra memory spae in order to deide whethertwo nodes are equivalent, when doing suh a redution. Having only the three�elds (V; LO; HI) in eah node, as in (1), would give us no room to maneuver.Fortunately, only one additional pointer-size �eld, alled AUX, is needed, togetherwith two additional state bits. We will assume for onveniene that the state bitsare impliitly present in the signs of the LO and AUX �elds, so that the algorithmneeds to deal with only four �elds: (V; LO; HI; AUX). The fat that the sign ispreempted does mean that a 28-bit LO �eld will aommodate only 227 nodes atmost|about 134 million| instead of 228. (On a omputer like MMIX, we mightprefer to assume that all node addresses are even, and to add 1 to a �eld insteadof omplementing it as done here.)Algorithm R (Redution to a BDD). Given a binary deision diagram thatis ordered but not neessarily redued, this algorithm transforms it into a validBDD by removing unneessary nodes and rerouting all pointers appropriately.Eah node is assumed to have four �elds (V; LO; HI; AUX) as desribed above, andROOT points to the diagram's top node. The AUX �elds are initially irrelevant, ex-ept that they must be nonnegative; they will again be nonnegative at the end ofthe proess. All deleted nodes are pushed onto a stak addressed by AVAIL, linkedtogether by the HI �elds of its nodes. (The LO �elds of these nodes will be neg-ative; their omplements point to equivalent nodes that have not been deleted.)



7.1.4 BINARY DECISION DIAGRAMS 15 bitwise omplementdepth-�rst searhreahableBuket sortThe V �elds of branh nodes are assumed to run from V(ROOT) up to vmax,in inreasing order from the top downwards in the given dag. The sink nodes ?and > are assumed to be nodes 0 and 1, respetively, with nonnegative LO andHI �elds. They are never deleted; in fat, they are left untouhed exept for theirAUX �elds. An auxiliary array of pointers, HEAD[v℄ for V(ROOT) � v � vmax, isused to reate temporary lists of all nodes that have a given value of V.R1. [Initialize.℄ Terminate immediately if ROOT � 1. Otherwise, set AUX(0)  AUX(1)  AUX(ROOT)  �1, and HEAD[v℄  �1 for V(ROOT) � v � vmax.(We use the fat that �1 = �0 is the bitwise omplement of 0.) Then sets ROOT and do the following operations while s 6= 0:Set p s, s �AUX(p), AUX(p) HEAD[V(p)℄, HEAD[V(p)℄ �p.If AUX(LO(p)) � 0, set AUX(LO(p)) �s and s LO(p).If AUX(HI(p)) � 0, set AUX(HI(p)) �s and s HI(p).(We've essentially done a depth-�rst searh of the dag, temporarily markingall nodes reahable from ROOT by making their AUX �elds negative.)R2. [Loop on v.℄ Set AUX(0) AUX(1) 0, and v  vmax.R3. [Buket sort.℄ (At this point all remaining nodes whose V �eld exeeds vhave been properly redued, and their AUX �elds are nonnegative.) Setp �HEAD[v℄, s 0, and do the following steps while p 6= 0:Set p0  �AUX(p).Set q  HI(p); if LO(q) < 0, set HI(p) �LO(q).Set q  LO(p); if LO(q) < 0, set LO(p) �LO(q) and q  LO(p).If q = HI(p), set LO(p) �q, HI(p) AVAIL, AUX(p) 0, AVAIL p;otherwise if AUX(q) � 0, set AUX(p) s, s �q, and AUX(q) �p;otherwise set AUX(p) AUX(�AUX(q)) and AUX(�AUX(q)) p.Then set p p0.R4. [Clean up.℄ (Nodes with LO = x 6= HI have now been linked together viatheir AUX �elds, beginning with �AUX(x).) Set r  �s, s 0, and do thefollowing while r � 0:Set q  �AUX(r) and AUX(r) 0.If s = 0 set s q; otherwise set AUX(p) q.Set p q; then while AUX(p) > 0, set p AUX(p).Set r  �AUX(p).R5. [Loop on p.℄ Set p s. Go to step R9 if p = 0. Otherwise set q  p.R6. [Examine a buket.℄ Set s LO(p). (At this point p = q.)R7. [Remove dupliates.℄ Set r  HI(q). If AUX(r) � 0, set AUX(r)  �q;otherwise set LO(q)  AUX(r), HI(q)  AVAIL, and AVAIL  q. Then setq  AUX(q). If q 6= 0 and LO(q) = s, repeat step R7.R8. [Clean up again.℄ If LO(p) � 0, set AUX(HI(p)) 0. Then set p AUX(p),and repeat step R8 until p = q.R9. [Done?℄ If p 6= 0, return to R6. Otherwise, if v > V(ROOT), set v  v � 1and return to R3. Otherwise, if LO(ROOT) < 0, set ROOT �LO(ROOT).



16 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 restrition of a Boolean funtionrestrition, see also subfuntionsreplaement of variables by onstantssubstitution of onstants for variablesmelding+notation � � �0
The intriate link manipulations of Algorithm R are easier to program than toexplain, but they are highly instrutive and not really diÆult. The reader isurged to work through the example in exerise 53.Algorithm R an also be used to ompute the BDD for any restrition of agiven funtion, namely for any funtion obtained by \hardwiring" one or morevariables to a onstant value. The idea is to do a little extra work between stepsR1 and R2, setting HI(p) LO(p) if variable V(p) is supposed to be �xed at 0,or LO(p)  HI(p) if V(p) is to be �xed at 1. We also need to reyle all nodesthat beome inaessible after restrition. Exerise 57 eshes out the details.Synthesis of BDDs. We're ready now for the most important algorithm onbinary deision diagrams, whih takes the BDD for one funtion, f , and ombinesit with the BDD for another funtion, g, in order to obtain the BDD for furtherfuntions suh as f ^ g or f � g. Synthesis operations of this kind are theprinipal way to build up the BDDs for omplex funtions, and the fat thatthey an be done eÆiently is the main reason why BDD data strutures havebeome popular. We will disuss several approahes to the synthesis problem,beginning with a simple method and then speeding it up in various ways.The basi notion that underlies synthesis is a produt operation on BDDstrutures that we shall all melding. Suppose � = (v; l; h) and �0 = (v0; l0; h0)are BDD nodes, eah ontaining the index of a variable together with LO andHI pointers. The \meld" of � and �0, written � � �0, is de�ned as follows when� and �0 are not both sinks:� � �0 = 8<: (v; l � l0; h � h0); if v = v0;(v; l � �0; h � �0); if v < v0;(v0; � � l0; � � h0); if v > v0. (37)For example, Fig. 24 shows how two small but typial BDDs are melded. Theone on the left, with branh nodes (�; �; ; Æ), represents f(x1; x2; x3; x4) =(x1 _ x2)^ (x3 _ x4); the one in the middle, with branh nodes (!;  ; �; '; �; �),represents g(x1; x2; x3; x4) = (x1�x2)_ (x3�x4). Nodes Æ and � are essentiallythe same, so we would have Æ = � if f and g were part of a single BDD base; butmelding an be applied also to BDDs that do not have ommon nodes. At theright of Fig. 24, � � ! is the root of a deision diagram that has eleven branhnodes, and it essentially represents the ordered pair (f; g).
1234? >

��Æ
12 234 4? >

!�  '� �
12 23 3 34 4 4 4 4

� � !� � �  �  ? � '  �>  � '? � � ? � � Æ �> Æ � � >� �
? � > ? � ? > � > > � ?Fig. 24. Two BDDs an be melded together with the � operation (37).



7.1.4 BINARY DECISION DIAGRAMS 17 ordered pair of two Boolean funtionstruth tableBeadssubtablessinksonjuntionsymmetri funtion
An ordered pair of two Boolean funtions an be visualized by plaing thetruth table of one above the truth table of the other. With this interpretation,� � ! stands for the ordered pair 00000111011101110110111111110110 , and � � � stands for 0000011101101111 ,et. The melded BDD of Fig. 24 orresponds to the diagram000001110111011101101111111101100000011101101111 011101111111011000000110 01111111 011101100001 0010 0111 0101 111001 00 11 10

; (38)
whih is analogous to (5) exept that eah node denotes an ordered pair offuntions instead of a single funtion. Beads and subtables are de�ned on orderedpairs just as before. But now we have four possible sinks instead of two, namely? � ?; ? � >; > � ?; and > � >; (39)orresponding to the ordered pairs 00 , 01 , 10 , and 11 .To ompute the onjuntion f ^ g, we AND together the truth tables of fand g. This operation orresponds to replaing 00 , 01 , 10 , and 11 by 0, 0, 0, and 1,respetively; so we get the BDD for f ^ g from f � g by replaing the respetivesink nodes of (39) by ? , ? , ? , and > , then reduing the result. Similarly,the BDD for f � g is obtained if we replae the sinks (39) by ? , > , > ,and ? . (In this partiular ase f � g turns out to be the symmetri funtionS1;4(x1; x2; x3; x4), as omputed in Fig. 9 of Setion 7.1.2.) The melded diagramf � g ontains all the information needed to ompute any Boolean ombinationof f and g ; and the BDD for every suh ombination has at most B(f �g) nodes.Clearly B(f � g) � B(f)B(g), beause eah node of f � g orresponds toa node of f and a node of g. Therefore the meld of small BDDs annot beextremely large. Usually, in fat, melding produes a result that is onsiderablysmaller than this worst-ase upper bound, with something like B(f) + B(g)nodes instead of B(f)B(g). Exerise 60 disusses a sharper bound that shedssome light on why melds often turn out to be small. But exerises 59(b) and 63present interesting examples where quadrati growth does our.Melding suggests a simple algorithm for synthesis: We an form an array ofB(f)B(g) nodes, with node � � �0 in row � and olumn �0 for every � in theBDD for f and every �0 in the BDD for g. Then we an onvert the four sinknodes (39) to ? or > as desired, and apply Algorithm R to the root nodef � g. Voil�a|we've got the BDD for f ^ g or f � g or f _ �g or whatever.The running time of this algorithm is learly of order B(f)B(g). We anredue it to order B(f � g), beause there's no need to �ll in all of the matrixentries ���0; only the nodes that are reahable from f�g are relevant, and we angenerate them on the y when neessary. But even with this improvement in the



18 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 time versus spaespae versus timeBoolean funtion alulatorsequential stakpooltemplates+++binary operatorstruth tableop+
running time, the simple algorithm is unsatisfatory beause of the requirementfor B(f)B(g) nodes in memory. When we deal with BDDs, time is heap butspae is expensive: Attempts to solve large problems tend to fail more oftenbeause of \spaeout" than beause of \timeout." That's why Algorithm R wasareful to perform its mahinations with only one auxiliary link �eld per node.The following algorithm solves the synthesis problem with working spae oforder B(f �g); in fat, it needs only about sixteen bytes per element of the BDDfor f � g. The algorithm is designed to be used as the main engine of a \Booleanfuntion alulator," whih represents funtions as BDDs in ompressed form ona sequential stak. The stak is maintained at the lower end of a large arrayalled the pool . Eah BDD on the stak is a sequene of nodes, whih eah havethree �elds (V; LO; HI). The rest of the pool is available to hold temporary resultsalled templates, whih eah have four �elds (L; H; LEFT; RIGHT). A node typiallyoupies one otabyte of memory, while a template oupies two.The purpose of Algorithm S is to examine the top two Boolean funtionson the stak, f and g, and to replae them by the Boolean ombination f Æ g,where Æ is one of the 16 possible binary operators. This operator is identi�ed byits 4-bit truth table, op. For example, Algorithm S will form the BDD for f � gwhen op is (0110)2 = 6; it will deliver f ^ g when op = 1.When the algorithm begins, operand f appears in loations [f0 : : g0) ofthe pool, and operand g appears in loations [g0 : : NTOP). All higher loations[NTOP : : POOLSIZE) are available for storing the templates that the algorithmneeds. Those templates will appear in loations [TBOT : : POOLSIZE) at the highend of the pool; the boundary markers NTOP and TBOT will hange dynamiallyas the algorithm proeeds. The resulting BDD for f Æg will eventually be plaedin loations [f0 : : NTOP), taking over the spae formerly oupied by f and g. Weassume that a template oupies the spae of two nodes. Thus, the assignments\t TBOT�2, TBOT t" alloate spae for a new template, pointed to by t; theassignments \p NTOP, NTOP p+ 1" alloate a new node p. For simpliity ofexposition, Algorithm S does not hek that the ondition NTOP � TBOT remainsvalid throughout the proess; but of ourse suh tests are essential in pratie.Exerise 69 remedies this oversight.The input funtions f and g are spei�ed to Algorithm S as sequenes ofinstrutions (Is�1; : : : ; I1; I0) and (I 0s0�1; : : : ; I 01; I 00), as in Algorithms B and Cabove. The lengths of these sequenes are s = B+(f) and s0 = B+(g), whereB+(f) = B(f) + [f is identially 1℄ (40)is the number of BDD nodes when the sink ? is fored to be present. Forexample, the two BDDs at the left of Fig. 24 ould be spei�ed by the instrutionsI5 = (�1? 4: 3);I4 = (�2? 0: 3); I3 = (�3? 2: 1);I2 = (�4? 0: 1); I 07 = (�1? 5: 6);I 06 = (�2? 1: 4);I 05 = (�2? 4: 1); I 04 = (�3? 2: 3);I 03 = (�4? 1: 0);I 02 = (�4? 0: 1); (41)
as usual, I1, I0, I 01, and I 00 are the sinks. These instrutions are paked intonodes, so that if Ik = (�vk? lk: hk) we have V(f0 + k) = vk, LO(f0 + k) = lk, and



7.1.4 BINARY DECISION DIAGRAMS 19 lonetrikhash table++binary searh treesHI(f0 + k) = hk for 2 � k < s when Algorithm S begins. Similar onventionsapply to the instrutions I 0k that de�ne g. FurthermoreV(f0) = V(f0 + 1) = V(g0) = V(g0 + 1) = vmax + 1; (42)where we assume that f and g depend only on the variables xv for 1 � v � vmax.Like the simple but spae-hungry algorithm desribed earlier, Algorithm Sproeeds in two phases: First it builds the BDD for f �g, onstruting templatesso that every important meld � � �0 is represented as a template t for whihLEFT(t) = �; RIGHT(t) = �0; L(t) = LO(� � �0); H(t) = HI(� � �0): (43)(The L and H �elds point to templates, not nodes.) Then the seond phaseredues these templates, using a proedure similar to Algorithm R; it hangestemplate t from (43) toLEFT(t) = ��(t); RIGHT(t) = �(t);L(t) = �(LO(� � �0)); H(t) = �(HI(� � �0)); (44)where �(t) is the unique template to whih t has been redued, and where �(t)is the \lone" of t if �(t) = t. Every redued template t orresponds to aninstrution node in the BDD of f Æ g, and �(t) is the index of this node relativeto position f0 in the stak. (Setting LEFT(t) to ��(t) instead of �(t) is a sneakytrik that makes steps S7{S10 run faster.) Speial overlapping templates arepermanently reserved for sinks at the bottom of the pool, so that we always haveLEFT(0) = �0; RIGHT(0) = 0; LEFT(1) = �1; RIGHT(1) = 1; (45)in aord with the onventions of (42) and (44).We needn't make a template for � ��0 when the value of � Æ�0 is obviouslyonstant. For example, if we're omputing f ^ g, we know that � � �0 willeventually redue to ? if � = 0 or �0 = 0. Suh simpli�ations are disoveredby a subroutine alled �nd level (f; g), whih returns the positive integer j if theroot of f �g begins with the branh kj , unless f Æg learly has a onstant value;in the latter ase, �nd level (f; g) returns the value �(f Æ g), whih is 0 or �1.The proedure is slightly tehnial, but simple, using the global truth table op:Subroutine �nd level (f; g), with loal variable t:If f � 1 and g � 1, return �((op� (3� 2f � g)) & 1), whih is �(f Æ g).If f � 1 and g > 1, set t (f? op & 3: op� 2); return 0 if t = 0, �1 if t = 3.If f > 1 and g � 1, set t (g? op: op� 1) & 5; return 0 if t = 0, �1 if t = 5.Otherwise return min(V(f0 + f); V(g0 + g)). (46)The main diÆulty that faes us, when generating a template for a desen-dant of � � �0 aording to (37), is to deide whether or not suh a templatealready exists|and if so, to link to it. The best way to solve suh problems isusually to use a hash table; but then we must deide where to put suh a table,and how muh extra spae to devote to it. Alternatives suh as binary searhtrees would be muh easier to adapt to our purposes, but they would add anunwanted fator of logB(f � g) to the running time. The synthesis problem an



20 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 buket sorthainingbreadth-�rst synthesis+loality of refereneatually be solved in worst-ase time and spae O(B(f � g)) by using a buketsort method analogous to Algorithm R (see exerise 72); but that solution isompliated and somewhat awkward.Fortunately there's a nie way out of this dilemma, requiring almost no extramemory and only modestly omplex ode, if we generate the templates one levelat a time. Before generating the templates for level l, we'll know the numberNl of templates to be requested on that level. So we an temporarily alloatespae for 2b templates at the top of the urrently free area, where b = dlgNle,and put new templates there while hashing into the same area. The idea is touse haining with separate lists, as in Fig. 38 of Setion 6.4; the H and L �elds ofour templates and potential templates play the roles of heads and links in thatillustration, while the keys appear in (LEFT; RIGHT). Here's the logi, in detail:Subroutine make template (f; g), with loal variable t:Set h  HBASE + 2(((314159257f + 271828171g) mod 2d)� (d � b)), where dis a onvenient upper bound on the size of a pointer (usually d = 32). Thenset t  H(h). While t 6= � and either LEFT(t) 6= f or RIGHT(t) 6= g, sett L(t). If t = �, set t TBOT � 2, TBOT t, LEFT(t) f , RIGHT(t) g,L(t) H(h), and H(h) t. Finally, return the value t. (47)The alling routine in steps S4 and S5 ensures that NTOP � HBASE � TBOT.This breadth-�rst, level-at-a-time strategy for onstruting the templateshas an added payo�, beause it promotes \loality of referene": Memory a-esses tend to be on�ned to nearby loations that have reently been seen, heneontrolled in suh a way that ahe misses and page faults are signi�antlyredued. Furthermore, the eventual BDD nodes plaed on the stak will alsoappear in order, so that all branhes on the same variable appear onseutively.Algorithm S (Breadth-�rst synthesis of BDDs). This algorithm omputes theBDD for f Æ g as desribed above, using subroutines (46) and (47). Auxiliaryarrays LSTART[l℄, LCOUNT[l℄, LLIST[l℄, and HLIST[l℄ are used for 0 � l � vmax.S1. [Initialize.℄ Set f  g0� 1� f0, g  NTOP� 1� g0, and l �nd level (f; g).See exerise 66 if l � 0. Otherwise set LSTART[l � 1℄  POOLSIZE, andLLIST[k℄  HLIST[k℄  �, LCOUNT[k℄  0 for l < k � vmax. SetTBOT POOLSIZE � 2, LEFT(TBOT) f , and RIGHT(TBOT) g.S2. [San the level-l templates.℄ Set LSTART[l℄ TBOT and t LSTART[l � 1℄.While t > TBOT, shedule requests for future levels by doing the following:Set t t�2, f LEFT(t), g  RIGHT(t), vf  V(f0+f), vg  V(g0+g),ll  �nd level ((vf � vg? LO(f0 + f): f); (vf � vg ? LO(g0 + g): g)),lh  �nd level ((vf � vg ? HI(f0 + f): f); (vf � vg ? HI(g0 + g): g)).If ll � 0, set L(t) �ll ; otherwise set L(t) LLIST[ll ℄, LLIST[ll ℄ t,LCOUNT[ll ℄  LCOUNT[ll ℄ + 1. If lh � 0, set H(t)  �lh ; otherwise setH(t) HLIST[lh℄, HLIST[lh℄ t, LCOUNT[lh℄ LCOUNT[lh℄+ 1.S3. [Done with phase one?℄ Go to S6 if l = vmax. Otherwise set l  l + 1, andreturn to S2 if LCOUNT[l℄ = 0.



7.1.4 BINARY DECISION DIAGRAMS 21 monotone-funtion funtion+truth tableS4. [Initialize for hashing.℄ Set b  dlg LCOUNT[l℄e, HBASE  TBOT � 2b+1,and H(HBASE+ 2k) � for 0 � k < 2b.S5. [Make the level-l templates.℄ Set t  LLIST[l℄. While t 6= �, set s  L(t), f  LEFT(t), g  RIGHT(t), vf  V(f0 + f), vg  V(g0 + g),L(t)  make template ((vf � vg ? LO(f0+f): f); (vf � vg ? LO(g0+g): g)),t  s. (We're half done.) Then set t  HLIST[l℄. While t 6= �, sets  H(t), f  LEFT(t), g  RIGHT(t), vf  V(f0 + f), vg  V(g0 + g),H(t)  make template ((vf � vg ? HI(f0+f): f); (vf � vg ? HI(g0+g): g)),t s. (Now the other half is done.) Go bak to step S2.S6. [Prepare for phase two.℄ (At this point it's safe to obliterate the nodes of fand g, beause we've built all the templates (43). Now we'll onvert themto form (44). Note that V(f0) = V(f0 + 1) = vmax +1.) Set NTOP f0 +2.S7. [Buket sort.℄ Set t LSTART[l � 1℄. Do the following while t > LSTART[l℄:Set t t� 2, L(t) RIGHT(L(t)), and H(t) RIGHT(H(t)).If L(t) = H(t), set RIGHT(t) L(t). (This branh is redundant.)Otherwise set RIGHT(t) �1, LEFT(t) LEFT(L(t)), LEFT(L(t)) t.S8. [Restore lone addresses.℄ If t = LSTART[l � 1℄, set t  LSTART[l℄ � 2and go to S9. Otherwise, if LEFT(t) < 0, set LEFT(L(t))  LEFT(t). Sett t+ 2 and repeat step S8.S9. [Done with level?℄ Set t t+2. If t = LSTART[l � 1℄, go to S12. Otherwise,if RIGHT(t) � 0 repeat step S9.S10. [Examine a buket.℄ (Suppose L(t1) = L(t2) = L(t3), where t1 > t2 >t3 = t and no other templates on level l have this L value. Then at this pointwe have LEFT(t3) = t2, LEFT(t2) = t1, LEFT(t1) < 0, and RIGHT(t1) =RIGHT(t2) = RIGHT(t3) = �1.) Set s  t. While s > 0, do the following:Set r  H(s), RIGHT(s) LEFT(r); if LEFT(r) < 0, set LEFT(r) s; andset s LEFT(s). Finally set s t again.S11. [Make lones.℄ If s < 0, go bak to step S9. Otherwise if RIGHT(s) � 0,set s  LEFT(s). Otherwise set r  LEFT(s), LEFT(H(s))  RIGHT(s),RIGHT(s)  s, q  NTOP, NTOP  q + 1, LEFT(s)  �(q � f0), LO(q)  �LEFT(L(s)), HI(q) �LEFT(H(s)), V(q) l, s r. Repeat step S11.S12. [Loop on l.℄ Set l  l � 1. Return to S7 if LSTART[l℄ < POOLSIZE.Otherwise, if RIGHT(POOLSIZE � 2) = 0, set NTOP  NTOP � 1 (beausef Æ g is identially 0).As usual, the best way to understand an algorithm like this is to trae throughan example. Exerise 67 disusses what Algorithm S does when it is asked toompute f ^ g, given the BDDs in (41).Algorithm S an be used, for example, to onstrut the BDDs for interestingfuntions suh as the \monotone-funtion funtion" �n(x1; : : : ; x2n), whih istrue if and only if x1 : : : x2n is the truth table of a monotone funtion:�n(x1; : : : ; x2n) = ^0�i�j<2n[xi+1�xj+1 ℄: (48)
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Fig. 25. �2(x1; x3; x5; x7)^ �2(x2; x4; x6; x8)^G8(x1; : : : ; x8) = �3(x1; : : : ; x8),as omputed by Algorithm S.Starting with �0(x1) = 1, this funtion satis�es the reursion relation�n(x1; : : : ; x2n) =�n�1(x1; x3; : : : ; x2n�1) ^ �n�1(x2; x4; : : : ; x2n) ^G2n(x1; : : : ; x2n); (49)where G2n(x1; : : : ; x2n) = [x1�x2 ℄ ^ [x3�x4 ℄ ^ � � � ^ [x2n�1�x2n ℄. So itsBDD is easy to obtain with a BDD alulator like Algorithm S: The BDDs for�n�1(x1; x3; : : : ; x2n�1) and �n�1(x2; x4; : : : ; x2n) are simple variants of the onefor �n�1(x1; x2; : : : ; x2n�1), and G2n has an extremely simple BDD (see Fig. 25).Repeating this proess six times will produe the BDD for �6, whih has103,924 nodes. There are exatly 7,828,354 monotone Boolean funtions of sixvariables (see exerise 5.3.4{31); this BDD niely haraterizes them all, and weneed only about 4.8 million memory aesses to ompute it with Algorithm S.Furthermore, 6.7 billion mems will suÆe to ompute the BDD for �7, whihhas 155,207,320 nodes and haraterizes 2,414,682,040,998 monotone funtions.We must stop there, however; the size of the next ase, B(�8), turns out tobe a whopping 69,258,301,585,604 (see exerise 77).Synthesis in a BDD base. Another approah is alled for when we're dealingwith many funtions at one instead of omputing a single BDD on the y.The funtions of a BDD base often share ommon subfuntions, as in (36).Algorithm S is designed to take disjoint BDDs and to ombine them eÆiently,afterwards destroying the originals; but in many ases we would rather formombinations of funtions whose BDDs overlap. Furthermore, after forming anew funtion f ^ g, say, we might want to keep f and g around for future use;indeed, the new funtion might well share nodes with f or g or both.Let's therefore onsider the design of a general-purpose toolkit for manip-ulating a olletion of Boolean funtions. BDDs are espeially attrative for
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this purpose beause most of the neessary operations have a simple reursiveformulation. We know that every nononstant Boolean funtion an be writtenf(x1; x2; : : : ; xn) = (�xv? fl: fh); (50)where v = fv indexes the �rst variable on whih f depends, and where we havefl = f(0; : : : ; 0; xv+1; : : : ; xn); fh = f(1; : : : ; 1; xv+1; : : : ; xn): (51)This rule orresponds to branh node kv at the top of the BDD for f ; andthe rest of the BDD follows by using (50) and (51) reursively, until we reahonstant funtions that orrespond to ? or > . A similar reursion de�nes anyombination of two funtions, f Æg: For if f and g aren't both onstant, we havef(x1; : : : ; xn) = (�xv? fl: fh) and g(x1; : : : ; xn) = (�xv? gl: gh); (52)where v = min(fv; gv) and where fl, fh, gl, gh are given by (51). Then, presto,f Æ g = (�xv? fl Æ gl: fh Æ gh): (53)This important formula is another way of stating the rule by whih we de�nedmelding, Eq. (37).Caution: The notations above need to be understood arefully, beause thesubfuntions fl and fh in (50) might not be the same as the fl and fh in (52).Suppose, for example, that f = x2 _ x3 while g = x1 � x3. Then Eq. (50) holdswith fv = 2 and f = (�x2? fl: fh), where fl = x3 and fh = 1. We also havegv = 1 and g = (�x1? x3: �x3). But in (52) we use the same branh variable xv forboth funtions, and v = min(fv; gv) = 1 in our example; so Eq. (52) holds withf = (�x1? fl: fh) and fl = fh = x2 _ x3.Every node of a BDD base represents a Boolean funtion. Furthermore, aBDD base is redued; therefore two of its funtions or subfuntions are equalif and only if they orrespond to exatly the same node. (This onvenientuniqueness property was not true in Algorithm S.)Formulas (51){(53) immediately suggest a reursive way to ompute f ^ g:

AND(f; g) = 8><>: If f ^ g has an obvious value, return it.Otherwise represent f and g as in (52);ompute rl  AND(fl; gl) and rh  AND(fh; gh);return the funtion (�xv? rl: rh). (54)
(Reursions always need to terminate when a suÆiently simple ase arises. The\obvious" values in the �rst line orrespond to the terminal ases f ^ 1 = f ,1 ^ g = g, f ^ 0 = 0 ^ g = 0, and f ^ g = f when f = g.) When f and g arethe funtions in our example above, (54) redues f ^ g to the omputation of(x2_x3)^x3 and (x2_x3)^�x3. Then (x2_x3)^x3 redues to x3^x3 and 1^x3; et.But (54) is problemati if we simply implement it as stated, beause everynonterminal step launhes two more instanes of the reursion. The omputationexplodes, with 2k instanes of AND when we're k levels deep!Fortunately there's a good way to avoid that blowup. Sine f has only B(f)di�erent subfuntions, at most B(f)B(g) distintly di�erent alls of AND an



24 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 memoizationreduedhashingditionaryunique table+ollisionsmemo ahe+ahe memoryomputed table, see memo ahe
arise. To keep a lid on the omputations, we just need to remember what we'vedone before, by making a memo of the fat that f ^ g = r just before returningr as the omputed value. Then when the same subproblem ours later, wean retrieve the memo and say, \Hey, we've already been there and done that."Previously solved ases thereby beome terminal; only distint subproblems angenerate new ones. (Chapter 8 will disuss this memoization tehnique in detail.)The algorithm in (54) also glosses over another problem: It's not so easy to\return the funtion (�xv? rl: rh)," beause we must keep the BDD base redued.If rl = rh, we should return the node rl ; and if rl 6= rh, we need to deidewhether the branh node (�xv? rl: rh) already exists, before reating a new one.Thus we need to maintain additional information, besides the BDD nodesthemselves. We need to keep memos of problems already solved; we also needto be able to �nd a node by its ontent, instead of by its address. The searhalgorithms of Chapter 6 now ome to our resue by telling us how to do both ofthese things, for example by hashing. To reord a memo that f ^ g = r, we anhash the key `(f;^; g)' and assoiate it with the value r; to reord the existeneof an existing node (V;LO;HI), we an hash the key `(V;LO;HI)' and assoiateit with that node's memory address.The ditionary of all existing nodes (V;LO;HI) in a BDD base is traditionallyalled the unique table, beause we use it to enfore the all-important uniquenessriterion that forbids dupliation. Instead of putting all that information intoone giant ditionary, however, it turns out to be better to maintain a olletionof smaller unique tables, one for eah variable V. With suh separate tables wean eÆiently �nd all nodes that branh on a partiular variable.The memos are handy, but they aren't as ruial as the unique table entries.If we happen to forget the isolated fat that f ^ g = r, we an always reomputeit again later. Exponential blowup won't be worrisome, if the answers to thesubproblems fl ^ gl and fh ^ gh are still remembered with high probability.Therefore we an use a less expensive method to store memos, designed to doa pretty-good-but-not-perfet job of retrieval: After hashing the key `(f;^; g)'to a table position p, we need look for a memo only in that one position, notbothering to onsider ollisions with other keys. If several keys all share the samehash address, position p will reord only the most reent relevant memo. Thissimpli�ed sheme will still be adequate in pratie, as long as the hash table islarge enough. We shall all suh a near-perfet table the memo ahe, beauseit is analogous to the hardware ahes by whih a omputer tries to remembersigni�ant values that it has dealt with in relatively slow storage units.Okay, let's esh out algorithm (54) by expliitly stating how it interats withthe unique tables and the memo ahe:

AND(f; g) =
8>>>>><>>>>>:
If f ^ g has an obvious value, return it.Otherwise, if f ^ g = r is in the memo ahe, return r.Otherwise represent f and g as in (52);ompute rl  AND(fl; gl) and rh  AND(fh; gh);set r  UNIQUE(v; rl; rh), using Algorithm U;put `f ^ g = r' into the memo ahe, and return r. (55)
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Algorithm U (Unique table lookup). Given (v; p; q), where v is an integer whilep and q point to nodes of a BDD base with variable rank > v, this algorithm re-turns a pointer to a node UNIQUE(v; p; q) that represents the funtion (�xv? p: q).A new node is added to the base if that funtion wasn't already present.U1. [Easy ase?℄ If p = q, return p.U2. [Chek the table.℄ Searh variable xv's unique table using the key (p; q). Ifthe searh suessfully �nds the value r, return r.U3. [Create a node.℄ Alloate a new node r, and set V(r)  v, LO(r)  p,HI(r) q. Put r into xv's unique table using the key (p; q). Return r.Notie that we needn't zero out the memo ahe after �nishing a top-levelomputation of AND(f; g). Eah memo that we have made states a relationshipbetween nodes of the struture; those fats are still valid, and they might beuseful later when we want to ompute AND(f; g) for new funtions f and g.A re�nement of (55) will enhane that method further, namely to swapf $ g if we disover that f > g when f ^ g isn't obvious. Then we won't haveto waste time omputing f ^ g when we've already omputed g ^ f .With simple hanges to (55), the other binary operators OR(f; g), XOR(f; g),BUTNOT(f; g), NOR(f; g), : : : an also be omputed readily; see exerise 81.The ombination of (55) and Algorithm U looks onsiderably simpler thanAlgorithm S. Thus one might well ask, why should anybody bother to learn theother method? Its breadth-�rst approah seems quite omplex by omparisonwith the \depth-�rst" order of omputation in the reursive struture of (55); yetAlgorithm S is able to deal only with BDDs that are disjoint, while Algorithm Uand reursions like (55) apply to any BDD base.Appearanes an, however, be deeiving: Algorithm S has been desribedat a low level, with every hange to every element of its data strutures spelledout expliitly. By ontrast, the high-level desriptions in (55) and Algorithm Uassume that a substantial infrastruture exists behind the senes. The memoahe and the unique tables need to be set up, and their sizes need to be arefullyadjusted as the BDD base grows or ontrats. When all is said and done, thetotal length of a program that implements Algorithms (55) and U properly \fromsrath" is roughly ten times the length of a similar program for Algorithm S.Indeed, the maintenane of a BDD base involves interesting questions ofdynami storage alloation, beause we want to free up memory spae whennodes are no longer aessible. Algorithm S solves this problem in a last-in-�rst-out manner, by simply keeping its nodes and templates on sequential staks, andby making do with a single small hash table that an easily be integrated withthe other data. A general BDD base, however, requires a more intriate system.The best way to maintain a dynami BDD base is probably to use refereneounters, as disussed in Setion 2.3.5, beause BDDs are ayli by de�nition.Therefore let's assume that every BDD node has a REF �eld, in addition to V, LO,and HI. The REF �eld tells us how many referenes exist to this node, eitherfrom LO or HI pointers in other nodes or from external root pointers Fj as in (36).For example, the REF �elds for the nodes labeled k3 in (36) are respetively 4,



26 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 deadmonotone-funtion funtionprodutmultipliation, binary1, and 2; and all of the nodes labeled k2 or k4 or k6 in that example haveREF = 1. Exerise 82 disusses the somewhat triky issue of how to inreaseand derease REF ounts properly in the midst of a reursive omputation.A node beomes dead when its referene ount beomes zero. When thathappens, we should derease the REF �elds of the two nodes below it; and thenthey too might die in the same manner, reursively spreading the plague.But a dead node needn't be removed from memory immediately. It stillrepresents a potentially useful Boolean funtion, and we might disover that weneed that funtion again as our omputation proeeds. For example, we might�nd a dead node in step U2, beause pointers from the unique table don't getounted as referenes. Likewise, in (55), we might aidentally stumble aross aahe memo telling us that f ^ g = r, when r is urrently dead. In suh ases,node r omes bak to life. (And we must inrease the REF ounts of its LO andHI desendants, possibly resurreting them reursively in the same fashion.)Periodially, however, we will want to relaim memory spae by removingthe deadbeats. Then we must do two things: We must purge all memos fromthe ahe for whih either f , g, or r is dead; and we must remove all deadnodes from memory and from their unique tables. See exerise 84 for typialheuristi strategies by whih an automated system might deide when to invokesuh leanups and when to resize the tables dynamially.Beause of the extra mahinery that is needed to support a BDD base,Algorithm U and top-down reursions like (55) annot be expeted to math theeÆieny of Algorithm S on one-shot examples suh as the monotone-funtionfuntion �n in (49). The running time is approximately quadrupled when themore general approah is applied to this example, and the memory requirementgrows by a fator of about 2.4.But a BDD base really begins to shine in numerous other appliations.Suppose, for example, that we want the formulas for eah bit of the produtof two binary numbers,(z1 : : : zm+n)2 = (x1 : : : xm)2 � (y1 : : : yn)2: (56)Clearly z1 : : : zm = 0 : : : 0 when n = 0, and the simple reurrene(x1 : : : xm)2 � (y1 : : : ynyn+1)2 = (z1 : : : zm+n0)2 + (x1 : : : xm)2yn+1 (57)allows us to inrease n by 1. This reurrene is easy to ode for a BDD base.Here's what we get when m = n = 3, with subsripts hosen to math theanalogous diagram for binary addition in (36):x1x3x5� x2x4x6� � �� � �� � �f6f5f4f3f2f1
1 1 1 12 2 2 2 2 223 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 56 6

??? ?> ? >> ? ? > ?? > ? >

F6 F5 F3 F4F1 F2
(58)
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Clearly multipliation is muh more ompliated than addition, bitwise. (Indeed,if it weren't, fatorization wouldn't be so hard.) The orresponding BDD basefor binary multipliation when m = n = 16 is huge, with B(f1; : : : ; f32) =136;398;751 nodes. It an be found after doing about 56 gigamems of alulationwith Algorithm U, in 6.3 gigabytes of memory| inluding some 1.9 billioninvoations of reursive subroutines, with hundreds of dynami resizings of theunique tables and the memo ahe, plus dozens of timely garbage olletions.A similar alulation with Algorithm S would be almost unthinkable, althoughthe individual funtions in this partiular example do not share many ommonsubfuntions: It turns out that B(f1) + � � � + B(f32) = 168;640;131, with themaximum ourring at the \middle bit," B(f16) = 38;174;143:*Ternary operations. Given three Boolean funtions f = f(x1; : : : ; xn), g =g(x1; : : : ; xn), and h = h(x1; : : : ; xn), not all onstant, we an generalize (52) tof = (�xv? fl: fh) and g = (�xv? gl: gh) and h = (�xv? hl: hh); (59)by taking v = min(fv; gv; hv). Then, for example, (53) generalizes tohfghi = ��xv? hflglhli: hfhghhhi�; (60)and similar formulas hold for any ternary operation on f , g, and h, inluding( �f? g: h) = ��xv? ( �fl? gl: hl): ( �fh? gh: hh)�: (61)(The reader of these formulas will please forgive the two meanings of `h' in `hh'.)Now it's easy to generalize (55) to ternary ombinations like multiplexing:

MUX(f; g; h) =
8>>>>><>>>>>:
If ( �f? g: h) has an obvious value, return it.Otherwise, if ( �f? g: h) = r is in the memo ahe, return r.Otherwise represent f , g, and h as in (59);ompute rl  MUX(fl; gl; hl) and rh  MUX(fh; gh; hh);set r  UNIQUE(v; rl; rh), using Algorithm U;put `( �f? g: h) = r' into the memo ahe, and return r.

(62)
(See exerises 86 and 87.) The running time is O�B(f)B(g)B(h)�. The memoahe must now be onsulted with a more omplex key than before, inludingthree pointers (f; g; h) instead of two, together with a ode for the relevantoperation. But eah memo (op; f; g; h; r) an still be represented onveniently in,say, two otabytes, if the number of distint pointer addresses is at most 231.The ternary operation f ^ g ^ h is an interesting speial ase. We ouldompute it with two invoations of (55), either as AND(f;AND(g; h)) or asAND(g;AND(h; f)) or as AND(h;AND(f; g)); or we ould use a ternary sub-routine, ANDAND(f; g; h), analogous to (62). This ternary routine �rst sortsthe operands so that the pointers satisfy f � g � h. Then if f = 0, it returns 0;if f = 1 or f = g, it returns AND(g; h); if g = h it returns AND(f; g); otherwise1 < f < g < h and the operation remains ternary at the urrent level of reursion.Suppose, for example, that f = �5(x1; x3; : : : ; x63), g = �5(x2; x4; : : : ; x64),and h = G64(x1; : : : ; x64), as in Eq. (49). The omputation AND(f;AND(g; h))
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osts 0:2 + 6:8 = 7:0 megamems in the author's experimental implementation;AND(g;AND(h; f)) osts 0:1 + 7:0 = 7:1; AND(h;AND(f; g)) osts 24:4 + 5:6 =30:0 (!); and ANDAND(f; g; h) osts 7:5. So in this instane the all-binaryapproah wins, if we don't hoose a bad order of omputation. But sometimesternary ANDAND beats all three of its binary ompetitors (see exerise 88).*Quanti�ers. If f = f(x1; : : : ; xn) is a Boolean funtion and 1 � j � n, logiianstraditionally de�ne existential and universal quanti�ation by the formulas9xj f(x1; : : : ; xn) = f0 _ f1 and 8xj f(x1; : : : ; xn) = f0 ^ f1; (63)where f = f(x1; : : : ; xj�1; ; xj+1; : : : ; xn). Thus the quanti�er `9xj ', pro-nouned \there exists xj ," hanges f to the funtion of the remaining variables(x1; : : : ; xj�1; xj+1; : : : ; xn) that is true if and only if at least one value of xjsatis�es f(x1; : : : ; xn); the quanti�er `8xj ', pronouned \for all xj ," hanges fto the funtion that is true if and only if both values of xj satisfy f .Several quanti�ers are often applied simultaneously. For example, the for-mula 9x2 9x3 9x6 f(x1; : : : ; xn) stands for the OR of eight terms, representingthe eight funtions of (x1; x4; x5; x7; : : : ; xn) that are obtained when we plug thevalues 0 or 1 into the variables x2, x3, and x6 in all possible ways. Similarly,8x2 8x3 8x6 f(x1; : : : ; xn) stands for the AND of those same eight terms.One ommon appliation arises when the funtion f(i1; : : : ; il; j1; : : : ; jm)denotes the value in row (i1 : : : il)2 and olumn (j1 : : : jm)2 of a 2l� 2m Booleanmatrix F . Then the funtion h(i1; : : : ; il; k1; : : : ; kn) given by9j1 : : :9jm�f(i1; : : : ; il; j1; : : : ; jm) ^ g(j1; : : : ; jm; k1; : : : ; kn)� (64)represents the matrix H that is the Boolean produt F G.A onvenient way to implement multiple quanti�ation in a BDD base hasbeen suggested by R. L. Rudell: Let g = xj1 ^ � � � ^ xjm be a onjuntion ofpositive literals. Then we an regard 9xj1 : : :9xjm f as the binary operationf E g, implemented by the following variant of (55):

EXISTS(f; g) =
8>>>>>>>>><>>>>>>>>>:

If f E g has an obvious value, return it.Otherwise represent f and g as in (52);if v 6= fv, return EXISTS(f; gh).Otherwise, if f E g = r is in the memo ahe, return r.Otherwise, rl EXISTS(fl; gh) and rh EXISTS(fh; gh);if v 6= gv, set r  UNIQUE(v; rl; rh) using Algorithm U,otherwise ompute r  OR(rl; rh);put `f E g = r' into the memo ahe, and return r.
(65)

(See exerise 94.) The E operation is unde�ned when g does not have the statedform. Notie how the memo ahe niely remembers existential omputationsthat have gone before.The running time of (65) is highly variable|not like (55) where we knowthat O(B(f)B(g)) is the worst possible ase|beause m OR operations areinvoked when g spei�es m-fold quanti�ation. The worst ase now an be as
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bad as order B(f)2m, if all of the quanti�ation ours near the root of the BDDfor f ; this is only O(B(f)2) if m = 1, but it might beome unbearably large as mgrows. On the other hand, if all of the quanti�ation ours near the sinks, therunning time is simply O(B(f)), regardless of the size of m. (See exerise 97.)Several other quanti�ers are worthy of note, and equally easy, although theyaren't as famous as 9 and 8. The Boolean di�erene and the yes/no quanti�ersare de�ned by formulas analogous to (63):xj f = f0 � f1; xj f = �f0 ^ f1; xj f = f0 ^ �f1: (66)The Boolean di�erene, , is the most important of these: xj f is true forall values of fx1; : : : ; xj�1; xj+1; : : : ; xng suh that f depends on xj . If themultilinear representation of f is f = (xjg + h) mod 2, where g and h aremultilinear polynomials in fx1; : : : ; xj�1; xj+1; : : : ; xng, then xj f = g mod 2.(See Eq. 7.1.1{(19).) Thus ats like a derivative in alulus, over a �nite �eld.A Boolean funtion f(x1; : : : ; xn) is monotone (nondereasing) if and onlyif Wnj=1 xjf = 0, whih is the same as saying that xj f = 0 for all j. However,exerise 105 presents a faster way to test a BDD for monotoniity.Let's onsider now a detailed example of existential quanti�ation that ispartiularly instrutive. IfG is any graph, we an form Boolean funtions IND(x)and KER(x) for its independent sets and kernels as follows, where x is a bit vetorwith one entry xv for eah vertex v of G:IND(x) = : _u��v(xu ^ xv); KER(x) = IND(x) ^ v̂ �xv _ _u��v xu�: (67)We an form a new graph G whose verties are the kernels of G, namely thevetors x suh that KER(x) = 1. Let's say that two kernels x and y are adjaentin G if they di�er in just the two entries for u and v, where (xu; xv) = (1; 0) and(yu; yv) = (0; 1) and u���v. In other words, kernels an be onsidered as ertainways to plae markers on verties of G; moving a marker from one vertex to aneighboring vertex produes an adjaent kernel. Formally we de�nea(x) = [�(x)= 2℄ ^ :IND(x); (68)ADJ(x; y) = a(x� y) ^ KER(x) ^ KER(y): (69)Then x���y in G if and only if ADJ(x; y) = 1.Notie that, if x = x1 : : : xn, the funtion [�(x)= 2℄ is the symmetri fun-tion S2(x1; : : : ; xn). Furthermore a(x � y) has at most 3 times as many nodesas a(x), if we interleave the variables zipperwise so that the branhing order is(x1; y1; : : : ; xn; yn). Thus B(a) and B(ADJ) will not be extremely large unlessB(IND) or B(KER) is large. It's now easy to express the ondition that x is anisolated vertex of G (a vertex of degree 0):ISO(x) = KER(x) ^ :9yADJ(x; y): (70)For example, suppose G is the graph of ontiguous states in the USA, asin (18). Then eah kernel vetor x has 49 entries xv for v 2 fME; NH; : : : ; CAg. Thegraph G has 266,137 verties, and we have observed earlier that the BDD sizes



30 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 impliit graphsfuntional omposition+omposition of funtions+for IND(x) and KER(x) are respetively 428 and 780 (see (17)). In this ase theBDD sizes for a(x) and ADJ(x; y) in (68) and (69) turn out to be only 286 and7260, respetively, even though ADJ(x; y) is a funtion of 98 Boolean variables.The BDD for 9y ADJ(x; y), whih desribes all kernels x of G that have at leastone neighbor, turns out to have 842 nodes; and the one for ISO(x) has only 77.The latter BDD proves that graph G has exatly three isolated kernels, namely
(71)

and another that is a blend of these two. Using the algorithms above, this entirealulation, starting from a list of the verties and edges of G (not G), an bearried out with a total ost of about 4 megamems, in about 1.6 megabytes ofmemory; that's only about 15 memory aesses per kernel of G.In a similar fashion we an use BDDs to work with other \impliit graphs,"whih have more verties than ould possibly be represented in memory, if thoseverties an be haraterized as the solution vetors of Boolean funtions. Whenthe funtions aren't too ompliated, we an answer queries about those graphsthat ould never be answered by representing the verties and ars expliitly.*Funtional omposition. The pi�ee de r�esistane of reursive BDD algorithmsis a general proedure to ompute f(g1; g2; : : : ; gn), where f is a given funtion offx1; x2; : : : ; xng and so is eah argument gj . Suppose we know a number m � 0suh that gj = xj for m < j � n; then the proedure an be expressed as follows:
COMPOSE(f; g1; : : : ; gn) =

8>>>>>>>>><>>>>>>>>>:

If f = 0 or f = 1, return f .Otherwise suppose f = (�xv? fl: fh), as in (50);if v > m, return f ; otherwise, if f(g1; : : : ; gn)=ris in the memo ahe, return r.Compute rl  COMPOSE(fl; g1; : : : ; gn)and rh  COMPOSE(fh; g1; : : : ; gn);set r  MUX(gv; rl; rh) using (62);put `f(g1; : : : ; gn) = r' into the ahe, and return r.
(72)

The representation of ahe memos like `f(g1; : : : ; gn) = r' in this algorithm is abit triky; we will disuss it momentarily.Although the omputations here look basially the same as those we've beenseeing in previous reursions, there is in fat a huge di�erene: The funtions rland rh in (72) an now involve all variables fx1; : : : ; xng, not just the x's nearthe bottom of the BDDs. So the running time of (72) might atually be huge.But there also are many ases when everything works together harmoniously andeÆiently. For example, the omputation of a(x� y) in (69) is no problem.
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The key of a memo like `f(g1; : : : ; gn) = r' should not be a ompletelydetailed spei�ation of (f; g1; : : : ; gn), beause we want to hash it eÆiently.Therefore we store only `f [G℄ = r', where G is an identi�ation number for thesequene of funtions (g1; : : : ; gn). Whenever that sequene hanges, we an use anew number G; and we an remember the G's for speial sequenes of funtionsthat our repeatedly in a partiular omputation, as long as the individualfuntions gj don't die. (See also the alternative sheme in exerise 102.)Let's return to the graph of ontiguous states for one more example. Thatgraph is planar; suppose we want to olor it with four olors. Sine the olorsan be given 2-bit odes f00; 01; 10; 11g, it's easy to express the valid oloringsas a Boolean funtion of 98 variables that is true if and only if the olor odesab are di�erent for eah pair of adjaent states:COLOR(aME; bME; : : : ; aCA; bCA) =IND(aME ^ bME; : : : ; aCA ^ bCA) ^ IND(aME ^ �bME; : : : ; aCA ^ �bCA) (73)^ IND(�aME ^ bME; : : : ; �aCA ^ bCA) ^ IND(�aME ^ �bME; : : : ; �aCA ^ �bCA):Eah of the four INDs has a BDD of 854 nodes, whih an be omputed via (72)with a ost of about 70 kilomems. The COLOR funtion turns out to have only25,579 BDD nodes. Algorithm C now quikly establishes that the total numberof ways to 4-olor this graph is exatly 25,623,183,458,304|or, if we divideby 4! to remove symmetries, about 1.1 trillion. The total time needed for thisomputation, starting from a desription of the graph, is less than 3.5 megamems,in 2.2 megabytes of memory. (We an also �nd random 4-olorings, et.)Nasty funtions. Of ourse there also are funtions of 98 variables that aren'tnearly so nie as COLOR. Indeed, the total number of 98-variable funtions is2298; exerise 108 proves that at most 2246 of them have a BDD size less thana trillion, and that almost all Boolean funtions of 98 variables atually haveB(f) � 298=98 � 3:2 � 1027. There's just no way to ompress 298 bits of datainto a small spae, unless that data happens to be highly redundant.What's the worst ase? If f is a Boolean funtion of n variables, how largean B(f) be? The answer isn't hard to disover, if we onsider the pro�le ofa given BDD, whih is the sequene (b0; : : : ; bn�1; bn) when there are bk nodesthat branh on variable xk+1 and bn sinks. ClearlyB(f) = b0 + � � �+ bn�1 + bn : (74)We also have b0 � 1, b1 � 2, b2 � 4, b3 � 8, and in generalbk � 2k; (75)beause eah node has only two branhes. Furthermore bn = 2 whenever f isn'tonstant; and bn�1 � 2, beause there are only two legal hoies for the LO andHI branhes of kn . Indeed, we know that bk is the number of beads of ordern � k in the truth table for f , namely the number of distint subfuntions of(xk+1; : : : ; xn) that depend on xk+1 after the values of (x1; : : : ; xk) have beenspei�ed. Only 22m � 22m�1 beads of order m are possible, so we must havebk � 22n�k � 22n�k�1 ; for 0 � k < n. (76)
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When n = 11, for instane, (75) and (76) tell us that (b0; : : : ; b11) is at most(1; 2; 4; 8; 16; 32; 64; 128; 240; 12; 2; 2): (77)Thus B(f) � 1 + 2 + � � �+ 128 + 240 + � � �+ 2 = 255 + 256 = 511 when n = 11.This upper bound is in fat obtained with the truth table00000000 00000001 00000010 : : : 11111110 11111111; (78)or with any string of length 211 that is a permutation of the 256 possible 8-bitbytes, beause all of the 8-bit beads are learly present, and beause all of thesubtables of lengths 16, 32, : : : , 211 are learly beads. Similar examples an beonstruted for all n (see exerise 110). Therefore the worst ase is known:Theorem U. Every Boolean funtion f(x1; : : : ; xn) has B(f) � Un, whereUn = 2 + n�1Xk=0min(2k; 22n�k� 22n�k�1) = 2n��(n��n) + 22�(n��n)� 1: (79)Furthermore, expliit funtions fn with B(fn) = Un exist for all n.If we replae � by lg, the right-hand side of (79) beomes 2n=(n � lgn) +2n=n � 1. In general, Un is un times 2n=n, where the fator un lies between 1and 2+O( lognn ). A BDD with about 2n+1=n nodes needs about n+1� lgn bitsfor eah of two pointers in every node, plus lgn bits to indiate the variable forbranhing. So the total amount of memory spae taken up by the BDD for anyfuntion f(x1; : : : ; xn) is never more than about 2n+2 bits, whih is four timesthe number of bits in its truth table, even if f happens to be one of the worstpossible funtions from the standpoint of BDD representation.The average ase turns out to be almost the same as the worst ase, if wehoose the truth table for f at random from among all 22n possibilities. Again thealulations are straightforward: The average number of � �� �k+1 nodes is exatlyb̂k = �22n�k� 22n�k�1��22n� (22n�k� 1)2k�Æ22n ; (80)beause there are 22n�k� 22n�k�1 beads of order n � k and (22n�k� 1)2k truthtables in whih any partiular bead does not our. Exerise 112 shows that thisompliated-looking quantity b̂k always lies extremely lose to the worst-aseestimate min(2k; 22n�k� 22n�k�1), exept for two values of k. The exeptionallevels our when k � 2n�k and the \min" has little e�et. For example, theaverage pro�le (b̂0; : : : ; b̂n�1; b̂n) when n = 11 is approximately(1:0; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 127:4; 151:9; 12:0; 2:0; 2:0) (81)when rounded to one deimal plae, and these values are virtually indistinguish-able from the worst ase (77) exept when k = 7 or 8.A related onept alled a quasi-BDD, or \QDD," is also important. Everyfuntion has a unique QDD, whih is similar to its BDD exept that the rootnode is always k1 , and every kk node for k < n branhes to two � �� �k+1 nodes;thus every path from the root to a sink has length n. To make this possible,
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we allow the LO and HI pointers of a QDD node to be idential. But the QDDmust still be redued, in the sense that di�erent nodes annot have the same twopointers (LO, HI). For example, the QDD for hx1x2x3i is

? >
12 233 3 ; (82)

it has two more nodes than the orresponding BDD in Fig. 21. Notie that theV �elds are redundant in a QDD, so they needn't be present in memory.The quasi-pro�le of a funtion is (q0; : : : ; qn�1; qn), where qk�1 is the numberof kk nodes in the QDD. It's easy to see that qk is also the number of distintsubtables of order n � k in the truth table, just as bk is the number of distintbeads. Every bead is a subtable, so we haveqk � bk; for 0 � k � n. (83)Furthermore, exerise 115 proves thatqk � 1 + b0 + � � �+ bk�1 and qk � bk + � � �+ bn; for 0 � k � n. (84)Consequently eah element of the quasi-pro�le is a lower bound on the BDD size:B(f) � 2qk � 1; for 0 � k � n. (85)Let Q(f) = q0 + � � � + qn�1 + qn be the total size of the QDD for f . Weobviously have Q(f) � B(f), by (83). On the other hand Q(f) an't be toomuh bigger than B(f), beause (84) implies thatQ(f) � n+ 12 �B(f) + 1�: (86)Exerises 116 and 117 explore other basi properties of quasi-pro�les.The worst-ase truth table (78) atually orresponds to a familiar funtionthat we've already seen, the 8-way multiplexerM3(x9; x10; x11; x1; : : : ; x8) = x1+(x9x10x11)2 : (87)But we've renumbered the variables perversely so that the multiplexing nowours with respet to the last three variables (x9; x10; x11), instead of the �rstthree as in Eq. (30). This simple hange to the ordering of the variables raisesthe BDD size of M3 from 17 to 511; and an analogous hange when n = 2m+mwould ause B(Mm) to make a olossal leap from 2n� 2m+ 1 to 2n�m+1 � 1.R. E. Bryant has introdued an interesting \navel-gazing" multiplexer alledthe hidden weighted bit funtion, de�ned as follows:hn(x1; : : : ; xn) = xx1+���+xn = x�x; (88)with the understanding that x0 = 0. For example, h4(x1; x2; x3; x4) has the truthtable 0000 0111 1001 1011. He proved [IEEE Trans. C-40 (1991), 208{210℄ thathn has a large BDD, regardless of how we might try to renumber its variables.
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With the standard ordering of variables, the pro�le (b0; : : : ; b11) of h11 is(1; 2; 4; 8; 15; 27; 46; 40; 18; 7; 2; 2); (89)hene B(h11) = 172. The �rst half of this pro�le is atually the Fibonai se-quene in slight disguise, with bk = Fk+4� k� 2. In general, hn always has thisvalue of bk for k < n=2; thus its initial pro�le ounts grow with order �k instead ofthe worst-ase rate of 2k. This growth rate slakens after k surpasses n=2, so that,for example, B(h32) is only a modest 86,636. But exponential growth eventuallytakes over, and B(h100) is out of sight: 17,530,618,296,680. (When n = 100, themaximum pro�le element is b59 = 2,947,635,944,748, whih dwarfs b0+� � �+b49 =139,583,861,115.) Exerise 125 proves that B(hn) is asymptotially �n+O(n2),where � = 3p27�p621 + 3p27 +p6213p54= 1:32471 79572 44746 02596 09088 54478 09734 07344+ (90)is the so-alled \plasti onstant," the positive root of �3 = � + 1, and theoeÆient  is 7�� 1 + 14=(3 + 2�) � 10:75115.On the other hand we an do substantially better if we hange the orderin whih the variables are tested in the BDD. If f(x1; : : : ; xn) is any Booleanfuntion and if � is any permutation of f1; : : : ; ng, let us writef�(x1; : : : ; xn) = f(x1�; : : : ; xn�): (91)For example, if f(x1; x2; x3; x4) = (x3 _ (x1 ^ x4)) ^ (�x2 _ �x4) and if (1�; 2�;3�; 4�) = (3; 2; 4; 1), then f�(x1; x2; x3; x4) = (x4 _ (x3 ^ x1)) ^ (�x2 _ �x1); andwe have B(f) = 10, B(f�) = 6 beause the BDDs are

f :
12 23 3 34 4> ? > ? > >

; f� :
1 234? > >

? : (92)
The BDD for f� orresponds to a BDD for f that has a nonstandard ordering,in whih a branh is permitted from ki to kj only if i� < j�:

f :
4 213? > >

? : (93)
The root is ki , where i = 1�� is the index for whih i� = 1. When the branhvariables are listed from the top down, we have (4�; 2�; 1�; 3�) = (1; 2; 3; 4).



7.1.4 BINARY DECISION DIAGRAMS 35 quasi-pro�leslate of optionsBryantApplying these ideas to the hidden weighted bit funtion, we haveh�n(x1; : : : ; xn) = x(x1+���+xn)�; (94)with the understanding that 0� = 0 and x0 = 0. For example, h�3 (0; 0; 1) = 1 if(1�; 2�; 3�) = (3; 1; 2), beause x(x1+x2+x3)� = x3 = 1. (See exerise 120.)Element qk of the quasi-pro�le ounts the number of distint subfuntionsthat arise when the values of x1 through xk are known. Using (94), we anrepresent all suh subfuntions by means of a slate of options [r0; : : : ; rn�k℄,where rj is the result of the subfuntion when xk+1 + � � � + xn = j. Supposex1 = 1, : : : , xk = k, and let s = 1+ � � �+k. Then rj = (s+j)� if (s+j)� � k;otherwise rj = x(s+j)�. However, we set r0  0 if s� > k, and rn�k  1 if(s+ n� k)� > k, so that the �rst and last options of every slate are onstant.For example, alulations show that the following permutation 1� : : : 100�redues the BDD size of h100 from 17.5 trillion to B(h�100) = 1,124,432,105:2 4 6 8 10 12 14 16 18 20 97 57 77 37 87 47 67 27 92 5272 32 82 42 62 22 100 60 80 40 90 50 70 30 95 55 75 35 85 4565 25 98 58 78 38 88 48 68 28 93 53 73 33 83 43 63 23 99 5979 39 89 49 69 29 94 54 74 34 84 44 64 24 96 56 76 36 86 4666 26 91 51 71 31 81 41 61 21 19 17 15 13 11 9 7 5 3 1 (95)
Suh alulations an be based on an enumeration of all slates that an arise, for0 � s � k � n. Suppose we've tested x1, : : : , x83 and found that xj = [j� 42℄,say, for 1 � j � 83. Then s = 42; and the subfuntion of the remaining 17variables (x84; : : : ; x100) is given by the slate [r0; : : : ; r17℄ = [25; x98; 58; 78; 38;x88; 48; 68; 28; x93; 53; 73; 33; 83; 43; 63; 23; x99℄, whih redues to[1; x98; 0; 0; 1; x88; 0; 0; 1; x93; 0; 0; 1; 0; 0; 0; 1; 1℄: (96)This is one of the 214 subfuntions ounted by q83 when s = 42. Exerise 124explains how to deal similarly with the other values of k and s.We're ready now to prove Bryant's theorem:Theorem B. The BDD size of h�n exeeds 2bn=5, for all permutations �.Proof. Observe �rst that two subfuntions of h�n are equal if and only if theyhave the same slate. For if [r0; : : : ; rn�k℄ 6= [r00; : : : ; r0n�k℄, suppose rj 6= r0j . Ifboth rj and r0j are onstant, the subfuntions di�er when xk+1 + � � � + xn = j.If rj is onstant but r0j = xi, we have 0 < j < n � k; the subfuntions di�erbeause xk+1 + � � � + xn an equal j with xi 6= rj . And if rj = xi but r0j = xi0with i 6= i0, we an have xk+1 + � � �+ xn = j with xi 6= xi0 . (The latter ase anarise only when the slates orrespond to di�erent o�sets s and s0.)Therefore qk is the number of di�erent slates [r0; : : : ; rn�k℄. Exerise 123proves that this number, for any given k, n, and s as desribed above, is exatly� ww�s�+� ww�s+1�+ � � �+� wk�s� = � ws+w�k�+ � � �+� ws�1�+�ws �; (97)where w is the number of indies j suh that s � j � s+ n� k and j� � k.Now onsider the ase k = b3n=5+1, and let s = k�dn=2e, s0 = bn=2+1.(Think of n = 100, k = 61, s = 11, s0 = 51. We may assume that n � 10.) Then
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w + w0 = k � w00, where w00 ounts the indies with j� � k and either j < sor j > s0 + n � k. Sine w00 � (s � 1) + (k � s0) = 2k � 2 � n, we must havew + w0 � n + 2 � k = d2n=5e + 1. Hene either w > bn=5 or w0 > bn=5; andin both ases (97) exeeds 2bn=5�1. The theorem follows from (85).Conversely, there's always a permutation � suh that B(h�n) = O(20:2029n),although the onstant hidden byO-notation is quite large. This result was provedby B. Bollig, M. L�obbing, M. Sauerho�, and I. Wegener, Theoretial Informatisand Appliations 33 (1999), 103{115, using a permutation like (95): The �rstindies, with j� � n=5, ome alternately from j > 9n=10 and j � n=10; theothers are ordered by reading the binary representation of 9n=10� j from rightto left (olex order).Let's also look briey at a muh simpler example, the permutation funtionPm(x1; : : : ; xm2), whih equals 1 if and only if the binary matrix with x(i�1)m+jin row i and olumn j is a permutation matrix:Pm(x1; : : : ; xm2) = m̂i=1S1(x(i�1)m+1; x(i�1)m+2; : : : ; x(i�1)m+m)^ m̂j=1S1(xj ; xm+j ; : : : ; xm2�m+j): (98)In spite of its simpliity, this funtion annot be represented with a small BDD,under any reordering of its variables:Theorem K. The BDD size of P�m exeeds m2m�1, for all permutations �.Proof. [See I. Wegener, Branhing Programs and Binary Deision Diagrams(SIAM, 2000), Theorem 4.12.3.℄ Given the BDD for P�m, notie that eah of them! vetors x suh that P�m(x) = 1 traes a path of length n = m2 from the rootto > ; every variable must be tested. Let vk(x) be the node from whih thepath for x takes its kth HI branh. This node branhes on the value in row i andolumn j of the given matrix, for some pair (i; j) = (ik(x); jk(x)).Suppose vk(x) = vk0(x0), where x 6= x0. Construt x00 by letting it agreewith x up to vk(x) and with x0 thereafter. Then f(x00) = 1; onsequently wemust have k = k0. In fat, this argument shows that we must also havef(i1(x); j1(x)); (i2(x); j2(x)); : : : ; (ik�1(x); jk�1(x))g= f(i1(x0); j1(x0)); (i2(x0); j2(x0)); : : : ; (ik�1(x0); jk�1(x0))g: (99)Imagine m olors of tikets, with m! tikets of eah olor. Plae a tiket ofolor k on node vk(x), for all k and all x. Then no node gets tikets of di�erentolors; and no node of olor k gets more than (k�1)! (m�k)! tikets altogether,by Eq. (99). Therefore at least m!=((k � 1)! (m � k)!) = k�mk � di�erent nodesmust reeive tikets of olor k. Summing over k gives m2m�1 non-sink nodes.Exerise 184 shows that B(Pm) is less than m2m+1, so the lower bound inTheorem K is nearly optimum exept for a fator of 4. Although the size growsexponentially, the behavior isn't hopelessly bad, beause m = pn. For example,B(P20) is only 38,797,317, even though P20 is a Boolean funtion of 400 variables.
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*Optimizing the order. Let Bmin(f) and Bmax(f) denote the smallest andlargest values of B(f�), taken over all permutations � that an presribe anordering of the variables. We've seen several ases where Bmin and Bmax aredramatially di�erent; for example, the 2m-way multiplexer has Bmin(Mm) � 2nand Bmax(Mm) � 2n=n, when n = 2m + m. And indeed, simple funtions forwhih a good ordering is ruial are not at all unusual. Consider, for instane,f(x1; x2; : : : ; xn) = (�x1 _ x2) ^ (�x3 _ x4) ^ � � � ^ (�xn�1 _ xn); n even; (100)this is the important subset funtion [x1x3 : : : xn�1�x2x4 : : : xn ℄, and we haveB(f) = Bmin(f) = n + 2. But the BDD size explodes to B(f�) = Bmax(f) =2n=2+1 when � is \organ-pipe order," namely the ordering for whihf�(x1; x2; : : : ; xn) = (�x1 _ xn) ^ (�x2 _ xn�1) ^ � � � ^ (�xn=2 _ xn=2+1): (101)And the same bad behavior ours for the ordering [x1 : : : xn=2�xn=2+1 : : : xn ℄.In these orderings the BDD must \remember" the states of n=2 variables, whilethe original formulation (100) needs very little memory.Every Boolean funtion f has a master pro�le hart, whih enapsulates theset of all its possible sizes B(f�). If f has n variables, this hart has 2n verties,one for eah subset of the variables; and it has n2n�1 edges, one for eah pair ofsubsets that di�er in just one element. For example, the master pro�le hart forthe funtion in (92) and (93) is ;f1g f2gf1; 2g f3gf1; 3g f2; 3gf1; 2; 3g

f4gf1; 4g f2; 4gf1; 2; 4g f3; 4gf1; 3; 4g f2; 3; 4gf1; 2; 3; 4g
: (102)

Every edge has a weight, illustrated here by the number of lines; for example,the weight between f1; 2g and f1; 2; 3g is 3. The hart has the following interpre-tation: If X is a subset of k variables, and if x =2 X, then the weight between Xand X[x is the number of subfuntions of f that depend on x when the variablesof X have been replaed by onstants in all 2k possible ways. For example, ifX = f1; 2g, we have f(0; 0; x3; x4) = x3, f(0; 1; x3; x4) = f(1; 1; x3; x4) = x3^�x4,and f(1; 0; x3; x4) = x3 _ x4; all three of these subfuntions depend on x3, butonly two of them depend on x4, as shown in the weights below f1; 2g.There are n! paths of length n from ; to f1; : : : ; ng, and we an let the path; ! fa1g ! fa1; a2g ! � � � ! fa1; : : : ; ang orrespond to the permutation �if a1� = 1, a2� = 2, : : : , an� = n. Then the sum of the weights on path � isB(f�), if we add 2 for the sink nodes. For example, the path ; ! f4g ! f2; 4g !f1; 2; 4g ! f1; 2; 3; 4g yields the only way to ahieve B(f�) = 6 as in (93).
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Notie that the master pro�le hart is a familiar graph, the n-ube, whoseedges have been deorated so that they ount the number of beads in various setsof subfuntions. The graph has exponential size, n2n�1; yet it is muh smallerthan the total number of permutations, n!. When n is, say, 25 or less, exerise 138shows that the entire hart an be omputed without great diÆulty, and we an�nd an optimum permutation for any given funtion. For example, the hiddenweighted bit funtion turns out to have Bmin(h25) = 2090 and Bmax(h25) =35441; the minimum is ahieved with (1�; : : : ; 25�) = (3, 5, 7, 9, 11, 13, 15, 17,25, 24, 23, 22, 21, 20, 19, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1), while the maximumresults from a strange permutation (22, 19, 17, 25, 15, 13, 11, 10, 9, 8, 7, 24, 6,5, 4, 3, 2, 12, 1, 14, 23, 16, 18, 20, 21) that tests many \middle" variables �rst.Instead of omputing the entire master pro�le hart, we an sometimes savetime by learning just enough about it to determine a path of least weight. (Seeexerise 140.) But when n grows and funtions get more weird, we are unlikelyto be able to determine Bmin(f) exatly, beause the problem of �nding the bestordering is NP-omplete (see exerise 137).We've de�ned the pro�le and quasi-pro�le of a single Boolean funtion f , butthe same ideas apply also to an arbitrary BDD base that ontains m funtionsff1; : : : ; fmg. Namely, the pro�le is (b0; : : : ; bn) when there are bk nodes onlevel k, and the quasi-pro�le is (q0; : : : ; qn) when there are qk nodes on level k ofthe orresponding QDD base; the truth tables of the funtions have bk di�erentbeads of order n� k, and qk di�erent subtables. For example, the pro�le of the(4 + 4)-bit addition funtions ff1; f2; f3; f4; f5g in (36) is (2; 4; 3; 6; 3; 6; 3; 2; 2),and the quasi-pro�le is worked out in exerise 144. Similarly, the onept ofmaster pro�le hart applies to m funtions whose variables are reordered simul-taneously; and we an use it to �nd Bmin(f1; : : : ; fm) and Bmax(f1; : : : ; fm), theminimum and maximum of b0 + � � �+ bn taken over all pro�les.*Loal reordering. What happens to a BDD base when we deide to branhon x2 �rst, then on x1, x3, : : : , xn? Figure 26 shows that the struture of thetop two levels an hange dramatially, but all other levels remain the same.A loser analysis reveals, in fat, that this level-swapping proess isn'tdiÆult to understand or to implement. The k1 nodes before swapping anbe divided into two kinds, \tangled" and \solitary," depending on whether theyhave k2 nodes as desendants; for example, there are three tangled nodes atthe left of Fig. 26, pointed to by s1, s2, and s3, while s4 points to a solitarynode. Similarly, the k2 nodes before swapping are either \visible" or \hidden,"depending on whether they are independent soure funtions or aessible onlyfrom k1 nodes; all four of the k2 nodes at the left of Fig. 26 are hidden.After swapping, the solitary k1 nodes simply move down one level, butthe tangled nodes are transmogri�ed aording to a proess that we shall explainshortly. The hidden k2 nodes disappear, and the visible ones simply move upto the top level. Additional nodes might also arise during the transmogri�ationproess; suh nodes, labeled k1 , are alled \newbies." For example, two newbiesappear at the right of Fig. 26. This proess dereases the total number of nodesif and only if the hidden nodes outnumber the newbies.



7.1.4 BINARY DECISION DIAGRAMS 39 sinksextended truth tableRudells1 s2 s3 s41 1 1 12 2 2 2t1 t2 t3 t4
s1 s2 s3 s42 2 21 1 1t1 t2 t3 t4Fig. 26. Interhanging the top two levels of a BDD base. Here (s1; s2; s3; s4) are sourefuntions; (t1; t2; t3; t4) are target nodes, representing subfuntions at lower levels.The reverse of a swap is, of ourse, the same as a swap, but with the roles ofk1 and k2 interhanged. If we begin with the diagram at the right of Fig. 26,we see that it has three tangled nodes (labeled k2 ) and one that's visible (la-beled k1 ); two of its nodes are hidden, none are solitary. The swapping proessin general sends (tangled, solitary, visible, hidden) nodes into (tangled, visible,solitary, newbie) nodes, respetively|after whih newbies would beome hiddenin a reverse swap, and the originally hidden nodes would reappear as newbies.Transmogri�ation is easiest to understand if we treat all nodes below thetop two levels as if they were sinks, having onstant values. Then every sourefuntion f(x1; x2) depends only on x1 and x2; hene it takes on four valuesa = f(0; 0), b = f(0; 1),  = f(1; 0), and d = f(1; 1), where a, b, , and drepresent sinks. We may suppose that there are q sinks, 1 , 2 , : : : , q , andthat 1 � a; b; ; d � q. Then f(x1; x2) is fully desribed by its extended truthtable, f(0; 0)f(0; 1)f(1; 0)f(1; 1) = abd. And after swapping, we're left withf(x2; x1), whih has the extended truth table abd. For example, Fig. 26 an beredrawn as follows, using extended truth tables to label its nodes:1224 2324 1324 33441224 2324 1324 334412 13 24 231 2 3 4

1224 2234 1234 34341224 2234 123412 24 341 2 3 4Fig. 27. Another way to represent the transformations in Fig. 26.In these terms, the soure funtion abd points to a solitary node when a = b 6= = d, and to a visible node when a =  6= b = d; otherwise it points to a tanglednode (unless a = b =  = d, when it points diretly to a sink). The tangled nodeabd usually has LO = ab and HI = d, unless a = b or  = d; in the exeptionalases, LO or HI is a sink. After transmogri�ation it will have LO = a andHI = bd in a similar way, where latter nodes will be either newbies or visiblesor sinks (but not both sinks). One interesting ase is 1224, whose hildren 12and 24 on the left are hidden nodes, while the 12 and 24 on the right are newbies.Exerise 147 disusses an eÆient implementation of this transformation,whih was introdued by Rihard Rudell in IEEE/ACM International Conf.Computer-Aided Design CAD-93 (1993), 42{47. It has the important propertythat no pointers need to hange, exept within the nodes on the top two levels:
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All soure nodes sj still point to the same plae in omputer memory, and allsinks retain their previous identity. We have desribed it as a swap between k1 sand k2 s, but in fat the same transformation will swap kj s and kk s wheneverthe variables xj and xk orrespond to branhing on adjaent levels. The reasonis that the upper levels of any BDD base essentially de�ne soure funtions forthe lower levels, whih onstitute a BDD base in their own right.We know from our study of sorting that any reordering of the variables ofa BDD base an be produed by a sequene of swaps between adjaent levels.In partiular, we an use adjaent swaps to do a \jump-up" transformation,whih brings a given variable xk to the top level without disturbing the relativeorder of the other variables. It's easy, for instane, to jump x4 up to the top:We simply swap k4 $ k3 , then k4 $ k2 , then k4 $ k1 , beause x4 will beadjaent to x1 after it has jumped past x2.Sine repeated swaps an produe any ordering, they are sometimes ableto make a BDD base grow until it is too big to handle. How bad an a singleswap be? If exatly (s; t; v; h; �) nodes are solitary, tangled, visible, hidden, andnewbie, the top two levels end up with s + t + v + � nodes; and this is at mostm+ � � m+2t when there are m soure funtions, beause m � s+ t+ v. Thusthe new size an't exeed twie the original, plus the number of soures.If a single swap an double the size, a jump-up for xk threatens to inreasethe size exponentially, beause it does k� 1 swaps. Fortunately, however, jump-ups are no worse than single swaps in this regard:Theorem J+. B(f�1 ; : : : ; f�m) < m+2B(f1; : : : ; fm) after a jump-up operation.Proof. Let a1a2 : : : a2k�1a2k be the extended truth table for a soure funtionf(x1; : : : ; xk), with lower-level nodes regarded as sinks. After the jump-up, theextended truth table for f�(x1; : : : ; xk) = f(x1�; : : : ; xk�) = f(x2; : : : ; xk; x1) isa1a3 : : : a2k�1a2a4 : : : a2k , whih inidentally an be written a1 : : : a2k � �k;0 inthe \sheep-and-goats" notation of 7.1.3{(81). Thus we an see that eah beadon level j of f� is derived from some bead on level j � 1 of f , for 1 � j < k;but every suh bead spawns at most two beads of half the size in f�. Therefore,if the respetive pro�les of ff1; : : : ; fmg and ff�1 ; : : : ; f�mg are (b0; : : : ; bn) and(b00; : : : ; b0n), we must have b00 � m, b01 � 2b0, : : : , b0k�1 � 2bk�2, b0k = bk, : : : ,b0n = bn. The total is therefore � m+B(f1; : : : ; fm)+ b0+ � � �+ bk�2� bk�1.The opposite of a jump-up is a \jump-down," whih demotes the topmostvariable by k�1 levels. As before, this operation an be implemented with k�1swaps. But we have to settle for a muh weaker upper bound on the resulting size:Theorem J�. B(f�1 ; : : : ; f�m) < B(f1; : : : ; fm)2 after a jump-down operation.Proof. Now the extended truth table in the previous proof hanges from a1 : : : a2kto a1 : : : a2k�1 z a2k�1+1 : : : a2k = a1a2k�1+1 : : : a2k�1a2k , the \zipper funtion"7.1.3{(76). In this ase we an identify every bead after the jump with anordered pair of original subfuntions, as in the melding operation (37) and (38).For example, when k = 3 the truth table 12345678 beomes 15263748, whosebead 1526 an be regarded as the meld 12 � 56.



7.1.4 BINARY DECISION DIAGRAMS 41 2m-way muxBolligL�obbingWegenerdynami reordering of variables+++Rudellsifting
This proof indiates why quadrati growth might our. If, for example,f(x1; : : : ; xn) = x1? Mm(x2; : : : ; xm+1;x2m+2; : : : ; xn):Mm(xm+2; : : : ; x2m+1; �x2m+2; : : : ; �xn); (103)where n = 1+ 2m+2m, a jump-down of 2m levels hanges B(f) = 4n� 8m� 3to B(f�) = 2n2 � 8m(n�m)� 2(n� 2m) + 1 � 12B(f)2.Sine jump-up and jump-down are inverse operations, we an also use Theo-rems J+ and J� in reverse: A jump-up operation might oneivably derease theBDD size to something like its square root, but a jump-down annot redue thesize to less than about half. That's bad news for fans of jump-down, althoughthey an take omfort from the knowledge that jump-downs are sometimes theonly deent way to get from a given ordering to an optimum one.Theorems J+ and J� are due to B. Bollig, M. L�obbing, and I. Wegener, Inf.Proessing Letters 59 (1996), 233{239. (See also exerise 149.)*Dynami reordering. In pratie, a natural way to order the variables oftensuggests itself, based on the modules-in-a-row perspetive of Fig. 23 and Theo-rem M. But sometimes no suitable ordering is apparent, and we an only hopeto be luky; perhaps the omputer will ome to our resue and �nd one. Fur-thermore, even if we do know a good way to begin a omputation, the orderingof variables that works best in the �rst stages of the work might turn out to beunsatisfatory in later stages. Therefore we an get better results if we don'tinsist on a �xed ordering. Instead, we an try to tune up the urrent order ofbranhing whenever a BDD base beomes unwieldy.For example, we might try to swap xj�1 $ xj in the order, for 1 < j � n,undoing the swap if it inreases the total number of nodes but letting it rideotherwise; we ould keep this up until no suh swap makes an improvement.That method is easy to implement, but unfortunately it's too weak; it doesn'tgive muh of a redution. A muh better reordering tehnique was proposed byRihard Rudell at the same time as he introdued the swap-in-plae algorithm ofexerise 147. His method, alled \sifting," has proved to be quite suessful. Theidea is simply to take a variable xk and to try jumping it up or down to all otherlevels| that is, essentially to remove xk from the ordering and then to insert itagain, hoosing a plae for insertion that keeps the BDD size as small as possible.All of the neessary work an be done with a sequene of elementary swaps:Algorithm J (Sifting a variable). This algorithm moves variable xk into anoptimum position with respet to the urrent ordering of the other variablesfx1; : : : ; xk�1; xk+1; : : : ; xng in a given BDD base. It works by repeatedly allingthe proedure of exerise 147 to swap adjaent variables xj�1$ xj . Throughoutthis algorithm, S denotes the urrent size of the BDD base (the total number ofnodes); the swapping operation usually hanges S.J1. [Initialize.℄ Set p 0, j  k, and s S. If k > n=2, go to J5.J2. [Sift up.℄ While j > 1, swap xj�1$ xj and set j  j � 1, s min(S; s).



42 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 Rudellontiguous USA++J3. [End the pass.℄ If p = 1, go to J4. Otherwise, while j 6= k, set j  j+1 andswap xj�1$ xj ; then set p 1 and go to J5.J4. [Finish downward.℄ While s 6= S, set j  j + 1 and swap xj�1$ xj . Stop.J5. [Sift down.℄ While j<n, set j j+1, swap xj�1$xj , and set s min(S; s).J6. [End the pass.℄ If p = 1, go to J7. Otherwise, while j 6= k, swap xj�1$ xjand set j  j � 1; then set p 1 and go to J2.J7. [Finish upward.℄ While s 6= S, swap xj�1$ xj and set j  j � 1. Stop.Whenever Algorithm J swaps xj�1$ xj , the variable that is urrently alled xjis the original variable xk. The total number of swaps varies from about n toabout 2:5n, depending on k and the optimum �nal position of xk. But we animprove the running time substantially, without seriously a�eting the outome,if steps J2 and J5 are modi�ed to proeed immediately to J3 and J6, respetively,whenever S beomes larger than, say, 1:2s or even 1:1s or even 1:05s. In suhases, further sifting in the same diretion is unlikely to derease s.Rudell's sifting proedure onsists of applying Algorithm J exatly n times,one for eah variable that is present; see exerise 151. We ould ontinue siftingagain and again until there is no more improvement; but the additional gain isusually not worth the extra e�ort.Let's look at a detailed example, in order to make these ideas onrete.We've observed that when the ontiguous United States are arranged in the orderME NH VT MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL TN KY WV OH MI INIL WI MN IA MO AR MS LA TX OK KS NE SD ND MT WY CO NM AZ UT ID WA OR NV CA (104)as in (17), they lead to a BDD of size 428 for the independent-set funtion:�(xAL ^ xFL)_ (xAL ^ xGA)_ (xAL ^ xMS)_ � � � _ (xUT ^ xWY)_ (xVA ^ xWV)�: (105)The author hose the ordering (104) by hand, starting with the historial/geo-graphial listing of states that he had been taught as a hild, then trying tominimize the size of the boundary between states-already-listed and states-to-ome, so that the BDD for (105) would not need to \remember" too many partialresults at any level. The resulting size, 428, is pretty good for a funtion of 49variables; but sifting is able to make it even better. For example, onsider WV:Some of the possibilities for altering its position, with varying sizes S, are424RI422CT417NY415NJ414PA412DE411MD410DC412VA412NC415SC420GA421FL426AL425TN427KY428OH428MI436IN442IL453so we an save 428� 410 = 18 nodes by jumping WV up to a position between MDand DC. By using Algorithm J to sift on all the variables|�rst on ME, then onNH, then : : : , then on CA|we end up with the orderingVT MA ME NH CT RI NY NJ DE PA MD WV VA DC KY OH NC GA SC AL FL MS TN INIL MI AR TX LA OK MO IA WI MN CO NE KS MT ND WY SD UT AZ NM ID CA OR WA NV (106)and the BDD size has been redued to 345(!). That sifting proess involves atotal of 4663 swaps, requiring less than 4 megamems of omputation altogether.
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Instead of hoosing an ordering arefully, let's onsider a lazier alternative:We might begin with the states in alphabeti orderAL AR AZ CA CO CT DC DE FL GA IA ID IL IN KS KY LA MA MD ME MI MN MO MSMT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY (107)and proeed from there. Then the BDD for (105) turns out to have 306,214nodes; it an be omputed either via Algorithm S (with about 380 megamems ofmahine time) or via (55) and Algorithm U (with about 565 megamems). In thisase sifting makes a dramati di�erene: Those 306,214 nodes beome only 2871,at a ost of 430 additional megamems. Furthermore, the sifting ost goes downfrom 430 M� to 210 M� if the loops of Algorithm J are aborted when S > 1:1s.(The more radial hoie of aborting when S > 1:05s would redue the ost ofsifting to 155 M�; but the BDD size would be redued only to 2946 in that ase.)And we an atually do muh, muh better, if we sift the variables whileevaluating (105), instead of waiting until that whole long sequene of disjuntionsbeen entirely omputed. For example, suppose we invoke sifting automatiallywhenever the BDD size surpasses twie the number of nodes that were presentafter the previous sift. Then the evaluation of (105), starting from the alphabetiordering (107), runs like a breeze: It automatially hurns out a BDD that hasonly 419 nodes, after only about 60 megamems of alulation! Neither humaningenuity nor \geometri understanding" are needed to disover the orderingNV OR ID WA AZ CA UT NM WY CO MT OK TX NE MO KS LA AR MS TN IA ND MN SDGA FL AL NC SC KY WI MI IL OH IN WV MD VA DC PA NJ DE NY CT RI NH ME VT MA (108)whih beats the author's (104). For this one, the omputer just deided to invokeautosifting 39 times, on smaller BDDs.What is the best ordering of states for the funtion (105)? The answer tothat question will probably never be known for sure, but we an make a prettygood guess. First of all, a few more sifts of (108) will yield a still-better orderingOR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS TNGA FL AL NC SC KY WI MI IL OH IN WV MD DC VA PA NJ DE NY CT RI NH ME VT MA (109)with BDD size 354. Sifting will not improve (109) further; but sifting has onlylimited power, beause it explores only (n � 1)2 alternative orderings, out ofn! possibilities. (Indeed, exerise 134 exhibits a funtion of only four variableswhose BDD annot be improved by sifting, even though the ordering of itsvariables is not optimum.) There is, however, another arrow in our quiver: Wean use master pro�le harts to optimize every window of, say, 16 onseutivelevels in the BDD. There are 34 suh windows; and the algorithm of exerise 139optimizes eah of them rather quikly. After about 9.6 gigamems of omputation,that algorithm disovers a new hampionOR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS WIKY MI IN IL AL TN FL NC SC GA WV OH MD DC VA PA NJ DE NY CT RI NH ME VT MA (110)by leverly rearranging 16 states within (109). This ordering, for whih the BDDsize is only 339, might well be optimum, beause it annot be improved eitherby sifting or by optimizing any window of width 25. However, suh a onjeture
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rests on shaky ground: The orderingAL GA FL TN NC SC VA MS AR TX LA OK KY MO NM WV MD DC PA NJ DE OH IL MIIN IA NE KS WI SD WY ND MN MT UT CO ID CA AZ OR WA NV NY CT RI NH ME VT MA (111)also happens to be unimprovable by sifting and by width-25 window optimiza-tion, yet its BDD has 606 nodes and is far from optimum.With the improved ordering (110), the 98-variable COLOR funtion of (73)needs only 22037 BDD nodes, instead of 25579. Sifting redues it to 16098.*Read-one funtions. Boolean funtions suh as (x1 � x2)� ((x3�x4)^x5),whih an be expressed as formulas in whih eah variable ours exatly one,form an important lass for whih optimum orderings of variables an easily beomputed. Formally, let us say that f(x1; : : : ; xn) is a read-one funtion if either(i) n = 1 and f(x1) = x1; or (ii) f(x1; : : : ; xn) = g(x1; : : : ; xk) Æ h(xk+1; : : : ; xn),where Æ is one of the binary operators f^;_;^;_;�;�;�;�;�;�g and whereboth g and h are read-one funtions. In ase (i) we obviously have B(f) = 3.And in ase (ii), exerise 163 proves thatB(f) = �B(g) +B(h)� 2; if Æ 2 f^;_;^;_;�;�;�;�g;B(g) +B(h; �h)� 2; if Æ 2 f�;�g. (112)In order to get a reurrene, we also need the similar formulas

B(f; �f) = 8<: 4; if n = 1;2B(g) +B(h; �h)� 4; if Æ 2 f^;_;^;_;�;�;�;�g;B(g; �g) +B(h; �h)� 2; if Æ 2 f�;�g. (113)
A partiularly interesting family of read-one funtions arises when we de�neum+1(x1; : : : ; x2m+1) = vm(x1; : : : ; x2m) ^ vm(x2m+1; : : : ; x2m+1);vm+1(x1; : : : ; x2m+1) = um(x1; : : : ; x2m)� um(x2m+1; : : : ; x2m+1); (114)and u0(x1) = v0(x1) = x1; for example, u3(x1; : : : ; x8) = �(x1^x2)�(x3^x4)�^�(x5^x6)�(x7^x8)�. Exerise 165 shows that the BDD sizes for these funtions,alulated via (112) and (113), involve Fibonai numbers:B(u2m) = 2mF2m+2 + 2;B(v2m) = 2mF2m+2 + 2; B(u2m+1) = 2m+1F2m+2 + 2;B(v2m+1) = 2mF2m+4 + 2: (115)Thus um and vm are funtions of n = 2m variables whose BDD sizes grow as�(2m=2�m) = �(n�); where � = 1=2 + lg� � 1:19424. (116)In fat, the BDD sizes in (115) are optimum for the u and v funtions,under all permutations of the variables, beause of a fundamental result due toM. Sauerho�, I. Wegener, and R. Werhner:Theorem W. If f(x1; : : : ; xn) = g(x1; : : : ; xk) Æ h(xk+1; : : : ; xn) is a read-one funtion, there is a permutation � that minimizes B(f�) and B(f�; �f�)simultaneously, and in whih the variables fx1; : : : ; xkg our either �rst or last.
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Proof. Any permutation (1�; : : : ; n�) leads naturally to an \unshu�ed" per-mutation (1�; : : : ; n�) in whih the �rst k elements are f1; : : : ; kg and the lastn� k elements are fk + 1; : : : ; ng, retaining the � order within eah group. Forexample, if k = 7, n = 9, and (1�; : : : ; 9�) = (3; 1; 4; 5; 9; 2; 6; 8; 7), we have(1�; : : : ; 9�) = (3; 1; 4; 5; 2; 6; 7; 9; 8). Exerise 166 proves that, in appropriateirumstanes, we have B(f�) � B(f�) and B(f�; �f�) � B(f�; �f�).Using this theorem together with (112) and (113), we an readily optimizethe ordering of variables for the BDD of any given read-one funtion. Consider,for example, (x1_x2)�(x3^x4^x5) = g(x1; x2)�h(x3; x4; x5). We have B(g) = 4and B(g; �g) = 6; B(h) = 5 and B(h; �h) = 8. For the overall formula f = g � h,Theorem W says that there are two andidates for a best ordering (1�; : : : ; 5�),namely (1; 2; 3; 4; 5) and (4; 5; 1; 2; 3). The �rst of these gives B(f�) = B(g) +B(h; �h)� 2 = 10; the other one exels, with B(f�) = B(h) +B(g; �g)� 2 = 9.The algorithm in exerise 167 �nds an optimum � for any read-one funtionf(x1; : : : ; xn) in O(n) steps. Moreover, a areful analysis proves that B(f�) =O(n�) in the best ordering, where � is the onstant in (116). (See exerise 168.)*Multipliation. Some of the most interesting Boolean funtions, from a math-ematial standpoint, are the m + n bits that arise when an m-bit number ismultiplied by an n-bit number:(xm : : : x2x1)2 � (yn : : : y2y1)2 = (zm+n : : : z2z1)2: (117)In partiular, the \leading bit" zm+n, and the \middle bit" zn when m = n, areespeially noteworthy. To remove the dependene of this notation on m and n,we an imagine that m = n =1 by letting xi = yj = 0 for all i > m and j > n;then eah zk is a funtion of 2k variables, zk = Zk(x1; : : : ; xk; y1; : : : ; yk), namelythe middle bit of the produt (xk : : : x1)2 � (yk : : : y1)2.The middle bit turns out to be diÆult, BDDwise, even when y is onstant.Let Zn;a(x1; : : : ; xn) = Zn(x1; : : : ; xn; a1; : : : ; an), where a = (an : : : a1)2.Theorem X. There is a onstant a suh that Bmin(Zn;a) > 5288 � 2bn=2 � 2.Proof. [P. Woelfel, J. Computer and System Si. 71 (2005), 520{534.℄ We mayassume that n = 2t is even, sine Z2t+1;2a = Z2t;a. Let x = (xn : : : x1)2 andm = ([n�� t℄ : : : [1�� t℄)2. Then x = p + q, where q = x & m represents the\known" bits of x after t branhes have been taken in a BDD for Zn;y with theordering �, and p = x&m represents the bits yet unknown. LetP = fx&m j 0 � x < 2ng and Q = fx&m j 0 � x < 2ng: (118)For any �xed a, the funtion Zn;a has 2t subfuntionsfq(p) = �(pa+ qa)� (n� 1)�& 1; q 2 Q: (119)We want to show that some n-bit number a will make many of these subfuntionsdi�er; in other words we want to �nd a large subset Q� � Q suh thatq 2 Q� and q0 2 Q� and q 6= q0 implies fq(p) 6= fq0(p) for some p 2 P . (120)Exerise 176 shows in detail how this an be done.



46 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 AmanoMaruokaTable 1BEST AND WORST ORDERINGS FOR THE MIDDLE BIT zn OF MULTIPLICATIONx11x10x9x7x8x6x13x15� x16x14x12x5x4x3x2x1Bmin(Z8) = 756x24x20x18x16x9x8x10x11x7x12x14x21� x22x19x17x15x6x5x4x3x2x1x13x23Bmin(Z12) = 21931
x10x11x9x8x7x16x6x15� x5x4x3x12x13x2x1x14Bmax(Z8) = 6791x16x17x15x14x24x13x12x11x20x10x9x23� x8x7x6x5x18x4x22x3x2x19x1x21Bmax(Z12) = 866283Table 2BEST AND WORST ORDERINGS FOR ALL BITS fz1; : : : ; zm+ng OF MULTIPLICATIONx11x16x15x14x13x12x10x9� x8x7x6x5x4x3x2x1Bmin(Z(1)8;8 ; : : : ; Z(16)8;8 ) = 9700x15x17x24x23x22x21x20x19x18x16x14x13� x1x2x3x4x5x6x7x8x9x10x11x12Bmin(Z(1)12;12; : : : ; Z(24)12;12) = 648957x17x16x10x9x11x12 : : : x15x18x19x24x23 : : : x20� x1x2x3x4x5x6x7x8Bmin(Z(1)16;8; : : : ; Z(24)16;8) = 157061

x10x8x9x13x2x1x11x7� x16x5x15x6x4x14x3x12Bmax(Z(1)8;8 ; : : : ; Z(16)8;8 ) = 28678x17x22x14x13x16x10x20x3x2x1x19x12� x24x15x9x8x21x7x6x11x23x5x4x18Bmax(Z(1)12;12; : : : ; Z(24)12;12) = 4224195x13x14x12x15x16x17x22x10x8x7x18x9x2x1x19x6� x24x11x21x5x4x23x3x20Bmax(Z(1)16;8; : : : ; Z(24)16;8) = 1236251A good upper bound for the BDD size of the middle bit funtion whenneither operand is onstant has been found by K. Amano and A. Maruoka,Disrete Applied Math. 155 (2007), 1224{1232:Theorem A. Let f(x1; : : : ; x2n) = Zn(x1; x3; : : : ; x2n�1;x2; x4; : : : ; x2n). ThenB(f) � Q(f) < 197 2d6n=5e: (121)Proof. Consider two n-bit numbers x = 2kxh+xl and y = 2kyh+ yl, with n� kunknown bits in eah of their high parts (xh; yh), while their k-bit low parts(xl; yl) are both known. Then the middle bit of xy is determined by addingtogether three (n � k)-bit quantities when k � n=2, namely xhyl mod 2n�k,xlyh mod 2n�k, and (xlyl � k) mod 2n�k. Hene level 2k of the QDD needs to\remember" only the least signi�ant n � k bits of eah of the prior quantitiesxl, yl, and xlyl � k, a total of 3n � 3k bits, and we have q2k � 23n�3k in f 'squasi-pro�le. Exerise 177 ompletes the proof.Amano and Maruoka also disovered another important upper bound. LetZ(p)m;n(x1; : : : ; xm; y1; : : : ; yn) denote the pth bit zp of the produt (117).Theorem Y. For all onstants (am : : : a1)2 and for all p, the BDD and QDDfor the funtion Z(p)m;n(a1; : : : ; am;x1; : : : ; xn) have fewer than 3 � 2n=2 nodes.Proof. Exerise 180 proves that qk � 2n+1�k for this funtion. The theoremfollows when we ombine that result with the obvious upper bound qk � 2k.
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Theorem Y shows that the lower bound of Theorem X is best possible, exeptfor a onstant fator. It also shows that the BDD base for all m + n produtfuntions Z(p)m;n(x1; : : : ; xm;xm+1; : : : ; xm+n) is not nearly as large as �(2m+n),whih we get for almost all instanes of m+ n funtions of m+ n variables:Corollary Y. If m � n, B(Z(1)m;n; : : : ; Z(m+n)m;n ) < 3(m+ n)2m+(n+1)=2.The best orderings of variables for the middle-bit funtion Zn and for theomplete BDD base remain mysterious, but empirial results for small m and ngive reason to onjeture that the upper bounds of Theorem A and Corollary Yare not far from the truth; see Tables 1 and 2. Here, for example, are theoptimum results of Zn when n � 12:n = 1 2 3 4 5 6 7 8 9 10 11 12Bmin(Zn) = 4 8 14 31 63 136 315 756 1717 4026 9654 2193126n=5 � 2 5 12 28 64 147 338 776 1783 4096 9410 21619The ratiosBmax=Bmin with respet to the full BDD base fZ(1)m;n; : : : ; Z(m+n)m;n gare surprisingly small in Table 2. Therefore all orderings for that problem mightturn out to be roughly equivalent.Zero-suppressed BDDs: A ombinatorial alternative. When BDDs areapplied to ombinatorial problems, a glane at the data in memory often revealsthat most of the HI �elds simply point to ? . In suh ases, we're bettero� using a variant data struture alled a zero-suppressed binary deision dia-gram, or \ZDD" for short, introdued by Shin-ihi Minato [ACM/IEEE DesignAutomation Conf. 30 (1993), 272{277℄. A ZDD has nodes like a BDD, but itsnodes are interpreted di�erently: When an ki node branhes to a kj node forj > i+1, it means that the Boolean funtion is false unless xi+1 = � � � = xj�1 = 0.For example, the BDDs for independent sets and kernels in (12) have manynodes with HI = ? . Those nodes go away in the orresponding ZDDs, althougha few new nodes must also be added:123 34 45 56 >Independent sets

1 23456The yle C6

123 34 456
? ? >? >? >Kernels

(122)
Notie that we might have LO = HI in a ZDD, beause of the new onventions.Furthermore, the example on the left shows that a ZDD need not ontain ? atall! About 40% of the nodes in (12) have been eliminated from eah diagram.
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One good way to understand a ZDD is to regard it as a ondensed repre-sentation of a family of sets. Indeed, the ZDDs in (122) represent respetivelythe families of all independent sets and all kernels of C6. The root node of aZDD names the smallest element that appears in at least one of the sets; its HIand LO branhes represent the residual subfamilies that do and don't ontain thatelement; and so on. At the bottom, ? represents the empty family `;', and >represents `f;g'. For example, the rightmost ZDD in (122) represents the fam-ily �f1; 3; 5g; f1; 4g; f2; 4; 6g; f2; 5g; f3; 6g	, beause the HI branh of the rootrepresents ff3; 5g; f4gg and the LO branh represents ff2; 4; 6g; f2; 5g; f3; 6gg.Every Boolean funtion f(x1; : : : ; xn) is, of ourse, equivalent to a fam-ily of subsets of f1; : : : ; ng, and vie versa. But the family onept gives usa di�erent perspetive from the funtion onept. For example, the familyff1; 3g; f2g; f2; 5gg has the same ZDD for all n � 5; but if, say, n = 7, theBDD for the funtion f(x1; : : : ; x7) that de�nes this family needs additionalnodes to ensure that x4 = x6 = x7 = 0 when f(x) = 1.Almost every notion that we've disussed for BDDs has a ounterpart in thetheory of ZDDs, although the atual data strutures are often strikingly di�erent.We an, for example, take the truth table for any given funtion f(x1; : : : ; xn) andonstrut its unique ZDD in a straightforward way, analogous to the onstrutionof its BDD as illustrated in (5). We know that the BDD nodes for f orrespondto the \beads" of f 's truth table; the ZDD nodes, similarly, orrespond to zeads,whih are binary strings of the form �� with j�j = j�j and � 6= 0 : : : 0, or withj�j = j�j � 1. Any binary string orresponds to a unique zead, obtained bylopping o� the right half repeatedly, if neessary, until the string either has oddlength or its right half is nonzero.Dear reader, please take a moment now to work exerise 187. (Really.)The z-pro�le of f(x1; : : : ; xn) is (z0; : : : ; zn), where zk is the number of zeadsof order n�k in f 's truth table, for 0 � k < n, namely the number of � �� �k+1 nodesin the ZDD; also zn is the number of sinks. We write Z(f) = z0 + � � � + zn forthe total number of nodes. For example, the funtions in (122) have z-pro�les(1; 1; 2; 2; 2; 1; 1) and (1; 1; 2; 2; 1; 1; 2), respetively, so Z(f) = 10 in eah ase.The basi relations (83){(85) between pro�les and quasi-pro�les hold truealso for z-pro�les: qk � zk; for 0 � k � n; (123)qk � 1 + z0 + � � �+ zk�1 and qk � zk + � � �+ zn; for 0 � k � n; (124)Z(f) � 2qk � 1; for 0 � k � n. (125)Consequently the BDD size and the ZDD size an never be wildly di�erent:Z(f) � n+ 12 �B(f) + 1� and B(f) � n+ 12 �Z(f) + 1�: (126)On the other hand, a fator of 50 when n = 100 is nothing to sneeze at.When ZDDs are used to �nd independent sets and kernels of the ontiguousUSA, using the original order of (17), the BDD sizes of 428 and 780 go down to177 and 385, respetively. Sifting redues these ZDD sizes to 160 and 335. Is any-body sneezing? That's amazingly good, for ompliated funtions of 49 variables.
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When we know the ZDDs for f and g, we an synthesize them to obtainthe ZDDs for f ^ g, f _ g, f � g, et., using algorithms that are very muh likethe methods we've used for BDDs. Furthermore we an ount and/or optimizethe solutions of f , with analogs of Algorithms C and B; in fat, ZDD-basedtehniques for ounting and optimization turn out to be a bit easier than theorresponding BDD-based algorithms are. With slight modi�ations of BDDmethods, we an also do dynami variable reordering via sifting. Exerises 197{209 disuss the nuts and bolts of all the basi ZDD proedures.In general, a ZDD tends to be better than a BDD when we're dealing withfuntions whose solutions are sparse, in the sense that �x tends to be smallwhen f(x) = 1. And if f(x) itself happens to be sparse, in the sense that it hasomparatively few solutions, so muh the better.For example, ZDDs are well suited to exat over problems, de�ned by anm�n matrix of 0s and 1s: We want to �nd all ways to hoose rows that sum to(1; 1; : : : ; 1). Our goal might be, say, to over a hessboard with 32 dominoes, like
; ; or : (127)

This is an exat over problem whose matrix has 8 � 8 = 64 olumns, one foreah ell; there are 2� 7� 8 = 112 rows, one for eah pair of adjaent ells:0BBBBBBBBBB�
1 1 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 00 1 1 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 1 0 0 : : : 0 0 0 0 0 0 0 0 0 0 0... ...0 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 1 1

1CCCCCCCCCCA : (128)
Let variable xj represent the hoie (or not) of row j. Thus the three so-lutions in (127) have (x1; x2; x3; x4; : : : ; x110; x111; x112) = (1; 0; 0; 0; : : : ; 1; 0; 1),(1; 0; 0; 0; : : : ; 1; 0; 1), and (0; 1; 0; 1; : : : ; 1; 0; 0), respetively. In general, the so-lutions to an exat over problem are represented by the funtionf(x1; : : : ; xm) = n̂j=1S1(Xj) = n̂j=1[�Xj =1℄; (129)where Xj = fxi j aij = 1g and (aij) is the given matrix.The dominoes-on-a-hessboard ZDD turns out to have only Z(f) = 2300nodes, even though f has m = 112 variables in this ase. We an use it to provethat there are exatly 12,988,816 overings suh as (127).
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Similarly, we an investigate more exoti kinds of overing. In
; (130)

for instane, a hessboard has been overed with monominoes, dominoes, and/ortrominoes| that is, with rookwise-onneted piees that eah have either one,two, or three ells. There are exatly 92,109,458,286,284,989,468,604 ways todo this(!); and we an ompute that number almost instantly, doing only about75 megamems of alulation, by forming a ZDD of size 512,227 on 468 variables.A speial algorithm ould be devised to �nd the ZDD for any given exatover problem; or we an synthesize the result using (129). See exerise 212.Inidentally, the problem of domino overing as in (127) is equivalent to�nding the perfet mathings of the grid graph P8 P8, whih is bipartite. Wewill see in Setion 7.5.1 that eÆient algorithms are available by whih perfetmathings an be studied on graphs that are far too large to be treated withBDD/ZDD tehniques. In fat, there's even an expliit formula for the numberof domino overings of an m � n grid. By ontrast, general overings suh as(130) fall into a wider ategory of hypergraph problems for whih polynomial-time methods are unlikely to exist as m;n!1.An amusing variant of domino overing alled the \mutilatedhessboard" was onsidered by Max Blak in his book CritialThinking (1946), pages 142 and 394: Suppose we remove oppositeorners of the hessboard, and try to over the remaining ellswith 31 dominoes. It's easy to plae 30 of them, for exampleas shown here; but then we're stuk. Indeed, if we onsider theorresponding 108�62 exat over problem, but leave out the lasttwo onstraints of (129), we obtain a ZDD with 1224 nodes from whih we andedue that there are 324,480 ways to hoose rows that sum to (1; 1; : : : ; 1; 1; �; �).But eah of those solutions has at least two 1s in olumn 61; therefore the ZDDredues to ? after we AND in the onstraint [�X61=1℄. (\Critial thinking"explains why; see exerise 213.) This example reminds us that (i) the size of the�nal ZDD or BDD in a alulation an be muh smaller than the time neededto ompute it; and (ii) using our brains an save oodles of omputer yles.ZDDs as ditionaries. Let's swith gears now, to note that ZDDs are advanta-geous also in appliations that have an entirely di�erent avor. We an use them,for instane, to represent the �ve-letter words of English, the set WORDS(5757)from the Stanford GraphBase that is disussed near the beginning of this hapter.One way to do this is to onsider the funtion f(x1; : : : ; x25) that is de�ned tobe 1 if and only if the �ve numbers (x1 : : : x5)2, (x6 : : : x10)2, : : : , (x21 : : : x25)2enode the letters of an English word, where a = (00001)2, : : : , z = (11010)2.
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For example, f(0; 0; 1; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1; 1; 1; 0; 0; 1; 1; 0; 1; 1; 0; 0; x25) = x25.This funtion of 25 variables has Z(f) = 6233 nodes|whih isn't bad, sine itrepresents 5757 words.Of ourse we've studied many other ways to represent 5757 words, in Chap-ter 6. The ZDD approah is no math for binary trees or tries or hash tables,when we merely want to do simple searhes. But with ZDDs we an also retrievedata that is only partially spei�ed, or data that is only supposed to math akey approximately; many omplex queries an be handled with ease.Furthermore, we don't need to worry very muh about having lots of vari-ables when ZDDs are being used. Instead of working with the 25 variables xjonsidered above, we an also represent those �ve-letter words as a sparse fun-tion F (a1; : : : ; z1; a2; : : : ; z2; : : : ; a5; : : : ; z5) that has 26�5 = 130 variables, wherevariable a2 (for example) ontrols whether the seond letter is `a'. To indiatethat razy is a word, we make F true when 1 = r2 = a3 = z4 = y5 = 1 andall other variables are 0. Equivalently, we onsider F to be a family onsistingof the 5757 subsets fw1; h2; i3; 4; h5g, ft1; h2; e3; r4; e5g, et. With these 130variables the ZDD size Z(F ) turns out to be only 5020 instead of 6233.Inidentally, B(F ) is 46,189|more than nine times as large as Z(F ). ButB(f)=Z(f) is only 8870=6233 � 1:4 in the 25-variable ase. The ZDD world isdi�erent from the BDD world in many ways, in spite of having similar algorithmsand a similar theory.One onsequene of this di�erene is a need for new primitive operations bywhih omplex families of subsets an readily be onstruted from elementaryfamilies. Notie that the simple subset ff1; u2; n3; n4; y5g is atually an extremelylong-winded Boolean funtion:�a1 ^ � � � ^ �e1 ^ f1 ^ �g1 ^ � � � ^ �t2 ^ u2 ^ �v2 ^ � � � ^ �x5 ^ y5 ^ �z5; (131):a minterm of 130 Boolean variables. Exerise 203 disusses an important familyalgebra, by whih that subset is expressed more naturally as `f1tu2tn3tn4ty5'.With family algebra we an readily desribe and ompute many interestingolletions of words and word fragments (see exerise 222).ZDDs to represent simple paths. An important onnetion between arbi-trary direted, ayli graphs (dags) and a speial lass of ZDDs is illustrated inFig. 28. When every soure vertex of the dag has out-degree 1 and every sinkvertex has in-degree 1, the ZDD for all oriented paths from a soure to a sinkhas essentially the same \shape" as the original dag. The variables in this ZDDare the ars of the dag, in a suitable topologial order. (See exerise 224.)1 23 4 56 7 89 10
1 23 4 56 7 89 10> >

Fig. 28. A dag, and the ZDD for itssoure-to-sink paths. Ars of the dagorrespond to verties of the ZDD. Allbranhes to ? have been omitted fromthe ZDD in order to show the struturalsimilarities more learly.
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1 2 43 5 76 8 9
We an also use ZDDs to represent simple paths in an undireted graph.For example, there are 12 ways to go from the upper left orner of a 3� 3grid to the lower right orner, without visiting any point twie: (132)These paths an be represented by the ZDD shown at the right, whih hara-terizes all sets of suitable edges. For example, we get the �rst path by takingthe HI branhes at 13 , 36 , 68 , and 89 of the ZDD. (As in Fig. 28,this diagram has been simpli�ed by omitting all of the uninterestingLO branhes that merely go to ? .) Of ourse this ZDD isn't a trulygreat way to represent (132), beause that family of paths has only 12members. But on the larger grid P8 P8, the number of simple pathsfrom orner to orner turns out to be 789,360,053,252; and they an allbe represented by a ZDD that has at most 33580 nodes. Exerise 225explains how to onstrut suh a ZDD quikly.

1213 2424 2525 474757 575735 3535 3636 6868 5858 7989 >A similar algorithm, disussed in exerise 226, onstruts a ZDDthat represents all yles of a given graph. With a ZDD of size 22275,we an dedue that P8 P8 has exatly 603,841,648,931 simple yles.This ZDD may well provide the best way to represent all of those yles withina omputer, and the best way to generate them systematially if desired.The same ideas work well with graphs from the \real world" that don'thave a neat mathematial struture. For example, we an use them to answera question posed to the author in 2008 by Randal Bryant: \Suppose I wantedto take a driving tour of the Continental U.S., visiting all of the state apitols,and passing through eah state only one. What route should I take to minimizethe total distane?" The following diagram shows the shortest distanes betweenneighboring apital ities, when restrited to loal itineraries that eah ross onlyone state boundary:
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The problem is to hoose a subset of these edges that form a Hamiltonian pathof smallest total length.
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Every Hamiltonian path in this graph must learly either start or endat Augusta, Maine (ME). Suppose we start in Saramento, California (CA).Proeeding as above, we an �nd a ZDD that haraterizes all paths from CAto ME; this ZDD turns out to have only 7850 nodes, and it quikly tells us thatexatly 437,525,772,584 simple paths from CA to ME are possible. In fat, thegenerating funtion by number of edges turns out to be4z11 + 124z12 + 1539z13 + � � �+ 33385461z46 + 2707075z47; (134)so the longest suh paths are Hamiltonian, and there are exatly 2,707,075 ofthem. Furthermore, exerise 227 shows how to onstrut a smaller ZDD, of size4726, whih desribes just the Hamiltonian paths from CA to ME.We ould repeat this experiment for eah of the states in plae of California.(Well, the starting point had better be outside of New England, if we are goingto get past New York, whih is an artiulation point of this graph.) For example,there are 483,194 Hamiltonian paths from NJ to ME. But exerise 228 shows howto onstrut a single ZDD of size 28808 for the family of all Hamiltonian pathsfrom ME to any other �nal state|of whih there are 68,656,026. The answer toBryant's problem now pops out immediately, via Algorithm B. (The reader maylike to try �nding a minimum route by hand, before turning to exerise 230 anddisovering the absolutely optimum answer.)*ZDDs and prime impliants. Finally, let's look at an instrutive appliationin whih BDDs and ZDDs are both used simultaneously.Aording to Theorem 7.1.1Q, every monotone Boolean funtion f has aunique shortest two-level representation as an OR of ANDs, alled its \disjuntiveprime form"|the disjuntion of all of its prime impliants. The prime impli-ants orrespond to the minimal points where f(x) = 1, namely the binaryvetors x for whih we have f(x0) = 1 and x0 � x if and only if x0 = x. Iff(x1; x2; x3) = x1 _ (x2 ^ x3); (135)for example, the prime impliants of f are x1 and x2 ^ x3, while the minimalsolutions are x1x2x3 = 100 and 011. These minimal solutions an also beexpressed onveniently as e1 and e2 t e3, using family algebra (see exerise 203).In general, xi1 ^ � � � ^ xis is a prime impliant of a monotone funtion f ifand only if ei1 t � � � t eis is a minimal solution of f . Thus we an onsider f 'sprime impliants PI(f) to be its family of minimal solutions. Notie, however,that xi1 ^ � � �^xis � xj1 ^ � � �^xjt if and only if ei1 t � � �t eis � ej1 t � � �t ejt ; soit's onfusing to say that one prime impliant \ontains" another. Instead, wesay that the shorter one \absorbs" the longer one.A urious phenomenon shows up in example (135): The diagram 12 3? ? >>is not only the BDD for f, it's also the ZDD for PI(f)! Similarly, Fig. 21 at thebeginning of this setion illustrates not only the BDD for hx1x2x3i but also theZDD for PI(hx1x2x3i). On the other hand, let g = (x1^x3)_x2. Then the BDDfor g is 12 23? ?> > > but the ZDD for PI(g) is 12 3? ?> > . What's going on here?
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The key to resolving this mystery lies in the reursive struture on whihBDDs and ZDDs are based. Every Boolean funtion an be represented asf(x1; : : : ; xn) = (�x1? f0: f1) = (�x1 ^ f0) _ (x1 ^ f1); (136)where f is the value of f when x1 is replaed by . When f is monotone we alsohave f = f0 _ (x1 ^ f1), beause f0 � f1. If f0 6= f1, the BDD for f is obtainedby reating a node k1 whose LO and HI branhes point to the BDDs for f0and f1. Similarly, it's not diÆult to see that the prime impliants of f arePI(f) = PI(f0) [ �e1 t (PI(f1) n PI(f0))�: (137)(See exerise 253.) This is the reursion that de�nes the ZDD for PI(f), whenwe add the termination onditions for onstant funtions: The ZDDs for PI(0)and PI(1) are ? and > .Let's say that a Boolean funtion is sweet if it is monotone and if the ZDDfor PI(f) is exatly the same as the BDD for f . Constant funtions are learlysweet. And nononstant sweetness is easily haraterized:Theorem S. A Boolean funtion that depends on x1 is sweet if and only if itsprime impliants are P [ (x1 t Q), where P and Q are sweet and independentof x1, and every member of P is absorbed by some member of Q.Proof. See exerise 246. (To say that \P and Q are sweet" means that theyeah are families of prime impliants that de�ne a sweet Boolean funtion.)Corollary S. The onnetedness funtion of any graph is sweet.Proof. The prime impliants of the onnetedness funtion f are the spanningtrees of the graph. Every spanning tree that does not inlude ar x1 has at leastone subtree that will be spanning when ar x1 is added to it. Furthermore, allsubfuntions of f are the onnetedness funtions of smaller graphs.Thus, for example, the BDD in Fig. 22, whih de�nes all 431 of the onnetedsubgraphs of P3 P3, also is the ZDD that de�nes all 192 of its spanning trees.Whether f is sweet or not, we an use (137) to ompute the ZDD for PI(f)whenever f is monotone. When we do this we an atually let the BDD nodes andthe ZDD nodes oexist in the same big base of data: Two nodes with idential(V, LO, HI) �elds might as well appear only one in memory, even though theymight have omplete di�erent meanings in di�erent ontexts. We use one routineto synthesize f ^ �g when f and g point to BDDs, and another routine to formf n g when f and g point to ZDDs; no trouble will arise if these routines happento share nodes, as long as the variables aren't being reordered. (Of ourse theahe memos must distinguish BDD fats from ZDD fats when we do this.)For example, exerise 7.1.1{67 de�nes an interesting lass of self-dual fun-tions alled the Y funtions, and the BDD for Y12 (whih is a funtion of 91variables) has 748,416 nodes. This funtion has 2,178,889,774 prime impliants;yet Z(PI(Y12)) is only 217,388. (We an �nd this ZDD with a omputationalost of about 13 gigamems and 660 megabytes.)
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A brief history. The seeds of binary deision diagrams were impliitly plantedby Claude Shannon [Trans. Amer. Inst. Eletrial Engineers 57 (1938), 713{723℄,in his illustrations of relay-ontat networks. Setion 4 of that paper showed thatany symmetri Boolean funtion of n variables has a BDD with at most �n+12 �branh nodes. Shannon preferred to work with Boolean algebra; but C. Y. Lee, inBell System Teh. J. 38 (1959), 985{999, pointed out several advantages of whathe alled \binary-deision programs," beause any n-variable funtion ould beevaluated by exeuting at most n branh instrutions in suh a program.S. Akers oined the name \binary deision diagrams" and pursued the ideasfurther in IEEE Trans. C-27 (1978), 509{516. He showed how to obtain aBDD from a truth table by working bottom-up, or from algebrai subfuntionsby working top-down. He explained how to ount the paths from a root to >or ? , and observed that these paths partition the n-ube into disjoint sububes.Meanwhile a very similar model of Boolean omputation arose in theoret-ial studies of automata. For example, A. Cobham [FOCS 7 (1966), 78{87℄related the minimum sizes of branhing programs for a sequene of funtionsfn(x1; : : : ; xn) to the spae omplexity of nonuniform Turing mahines thatompute this sequene. More signi�antly, S. Fortune, J. Hoproft, and E. M.Shmidt [Leture Notes in Comp. Si. 62 (1978), 227{240℄ onsidered \free B-shemes," now known as FBDDs, in whih no Boolean variable is tested twieon any path (see exerise 35). Among other results, they gave a polynomial-timealgorithm to test whether f = g, given FBDDs for f and g, provided that atleast one of those FBDDs is ordered onsistently as in a BDD. The theory of�nite-state automata, whih has intimate onnetions to BDD struture, was alsobeing developed; thus several researhers worked on problems that are equivalentto analyzing the size, B(f), for various funtions f . (See exerise 261.)All of this work was oneptual, not implemented in omputer programs,although programmers had found good uses for binary tries and Patriian trees|whih are similar to BDDs exept that they are trees instead of dags (see Se-tion 6.3). But then Randal E. Bryant disovered that binary deision diagramsare signi�antly important in pratie when they are required to be both reduedand ordered. His introdution to the subjet [IEEE Trans. C-35 (1986), 677{691℄beame for many years the most ited paper in all of omputer siene, beauseit revolutionized the data strutures used to represent Boolean funtions.In his paper, Bryant pointed out that the BDD for any funtion is essentiallyunique under his onventions, and that most of the funtions enountered inpratie had BDDs of reasonable size. He presented eÆient algorithms tosynthesize the BDDs for f^g and f�g, et., from the BDDs for f and g. He alsoshowed how to ompute the lexiographially least x suh that f(x) = 1, et.Lee, Akers, and Bryant all noted that many funtions an pro�tably o-exist in a BDD base, sharing their ommon subfuntions. A high-performane\pakage" for BDD base operations, developed by K. S. Brae, R. L. Rudell,and R. E. Bryant [ACM/IEEE Design Automation Conf. 27 (1990), 40{45℄, hasstrongly inuened all subsequent implementations of BDD toolkits. Bryantsummarized the early uses of BDDs in Computing Surveys 24 (1992), 293{318.
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Shin-ihi Minato introdued ZDDs in 1993, as noted above, to improveperformane in ombinatorial work. He gave a retrospetive aount of earlyZDD appliations in Software Tools for Tehnology Transfer 3 (2001), 156{170.The use of Boolean methods in graph theory was pioneered by K. Maghout[Comptes Rendus Aad. Si. 248 (Paris, 1959), 3522{3523℄, who showed howto express the maximal independent sets and the minimal dominating sets ofany graph or digraph as the prime impliants of a monotone funtion. ThenR. Fortet [Cahiers du Centre d'Etudes Reherhe Operationelle 1, 4 (1959), 5{44℄onsidered Boolean approahes to a variety of other problems; for example, heintrodued the idea of 4-oloring a graph by assigning two Boolean variables toeah vertex, as we have done in (73). P. Camion, in that same journal [2 (1960),234{289℄, transformed integer programming problems into equivalent problems inBoolean algebra, hoping to resolve them via tehniques of symboli logi. Thiswork was extended by others, notably P. L. Hammer and S. Rudeanu, whosebook Boolean Methods in Operations Researh (Springer, 1968) summarizedthe ideas. Unfortunately, however, their approah foundered, beause no goodtehniques for Boolean alulation were available at the time. The proponentsof Boolean methods had to wait until the advent of BDDs before the generalBoolean programming problem (7) ould be resolved, thanks to Algorithm B.The speial ase of Algorithm B in whih all weights satisfying wi � 0 was in-trodued by B. Lin and F. Somenzi [IEEE/ACM International Conf. Computer-Aided Design CAD-90 (1990), 88{91℄. S. Minato [Formal Methods in SystemDesign 10 (1999), 221{242℄ developed software that automatially onverts linearinequalities between integer variables into BDDs that an be manipulated on-veniently, somewhat as the researher of the 1960s had hoped would be possible.The lassi problem of �nding a minimum size DNF for a given funtion alsobeame spetaularly simpler when BDD methods beame understood. Thelatest tehniques for that problem are beyond the sope of this book, but OlivierCoudert has given an exellent overview in Integration 17 (1994), 97{140.A �ne book by Ingo Wegener, Branhing Programs and Binary DeisionDiagrams (SIAM, 2000), surveys the vast literature of the subjet, develops themathematial foundations arefully, and disusses many ways in whih the basiideas have been generalized and extended.Caveat. We've seen dozens of examples in whih the use of BDDs and/orZDDs has made it possible to solve a wide variety of ombinatorial problemswith amazing eÆieny, and the exerises below ontain dozens of additionalexamples where suh methods shine. But BDD and ZDD strutures are by nomeans a panaea; they're only two of the weapons in our arsenal. They applyhiey to problems that have more solutions than an readily be examined one byone, problems whose solutions have a loal struture that allows our algorithmsto deal with only relatively few subproblems at a time. In later setions of TheArt of Computer Programming we shall be studying additional tehniques bywhih other kinds of ombinatorial problems an be tamed.
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EXERCISESx 1. [20 ℄ Draw the BDDs for all 16 Boolean funtions f(x1; x2). What are their sizes?x 2. [21 ℄ Draw a planar dag with sixteen verties, eah of whih is the root of one ofthe 16 BDDs in exerise 1.3. [16 ℄ How many Boolean funtions f(x1; : : : ; xn) have BDD size 3 or less?4. [21 ℄ Suppose three �elds V LO HI have been paked into a 64-bit word x,where V oupies 8 bits and the other two �elds oupy 28 bits eah. Show that �vebitwise instrutions will transform x 7! x0, where x0 is equal to x exept that a LO orHI value of 0 is hanged to 1 and vie versa. (Repeating this operation on every branhnode x of a BDD for f will produe the BDD for the omplementary funtion, �f .)5. [20 ℄ If you take the BDD for f(x1; : : : ; xn) and interhange the LO and HI pointersof every node, and if you also swap the two sinks ? $ > , what do you get?6. [10 ℄ Let g(x1; x2; x3; x4) = f(x4; x3; x2; x1), where f has the BDD in (6). Whatis the truth table of g, and what are its beads?7. [21 ℄ Given a Boolean funtion f(x1; : : : ; xn), letgk(x0; x1; : : : ; xn) = f(x0; : : : ; xk�2; xk�1_ xk; xk+1; : : : ; xn) for 1 � k � n.Find a simple relation between (a) the truth tables and (b) the BDDs of f and gk.8. [22 ℄ Solve exerise 7 with xk�1� xk in plae of xk�1_ xk.9. [16 ℄ Given the BDD for a funtion f(x) = f(x1; : : : ; xn), represented sequentiallyas in (8), explain how to determine the lexiographially largest x suh that f(x) = 0.x 10. [21 ℄ Given two BDDs that de�ne Boolean funtions f and f 0, represented sequen-tially as in (8) and (10), design an algorithm that tests f = f 0.11. [20 ℄ Does Algorithm C give the orret answer if it is applied to a binary deisiondiagram that is (a) ordered but not redued? (b) redued but not ordered?x 12. [M21 ℄ A kernel of a digraph is a set of verties K suh thatv 2 K implies v 6��!u for all u 2 K;v =2 K implies v��!u for some u 2 K:a) Show that when the digraph is an ordinary graph (that is, when u��!v if and onlyif v��!u), a kernel is the same as a maximal independent set.b) Desribe the kernels of the oriented yle C~n.) Prove that an ayli digraph has a unique kernel.13. [M15 ℄ How is the onept of a graph kernel related to the onept of (a) a maximallique? (b) a minimal vertex over?14. [M24 ℄ How big, exatly, are the BDDs for (a) all independent sets of the ylegraph Cn, and (b) all kernels of Cn, when n � 3? (Number the verties as in (12).)15. [M23 ℄ How many (a) independent sets and (b) kernels does Cn have, when n � 3?x 16. [22 ℄ Design an algorithm that suessively generates all vetors x1 : : : xn for whihf(x1; : : : ; xn) = 1, when a BDD for f is given.17. [32 ℄ If possible, improve the algorithm of exerise 16 so that its running time isO(B(f)) +O(N) when there are N solutions.18. [13 ℄ Play through Algorithm B with the BDD (8) and (w1; : : : ; w4) = (1;�2;�3; 4).
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19. [20 ℄ What are the largest and smallest possible values of variable mk in Algo-rithm B, based only on the weights (w1; : : : ; wn), not on any details of the funtion f?20. [15 ℄ Devise a fast way to ompute the Thue{Morse weights (15) for 1 � j � n.21. [05 ℄ Can Algorithm B minimize w1x1 + � � �+ wnxn, instead of maximizing it?x 22. [M21 ℄ Suppose step B3 has been simpli�ed so that `Wv+1�Wvl ' and `Wv+1�Wvh 'are eliminated from the formulas. Prove that the algorithm will still work, when appliedto BDDs that represent kernels of graphs.x 23. [M20 ℄ All paths from the root of the BDD in Fig. 22 to > have exatly eightsolid ars. Why is this not a oinidene?24. [M22 ℄ Suppose twelve weights (w12; w13; : : : ; w89) have been assigned to the edgesof the grid in Fig. 22. Explain how to �nd a minimum spanning tree in that graph(namely, a spanning tree whose edges have minimum total weight), by applying Algo-rithm B to the BDD shown there.25. [M20 ℄ Modify Algorithm C so that it omputes the generating funtion for the so-lutions to f(x1; : : : ; xn) = 1, namely G(z) =P1x1=0 � � �P1xn=0 zx1+���+xnf(x1; : : : ; xn).26. [M20 ℄ Modify Algorithm C so that it omputes the reliability polynomial for givenprobabilities, namelyF (p1; : : : ; pn) = 1Xx1=0 � � � 1Xxn=0(1� p1)1�x1px11 : : : (1� pn)1�xnpxnn f(x1; : : : ; xn):x 27. [M26 ℄ Suppose F (p1; : : : ; pn) and G(p1; : : : ; pn) are the reliability polynomialsfor Boolean funtions f(x1; : : : ; xn) and g(x1; : : : ; xn), where f 6= g. Let q be a primenumber, and hoose independent random integers q1, : : : , qn, uniformly distributedin the range 0 � qk < q. Prove that F (q1; : : : ; qn) mod q 6= G(q1; : : : ; qn) mod q withprobability � (1�1=q)n. (In partiular, if n = 1000 and q = 231�1, di�erent funtionslead to di�erent \hash values" under this sheme with probability at least 0.9999995.)28. [M16 ℄ Let F (p) be the value of the reliability polynomial F (p1; : : : ; pn) when p1 =� � � = pn = p. Show that it's easy to ompute F (p) from the generating funtion G(z).29. [HM20 ℄ Modify Algorithm C so that it omputes the reliability polynomial F (p)of exerise 28 and also its derivative F 0(p), given p and the BDD for f.x 30. [M21 ℄ The reliability polynomial is the sum, over all solutions to f(x1; : : : ; xn)=1,of ontributions from all \minterms" (1� p1)1�x1px11 : : : (1� pn)1�xnpxnn . Explain howto �nd a solution x1 : : : xn whose ontribution to the total reliability is maximum, givena BDD for f and a sequene of probabilities (p1; : : : ; pn).31. [M21 ℄ Modify Algorithm C so that it omputes the fully elaborated truth tableof f , formalizing the proedure by whih (24) was obtained from Fig. 21.x 32. [M20 ℄ What interpretations of `Æ', `�', `?', `>', `�xj ', and `xj ' will make the generalalgorithm of exerise 31 speialize to the algorithms of exerises 25, 26, 29, and 30?x 33. [M22 ℄ Speialize exerise 31 so that we an eÆiently omputeXf(x)=1(w1x1 + � � �+ wnxn) and Xf(x)=1(w1x1 + � � �+ wnxn)2from the BDD of a Boolean funtion f(x) = f(x1; : : : ; xn).
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34. [M25 ℄ Speialize exerise 31 so that we an eÆiently omputemaxf max1�k�n(w1x1+ � � �+wk�1xk�1+w0kxk+wk+1xk+1+ � � �+wnxn+w00k ) j f(x) = 1gfrom the BDD of f , given 3n arbitrary weights (w1; : : : ; wn; w01; : : : ; w0n; w001 ; : : : ; w00n).x 35. [22 ℄ A free binary deision diagram (FBDD) is a binary deision diagram suh as23 44 1 3? > ? >where the branh variables needn't appear in any partiular order, but no variable isallowed to our more than one on any downward path from the root. (An FBDD is\free" in the sense that every path in the dag is possible: No branh onstrains another.)a) Design an algorithm to verify that a supposed FBDD is really free.b) Show that it's easy to ompute the reliability polynomial F (p1; : : : ; pn) of a Bool-ean funtion f(x1; : : : ; xn), given (p1; : : : ; pn) and an FBDD that de�nes f , andto ompute the number of solutions to f(x1; : : : ; xn) = 1.36. [25 ℄ By extending exerise 31, explain how to ompute the elaborated truth tablefor any given FBDD, if the abstrat operators Æ and � are ommutative as well asdistributive and assoiative. (Thus we an �nd optimum solutions as in Algorithm B, orsolve problems suh as those in exerises 30 and 33, with FBDDs as well as with BDDs.)37. [M20 ℄ (R. L. Rivest and J. Vuillemin.) A Boolean funtion f(x1; : : : ; xn) is alledevasive if every FBDD for f ontains a downward path of length n. Let G(z) be thegenerating funtion for f, as in exerise 25. Prove that f is evasive if G(�1) 6= 0.x 38. [27 ℄ Let Is�1, : : : , I0 be branh instrutions that de�ne a nononstant Booleanfuntion f(x1; : : : ; xn) as in (8) and (10). Design an algorithm that omputes the statusvariables t1 : : : tn, wheretj = 8<:+1; if f(x1; : : : ; xn) = 1 whenever xj = 1;�1; if f(x1; : : : ; xn) = 1 whenever xj = 0;0; otherwise.(If t1 : : : tn 6= 0 : : : 0, the funtion f is therefore analizing as de�ned in Setion 7.1.1.)The running time of your algorithm should be O(n+ s).39. [M20 ℄ What is the size of the BDD for the threshold funtion [x1 + � � �+ xn� k ℄?x 40. [22 ℄ Let g be the \ondensation" of f obtained by setting xk+1  xk as in (27).a) Prove that B(g) � B(f). [Hint: Consider subtables and beads.℄b) Suppose h is obtained from f by setting xk+2  xk. Is B(h) � B(f)?41. [M25 ℄ Assuming that n � 4, �nd the BDD size of the Fibonai threshold fun-tions (a) hxF11 xF22 : : : xFn�2n�2 xFn�1n�1 xFn�2n i and (b) hxF1n xF2n�1 : : : xFn�23 xFn�12 xFn�21 i.42. [22 ℄ Draw the BDD base for all symmetri Boolean funtions of 3 variables.x 43. [22 ℄ What is B(f) when (a) f(x1; : : : ; x2n) = [x1 + � � �+ xn=xn+1 + � � �+ x2n ℄?(b) f(x1; : : : ; x2n) = [x1 + x3 + � � �+ x2n�1=x2 + x4 + � � �+ x2n ℄?x 44. [M32 ℄ Determine the maximum possible size, Sn, of B(f) when f is a symmetriBoolean funtion of n variables.
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45. [22 ℄ Give preise spei�ations for the Boolean modules that ompute the three-in-a-row funtion as in (33) and (34), and show that the network is well de�ned.46. [M23 ℄ What is the true BDD size of the three-in-a-row funtion?47. [M21 ℄ Devise and prove a onverse of Theorem M: Every Boolean funtion f witha small BDD an be implemented by an eÆient network of modules.48. [M22 ℄ Implement the hidden weighted bit funtion with a network of moduleslike Fig. 23, using ak = 2 + �k and bk = 1 + �(n� k) onneting wires for 1 � k < n.Conlude from Theorem B that the upper bound in Theorem M annot be improvedto Pnk=0 2p(ak;bk) for any polynomial p.49. [20 ℄ Draw the BDD base for the following sets of symmetri Boolean funtions:(a) fS�k(x1; x2; x3; x4) j 1 � k � 4g; (b) fSk(x1; x2; x3; x4) j 0 � k � 4g.50. [22 ℄ Draw the BDD base for the funtions of the -segment display (7.1.2{(42)).51. [22 ℄ Desribe the BDD base for binary addition when the input bits are numberedfrom right to left, namely (fn+1fnfn�1 : : : f1)2 = (x2n�1 : : : x3x1)2 + (x2n : : : x4x2)2,instead of from left to right as in (35) and (36).52. [20 ℄ There's a sense in whih the BDD base for m funtions ff1; : : : ; fmg isn'treally very di�erent from a BDD with just one root: Consider the juntion funtionJ(u1; : : : ; un; v1; : : : ; vn) = (u1? v1: u2? v2: � � �un? vn: 0), and letf(t1; : : : ; tm+1; x1; : : : ; xn) = J(t1; : : : ; tm+1; f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn); 1);where (t1; : : : ; tm+1) are new \dummy" variables, plaed ahead of (x1; : : : ; xn) in the or-dering. Show that B(f) is almost the same as the size of the BDD base for ff1; : : : ; fmg.x 53. [23 ℄ Play through Algorithm R, when it is applied to the binary deision diagramwith seven branh nodes in (2).54. [17 ℄ Construt the BDD of f(x1; : : : ; xn) from f 's truth table, in O(2n) steps.55. [M30 ℄ Explain how to onstrut the \onnetedness BDD" of a graph (like Fig. 22).56. [20 ℄ Modify Algorithm R so that, instead of pushing any unneessary nodes ontoan AVAIL stak, it reates a brand new BDD, onsisting of onseutive instrutionsIs�1, : : : , I1, I0 that have the ompat form (�vk? lk: hk) assumed in Algorithms Band C. (The original nodes input to the algorithm an then all be reyled en masse.)57. [25 ℄ Speify additional ations to be taken between steps R1 and R2 when Algo-rithm R is extended to ompute the restrition of a funtion. Assume that FIX[v℄ =t 2 f0; 1g if variable v is to be given the �xed value t; otherwise FIX[v℄ < 0.58. [20 ℄ Prove that the \melded" diagram de�ned by reursive use of (37) is redued.x 59. [M28 ℄ Let h(x1; : : : ; xn) be a Boolean funtion. Desribe the melded BDD f �g interms of the BDD for h, when (a) f(x1; : : : ; x2n) = h(x1; : : : ; xn) and g(x1; : : : ; x2n) =h(xn+1; : : : ; x2n); (b) f(x1; x2; : : : ; x2n) = h(x1; x3; : : : ; x2n�1) and g(x1; x2; : : : ; x2n) =h(x2; x4; : : : ; x2n). [In both ases we obviously have B(f) = B(g) = B(h).℄60. [M22 ℄ Suppose f(x1; : : : ; xn) and g(x1; : : : ; xn) have the pro�les (b0; : : : ; bn) and(b00; : : : ; b0n), respetively, and let their respetive quasi-pro�les be (q0; : : : ; qn) and(q00; : : : ; q0n). Show that their meld f � g has B(f � g) �Pnj=0(qjb0j + bjq0j � bjb0j) nodes.x 61. [M27 ℄ If � and � are nodes of the respetive BDDs for f and g, prove thatin-degree(� � �) � in-degree(�) � in-degree(�)in the melded BDD f � g. (Imagine that the root of a BDD has in-degree 1.)
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x 62. [M21 ℄ If f(x) = Wbn=2j=1 (x2j�1^x2j) and g(x) = (x1^xn)_Wdn=2e�1j=1 (x2j^x2j+1),what are the asymptoti values of B(f), B(g), B(f � g), and B(f _ g) as n!1?63. [M27 ℄ Let f(x1; : : : ; xn) =Mm(x1�x2; x3�x4; : : : ; x2m�1�x2m;x2m+1; : : : ; xn)and g(x1; : : : ; xn) = Mm(x2 � x3; : : : ; x2m�2 � x2m�1; x2m; �x2m+1; : : : ; �xn), where n =2m+ 2m. What are B(f), B(g), and B(f ^ g)?64. [M21 ℄ We an ompute the median hf1f2f3i of three Boolean funtions by formingf4 = f1 _ f2; f5 = f1 ^ f2; f6 = f3 ^ f4; f7 = f5 _ f6:Then B(f4) = O(B(f1)B(f2)), B(f5) = O(B(f1)B(f2)), B(f6) = O(B(f3)B(f4)) =O(B(f1)B(f2)B(f3)); therefore B(f7) = O(B(f5)B(f6)) = O(B(f1)2B(f2)2B(f3)).Prove, however, that B(f7) is atually only O(B(f1)B(f2)B(f3)), and the runningtime to ompute it from f5 and f6 is also O(B(f1)B(f2)B(f3)).x 65. [M25 ℄ If h(x1; : : : ; xn) = f(x1; : : : ; xj�1; g(x1; : : : ; xn); xj+1; : : : ; xn), prove thatB(h) = O(B(f)2B(g)). Can this upper bound be improved to O(B(f)B(g)) in general?66. [20 ℄ Complete Algorithm S by explaining what to do in step S1 if f Æ g turns outto be trivially onstant.67. [24 ℄ Sketh the ations of Algorithm S when (41) de�nes f and g, and op = 1.68. [20 ℄ Speed up step S10 by streamlining the ommon ase when LEFT(t) < 0.69. [21 ℄ Algorithm S ought to have one or more preautionary instrutions suh as\if NTOP > TBOT, terminate the algorithm unsuessfully," in ase it runs out of room.Where are the best plaes to insert them?70. [21 ℄ Disuss setting b to blg LCOUNT[l℄ instead of dlg LCOUNT[l℄e in step S4.71. [20 ℄ Disuss how to extend Algorithm S to ternary operators.72. [25 ℄ Explain how to eliminate hashing from Algorithm S.x 73. [25 ℄ Disuss the use of \virtual addresses" instead of atual addresses as the linksof a BDD: Eah pointer p has the form �(p)2e+�(p), where �(p) = p� e is p's \page"and �(p) = pmod 2e is p's \slot"; the parameter e an be hosen for onveniene. Showthat, with this approah, only two �elds (LO; HI) are needed in BDD nodes, beausethe variable identi�er V (p) an be dedued from the virtual address p itself.x 74. [M23 ℄ Explain how to ount the number of self-dual monotone Boolean funtionsof n variables, by modifying (49).75. [M20 ℄ Let �n(x1; : : : ; x2n) be the Boolean funtion that is true if and only ifx1 : : : x2n is the truth table of a regular funtion (see exerise 7.1.1{110). Show thatthe BDD for �n an be omputed by a proedure similar to that of �n in (49).x 76. [M22 ℄ A \lutter" is a family S of mutually inomparable sets; in other words,S 6� S0 whenever S and S0 are distint members of S. Every set S � f0; 1; : : : ; n� 1gan be represented as an n-bit integer s =Pf2e j e 2 Sg; so every family of suh setsorresponds to a binary vetor x0x1 : : : x2n�1, with xs = 1 if and only if s represents aset of the family.Show that the BDD for the funtion `[x0x1 : : : x2n�1 orresponds to a lutter℄' hasa simple relation to the BDD for the monotone-funtion funtion �n(x1; : : : ; x2n).x 77. [M30 ℄ Show that there's an in�nite sequene (b0; b1; b2; : : : ) = (1; 2; 3; 5; 6; : : : )suh that the pro�le of the BDD for �n is (b0; b1; : : : ; b2n�1�1; b2n�1�1; : : : ; b1; b0; 2).(See Fig. 25.) How many branh nodes of that BDD have LO = ? ?
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x 78. [25 ℄ Use BDDs to determine the number of graphs on 12 labeled verties for whihthe maximum vertex degree is d, for 0 � d � 11.79. [20 ℄ For 0 � d � 11, ompute the probability that a graph on verties f1; : : : ; 12ghas maximum degree d, if eah edge is present with probability 1=3.80. [23 ℄ The reursive algorithm (55) omputes f ^ g in a depth-�rst manner, whileAlgorithm S does its omputation breadth-�rst. Do both algorithms enounter the samesubproblems f 0 ^ g0 as they proeed (but in a di�erent order), or does one algorithmonsider fewer ases than the other?x 81. [20 ℄ By modifying (55), explain how to ompute f � g in a BDD base.x 82. [25 ℄ When the nodes of a BDD base have been endowed with REF �elds, explainhow those �elds should be adjusted within (55) and within Algorithm U.83. [M20 ℄ Prove that if f and g both have referene ount 1, we needn't onsult thememo ahe when omputing AND(f; g) by (55).84. [24 ℄ Suggest strategies for hoosing the size of the memo ahe and the sizes ofthe unique tables, when implementing algorithms for BDD bases. What is a good wayto shedule periodi garbage olletions?85. [16 ℄ Compare the size of a BDD base for the 32 funtions of 16�16-bit binary mul-tipliation with the alternative of just storing a omplete table of all possible produts.x 86. [21 ℄ The routine MUX in (62) refers to \obvious" values. What are they?87. [20 ℄ If the median operator hfghi is implemented with a reursive subroutineanalogous to (62), what are its \obvious" values?x 88. [M25 ℄ Find funtions f , g, and h for whih the reursive ternary omputation off ^g^h outperforms any of the binary omputations (f ^g)^h, (g^h)^f , (h^f)^g.89. [15 ℄ Are the following quanti�ed formulas true or false? (a) 9x19x2f = 9x29x1f .(b) 8x18x2f = 8x28x1f . () 8x19x2f � 9x28x1f . (d) 8x19x2f � 9x28x1f .90. [M20 ℄ When l = m = n = 3, Eq. (64) orresponds to the MOR operation of MMIX.Is there an analogous formula that orresponds to MXOR (matrix multipliation mod 2)?x 91. [26 ℄ In pratie we often want to simplify a Boolean funtion f with respet to a\are set" g, by �nding a funtion f̂ with small B(f̂) suh thatf(x) ^ g(x) � f̂(x) � f(x) _ �g(x) for all x:In other words, f̂(x) must agree with f(x) whenever x satis�es g(x) = 1, but wedon't are what value f̂(x) assumes when g(x) = 0. An appealing andidate for suhan f̂ is provided by the funtion f #g, \f onstrained by g," de�ned as follows: If g(x) isidentially 0, f # g = 0. Otherwise (f # g)(x) = f(y), where y is the �rst element ofthe sequene x, x � 1, x � 2, : : : , suh that g(y) = 1. (Here we think of x and y asn-bit numbers (x1 : : : xn)2 and (y1 : : : yn)2. Thus x� 1 = x � 0 : : : 01 = x1 : : : xn�1�xn;x� 2 = x� 0 : : : 010 = x1 : : : xn�2�xn�1xn; et.)a) What are f # 1, f # xj , and f # �xj?b) Prove that (f ^ f 0) # g = (f # g) ^ (f 0 # g).) True or false: �f # g = f # g.d) Simplify the formula f(x1; : : : ; xn) # (x2 ^ �x3 ^ �x5 ^ x6).e) Simplify the formula f(x1; : : : ; xn) # (x1 � x2 � � � � � xn).f) Simplify the formula f(x1; : : : ; xn) # ((x1 ^ � � � ^ xn) _ (�x1 ^ � � � ^ �xn)).g) Simplify the formula f(x1; : : : ; xn) # (x1 ^ g(x2; : : : ; xn)).
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h) Find funtions f(x1; x2) and g(x1; x2) suh that B(f # g) > B(f).i) Devise a reursive way to ompute f # g, analogous to (55).92. [M27 ℄ The operation f #g in exerise 91 sometimes depends on the ordering of thevariables. Given g = g(x1; : : : ; xn), prove that (f� # g�) = (f # g)� for all permutations� of f1; : : : ; ng and for all funtions f = f(x1; : : : ; xn) if and only if g = 0 or g is asubube (a onjuntion of literals).93. [36 ℄ Given a graph G on the verties f1; : : : ; ng, onstrut Boolean funtions fand g with the property that an approximating funtion f̂ exists as in exerise 91 withsmall B(f̂) if and only if G an be 3-olored. (Hene the task of minimizing B(f̂) isNP-omplete.)94. [21 ℄ Explain why (65) performs existential quanti�ation orretly.x 95. [20 ℄ Improve on (65) by testing if rl = 1 before omputing rh.96. [20 ℄ Show how to ahieve (a) universal quanti�ation 8xj1 : : :8xjm f = fAg, and(b) di�erential quanti�ation xj1 : : : xjm f = f D g, by modifying (65).97. [M20 ℄ Prove that it's possible to ompute arbitrary bottom-of-the-BDD quanti�-ations suh as 9xn�58xn�4 xn�39xn�2 xn�18xnf(x1; : : : ; xn) in O(B(f)) steps.x 98. [22 ℄ In addition to (70), explain how to de�ne the verties ENDPT(x) of G thathave degree � 1. Also haraterize PAIR(x; y), the omponents of size 2.99. [20 ℄ (R. E. Bryant, 1984.) Every 4-oloring of the US map onsidered in the textorresponds to 24 solutions of the COLOR funtion (73), under permutation of olors.What's a good way to remove this redundany?x 100. [24 ℄ In how many ways is it possible to 4-olor the ontiguous USA with exatly12 states of eah olor? (Eliminate DC from the graph.)101. [20 ℄ Continuing exerise 100, with olors f1; 2; 3; 4g, �nd suh a oloring thatmaximizes P (state weight)� (state olor), where states are weighted as in (18).102. [23 ℄ Design a method to ahe the results of funtional omposition using the fol-lowing onventions: The system maintains at all times an array of funtions [g1; : : : ; gn℄,one for eah variable xj . Initially gj is simply the projetion funtion xj , for 1 � j � n.This array an be hanged only by the subroutine NEWG(j; g), whih replaes gj by g.The subroutine COMPOSE(f) always performs funtional omposition with respet tothe urrent array of replaement funtions.x 103. [20 ℄ Mr. B. C. Dull wanted to evaluate the formula9y1 : : :9ym((y1 = f1(x1; : : : ; xn)) ^ � � � ^ (ym = fm(x1; : : : ; xn)) ^ g(y1; : : : ; ym));for ertain funtions f1, : : : , fm, and g. But his fellow student, J. H. Quik, found amuh simpler formula for the same problem. What was Quik's idea?x 104. [21 ℄ Devise an eÆient way to deide whether f � g or f � g or f k g, wheref k g means that f and g are inomparable, given the BDDs for f and g.105. [25 ℄ A Boolean funtion f(x1; : : : ; xn) is alled unate with polarities (y1; : : : ; yn)if the funtion h(x1; : : : ; xn) = f(x1 � y1; : : : ; xn � yn) is monotone.a) Show that f an be tested for unateness by using the and quanti�ers.b) Design a reursive algorithm to test unateness in at most O(B(f)2) steps, giventhe BDD forf. If f is unate, your algorithm should also �nd appropriate polarities.
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106. [25 ℄ Let f $g$h denote the relation \f(x) = g(y) = 1 implies h(x ^ y) = 1, forall x and y." Show that this relation an be evaluated in at most O(B(f)B(g)B(h))steps. [Motivation: Theorem 7.1.1H states that f is a Horn funtion if and only iff $f $f ; thus we an test Horn-ness in O(B(f)3) steps.℄107. [26 ℄ Continuing exerise 106, show that it's possible to determine whether or notf is a Krom funtion in O(B(f)4) steps. [Hint: See Theorem 7.1.1S.℄108. [HM24 ℄ Let b(n; s) be the number of n-variable Boolean funtions with B(f) � s.Prove that (s � 3)! b(n; s) � (n(s� 1)2)s�2 when s � 3, and explore the rami�ationsof this inequality when s = b2n=(n+ 1=ln 2). Hint: See the proof of Theorem 7.1.2S.x 109. [HM17 ℄ Continuing exerise 108, show that almost all Boolean funtions of n var-iables have B(f�) > 2n=(n+ 1=ln 2), for all permutations � of f1; : : : ; ng, as n!1.110. [25 ℄ Construt expliit worst-ase funtions fn for whih fn = Un in Theorem U.111. [M21 ℄ Verify the summation formula (79) in Theorem U.112. [HM23 ℄ Prove that min(2k; 22n�k� 22n�k�1) � b̂k is very small, where b̂k is thenumber de�ned in (80), exept when n� lgn� 1 < k < n� lgn+ 1.113. [20 ℄ Instead of having sink nodes, one for eah Boolean onstant, we ould have216 sinks, one for eah Boolean funtion of four variables. Then a BDD ould stop fourlevels earlier, after branhing on xn�4. Would this be a good idea?114. [20 ℄ Is there a funtion with pro�le (1;1;1;1;1;2) and quasi-pro�le (1;2;3;4;3;2)?x 115. [M22 ℄ Prove the quasi-pro�le inequalities (84) and (124).116. [M21 ℄ What is the (a) worst ase (b) average ase of a random quasi-pro�le?117. [M20 ℄ Compare Q(f) to B(f) when f =Mm(x1; : : : ; xm;xm+1; : : : ; xm+2m).118. [M23 ℄ Show that, from the perspetive of Setion 7.1.2, the hidden weighted bitfuntion has ost C(hn) = O(n). What is the exat value of C(h4)?119. [20 ℄ True or false: Every symmetri Boolean funtion of n variables is a speialase of h2n+1. (For example, x1 � x2 = h5(0; 1; 0; x1; x2).)120. [18 ℄ Explain the hidden-permuted-weighted-bit formula (94).x 121. [M22 ℄ If f(x1; : : : ; xn) is any Boolean funtion, its dual fD is �f(�x1; : : : ; �xn), andits reetion fR is f(xn : : : ; x1). Notie that fDD = fRR = f and fDR = fRD.a) Show that hDRn (x1; : : : ; xn) = hn(x2; : : : ; xn; x1).b) Furthermore, the hidden weighted bit funtion satis�es the reurreneh1(x1) = x1; hn+1(x1; : : : ; xn+1) = (xn+1? hn(x2; : : : ; xn; x1): hn(x1; : : : ; xn)):) De�ne x , a permutation on the set of all binary strings x, by the reursive rules� = �; (x1 : : : xn0) = (x1 : : : xn )0; (x1 : : : xn1) = (x2 : : : xnx1) 1:For example, 1101 = (101 )1 = (01 )11 = (0 )111 = ( )0111 = 0111; and wealso have 0111 = 1101. Is  an involution?d) Show that hn(x) = ĥn(x ), where the funtion ĥn has a very small BDD.122. [27 ℄ Construt an FBDD for hn that has fewer than n2 nodes, when n > 1.123. [M20 ℄ Prove formula (97), whih enumerates all slates of o�set s.x 124. [27 ℄ Design an eÆient algorithm to ompute the pro�le and quasi-pro�le of h�n,given a permutation �. Hint: When does the slate [r0; : : : ; rn�k℄ orrespond to a bead?
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x 125. [HM34 ℄ Prove that B(hn) an be expressed exatly in terms of the sequenesAn = nXk=0�n� k2k �; Bn = nXk=0� n� k2k + 1�:126. [HM42 ℄ Analyze B(h�n) for the organ-pipe permutation � = (2; 4; : : : ; n; : : : ; 3; 1).127. [46 ℄ Find a permutation � that minimizes B(h�100).x 128. [25 ℄ Given a permutation � of f1; : : : ;m + 2mg, explain how to ompute thepro�le and quasi-pro�le of the permuted 2m-way multiplexerM�m(x1; : : : ; xm;xm+1; : : : ; xm+2m) =Mm(x1�; : : : ; xm� ;x(m+1)�; : : : ; x(m+2m)�):129. [M25 ℄ De�ne Qm(x1; : : : ; xm2) to be 1 if and only if the 0{1 matrix (x(i�1)m+j)has no all-zero row and no all-zero olumn. Prove that B(Q�m) = 
(2m=m2) for all �.130. [HM31 ℄ The adjaeny matrix of an undireted graph G on verties f1; : : : ;mgonsists of �m2 � variable entries xuv = [u��� v in G℄, for 1 � u < v � m. Let Cm;kbe the Boolean funtion [G has a k-lique℄, for some ordering of those �m2 � variables.a) If 1 < k � pm, prove that B(Cm;k) � �s+ts �, where s = �k2��1 and t = m+2�k2.b) Consequently B(Cm;dm=2e) = 
(2m=3=pm ), regardless of the variable ordering.131. [M28 ℄ (The overing funtion.) The Boolean funtionC(x1; x2; : : : ; xp; y11; y12; : : : ; y1q; y21; : : : ; y2q; : : : ; yp1; yp2; : : : ; ypq)= ((x1^y11)_(x2^y21)_ � � � _(xp^yp1)) ^ � � � ^ ((x1^y1q)_(x2^y2q)_ � � � _(xp^ypq))is true if and only if all olumns of the matrix produt
x � Y = (x1x2 : : : xp)0BBB� y11 y12 : : : y1qy21 y22 : : : y2q... ... . . . ...yp1 yp2 : : : ypq

1CCCA
are positive, i.e., when the rows of Y seleted by x \over" every olumn of that matrix.The reliability polynomial of C is important in the analysis of fault-tolerant systems.a) When a BDD for C tests the variables in the orderx1; y11; y12; : : : ; y1q; x2; y21; y22; : : : ; y2q; : : : ; xp; yp1; yp2; : : : ; ypq;show that the number of nodes is asymptotially pq2q�1 for �xed q as p!1.b) Find an ordering for whih the size is asymptotially pq2p�1 for �xed p as q !1.) Prove, however, that Bmin(C) = 
(2min(p;q)=2) in general.132. [32 ℄ What Boolean funtions f(x1; x2; x3; x4; x5) have the largest Bmin(f)?133. [20 ℄ Explain how to ompute Bmin(f) and Bmax(f) from f 's master pro�le hart.134. [24 ℄ Construt the master pro�le hart, analogous to (102), for the Booleanfuntion x1 � ((x2 � (x1 _ (�x2 ^ x3))) ^ (x3 � x4)). What are Bmin(f) and Bmax(f)?Hint: The identity f(x1; x2; x3; x4) = f(x1; x2; �x4; �x3) saves about half the work.135. [M27 ℄ For all n � 4, �nd a Boolean funtion �n(x1; : : : ; xn) that is uniquely thin,in the sense that B(��n) = n+ 2 for exatly one permutation �. (See (93) and (102).)
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x 136. [M34 ℄ What is the master pro�le hart of the median-of-medians funtionhhx11x12 : : : x1nihx21x22 : : : x2ni : : : hxm1xm2 : : : xmnii;when m and n are odd integers? What is the best ordering? (There are mn variables.)137. [M38 ℄ Given a graph, the optimum linear arrangement problem asks for a permu-tation � of the verties that minimizesPu��v ju��v�j. Construt a Boolean funtion ffor whih this minimum value is haraterized by the optimum BDD size Bmin(f).x 138. [M36 ℄ The purpose of this exerise is to develop an attrative algorithm thatomputes the master pro�le hart for a funtion f, given f 's QDD (not its BDD).a) Explain how to �nd �n+12 � weights of the master pro�le hart from a single QDD.b) Show that the jump-up operation an be performed easily in a QDD, withoutgarbage olletion or hashing. Hint: See the \buket sort" in Algorithm R.) Consider the 2n�1 orderings of variables in whih the (i + 1)st is obtained fromthe ith by a jump-up from depth �i+ �i to depth �i� 1. For example, we get12345 21345 32145 31245 43125 41325 42135 42315 54231 52431 53241 53421 51342 51432 51243 51234when n = 5. Show that every k-element subset of f1; : : : ; ng ours at the top klevels of one of these orderings.d) Combine these ideas to design the desired hart-onstrution algorithm.e) Analyze the spae and time requirements of your algorithm.139. [22 ℄ Generalize the algorithm of exerise 138 so that (i) it omputes a ommonpro�le hart for all funtions of a BDD base, instead of a single funtion; and (ii) itrestrits the hart to variables fxa; xa+1; : : : ; xbg, preserving fx1; : : : ; xa�1g at the topand fxb+1; : : : ; xng at the bottom.140. [27 ℄ Explain how to �nd Bmin(f) without knowing all of f 's master pro�le hart.141. [30 ℄ True or false: If X1, X2, : : : , Xm are disjoint sets of variables, then an opti-mum BDD ordering for the variables of g(h1(X1); h2(X2); : : : ; hm(Xm)) an be foundby restriting onsideration to ases where the variables of eah Xj are onseutive.x 142. [HM32 ℄ The representation of threshold funtions by BDDs is surprisingly myste-rious. Consider the self-dual funtion f(x) = hxw11 : : : xwnn i, where eah wj is a positiveinteger and w1+� � �+wn is odd. We observed in (28) that B(f) = O(w1+� � �+wn)2; andB(f) is often O(n) even when the weights grow exponentially, as in (29) or exerise 41.a) Prove that when w1 = 1, wk = 2k�2 for 1 < k � m, and wk = 2m � 2n�k form < k � 2m = n, B(f) grows exponentially as n!1, but Bmin(f) = O(n2).b) Find weights fw1; : : : ; wng for whih Bmin(f) = 
(2pn=2).143. [24 ℄ Continuing exerise 142(a), �nd an optimum ordering of variables for thefuntion hx1x2x23x44x85x166 x327 x648 x1289 x25610 x51211 x76812 x89613 x96014 x99215 x100816 x101617 x102018 x102219 x102320 i.144. [16 ℄ What is the quasi-pro�le of the addition funtions ff1; f2; f3; f4; f5g in (36)?145. [24 ℄ Find Bmin(f1; f2; f3; f4; f5) and Bmax(f1; f2; f3; f4; f5) of those funtions.x 146. [M22 ℄ Let (b0; : : : ; bn) and (q0; : : : ; qn) be a BDD base pro�le and quasi-pro�le.a) Prove that b0 � min(q0; (b1 + q2)(b1+ q2� 1)), b1 � min(b0+ q0; q2(q2� 1)), andb0 + b1 � q0 � q2.b) Conversely, if b0, b1, q0, and q2 are nonnegative integers that satisfy those in-equalities, there is a BDD base with suh a pro�le and quasi-pro�le.x 147. [27 ℄ Flesh out the details of Rudell's swap-in-plae algorithm, using the onven-tions of Algorithm U and the referene ounters of exerise 82.
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148. [M21 ℄ True or false: B(f�1 ; : : : ; f�m) � 2B(f1; : : : ; fm), after swapping j1 $ j2 .149. [M20 ℄ (Bollig, L�obbing, and Wegener.) Show that, in addition to Theorem J�,we also have B(f�1 ; : : : ; f�m) � (2k � 2)b0 +B(f1; : : : ; fm) after a jump-down operationof k � 1 levels, when (b0; : : : ; bn) is the pro�le of ff1; : : : ; fmg.150. [30 ℄ When repeated swaps are used to implement jump-up or jump-down, theintermediate results might be muh larger than the initial or �nal BDD. Show thatvariable jumps an atually be done more diretly, with a method whose worst-aserunning time is O(B(f1; : : : ; fm) + B(f�1 ; : : : ; f�m)).151. [20 ℄ Suggest a way to invoke Algorithm J so that eah variable is sifted just one.152. [25 ℄ The hidden weighted bit funtion h100 has more than 17.5 trillion nodesin its BDD. By how muh does sifting redue this number? Hint: Use exerise 124,instead of atually onstruting the diagrams.153. [30 ℄ Put the ti-ta-toe funtions fy1; : : : ; y9g of exerise 7.1.2{65 into a BDDbase. How many nodes are present when variables are tested in the order x1, x2, : : : , x9,o1, o2, : : : , o9, from top to bottom? What is Bmin(y1; : : : ; y9)?154. [20 ℄ By omparing (104) to (106), an you tell how far eah state was movedwhen it was sifted?x 155. [25 ℄ Let f1 be the independent-set funtion (105) of the ontiguous USA, andlet f2 be the orresponding kernel funtion (see (67)). Find orderings � of the statesso that (a) B(f�2 ) and (b) B(f�1 ; f�2 ) are as small as you an make them. (Note thatthe ordering (110) gives B(f�1 ) = 339, B(f�2 ) = 795, and B(f�1 ; f�2 ) = 1129.)156. [30 ℄ Theorems J+ and J� suggest that we ould save reordering time by onlyjumping up when sifting, not bothering to jump down. Then we ould eliminate stepsJ3, J5, J6, and J7 of Algorithm J. Would that be wise?157. [M24 ℄ Show that if the m+ 2m variables of the 2m-way multiplexer Mm are ar-ranged in any order suh that B(M�m) > 2m+1+1, then sifting will redue the BDD size.158. [M24 ℄ When a Boolean funtion f(x1; : : : ; xn) is symmetrial in the variablesfx1; : : : ; xpg, it's natural to expet that those variables will appear onseutively in atleast one of the reorderings f�(x1; : : : ; xn) that minimize B(f�). Show, however, that iff(x1; : : : ; xn) = [x1 + � � �+ xp= bp=3℄ + [x1 + � � �+ xp= d2p=3e℄ g(xp+1; : : : ; xp+m);where p = n�m and g(y1; : : : ; ym) is any nononstant Boolean funtion, then B(f�) =13n2+O(n) as n!1 when fx1; : : : ; xpg are onseutive in �, but B(f�) = 14n2+O(n)when � plaes about half of those variables at the beginning and half at the end.159. [20 ℄ John Conway's basi rule for Life, exerise 7.1.3{167, is a Boolean funtionL(xNW; xN; xNE; xW; x; xE; xSW; xS; xSE). What ordering of those nine variables willmake the BDD as small as possible?x 160. [24 ℄ (Chess Life.) Consider an 8� 8 matrix X = (xij) of 0s and 1s, bordered byin�nitely many 0s on all sides. Let Lij(X) = L(x(i�1)(j�1); : : : ; xij ; : : : ; x(i+1)(j+1)) beConway's basi rule at position (i; j). Call X \tame" if Lij(X) = 0 whenever i =2 [1 : : 8℄or j =2 [1 : : 8℄; otherwise X is \wild," beause it ativates ells outside the matrix.a) How many tame on�gurations X vanish in one Life step, making all Lij = 0?b) What is the maximum weight P8i=1P8j=1 xij among all suh solutions?) How many wild on�gurations vanish within the matrix after one Life step?d) What are the minimum and maximum weight, among all suh solutions?e) How many on�gurations X make Lij(X) = 1 for 1 � i; j � 8?
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f) Investigate the tame 8� 8 predeessors of the following patterns:(1) (2) (3) (4) (5)(Here, as in Setion 7.1.3, blak ells denote 1s in the matrix.)161. [28 ℄ Continuing exerise 160, write L(X) = Y = (yij) if X is a tame matrix suhthat Lij(X) = yij for 1 � i; j � 8.a) How many X's satisfy L(X) = X (\still Life")?b) Find an 8� 8 still Life with weight 35.) A \ip-op" is a pair of distint matries with L(X)=Y, L(Y )=X. Count them.d) Find a ip-op for whih X and Y both have weight 28.x 162. [30 ℄ (Caged Life.) If X and L(X) are tame but L(L(X)) is wild, we say that X\esapes" its age after three steps. How many 6� 6 matries esape their 6� 6 ageafter exatly k steps, for k = 1, 2, : : : ?163. [23 ℄ Prove formulas (112) and (113) for the BDD sizes of read-one funtions.x 164. [M27 ℄ What is the maximum of B(f), over all read-one funtions f(x1; : : : ; xn)?165. [M21 ℄ Verify the Fibonai-based formulas (115) for B(um) and B(vm).166. [M29 ℄ Complete the proof of Theorem W.167. [21 ℄ Design an eÆient algorithm that omputes a permutation � for whih bothB(f�) and B(f� ; �f�) are minimized, given any read-one funtion f(x1; : : : ; xn).x 168. [HM40 ℄ Consider the following binary operations on ordered pairs z = (x; y):z Æ z0 = (x; y) Æ (x0; y0) = (x+ x0;min(x+ y0; x0 + y));z � z0 = (x; y) � (x0; y0) = (x+ x0 +min(y; y0);max(y; y0)):(These operations are assoiative and ommutative.) Let S1 = f(1; 0)g, andSn = n�1[k=1fz Æ z0 j z 2 Sk; z0 2 Sn�kg [ n�1[k=1fz � z0 j z 2 Sk; z0 2 Sn�kg for n > 1.Thus S2 = f(2; 0); (2; 1)g; S3 = f(3; 0); (3; 1); (3; 2)g; S4 = f(4; 0); : : : ; (4; 3); (5; 1)g; et.a) Prove that there exists a read-one funtion f(x1; : : : ; xn) for whih we havemin� B(f�) =  and min� B(f�; �f�) = 0 if and only if ( 120�1; � 12 0�1) 2 Sn.b) True or false: 0 � y < x for all (x; y) 2 Sn.) If zT = (x+ y; x� y)=p2, show that zT Æ z0T = (z � z0)T and zT � z0T = (z Æ z0)T .d) Prove that x2 + y2 � n2� for all (x; y) 2 Sn, if � is the onstant in (116). Hints:Let jzj2 = x2+y2; it suÆes to prove that jz�z0j � 2� = p2� whenever 0 � y � x,0 � y0 � x0, jzj = r = (1�Æ)�, jz0j = r0 = (1+Æ)� , and 0 � Æ � 1. If also y = y0,z �z0 lies inside the ellipse (a os �+b sin �; b sin �), where a = r+r0 and b = prr0.169. [M46 ℄ Is min�B(f�)�B(v2m+1) for every read-one funtionf of 22m+1variables?x 170. [M25 ℄ Let's say that a Boolean funtion is \skinny" if its BDD involves all thevariables in the simplest possible way: A skinny BDD has exatly one branh node jjfor eah variable xj , and either LO or HI is a sink node at every branh.a) How many Boolean funtions f(x1; : : : ; xn) are skinny in this sense?b) How many of them are monotone?) Show that ft(x1; : : : ; xn) = [(x1 : : : xn)2� t℄ is skinny when 0< t < 2n and t is odd.
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d) What is the dual of the funtion ft in part ()?e) Explain how to �nd the shortest CNF and DNF formulas for ft, given t.171. [M26 ℄ Continuing exerise 170, show that a funtion is read-one and regular ifand only if it is skinny and monotone.172. [M27 ℄ How many skinny funtions f(x1; : : : ; xn) are also Horn funtions? Howmany of them have the property that f and �f both satisfy Horn's ondition?x 173. [HM28 ℄ Exatly how many Boolean funtions f(x1; : : : ; xn) are skinny after somereordering of the variables, f(x1�; : : : ; xn�)?x 174. [M39 ℄ Let Sn be the number of Boolean funtions f(x1; : : : ; xn) whose BDD is\thin" in the sense that it has exatly one node labeled jj for 1 � j � n. Showthat Sn is also the number of ombinatorial objets of the following types:a) Della permutations of order 2n (namely, permutations p1p2 : : : p2n suh thatdk=2e � pk � n+ dk=2e for 1 � k � 2n).b) Genohi derangements of order 2n + 2 (namely, permutations q1q2 : : : q2n+2suh that qk > k if and only if k is odd, for 1 � k � 2n+2; also qk 6= kin a derangement).) Irreduible Dumont pistols of order 2n+2 (namely, sequenes r1r2 : : : r2n+2 suhthat k � rk � 2n + 2 for 1 � k � 2n+2 and fr1; r2; : : : ; r2n+2g = f2; 4; 6; : : : ;2n; 2n+ 2g, with the speial property that 2k 2 fr1; : : : ; r2k�1g for 1 � k � n).d) Paths from (1; 0) to (2n+ 2; 0) in the direted graph
(1,0) (2,0) (3,0)(3,1) (4,0)(4,1) (5,0)(5,1)(5,2)

(6,0)(6,1)(6,2)
(7,0)(7,1)(7,2)(7,3)

(8,0)(8,1)(8,2)(8,3)
� � �� � �� � �� � �

:(Notie that objets of type (d) are very easy to ount.)175. [M30 ℄ Continuing exerise 174, �nd a way to enumerate the Boolean funtionswhose BDD ontains exatly bj�1 nodes labeled jj , given a pro�le (b0; : : : ; bn�1; bn).176. [M35 ℄ To omplete the proof of Theorem X, we will use exerise 6.4{78, whihstates that fha;b j a 2 A and b 2 Bg is a universal family of hash funtions from n bitsto l bits, when ha;b(x) = ((ax+ b)� (n� l)) mod 2l, A = fa j 0 < a < 2n, a oddg, B =fb j 0 � b < 2n�lg, and 0 � l � n. Let I = fha;b(p) j p 2 Pg and J = fha;b(q) j q 2 Qg.a) Show that if 2l � 1 � 2t�1�=(1 � �), there are onstants a 2 A and b 2 B forwhih jIj � (1� �)2l and jJ j � (1� �)2l.b) Given suh an a, let J = fj1; : : : ; jjJjg where 0 = j1 < � � � < jjJj, and hooseQ0 = fq1; : : : ; qjJjg � Q so that ha;b(qk) = jk for 1 � k � jJ j. Let g(q) denote themiddle l�1 bits of aq, namely (aq�(n�l+1)) mod 2l�1. Prove that g(q) 6= g(q0)whenever q and q0 are distint elements of the set Q00 = fq1; q3; : : : ; q2djJj=2e�1g.) Prove that the following set Q� satis�es ondition (120), when l � 3 and y = a:Q� = fq j q 2 Q00, g(q) is even, and g(p) + g(q) = 2l�1 for some p 2 Pg:d) Finally, show that jQ�j is large enough to prove Theorem X.177. [M22 ℄ Complete the proof of Theorem A by bounding the entire quasi-pro�le.178. [M24 ℄ (Amano and Maruoka.) Improve the onstant in (121) by using a bettervariable ordering: Zn(x2n�1; x1; x3; : : : ; x2n�3;x2n; x2; x4; : : : ; x2n�2).
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179. [M47 ℄ Does the middle bit of multipliation satisfy Bmin(Zn) = �(26n=5)?180. [M27 ℄ Prove Theorem Y, using the hint given in the text.181. [M21 ℄ Let Lm;n be the leading bit funtion Z(m+n)m;n (x1; : : : ; xm; y1; : : : ; yn). Provethat Bmin(Lm;n) = O(2mn) when m � n.182. [M38 ℄ (I. Wegener.) Does Bmin(Ln;n) grow exponentially as n!1?x 183. [M25 ℄ Draw the �rst few levels of the BDD for the \limiting leading bit funtion"[(:x1x3x5 : : : )2 � (:x2x4x6 : : : )2 � 12 ℄;whih has in�nitely many Boolean variables. How many nodes bk are there on level k?(We don't allow (:x1x3x5 : : : )2 or (:x2x4x6 : : : )2 to end with in�nitely many 1s.)184. [M23 ℄ What are the BDD and ZDD pro�les of the permutation funtion Pm?185. [M25 ℄ How large an Z(f) be, when f is a symmetri Boolean funtion ofn variables? (See exerise 44.)186. [10 ℄ What Boolean funtion of fx1; x2; x3; x4; x5; x6g has the ZDD `? >3 '?x 187. [20 ℄ Draw the ZDDs for all 16 Boolean funtions f(x1; x2) of two variables.188. [16 ℄ Express the 16 Boolean funtions f(x1; x2) as families of subsets of f1; 2g.189. [18 ℄ What funtions f(x1; : : : ; xn) have a ZDD equal to their BDD?190. [20 ℄ Desribe all funtions f for whih (a) Q(f) = B(f); (b) Q(f) = Z(f).x 191. [HM25 ℄ How many funtions f(x1; : : : ; xn) have no ? in their ZDD?192. [M20 ℄ De�ne the Z-transform of binary strings as follows: �Z = �, 0Z = 0,1Z = 1, and(��)Z = 8<:�Z�Z ; if j�j = n and � = 0n;�Z0n; if j�j = n and � = �;�Z�Z ; if j�j = j�j � 1, or if j�j = j�j = n and � 6= � 6= 0n.a) What is 11001001000011111Z?b) True or false: (�Z)Z = � for all binary strings � .) If f(x1; : : : ; xn) is a Boolean funtion with truth table � , let fZ(x1; : : : ; xn) bethe Boolean funtion whose truth table is �Z . Show that the pro�le of f is almostidential to the z-pro�le of fZ , and vie versa. (Therefore Theorem U holds forZDDs as well as for BDDs, and statistis suh as (80) are valid also for z-pro�les.)193. [M21 ℄ Continuing exerise 192, what is SZk (x1; : : : ; xn) when 0 � k � n?194. [M25 ℄ How many f(x1; : : : ; xn) have the z-pro�le (1; : : : ; 1)? (See exerise 174.)195. [24 ℄ Find Z(M2), Zmin(M2), and Zmax(M2), where M2 is the 4-way multiplexer.196. [M21 ℄ Find a funtion f(x1; : : : ; xn) for whih Z(f) = O(n) and Z( �f) = 
(n2).197. [25 ℄ Modify the algorithm of exerise 138 so that it omputes the \master z-pro�le hart" of f . (Then Zmin(f) and Zmax(f) an be found as in exerise 133.)x 198. [23 ℄ Explain how to ompute AND(f; g) with ZDDs instead of BDDs (see (55)).199. [21 ℄ Similarly, implement (a) OR(f; g), (b) XOR(f; g), () BUTNOT(f; g).200. [21 ℄ And similarly, implement MUX(f; g; h) for ZDDs (see (62)).201. [22 ℄ The projetion funtions xj eah have a simple 3-node BDD, but their ZDDrepresentations are more ompliated. What's a good way to implement these funtionsin a general-purpose ZDD toolkit?
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202. [24 ℄ What hanges are needed to the swap-in-plae algorithm of exerise 147,when levels ju $ jv are being interhanged in a ZDD base instead of a BDD base?x 203. [M24 ℄ (Family algebra.) The following algebrai onventions are useful for deal-ing with �nite families of �nite subsets of positive integers, and with their representationas ZDDs. The simplest suh families are the empty family, denoted by ; and representedby ? ; the unit family f;g, denoted by � and represented by > ; and the elementaryfamilies ffjgg for j � 1, denoted by ej and represented by a branh node jj withLO = ? and HI = > . (Exerise 186 illustrates the ZDD for e3.)Two families f and g an be ombined with the usual set operations:� The union f [ g = f� j � 2 f or � 2 gg is implemented by OR(f; g);� The intersetion f \ g = f� j � 2 f and � 2 gg is implemented by AND(f; g);� The di�erene f n g = f� j � 2 f and � =2 gg is implemented by BUTNOT(f; g);� The symmetri di�erene f � g = (f n g) [ (g n f) is implemented by XOR(f; g).And we also de�ne three new ways to onstrut families of subsets:� The join f t g = f� [ � j � 2 f and � 2 gg, sometimes written just fg;� The meet f u g = f� \ � j � 2 f and � 2 gg;� The delta f g = f�� � j � 2 f and � 2 gg.All three are ommutative and assoiative: f t g = g t f , f t (g t h) = (f t g)t h, et.a) Suppose f = f;; f1; 2g; f1; 3gg = � [ (e1 t (e2 [ e3)) and g = ff1; 2g; f3gg =(e1 t e2) [ e3. What are f t g and (f u g) n (f e1)?b) Any family f an also be regarded as a Boolean funtion f(x1; x2; : : : ), where� 2 f () f([12�℄; [22�℄; : : : ) = 1. Desribe the operations t, u, and interms of Boolean logial formulas.) Whih of the following formulas hold for all families f , g, and h? (i) f t (g[h) =(ftg)[(f th); (ii) fu(g[h) = (fug)[(f uh); (iii) ft(guh) = (ftg)u(f th);(iv) f [ (g t h) = (f [ g) t (f [ h); (v) f ; = ; u g = h t ;; (vi) f u � = �.d) We say that f and g are orthogonal, written f ? g, if � \ � = ; for all � 2 fand all � 2 g. Whih of the following statements is true for all families f and g?(i) f ? g () f u g = �; (ii) f ? g =) jf t gj = jf jjgj; (iii) jf t gj = jf jjgj =)f ? g; (iv) f ? g () f t g = f g.e) Desribe all families f for whih the following statements hold: (i) f [ g = g forall g; (ii) f t g = g for all g; (iii) f u g = g for all g; (iv) f t (e1 t e2) = f ;(v) f t (e1 [ e2) = f ; (vi) f ((e1t e2)[ e3) = f ; (vii) f f = �; (viii) f u f = f .x 204. [M25 ℄ Continuing exerise 203, two further operations are also important:� the quotient f=g = f� j � [ � 2 f and � \ � = ;, for all � 2 gg.� the remainder f mod g = f n (g t (f=g)).The quotient is sometimes also alled the \ofator" of f with respet to g.a) Prove that f=(g [ h) = (f=g) \ (f=h).b) Suppose f = ff1; 2g; f1; 3g; f2g; f3g; f4gg. What are f=e2 and f=(f=e2)?) Simplify the expressions f=;, f=�, f=f , and (f mod g)=g, for arbitrary f and g.d) Show that f=g = f=(f=(f=g)). Hint: Start with the relation g � f=(f=g).e) Prove that f=g an also be de�ned as S fh j g t h � f and g ? hg.f) Given f and j, show that f has a unique representation (ejtg)[h with ej?(g[h).g) True or false: (ftg) mod ej=(f mod ej)t(g mod ej); (fug)=ej=(f=ej)u(g=ej).205. [M25 ℄ Implement the �ve basi operations of family algebra, namely (a) f t g,(b) f u g, () f g, (d) f=g, and (e) f mod g, using the onventions of exerise 198.



72 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 analysis of algsprojetion funtionssymmetrizingsymmetri funtionsfully elaborated truth tableZDDexat over problemmutilated hessboarddominoesfaultfreeYoshidatatami tilings3-olorablemonominotrominopolyominoesseparatedLangford pairs

206. [M46 ℄ What are the worst-ase running times of the algorithms in exerise 205?x 207. [M25 ℄ When one or more projetion funtions xj are needed in appliations, asin exerise 201, the following \symmetrizing" operation turns out to be very handy:(ei1 [ ei2 [ � � � [ eil) x k = Sk(xi1 ; xi2 ; : : : ; xil); integer k � 0.For example, ej x 1 = xj ; ej x 0 = �xj ; (ei [ ej) x 1 = xi � xj ; (e2 [ e3 [ e5) x 2 =(x2 ^ x3 ^ �x5) _ (x2 ^ �x3 ^ x5) _ (�x2 ^ x3 ^ x5). Show that it's easy to implement thisoperation. (Notie that ei1 [ � � � [ eil has a very simple ZDD of size l+2, when l > 0.)x 208. [16 ℄ By modifying Algorithm C, show that all solutions of a Boolean funtionan readily be ounted when its ZDD is given instead of its BDD.209. [M21 ℄ Explain how to ompute the fully elaborated truth table of a Booleanfuntion from its ZDD representation. (See exerise 31.)x 210. [23 ℄ Given the ZDD for f , show how to onstrut the ZDD for the funtiong(x) = [f(x)= 1 and �x=maxf�y j f(y)= 1g℄:211. [M20 ℄ When f desribes the solutions to an exat over problem, is Z(f)�B(f)?x 212. [25 ℄ What's a good way to ompute the ZDD for an exat over problem?213. [16 ℄ Why an't the mutilated hessboard be perfetly overed with dominoes?x 214. [21 ℄ When some shape is overed by dominoes, we say that the overing isfaultfree if every straight line that passes through the interior of the shape also passesthrough the interior of some domino. For example, the right-hand overing in (127)is faultfree, but the middle one isn't; and the left-hand one has faults galore.How many domino overings of a hessboard are faultfree?215. [21 ℄ Japanese tatami mats are 1�2 retangles that are traditionally used to overretangular oors in suh a way that no four mats meet at any orner. For example,Fig. 29(a) shows a 6�5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jink�oki,a book �rst published in 1627.Find all domino overings of a hessboard that are also tatami tilings.
Fig. 29. Two nie examples:(a) A 17th-entury tatami tiling;(b) a triolored domino overing. (a) (b)

x 216. [30 ℄ Figure 29(b) shows a hessboard overed with red, white, and blue domi-noes, in suh a way that no two dominoes of the same olor are next to eah other.a) In how many ways an this be done?b) How many of the 12,988,816 domino overings are 3-olorable?217. [29 ℄ The monomino/domino/tromino overing illustrated in (130) happens tosatisfy an additional onstraint: No two ongruent piees are adjaent. How many ofthe 92 sextillion overings mentioned in the text are \separated," in this sense?x 218. [24 ℄ Apply BDD and ZDD tehniques to the problem of Langford pairs, disussedat the beginning of this hapter.
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219. [20 ℄ What is Z(F ) when F is the family (a) WORDS(1000); : : : ; (e) WORDS(5000)?x 220. [21 ℄ The z-pro�le of the 5757 SGB words, represented with 130 variables a1 : : z5as disussed in (131), is (1, 1, 1, : : : , 1, 1, 1, 23, 3, : : : , 6, 2, 0, 3, 2, 1, 1, 2).a) Explain the entries 23 and 3, whih orrespond to the variables a2 and b2.b) Explain the �nal entries 0, 3, 2, 1, 1, 2, whih orrespond to v5, w5, x5, et.x 221. [M27 ℄ Only 5020 nodes are needed to represent the 5757 most ommon �ve-letterwords of English, using the 130-variable representation, beause of speial linguistiproperties. But there are 265 = 11;881;376 possible �ve-letter words. Suppose wehoose 5757 of them at random; how big will the ZDD be then, on average?x 222. [27 ℄ When family algebra is applied to �ve-letter words as in (131), the 130variables are alled a1, b1, : : : , z5 instead of x1, x2, : : : , x130; and the orrespondingelementary families are denoted by the symbols a1, b1, : : : , z5 instead of e1, e2, : : : , e130.Thus the family F = WORDS(5757) an be onstruted by synthesizing the formulaF = (w1t h2t i3t 4t h5)[ � � � [ (f1t u2t n3t n4t y5)[ � � � [ (p1t u2t p3t a4t l5):a) Let } denote the universal family of all subsets of fa1; : : : ; z5g, also alled the\power set." What does the formula F u } signify?b) Let X = X1t� � �tX5, where Xj = faj ; bj ; : : : ; zjg. Interpret the formula F uX.) Find a simple formula for all words of F that math the pattern t*u*h.d) Find a formula for all SGB words that ontain exatly k vowels, for 0 � k � 5(onsidering only a, e, i, o, and u to be vowels). Let Vj = aj [ ej [ ij [ oj [ uj .e) How many patterns in whih exatly three letters are spei�ed are mathed byat least one SGB word? (For example, m*t* is suh a pattern.) Give a formula.f) How many of those patterns are mathed at least twie (e.g., *at*)?g) Express all words that remain words when a `b' is hanged to `o'.h) What's the signi�ane of the formula F=V2?i) Contrast (X1 t V2 t V3 t V4 tX5) \ F with (X1 tX5) n ((} nF )=(V2 t V3 t V4)).223. [28 ℄ A \median word" is a �ve-letter word � = �1 : : : �5 that an be obtainedfrom three words � = �1 : : : �5, � = �1 : : : �5,  = 1 : : : 5 by the rule [�i=�i ℄ +[�i=�i ℄ + [i=�i ℄ = 2 for 1 � i � 5. For example, mixed is a median of the wordsffixed; mixer; moundg, and also of fmated; mixup; nixedg. But noted is not a medianof fnotes; voted; nakedg, beause eah of those words has e in position 4.a) Show that fd(�; �); d(�; �); d(; �)g is either f1; 1; 3g or f1; 2; 2g whenever � is amedian of f�; �; g. (Here d denotes Hamming distane.)b) How many medians an be obtained from WORDS(n), when n = 100? 1000? 5757?) How many of those medians belong to WORDS(m), when m = 100? 1000? 5757?x 224. [20 ℄ Suppose we form the ZDD for all soure-to-sink paths in a dag, as in Fig. 28,when the dag happens to be a forest; that is, assume that every non-soure vertex ofthe dag has in-degree 1. Show that the orresponding ZDD is essentially the same asthe binary tree that represents the forest under the \natural orrespondene betweenforests and binary trees," Eqs. 2.3.2{(1) through 2.3.2{(3).x 225. [30 ℄ Design an algorithm that will produe a ZDD for all sets of edges that forma simple path from s to t, given a graph and two distint verties fs; tg of the graph.x 226. [20 ℄ Modify the algorithm of exerise 225 so that it yields a ZDD for all of thesimple yles in a given graph.227. [20 ℄ Similarly, modify it so that it onsiders only Hamiltonian paths from s to t.
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228. [21 ℄ And mutate it one more, for Hamiltonian paths from s to any other vertex.229. [15 ℄ There are 587,218,421,488 paths from CA to ME in the graphs (18), but only437,525,772,584 suh paths in (133). Explain the disrepany.230. [25 ℄ Find the Hamiltonian paths of (133) that have minimum and maximumtotal length. What is the average length, if all Hamiltonian paths are equally likely?231. [23 ℄ In how many ways an a king travel from one orner of a hessboard tothe opposite orner, never oupying the same ell twie? (These are the simple pathsfrom orner to orner of the graph P8�P8.)x 232. [23 ℄ Continuing exerise 231, a king's tour of the hessboard is an orientedHamiltonian yle of P8�P8. Determine the exat number of king's tours. What is thelongest possible king's tour, in terms of Eulidean distane traveled?x 233. [25 ℄ Design an algorithm that builds a ZDD for the family of all oriented ylesof a given digraph. (See exerise 226.)234. [22 ℄ Apply the algorithm of exerise 233 to the direted graph on the 49 postalodes AL, AR, : : : , WY of (18), with XY��! YZ as in exerise 7{54(b). For example, onesuh oriented yle is NC��! CT��! TN��! NC. How many oriented yles are possible?What are the minimum and maximum yle lengths?235. [22 ℄ Form a digraph on the �ve-letter words of English by saying that x��! ywhen the last three letters of x math the �rst three letters of y (e.g., rown��!owner).How many oriented yles does this digraph have? What are the longest and shortest?x 236. [M25 ℄ Many extensions to the family algebra of exerise 203 suggest themselveswhen ZDDs are applied to ombinatorial problems, inluding the following �ve opera-tions on families of sets:� The maximal elements f" = f� 2 f j � 2 f and � � � implies � = �g;� The minimal elements f# = f� 2 f j � 2 f and � � � implies � = �g;� The nonsubsets f% g = f� 2 f j � 2 g implies � 6� �g;� The nonsupersets f & g = f� 2 f j � 2 g implies � 6� �g;� The ross elements f ℄ = f� j � 2 f implies � \ � 6= ;g#.For example, when f and g are the families of exerise 203(a) we have f" = e1t(e2[e3),f# = �, f ℄ = ;, g" = g# = g, g℄ = (e1[e2)te3, f%g = e1te3, f&g = �, g%f = g&f = ;.a) Prove that f % g = f n (f u g), and give a similar formula for f & g.b) Let fC = f� j � 2 fg = f U , where U = e1 t e2 t � � � is the \universal set."Clearly fCC = f , (f[g)C = fC[gC , (f\g)C = fC\gC , (fng)C = fCngC . Showthat we also have the duality laws f"C = fC#, f#C = fC"; (f t g)C = fC u gC ,(f u g)C = fC t gC ; (f% g)C = fC & gC , (f & g)C = fC% gC ; f ℄ = (}% fC)#.) True or false? (i) x#1 = e1; (ii) x"1 = e1; (iii) x℄1 = e1; (iv) (x1 _ x2)# = e1 [ e2;(v) (x1 ^ x2)# = e1 t e2.d) Whih of the following formulas hold for all families f , g, and h? (i) f"" = f";(ii) f"# = f#; (iii) f"# = f"; (iv) f#" = f#; (v) f ℄# = f ℄; (vi) f ℄" = f ℄;(vii) f#℄ = f ℄; (viii) f"℄ = f ℄; (ix) f ℄℄ = f ℄; (x) f % (g [ h) = (f % g) \ (f % h);(xi) f&(g[h) = (f&g)\(f&h); (xii) f&(g[h) = (f&g)&h; (xiii) f%g" = f%g;(xiv) f & g" = f & g; (xv) (f t g)℄ = (f ℄ [ g℄)#; (xvi) (f [ g)℄ = (f ℄ t g℄)#.e) Suppose g = Su��v(eu t ev) is the family of all edges in a graph, and let f bethe family of all the independent sets. Using the operations of extended familyalgebra, �nd simple formulas that express (i) f in terms of g; (ii) g in terms of f .
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237. [25 ℄ Implement the �ve operations of exerise 236, in the style of exerise 205.x 238. [22 ℄ Use ZDDs to ompute the maximal indued bipartite subgraphs of the on-tiguous-USA graph G in (18), namely the maximal subsets U suh that G j U has noyles of odd length. How many suh sets U exist? Give examples of the smallest andlargest. Consider also the maximal indued tripartite (3-olorable) subgraphs.x 239. [21 ℄ Explain how to ompute the maximal liques of a graph G using familyalgebra, when G is spei�ed by its edges g as in exerise 236(e). Find the maximal setsof verties that an be overed by k liques, for k = 1, 2, : : : , when G is the graph (18).x 240. [22 ℄ A set of verties U is alled a dominating set of a graph if every vertex isat most one step away from U .a) Prove that every kernel of a graph is a minimal dominating set.b) How many minimal dominating sets does the USA graph (18) have?) Find seven verties of (18) that dominate 36 of the others.x 241. [28 ℄ The queen graph Q8 onsists of the 64 squares of a hessboard, with u���vwhen squares u and v lie in the same row, olumn, or diagonal. How large are the ZDDsfor its (a) kernels? (b) maximal liques? () minimal dominating sets? (d) minimaldominating sets that are also liques? (e) maximal indued bipartite subgraphs?Illustrate eah of these �ve ategories by exhibiting smallest and largest examples.242. [24 ℄ Find all of the maximal ways to hoose points on an 8 � 8 grid so that nothree points lie on a straight line of any slope.243. [M23 ℄ The losure f\ of a family f of sets is the family of all sets that an beobtained by interseting one or more members of f .a) Prove that f\ = f� j �=Tf� j � 2 f and � � �gg.b) What's a good way to ompute the ZDD for f\, given the ZDD for f?) Find the generating funtion for F \ when F = WORDS(5757) as in exerise 222.244. [25 ℄ What is the ZDD for the onnetedness funtion of P3 P3 (Fig. 22)? Whatis the BDD for the spanning tree funtion of the same graph? (See Corollary S.)x 245. [M22 ℄ Show that the prime lauses of a monotone funtion f are PI(f)℄.246. [M21 ℄ Prove Theorem S, assuming that (137) is true.x 247. [M27 ℄ Determine the number of sweet Boolean funtions of n variables for n � 7.248. [M22 ℄ True or false: If f and g are sweet, so is f(x1; : : : ; xn) ^ g(x1; : : : ; xn).249. [HM31 ℄ The onnetedness funtion of a graph is \ultrasweet," in the sense thatit is sweet under all permutations of its variables. Is there a nie way to haraterizeultrasweet Boolean funtions?250. [28 ℄ There are 7581 monotone Boolean funtions f(x1; x2; x3; x4; x5). What arethe average values of B(f) and Z(PI(f)) when one of them is hosen at random? Whatis the probability that Z(PI(f)) > B(f)? What is the maximum of Z(PI(f))=B(f)?251. [M46 ℄ Is Z(PI(f)) = O(B(f)) for all monotone Boolean funtions f?252. [M30 ℄ When a Boolean funtion isn't monotone, its prime impliants involvenegative literals; for example, the prime impliants of (x1? x2: x3) are x1^x2, �x1^x3,and x2^x3. In suh ases we an onveniently represent them with ZDDs if we onsiderthem to be words in the 2n-letter alphabet fe1; e01; : : : ; en; e0ng. A \subube" suhas 01�0� is then e01 t e2 t e04 in family algebra (see 7.1.1{29); and PI(x1? x2: x3) =(e1 t e2) [ (e01 t e3) [ (e2 t e3).
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Exerise 7.1.1{116 shows that symmetri funtions of n variables might have
(3n=n) prime impliants. How large an Z(PI(f)) be when f is symmetri?x 253. [M26 ℄ Continuing exerise 252, prove that if f = (�x1^f0) _ (x1^f1) we havePI(f) = A [ (e01tB) [ (e1tC), where A = PI(f0 ^ f1), B = PI(f0) n A, and C =PI(f2) nA. (Equation (137) is the speial ase when f is monotone.)x 254. [M23 ℄ Let the funtions f and g of (52) be monotone, with f � g. Prove thatPI(g) n PI(f) = (PI(gl) nPI(fl)) [ (PI(gh) nPI(fh [ gl)):x 255. [25 ℄ A multifamily of sets, in whih members of f are allowed to our morethan one, an be represented as a sequene of ZDDs (f0; f1; f2; : : : ) in whih fk is thefamily of sets that our ( : : : a2a1a0)2 times in f where ak = 1. For example, if �appears exatly 9 = (1001)2 times in the multifamily, � would be in f3 and f0.a) Explain how to insert and delete items from this representation of a multifamily.b) Implement the multiset union h = f ℄ g for multifamilies.256. [M32 ℄ Any nonnegative integer x an be represented as family of subsets ofthe binary powers U = f22k j k � 0g = f21; 22; 24; 28; : : : g, in the following way: Ifx = 2e1 + � � � + 2et , where e1 > � � � > et � 0 and t � 0, the orresponding family hast sets Ej � U , where 2ej = Qfu j u 2 Ejg. Conversely, every �nite family of �nitesubsets of U orresponds in this way to a nonnegative integer x. For example, thenumber 41 = 25 + 23 + 1 orresponds to the family ff21; 24g; f21; 22g; ;g.a) Find a simple onnetion between the binary representation of x and the truthtable of the Boolean funtion that orresponds to the family for x.b) Let Z(x) be the size of the ZDD for the family that represents x, when the ele-ments of U are tested in reverse order : : : , 24, 22, 21 (with highest exponents near-est to the root); for example, Z(41) = 5. Show that Z(x) = O(log x=log log x).) The integer x is alled \sparse" if Z(x) is substantially smaller than the upperbound in (b). Prove that the sum of sparse integers is sparse, in the sense thatZ(x+ y) = O(Z(x)Z(y)).d) Is the saturating di�erene of sparse integers, x .� y, always sparse?e) Is the produt of sparse integers always sparse?257. [40 ℄ (S. Minato.) Explore the use of ZDDs to represent polynomials with nonneg-ative integer oeÆients. Hint: Any suh polynomial in x, y, and z an be regarded asa family of subsets of f2; 22; 24; : : : ; x; x2; x4; : : : ; y; y2; y4; : : : ; z; z2; z4; : : : g; for exam-ple, x3+3xy+2z orresponds naturally to the family ffx; x2g; fx; yg; f2; x; yg; f2; zgg.x 258. [25 ℄ Given a positive integer n, what is the minimum size of a BDD that hasexatly n solutions? Answer this question also for a ZDD of minimum size.x 259. [25 ℄ A sequene of parentheses an be an be enoded as a binary string byletting 0 represent `(' and 1 represent `)'. For example, ())(() is enoded as 011001.Every forest of n nodes orresponds to a sequene of 2n parentheses that areproperly nested, in the sense that left and right parentheses math in the normal way.(See, for example, 2.3.3{(1) or 7.2.1.6{(1).) LetNn(x1; : : : ; x2n) = [x1 : : : x2n represents properly nested parentheses℄:For example, N3(0; 1; 1; 0; 0; 1) = 0 and N3(0; 0; 1; 0; 1; 1) = 1; in general, Nn has Cn �4n=(p� n3=2) solutions, where Cn is a Catalan number. What are B(Nn) and Z(Nn)?
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x 260. [M27 ℄ We will see in Setion 7.2.1.5 that every partition of f1; : : : ; ng into disjointsubsets orresponds to a \restrited growth sequene" a1 : : : an, whih is a sequene ofnonnegative integers witha1 = 0 and aj+1 � 1 + max(a1; : : : ; aj) for 1 � j < n.Elements j and k belong to the same subset of the partition if and only if aj = ak.a) Let xj;k = [aj = k ℄ for 0 � k < j � n, and let Rn be the funtion of these �n+12 �variables that is true if and only if a1 : : : an is a restrited growth sequene. (Bystudying this Boolean funtion we an study the family of all set partitions, andby plaing further restritions on Rn we an study set partitions with speialproperties. There are $100 � 5� 10115 set partitions when n = 100.) CalulateB(R100) and Z(R100). Approximately how large are B(Rn) and Z(Rn) as n !1?b) Show that, with a proper ordering of the variables xj;k, the BDD base forfR1; : : : ; Rng has the same number of nodes as the BDD for Rn alone.) We an also use fewer variables, approximately n lgn instead of �n+12 �, if werepresent eah ak as a binary integer with dlg ke bits. How large are the BDDand ZDD bases in this representation of set partitions?261. [HM21 ℄ \The deterministi �nite-state automaton with fewest states that a-epts any given regular language is unique." What is the onnetion between thisfamous theorem of automata theory and the theory of binary deision diagrams?262. [M26 ℄ The determination of optimum Boolean hains in Setion 7.1.2 was greatlyaelerated by restriting onsideration to Boolean funtions that are normal, in thesense that f(0; : : : ; 0) = 0. (See Eq. 7.1.2{(10).) Similarly, we ould restrit BDDs sothat eah of their nodes denotes a normal funtion.a) Explain how to do this by introduing \omplement links," whih point to theomplement of a subfuntion instead of to the subfuntion itself.b) Show that every Boolean funtion has a unique normalized BDD.) Draw the normalized BDDs for the 16 funtions in exerise 1.d) Let B0(f) be the size of the normalized BDD for f . Find the average and worstase of B0(f), and ompare B0(f) to B(f). (See (80) and Theorem U.)e) The BDD base for 3 � 3 multipliation in (58) has B(F1; : : : ; F6) = 52 nodes.What is B0(F1; : : : ; F6)?f) How do (54) and (55) hange, when AND is implemented with omplement links?263. [HM25 ℄ A linear blok ode is the set of binary olumn vetors x = (x1; : : : ; xn)Tsuh that Hx = 0, where H is a given m� n \parity hek matrix."a) The linear blok ode with n = 2m � 1, whose olumns are the nonzero binarym-tuples from (0; : : : ; 0; 1)T to (1; : : : ; 1; 1)T, is alled the Hamming ode. Provethat the Hamming ode is 1-error orreting in the sense of exerise 7{23.b) Let f(x) = [Hx=0℄, where H is an m�n matrix with no all-zero olumns. Showthat the BDD pro�le of f has a simple relation to the ranks of submatries of Hmod 2, and ompute B(f) for the Hamming ode.) In general we an let f(x) = [x is a odeword℄ de�ne any blok ode. Supposesome odeword x = x1 : : : xn has been transmitted through a possibly noisyhannel, and that we've reeived the bits y = y1 : : : yn, where the hannel deliversyk = xk with probability pk for eah k independently. Explain how to determinethe most likely odeword x, given y, p1, : : : , pn, and the BDD for f .



78 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 generalization, sweepingoptimizationBoolean programming, generalized�LFRICTHOREAU
264. [M46 ℄ The text's \sweeping generalization" of Algorithms B and C, based on (22),embraes many important appliations; but it does not appear to inlude quantitiessuh asmaxf(x)=1� nXk=1wkxk + n�1Xk=1w0kxkxk+1� or maxf(x)=1 n�1Xj=0�wj n�jXk=1 xk : : : xk+j�;whih also an be omputed eÆiently from the BDD or ZDD for f .Develop a generalization that is even more sweeping.

We dare not lengthen this book muh more,lest it be out of due proportion,and repel men by its size.| �LFRIC, Catholi Homilies II (. 1000)There are a thousand haking at the branhes of evilto one who is striking at the root.| HENRY D. THOREAU, Walden; or, Life in the Woods (1854)



7.1.4 ANSWERS TO EXERCISES 79 dualDubrovaMahiaruloSECTION 7.1.41. Here are the BDDs for truth tables 0000, 0001, : : : , 1111, showing the sizes below:
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1
4 ? >2 21

5 ? >23 ? >2
1
4 ? >

1
3 ? >2

1
4 ? >2

1
4 >12. (The ordering property determines the diretion of eah ar.)

?

>

1 11 12 1
1

1
1 21 11 1

3. There are two with size 1 (namely the two onstant funtions); none with size 2(beause two sinks annot both be reahable unless there's also a branh node); and2n with size 3 (namely xj and �xj for 1 � j � n).4. Set y  #0ffffffeffffffe&�x+#20000002, y  (y�28)&#10000001, x0  x�y.(See 7.1.3{(93).)5. You get f(�x1; : : : ; �xn) = fD(x1; : : : ; xn), the dual of f (see exerise 7.1.1{2).6. The largest subtables of 1011000110010011, namely 10110001, 10010011, 1011,0001, 1001, 0011, are all distint beads; squares and dupliates don't appear until welook at the subtables f10; 11; 00; 01g of length 2. So g has size 11.7. (a) If the truth table of f is �0�1 : : : �2k�1, where eah �j is a binary string oflength 2n�k, the truth table of gk is �0�2 : : : �2k�2, where �2j = �2j�2j+1�2j+1�2j+1.(b) Thus the beads of f and gk are losely related. We get the BDD for gk fromthe BDD for f by hanging jj to � �� �j�1 for 1 � j < k, and replaing k� �0 by k�1k� �0
.

8. (a) Now �2j = �2j�2j+1�2j+1�2j . (b) Again hange jj to � �� �j�1 for 1 � j < k. Ifk� �0 is present in f but not k��0 , replae k� �0 by k�1k k� �0
; otherwise replae k� �0 k��0 by

k�1k kk�1� �0 . [E. Dubrova and L. Mahiarulo, IEEE Trans. C-49 (2000), 1290{1292.℄
9. There is no solution if s = 1. Otherwise set k  s�1, j  1, and do the followingsteps repeatedly: (i) While j < vk, set xj  1 and j  j + 1; (ii) stop if k = 0; (iii) ifhk 6= 1, set xj  1 and k  hk, otherwise set xj  0 and k  lk; (iv) set j  j + 1.
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10. Let Ik = (�vk? lk:hk) for 0 � k < s and I 0k = (�v0k? l0k:h0k) for 0 � k < s0. We mayassume that s = s0; otherwise f 6= f 0. The following algorithm either �nds indies(t0; : : : ; ts�1) suh that Ik orresponds to I 0tk , or onludes that f 6= f 0:I1. [Initialize and loop.℄ Set ts�1  s � 1, t1  1, t0  0, and tk  �1 for2 � k � s � 2. Do steps I2{I4 for k = s � 1, s � 2, : : : , 2 (in this order). Ifthose steps \quit" at any point, we have f 6= f 0; otherwise f = f 0.I2. [Test vk.℄ Set t  tk. (Now t � 0; otherwise Ik would have no predeessor.)Quit if v0t 6= vk.I3. [Test lk.℄ Set l lk. If tl < 0, set tl  l0t; otherwise quit if l0t 6= tl.I4. [Test hk.℄ Set h hk. If th < 0, set th  h0t; otherwise quit if h0t 6= th.11. (a) Yes, sine k orretly ounts all paths from node k to node 1. (In fat, manyBDD algorithms will run orretly|but more slowly| in the presene of equivalentnodes or redundant branhes. But redution is important when, say, we want to testquikly if f = f 0 as in exerise 10.)(b) No. For example, suppose I3 = (�1? 2: 1), I2 = (�1? 0: 1), I1 = (�2? 1: 1), I0 =(�2? 0: 0); then the algorithm sets 2  1, 3  32 . (But see exerise 35(b).)12. (a) The �rst ondition makes K independent; the seond makes it maximally so.(b) None when n is odd; otherwise there are two sets of alternate verties.() A vertex is in the kernel if and only if it is a sink vertex or in the kernel of thegraph obtained by deleting all sink verties and their immediate predeessors.[Kernels represent winning positions in nim-like games, and they also arise inn-person games. See J. von Neumann and O. Morgenstern, Theory of Games and Eo-nomi Behavior (1944), x30.1; C. Berge, Graphs and Hypergraphs (1973), Chapter 14.℄13. (a) A maximal lique of G is a kernel of G, and vie versa. (b) A minimal vertexover U is the omplement V nW of a kernel W , and vie versa (see 7{(61)).14. (a) The size is 4(n � 2) + 2[n=3℄. When n � 6 these BDDs form a pattern inwhih there are four branh nodes for variables 4, 5, : : : , n � 2, together with a �xedpattern at the top and bottom. The four branhes are essentially(x1xj�1 = 00) (x1xj�1 = 01) (x1xj�1 = 10) (x1xj�1 = 11)

(x1xj = 00) (x1xj = 01) (x1xj = 10) (x1xj = 11)j j j j? ? :
(b) Here the numbers for 3 � n � 10 are (7; 9; 14; 17; 22; 30; 37; 45); then a �xedpattern at the top and bottom develops as in (a), with nine branh nodes for eahvariable in the middle, and the total size omes to 9(n � 5). The nine nodes on eahmiddle level fall into three groups of three,(xj�2xj�1 = 00) (xj�2xj�1 = 10) (xj�1 = 1)

(xj�1xj = 00) (xj�1xj = 10) (xj = 1)j j j? ? ;
with one group for x1x2 = 00, one for x1x2 = 01, and one for x1 = 1.15. Both ases lead by indution to well known sequenes of numbers: (a) The Luasnumbers Ln = Fn+1 + Fn�1 [see E. Luas, Th�eorie des Nombres (1891), Chapter 18℄.(b) The Perrin numbers, de�ned by P3 = 3, P4 = 2, P5 = 5, Pn = Pn�2 + Pn�3. [SeeR. Perrin, L'Interm�ediaire des Math�ematiiens 6 (1899), 76{77.℄
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16. When the BDD isn't ? , all solutions are generated by alling List(1; root), whereList(j; p) is the following reursive proedure: If v(p) > j, set xj  0, all List(j+1; p),set xj  1, and all List(j + 1; p). Otherwise if p is the sink node > , visit thesolution x1 : : : xn. (The idea of \visiting" a ombinatorial objet while generatingthem all is disussed at the beginning of Setion 7.2.1.) Otherwise set xj  0; allList(j+1;LO(p)) if LO(p) 6= ? ; set xj  1; and all List(j+1;HI(p)) if HI(p) 6= ? .The solutions are generated in lexiographi order. Suppose there are N of them.If the kth solution agrees with the (k�1)st solution in positions x1 : : : xj�1 but not in xj ,let (k) = n� j; and let (1) = n. Then the running time is proportional toPNk=1 (k),whih is O(nN) in general. (This bound holds beause every branh node of a BDDleads to at least one solution. In fat, the running time is usually O(N) in pratie.)17. That mission is impossible, beause there's a funtion with N = 22k and B(f) =O(22k) for whih every two solutions di�er in more than 2k�1 bit positions. The runningtime for any algorithm that generates all solutions for suh a funtion must be 
(23k),beause 
(2k) operations are needed between solutions. To onstrut f , �rst letg(x1; : : : ; xk; y0; : : : ; y2k�1) = [y(t1:::tk)2 =x1t1 � � � � � xktk for 0� t1; : : : ; tk � 1℄:(In other words, g asserts that y0 : : : y2k�1 is row (x1 : : : xk)2 of an Hadamard matrix;see Eq. 4.6.4{(38).) Now we let f(x1; : : : ; xk; y0; : : : ; y2k�1; x01; : : : ; x0k; y00; : : : ; y02k�1) =g(x1; : : : ; xk; y0; : : : ; y2k�1) ^ g(x01; : : : ; x0k; y00; : : : ; y02k�1). Clearly B(f) = O(22k) whenthe variables are ordered in this way. Indeed, T. Dahlheimer observes that B(f) =2B(g)� 2, where B(g) = 2k + 1 +P2kj=1 2min(k;1+dlg je) = 5322k�1 + 2k + 53 .18. First, (W1; : : : ;W5) = (5; 4; 4; 4; 0). Then m2 = w4 = 4 and t2 = 1; m3 = t3 = 0;m4 = max(m3;m2+w3) = 1, t4 = 1; m5 = W4�W5 = 4, t5 = 0; m6 = w2+W3�W5 =2, t6 = 1; m7 = max(m5;m4 + w2) = 4, t7 = 0; m8 = max(m7;m6 + w1) = 4, t8 = 0.Solution x1x2x3x4 = 0001.19. Pnj=1min(wj ; 0) �Pnj=vk min(wj ; 0) � mk �Pnj=vk max(wj ; 0) =Wvk �W1.20. Set w1  �1, then w2j  wj and w2j+1  �wj for 1 � j � n=2. [This methodmay also ompute wn+1. The sequene is named for works of A. Thue, Skrifter udgivneaf Videnskabs-Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse (1912),No. 1, x7, and H. M. Morse, Trans. Amer. Math. So. 22 (1921), 84{100, x14.℄21. Yes; we just have to hange the sign of eah weight wj . (Or we ould reverse theroles of LO and HI at eah vertex.)22. If f(x) = f(x0) = 1 when f represents a graph kernel, the Hamming distane�(x� x0) annot be 1. In suh ases vl = v+1 when l 6= 0 and vh = v+1 when h 6= 0.23. The BDD for the onnetedness funtion of any onneted graph will have exatlyn�1 solid ars on every root-to- > path, beause that many edges are needed to on-net n verties, and beause a BDD has no redundant branhes. (See also Theorem S.)24. Apply Algorithm B with weights (w012; : : : ; w089) = (�w12�x; : : : ;�w89�x), wherex is large enough to make all of these new weights w0uv negative. The maximum ofPw0uvxuv will then our with Pxuv = 8, and those edges will form a spanning treewith minimumPwuvxuv . (We've seen a better algorithm for minimum spanning treesin exerise 2.3.4.1{11, and other methods will be studied in Setion 7.5.4. However, thisexerise indiates that a BDD an ompatly represent the set of all spanning trees.)25. The answer in step C1 beomes (1 + z)vs�1�1s�1; the value of k in step C2beomes (1 + z)vl�vk�1l + (1 + z)vh�vk�1zh.
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26. In this ase the answer in step C1 is simply s�1; and the value of k in step C2is simply (1� pvk )l + pvkh.27. The multilinear polynomial H(x1; : : : ; xn) = F (x1; : : : ; xn) � G(x1; : : : ; xn) isnonzero modulo q, beause it is �1 for some hoie of integers with eah xk 2 f0; 1g.If it has degree d (modulo q), we an prove that there are at least (q � 1)dqn�d sets ofvalues (q1; : : : ; qn) with 0 � qk < q suh that H(q1; : : : ; qn) mod q 6= 0. This statementis lear when d = 0. And if xk is a variable that appears in a term of degree d > 0, theoeÆient of xk is a polynomial of degree d� 1, whih by indution on d is nonzero forat least (q � 1)d�1qn�d hoies of (q1; : : : ; qk�1; qk+1; : : : ; qn); for eah of those hoiesthere are q � 1 values of qk suh that H(q1; : : : ; qn) mod q 6= 0.Hene the stated probability is � (1 � 1=q)d � (1 � 1=q)n. [See M. Blum, A. K.Chandra, and M. N. Wegman, Information Proessing Letters 10 (1980), 80{82.℄28. F (p) = (1� p)nG(p=(1� p)). Similarly, G(z) = (1 + z)nF (z=(1 + z)).29. In step C1, also set 00  0, 01  0; return s�1 and 0s�1. In step C2, setk  (1� p)l + ph and 0k  (1� p)0l � l + p0h + h.30. The following analog of Algorithm B does the job (assuming exat arithmeti):A1. [Initialize.℄ Set Pn+1  1 and Pj  Pj+1max(1� pj ; pj) for n � j � 1.A2. [Loop on k.℄ Set m1  1 and do step A3 for 2 � k < s. Then do step A4.A3. [Proess Ik.℄ Set v  vk, l  lk, h  hk, tk  0. If l 6= 0, set mk  ml(1 � pv)Pv+1=Pvl . Then if h 6= 0, ompute m  mhpvPv+1=Pvh ; and ifl = 0 or m > mk, set mk  m and tk  1.A4. [Compute the x's.℄ Set j  0, k  s � 1, and do the following operationsuntil j = n: While j < vk � 1, set j  j + 1 and xj  [pj > 12 ℄; if k > 1, setj  j + 1 and xj  tk and k  (tk=0? lk: hk).31. C10. [Loop over k.℄ Set �0  ?, �1  >, and do step C20 for k = 2, 3, : : : , s� 1.Then go to C30.C20. [Compute �k.℄ Set v  vk, l lk, and h hk. Set �  �l and j  vl � 1;then while j > v set �  (�xj Æ xj) � � and j  j � 1. Set   �h andj  vh � 1; then while j > v set   (�xj Æ xj) �  and j  j � 1. Finally set�k  (�xv � �) Æ (xv � ).C30. [Finish.℄ Set � �s�1 and j  vs�1�1; then while j > 0 set � (�xjÆxj)��and j  j � 1. Return the answer �.This algorithm performs Æ and � operations at most O(nB(f)) times. The upper boundan often be lowered to O(n) + O(B(f)); but shortuts like the alulation of Wk instep B1 aren't always available. [See O. Coudert and J. C. Madre, Pro. Reliability andMaint. Conf. (IEEE, 1993), 240{245, x4; O. Coudert, Integration 17 (1994), 126{127.℄32. For exerise 25, `Æ' is addition, `�' is multipliation, `?' is 0, `>' is 1, `�xj ' is 1, `xj 'is z. Exerise 26 is similar, but `�xj ' is 1� pj and `xj ' is pj .In exerise 29 the objets of the algebra are pairs (; 0), and we have (a; a0) Æ(b; b0) = (a + b; a0 + b0), (a; a0) � (b; b0) = (ab; ab0 + a0b). Also `?' is (0; 0), `>' is (1; 0),`�xj ' is (1�p;�1), and `xj ' is (p; 1).In exerise 30, `Æ' is max, `�' is multipliation, `?' is �1, `>' is 1, `�xj ' is 1 � pj ,`xj ' is pj . Multipliation distributes over max in this ase beause the quantities areeither nonnegative or �1; we must de�ne 0 � (�1) = �1 in order to satisfy (22).(Additional possibilities abound, beause assoiative and distributive operators areubiquitous in mathematis. The algebrai objets need not be numbers or polynomials
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or pairs; they an be strings, matries, funtions, sets of numbers, sets of strings, setsor multisets of matries of pairs of funtions of strings, et., et. We will see manyfurther examples in Setion 7.3. The min-plus algebra, with Æ = min and � = +, ispartiularly important, and we ould have used it in exerise 21 or 24. It is often alledtropial, impliitly honoring the Brazilian mathematiian Imre Simon.)33. Operate on triples (; 0; 00), with (a; a0; a00) Æ (b; b0; b00) = (a + b; a0 + b0; a00 + b00)and (a; a0; a00) � (b; b0; b00) = (ab; a0b + b0a; a00b + 2a0b0 + ab00). Interpret `?' as (0; 0; 0),`>' as (1; 0; 0), `�xj ' as (1; 0; 0), and `xj ' as (1; wj ; w2j ).34. Let x_ y = max(x; y). Operate on pairs (; 0), with (a; a0)Æ (b; b0) = (a_ b; a0 _ b0)and (a; a0) � (b; b0) = (a + b; (a0 + b) _ (a + b0)). Interpret `?' as (�1;�1), `>' as(0;�1), `�xj ' as (0; w00j ), and `xj ' as (wj ; w0j + w00j ). The �rst omponent of the resultwill agree with Algorithm B; the seond omponent is the desired maximum.35. (a) The supposed FBDD an be represented by instrutions Is�1, : : : , I0 as inAlgorithm C. Start with R0  R1  ;, then do the following for k = 2, : : : , s � 1:Report failure if vk 2 Rlk [ Rhk ; otherwise set Rk  fvkg [ Rlk [ Rhk . (The set Rkidenti�es all variables that are reahable from Ik.)(b) The reliability polynomial an be alulated just as in answer 26. To ountsolutions, we essentially set p1 = � � � = pn = 12 and multiply by 2n: Start with 0  0and 1  2n, then set k  (lk + hk )=2 for 1 < k < s. The answer is s�1.36. Compute the sets Rk as in answer 35(a). Instead of looping on j as stated in stepC20 of answer 31, set �  �l and then �  (�xj Æ xj) � � for all j 2 Rk nRl n fvg; treat in the same manner. Similarly, in step C30 set � (�xj Æ xj) � � for all j =2 Rs�1.37. Given any FBDD for f, the funtion G(z) is the sum of (1+z)n�lengthPzsolid ars inPover all paths P from the root to > . [See Theoretial Comp. Si. 3 (1976), 371{384.℄38. The key fat is that xj = 1 fores f = 1 if and only if we have (i) hk = 1 whenevervk = j; (ii) vk = j in at least one step k; (iii) there are no steps with (vk < j < vlk andlk 6= 1) or (vk < j < vhk and hk 6= 1).K1. [Initialize.℄ Set tj  2 and pj  0 for 1 � j � n.K2. [Examine all branhes.℄ Do the following operations for 2 � k < s: Set j  vkand q  0. If lk = 1, set q  �1; otherwise set pj  max(pj ; vlk). If hk = 1,set q  +1; otherwise set pj  max(pj ; vhk ). If tj = 2, set tj  q; otherwiseif tj 6= q set tj  0.K3. [Finish up.℄ Set m vs�1, and do the following for j = 1, 2, : : : , n: If j < m,set tj  0; then if pj > m, set m pj .[See S.-W. Jeong and F. Somenzi, in Logi Synthesis and Optimization (1993), 154{156.℄39. k(n+ 1� k) + 2, for 1 � k � n. (See (26).)40. (a) Suppose the BDDs for f and g have respetively aj and bj branh nodes jj ,for 1 � j � n. Eah subtable of f of order n + 1 � k has the form ��Æ, where �,�, , and Æ are subtables of order n � 1 � k. The orresponding subtables of g are��ÆÆ; hene they are beads if and only if � 6= Æ, in whih ase either ��Æ is a bead or�� = Æ is a bead. Consequently bk � ak + ak+1, and bk+1 = 0. We also have bj � ajfor 1 � j < k, beause every bead of g of order > n+1�k is \ondensed" from at leastone suh bead of f . And bj � aj for j > k+1, beause the subtables on (xk+2; : : : ; xn)are idential although they might not appear in g.
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(b) Not always. The simplest ounterexample is f(x1; x2; x3; x4) = x2 ^ (x3 _ x4),h(x1; x2; x1; x4) = x2 ^ (x1 _ x4), when B(f) = 5 and B(h) = 6. (We do, however,always have B(h) < 2B(f).)41. (a) 3n � 3; (b) 2n. (The general pat-terns are illustrated here for n = 6. One analso show that the \organ-pipe ordering"hxF1n xF21 xF3n�1xF42 : : : xFn�1bn=2+[n even℄ xFn�2dn=2e iprodues the pro�le 1, 2, 4, : : : , 2dn=2e�2,2bn=2 � 1, : : : , 5, 3, 1, 2, giving the totalBDD size �n2� + 3; this ordering appears tobe the worst for the Fibonai weights.)

12 23 3 34 4 45 5 56? >? >

12 23 34 45 56
????? >>>

>>
The funtions [Fnx1 + � � �+ F1xn� t℄have been studied by J. T. Butler and T. Sasao, Fibonai Quart. 34 (1996), 413{422.42. (Compare with exerise 2.) The sixteen roots are the j1 nodes and the two sinks:
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43. (a) Sine f(x1; : : : ; x2n) is the symmetri funtion Sn(x1; : : : ; xn; �xn+1; : : : ; �x2n),we have B(f) = 1 + 2 + � � �+ (n+1) + � � �+ 3 + 2 + 2 = n2 + 2n+ 2.(b) By symmetry, the size is the same for [Pfxi j i 2 Ig =Pfxi j i =2 Ig℄, jIj = n.44. There are at most min(k; 2n+2�k � 2) nodes labeled jk , for 1 � k � n, beausethere are 2n+2�k � 2 symmetri funtions of (xk; : : : ; xn) that aren't onstant. ThusSn is at most 2 +Pnk=1min(k; 2n+2�k � 2), whih an be expressed in losed form as(n+2�bn)(n+1�bn)=2+2(2bn�bn), where bn = �(n+4��(n+4)) and �n = blg n.A symmetri funtion that attains this worst-ase bound an be onstruted inthe following way (related to the de Bruijn yles onstruted in exerise 3.2.2{7):Let p(x) = xd + a1xd�1 + � � � + ad be a primitive polynomial modulo 2. Set tk  1for 0 � k < d; tk  (a1tk�1 + � � � + adtk�d) mod 2 for d � k < 2d + d � 2; tk  (1+a1tk�1+ � � �+adtk�d) mod 2 for 2d+d�2 � k < 2d+1+d�3; and t2d+1+d�3  1.For example, when p(x) = x3 + x+ 1 we get t0 : : : t16 = 11100101101000111.Then (i) the sequene t1 : : : t2d+d�3 ontains all d-tuples exept 0d and 1d assubstrings; (ii) the sequene t2d+d�2 : : : t2d+1+d�4 is a yli shift of �t0 : : : �t2d�2; and(iii) tk = 1 for 2d�1 � k � 2d+d�3 and 2d+1�2 � k � 2d+1+d�3. Consequently thesequene t0 : : : t2d+1+d�3 ontains all (d+1)-tuples exept 0d+1 and 1d+1 as substrings.Set f(x) = t�x to maximize B(f) when 2d + d� 4 < n � 2d+1 + d� 3.Asymptotially, Sn = 12n2 � n lgn + O(n). [See I. Wegener, Information andControl 62 (1984), 129{143; M. Heap, J. Eletroni Testing 4 (1993), 191{195.℄45. ModuleM1 has only three inputs (x1; y1; z1), and only three outputs u2 = x1, v2 =y1x1, w2 = z1x1. Module Mn�1 is almost normal, but it has no input port for zn�1,
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and it doesn't output un; it sets zn�2 = xn�1yn�1. Module Mn has only three inputs(vn; wn; xn), and one output yn�1 = xn together with the main output, wn _ vnxn.With these de�nitions the dependenies between ports form an ayli digraph.(Modules ould be onstruted with all bk = 0 and ak � 5, or even with ak � 4 aswe'll see in exerise 47. But (33) and (34) are intended to illustrate bakward signalsin a simple example, not to demonstrate the tightest possible onstrution.)46. For 6 � k � n � 3 there are nine branhes on jk , orresponding to three ases(�x1; x1�x2; x1x2) times three ases (�xk�1; �xk�2xk�1; �xk�3xk�2xk�1). The total BDDsize turns out to be exatly 9n� 38, if n � 6.47. Suppose f has qk subtables of order n�k, so that its QDD has qk nodes that branhon xk+1. We an enode them in ak = dlg qke bits, and onstrut a module Mk+1 withbk = bk+1 = 0 that mimis the behavior of those qk branh nodes. Thus by (86),nXk=0 2ak2bk = nXk=0 2dlg qke � nXk=0(2qk � 1) = 2Q(f)� (n+ 1) � (n+ 1)B(f):(The 2m-way multiplexer shows that the additional fator of (n+1) is neessary; indeed,Theorem M atually gives an upper bound on Q(f).)48. The sums uk = x1+ � � �+xk and vk = xk+1+ � � �+xn an be represented on 1+�kand 1+ �(n� k) wires, respetively. Let tk = xk ^ [uk + vk = k℄ and wk = t1 _ � � � _ tk.We an onstrut modules Mk having inputs uk�1 and wk�1 from Mk�1 together withinputs vk fromMk+1; moduleMk outputs uk = uk�1+xk and wk = wk�1_ tk toMk+1as well as vk�1 = vk + xk to Mk�1.If p is a polynomial,Pnk=0 2p(ak;bk) = 2(logn)O(1) is asymptotially less than 2
(n).[See K. L. MMillan, Symboli Model Cheking (1993), x3.5, where Theorem M wasintrodued, with extensions to nonlinear layouts. The speial ase b1 = � � � = bn = 0had been noted previously by C. L. Berman, IEEE Trans.CAD-10 (1991), 1059{1066.℄49.
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86 ANSWERS TO EXERCISES 7.1.4 ommon subfuntionsfrontierpartitions of a setset partition51. In this ase B(fj) = 3j+2 for 1 � j � n, and B(fn+1) = 3n+1; so the individualBDDs are only about 1/3 as big as they are within (36). But almost no nodes areshared|only the sinks and one branh. So the total BDD size omes to (3n2+9n)=2.52. If the BDD base for ff1; : : : ; fmg has s nodes, then B(f) = s+m+ 1 + [s=1℄.53. Call the branh nodes a, b, , d, e, f , g, with ROOT = a. After step R1 wehave HEAD[1℄ = �a, AUX(a) = �0; HEAD[2℄ = �b, AUX(b) = �, AUX() = �0;HEAD[3℄ = �d, AUX(d) = �e, AUX(e) = �f , AUX(f) = �g, AUX(g) = �0.After R3 with v = 3 we have s = �0, AUX(0) = �e, AUX(e) = f , AUX(f) = 0; alsoAVAIL = g, LO(g) = �1, HI(g) = d, LO(d) = �0, and HI(d) = �, where � was theinitial value of AVAIL. (Nodes g and d have been reyled in favor of 1 and 0.) Then R4sets s e and AUX(0) 0. (The remaining nodes with V = v start at s, linked via AUX.)Now R7, starting with p = q = e and s = 0, sets AUX(1)  �e, LO(f)  �e,HI(f) g, AVAIL f ; and R8 resets AUX(1) 0.Then step R3 with v = 2 sets LO(b)  0, LO()  e, and HI()  1. Nofurther hanges of importane take plae, although some AUX �elds temporarily beomenegative. We end up with Fig. 21.54. Create nodes j for 1 < j � 2n�1 by setting V(j)  dlg je, LO(j)  2j � 1, andHI(j)  2j; also for 2n�1 < j � 2n by setting V(j)  n, LO(j)  f(x1; : : : ; xn�1; 0),and HI(j) f(x1; : : : ; xn�1; 1) when j = (1x1 : : : xn�1)2+1. Then apply Algorithm Rwith ROOT = 2. (We an bypass step R1 by �rst setting AUX(j)  �j for 4 � j � 2n,then HEAD[k℄ �(2k) and AUX(2k�1 + 1) �1 for 1 � k � n.)55. It suÆes to onstrut an unredued diagram, sine Algorithm R will then �nishthe job. Number the verties 1, : : : , n in suh a way that no vertex exept 1 appearsbefore all of its neighbors. Represent the edges by ars a1, : : : , ae, where ak is uk��!vkfor some uk < vk, and where the ars having uk = j are onseutive, with sj � k < sj+1and 1 = s1 � � � � � sn = sn+1 = e + 1. De�ne the \frontier" Vk = f1; v1; : : : ; vkg \fuk; : : : ; ng for 1 � k � e, and let V0 = f1g. The unredued deision diagram will havebranhes on ar ak for all partitions of Vk�1 that orrespond to onnetedness relationsthat have arisen beause of previous branhes.For example, onsider P3 P3, where (s1; : : : ; s10) = (1; 3; 5; 7; 8; 10; 11; 12; 13; 13)and V0 = f1g, V1 = f1; 2g, V2 = f1; 2; 3g, V3 = f2; 3; 4g, : : : , V12 = f8; 9g. The branhon a1 goes from the trivial partition 1 of V0 to the partition 1j2 of V1 if 1 /��� 2, or tothe partition 12 if 1��� 2. (The notation `1j2' stands for the set partition f1g [ f2g,as in Setion 7.2.1.5.) From 1j2, the branh on a2 goes to the partition 1j2j3 of V2 if1 /���3, otherwise to 13j2; from 12, the branhes go respetively to partitions 12j3 and123. Then from 1j2j3, both branhes on a3 go to ? , beause vertex 1 an no longerbe onneted to the others. And so on. Eventually the partitions of Ve = V12 are allidenti�ed with ? , exept for the trivial one-set partition, whih orresponds to > .56. Start with m 2 in step R1, and v0  v1  vmax+1, l0  h0  0, l1  h1  1as in (8). Assume that HI(0) = 0 and HI(1) = 1. Omit the assignments that involveAVAIL in steps R3 and R7. After setting AUX(HI(p))  0 in step R8, also set vm  v,lm  HI(LO(p)), hm  HI(HI(p)), HI(p)  m, and m  m + 1. At the end ofstep R9, set s m� [ROOT=0℄.57. Set LO(ROOT)  �LO(ROOT). (We briey omplement the LO �eld of nodes that arestill aessible after restrition.) Then for v = V(ROOT), : : : , vmax, set p �HEAD[v℄,HEAD[v℄ �0, and do the following while p 6= 0: (i) Set p0  �AUX(p). (ii) If LO(p) �0, set HI(p) AVAIL, AUX(p) 0, and AVAIL p (node p an no longer be reahed).Otherwise set LO(p)  �LO(p); if FIX[v℄ = 0, set HI(p)  LO(p); if FIX[v℄ = 1, set
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LO(p)  HI(p); if LO(LO(p)) � 0, set LO(LO(p))  �LO(LO(p)); if LO(HI(p)) � 0,set LO(HI(p))  �LO(HI(p)); and set AUX(p)  HEAD[v℄, HEAD[v℄  �p. (iii) Setp p0. Finally, after �nishing the loop on v, restore LO(0) 0, LO(1) 1.58. Sine l 6= h and l0 6= h0, we have l � l0 6= h � h0, l � �0 6= h � �0, and � � l0 6= � � h0.Suppose � � �0 = � � �0, where � = (v00; l00; h00) and �0 = (v000; l000; h000). If v00 = v000we have v = v00, l � l0 = l00 � l000, and h � h0 = h00 � h000. If v00 < v000 we have v = v00,l � �0 = l00 � �0, and h � �0 = h00 � �0. Otherwise we have v0 = v000, � � l0 = � � l000, and� � h0 = � � h000. By indution, therefore, we have � = � and �0 = �0 in all ases.59. (a) If h isn't onstant we have B(f �g) = 3B(h)�2, essentially obtained by takinga opy of the BDD for h and replaing its sink nodes by two other opies.(b) Suppose the pro�le and quasi-pro�le of h are (b0; : : : ; bn) and (q0; : : : ; qn),where bn = qn = 2. Then there are bkqk branhes on x2k+1 in f � g, and qkbk�1branhes on x2k, orresponding to ordered pairs of beads and subtables of h. Whenthe BDD for h ontains a branh from � to � and from �0 to �0, where V(�) = j,V(�) = k, V(�0) = j0, and V(�0) = k0, the BDD for f � g ontains a orrespondingbranh with V(� � �0) = 2j � 1 from � � �0 to � � �0 when j � j0 < k, and withV(� � �0) = 2j0 from � � �0 to � � �0 when j0 < j � k0.60. Every bead of order n�j of the ordered pair (f; g) is either one of the bjb0j orderedpairs of beads of f and g, or one of the bj(q0j � b0j)+ (qj � bj)b0j ordered pairs that havethe form (bead, nonbead) or (nonbead, bead). [This upper bound is ahieved in theexamples of exerises 59(b) and 63.℄61. Assume that v = V (�) � V (�). Let �1, : : : , �k be the nodes that point to �,and let �1, : : : , �l be the nodes with V (�j) < v that point to �; an imaginary node isassumed to point to eah root. (Thus k = in-degree(�) and l � in-degree(�).) Thenthe melded nodes that point to ��� are of three types: (i) �i��j , where V (�i) = V (�j)and either (LO(�i) = � and LO(�j) = �) or (HI(�i) = � and HI(�j) = �); (ii) � � �j ,where V (�i) < V (�j) for some i; or (iii) �i � �, where V (�i) > V (�j) for some j.62. The BDD for f has one node on eah level, and the BDD for g has two, exept atthe top and bottom. The BDD for f_g has four nodes on nearly every level, by exerise14(a). The BDD for f � g has seven nodes jj when 5 � j � n � 3, orrespondingto ordered pairs of subtables of (f; g) that depend on xj when (x1; : : : ; xj�1) have�xed values. Thus B(f) = n + O(1), B(g) = 2n + O(1), B(f � g) = 7n + O(1), andB(f _ g) = 4n+O(1). (Also B(f ^ g) = 7n+O(1), B(f � g) = 7n+O(1).)63. The pro�les of f and g are respetively (1; 2; 2; : : : ; 2m�1; 2m�1; 2m; 1; 1; : : : ; 1; 2)and (0; 1; 2; 2; : : : ; 2m�1; 2m�1; 1; 1; : : : ; 1; 2); so B(f) = 2m+2 � 1 � 4n and B(g) =2m+1+2m�1 � 3n. The pro�le of f ^g begins with (1; 2; 4; : : : ; 22m�2; 22m�1�2m�1),beause there's a unique solution x1 : : : x2m to the equations((x1 � x2)(x3 � x4) : : : (x2m�1 � x2m))2 = p; ((x2 � x3) : : : (x2m�2 � x2m�1)x2m)2 = qfor 0 � p; q < 2m, and p = q if and only if x1 = x3 = � � � = x2m�1 = 0. After that thepro�le ontinues (2m+1 � 2; 2m+1 � 2; 2m+1 � 4; 2m+1 � 6; : : : ; 4; 2; 2); the subfuntionsare x2m+j ^ �x2m+k or �x2m+j ^ x2m+k for 1 � j < k � 2m, together with x2m+j and�x2m+j for 2 � j � 2m. All in all, we have B(f ^ g) = 22m+1 + 2m�1 � 1 � 2n2.64. The BDD for any Boolean ombination of f1, f2, and f3 is ontained in the meldf1 � f2 � f3, whose size is at most B(f1)B(f2)B(f3).65. h = g? f1: f0, where f is the restrition of f obtained by setting xj  . The�rst upper bound follows as in answer 64, beause B(f) � B(f). The seond bound
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fails when, for example, n = 2m + 3m and h = Mm(x; y)? Mm(x0; y): Mm(x00; y),where x = (x1; : : : ; xm), x0 = (x01; : : : ; x0m), x00 = (x001 ; : : : ; x00m), and y = (y0; : : : ; y2m�1);but suh failures appear to be rare. [See R. E. Bryant, IEEE Trans. C-35 (1986), 685;J. Jain, K. Mohanram, D. Moundanos, I. Wegener, and Y. Lu, ACM/IEEE DesignAutomation Conf. 37 (2000), 681{686.℄66. Set NTOP f0 + 1� l and terminate the algorithm.67. Let tk denote template loation POOLSIZE � 2k. Step S1 sets LEFT(t1)  5,RIGHT(t1)  7, l  1. Step S2 for l = 1 puts t1 into both LLIST[2℄ and HLIST[2℄.Step S5 for l = 2 sets LEFT(t2)  4, RIGHT(t2)  5, L(t1)  t2; LEFT(t3)  3, RIGHT(t3)  6, H(t1)  t3. Step S2 for l = 2 sets L(t2)  0 and puts t2 inHLIST[3℄; then it puts t3 into LLIST[3℄ and HLIST[3℄. And so on. Phase 1 ends with(LSTART[0℄; : : : ; LSTART[4℄) = (t0; t1; t3; t5; t8) andk LEFT(tk) RIGHT(tk) L(tk) H(tk)1 5 [�℄ 7 [!℄ t2 t32 4 [�℄ 5 [�℄ 0 t43 3 [℄ 6 [ ℄ t4 t54 3 [℄ 1 [>℄ t7 1

k LEFT(tk) RIGHT(tk) L(tk) H(tk)5 3 [℄ 4 ['℄ t6 t86 2 [Æ℄ 2 [� ℄ 0 17 2 [Æ℄ 1 [>℄ 0 18 1 [>℄ 3 [�℄ 1 0representing the meld � � ! in Fig. 24 but with ? � x = x � ? = ? and > � > = >.Let fk = f0+ k. In phase 2, step S7 for l = 4 sets LEFT(t6) �0, LEFT(t7) t6,LEFT(t8) �1, and RIGHT(t6) RIGHT(t7) RIGHT(t8) �1. Step S8 undoes thehanges made to LEFT(0) and LEFT(1). Step S11 with s = t8 sets LEFT(t8)  �2,RIGHT(t8)  t8, V(f2)  4, LO(f2)  1, HI(f2)  0. With s = t7 that step setsLEFT(t7)  �3, RIGHT(t7)  t7, V(f3)  4, LO(f3)  0, HI(f3)  1; meanwhilestep S10 has set RIGHT(t6) t7. Eventually the templates will be transformed tok LEFT(tk) RIGHT(tk) L(tk) H(tk)1 �8 t1 t2 t32 �7 t2 0 t43 �6 t3 t4 t54 �5 t4 t7 1
k LEFT(tk) RIGHT(tk) L(tk) H(tk)5 �4 t5 t7 t86 �0 t7 0 17 �3 t7 0 18 �2 t8 1 0(but they an then be disarded). The resulting BDD for f ^ g isk V(fk) LO(fk) HI(fk)2 4 1 03 4 0 14 3 3 25 3 3 1
k V(fk) LO(fk) HI(fk)6 2 5 47 2 0 58 1 7 6:68. If LEFT(t) < 0 at the beginning of step S10, set RIGHT(t) t, q  NTOP, NTOP q + 1, LEFT(t) �(q � f0), LO(q) �LEFT(L(t)), HI(q) �LEFT(H(t)), V(q) l,and return to S9.69. Make sure that NTOP � TBOT at the end of step S1 and when going from S11 toS9. (It's not neessary to make this test inside the loop of S11.) Also make sure thatNTOP � HBASE just after setting HBASE in step S4.70. This hoie would make the hash table a bit smaller; memory overow wouldtherefore be slightly less likely, at the expense of slightly more ollisions. But it alsowould slow down the ation, beause make template would have to hek that NTOP �TBOT whenever TBOT dereases.71. Add a new �eld, EXTRA(t) = �00, to eah template t (see (43)).
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72. In plae of steps S4 and S5, use the approah of Algorithm R to buket-sort theelements of the linked lists that begin at LLIST[l℄ and HLIST[l℄. This is possible if anextra one-bit hint is used within the pointers to distinguish links in the L �elds fromlinks in the H �elds, beause we an then determine the LO and HI parameters of t'sdesendants as a funtion of t and its \parity."73. If the BDD pro�le is (b0; : : : ; bn), we an assign pj = dbj�1=2ee pages to branheson xj . Auxiliary tables of p1 + � � � + pn+1 � dB(f)=2ee + n short integers allow us toompute V (p) = T [�(p)℄, LO(p) = LO(M [�(p)℄ + �(p)), HI(p) = HI(M [�(p)℄ + �(p)).For example, if e = 12 and n < 216, we an represent arbitrary BDDs of up to232 � 228 +216 + 212 nodes with 32-bit virtual LO and HI pointers. Eah BDD requiresappropriate auxiliary T and M tables of size � 220, onstrutible from its pro�le.[This method an signi�antly improve ahing behavior. It was inspired by thepaper of P. Ashar and M. Cheong, Pro. International Conf. Computer-Aided Design(IEEE, 1994), 622{627, whih also introdued algorithms similar to Algorithm S.℄74. The required ondition is now �n(x1; : : : ; x2n)^[ �x1=x2n ℄^� � �^[ �x2n�1 =x2n�1+1 ℄.If we set y1 = x1, y2 = x3, : : : , y2n�2 = x2n�1�1, y2n�2+1 = �x2n�1 , y2n�2+2 =�x2n�1�2, : : : , y2n�1 = �x2, (49) yields the equivalent ondition �n�1(y1; : : : ; y2n�1) ^[y2n�2 � �y2n�2+1 ℄^ [y2n�2�1� �y2n�2+2 ℄^� � �^ [y1� �y2n�1 ℄, whih is eminently suitablefor evaluation by Algorithm S. (The evaluation should be from left to right; right-to-leftwould generate enormous intermediate results.)With this approah we �nd that there are respetively 1, 2, 4, 12, 81, 2646,1422564, 229809982112 monotone self-dual funtions of 1, 2, : : : , 8 variables. (SeeTable 7.1.1{3 and answer 7.1.2{88.) The 8-variable funtions are haraterized by aBDD of 130,305,082 nodes; Algorithm S needs about 204 gigamems to ompute it.75. Begin with �1(x1; x2) = [x1�x2 ℄, and replae G2n(x1; : : : ; x2n) in (49) by thefuntion H2n(x1; : : : ; x2n) = [x1�x2�x3�x4 ℄ ^ � � � ^ [x2n�3�x2n�2�x2n�1�x2n ℄.(It turns out that B(�9) = 3;683;424; about 170 megamems suÆe to omputethat BDD, and �10 is almost within reah. Algorithm C now quikly yields the exatnumbers of regular n-variable Boolean funtions for 1 � n � 9, namely 3, 5, 10, 27,119, 1173, 44315, 16175190, 284432730176. Similarly, we an ount the self-dual ones,as in exerise 74; those numbers, whose early history is disussed in answer 7.1.1{123,are 1, 1, 2, 3, 7, 21, 135, 2470, 319124, 1214554343, for 1 � n � 10.)76. Say that x0 : : : xj�1 fores xj if xi = 1 for some i � j with 0 � i < j. Thenx0x1 : : : x2n�1 orresponds to a lutter if and only if xj = 0 whenever x0 : : : xj�1 foresxj , for 0 � j < 2n. And �n(x0; : : : ; x2n�1) = 1 if and only if xj = 1 whenever x0 : : : xj�1fores xj . So we get the desired BDD from that of �n(x1; : : : ; x2n) by (i) hanging eahbranh jj to � �� �j�1 , and (ii) interhanging the LO and HI branhes at every branhnode that has LO = ? . (Notie that, by Corollary 7.1.1Q, the prime impliants ofevery monotone Boolean funtion orrespond to lutters.)77. Continuing the previous answer, say that the bit vetor x0 : : : xk�1 is onsistentif we have xj = 1 whenever x0 : : : xj�1 fores xj , for 0 < j < k. Let bk be thenumber of onsistent vetors of length k. For example, b4 = 6 beause of the vetorsf0000; 0001; 0011; 0101; 0111; 1111g. Notie that exatly k = bk+1� bk lutters S havethe properly that k represents their \largest" set, maxfs j s represents a set of Sg.The BDD for �n(x1; : : : ; x2n) has bk�1 branh nodes jk when 1 � k � 2n�1.Proof: Every subfuntion de�ned by x1, : : : , xk�1 is either identially false or de�nesa onsistent vetor x1 : : : xk�1. In the latter ase the subfuntion is a bead, beauseit takes di�erent values under ertain settings of xk+1, : : : , x2n . Indeed, if x1 : : : xk�1



90 ANSWERS TO EXERCISES 7.1.4 adjaeny matrixinvolutionsfores xk, we set xk+1  � � �  x2n  1; otherwise we set xj  yj for k < j � 2n,where yj+1 = [xi+1=1 for some i � j with i+ 1 < k℄, noting that y2n+k = 0.On the other hand there are bk0 branhes jk when k = 2n�k0 and 0 � k0 < 2n�1.In this ase the nononstant subfuntions arising from x1, : : : , xk�1 lead to values yjas above, where the vetor �y00 �y10 : : : �yk0 is onsistent. (Here 00 = 2n, 10 = 2n � 1,et.) Conversely, every suh onsistent vetor desribes suh a subfuntion; we an, forexample, set xj  0 when j < k�2n�1 or 2n�1 � j < k, otherwise xj  y2n�1+j . Thissubfuntion is a bead if and only if yk0 = 1 or �y00 : : : �y(k�1)0 fores �yk0 . Thus the beadsorrespond to onsistent vetors of length k0; and di�erent vetors de�ne di�erent beads.This argument shows that there are bk�1�k�1 branhes jk with LO = ? when1 � k � 2n�1 and 2n�k suh branhes when 2n�1 < k � 2n. Hene exatly half of theB(�n)� 2 branh nodes have LO = ? .78. To ount graphs on n labeled verties with maximum degree � d, onstrut theBoolean funtion of the �n2� variables in its adjaeny matrix, namely Vnk=1 S�d(Xk),where Xk is the set of variables in row k of the matrix. For example, when n = 5there are 10 variables, and the funtion is S�d(x1; x2; x3; x4) ^ S�d(x1; x5; x6; x7) ^S�d(x2; x5; x8; x9)^S�d(x3; x6; x8; x10)^S�d(x4; x7; x9; x10). When n = 12 the BDDsfor d = (1; 2; : : : ; 10) have respetively (5960, 137477, 1255813, 5295204, 10159484,11885884, 9190884, 4117151, 771673, 28666) nodes, so they are readily omputed withAlgorithm S. To ount solutions with maximum degree d, subtrat the number of solu-tions for degree � d�1 from the number for degree � d; the answers for 0 � d � 11 are:114015135681193518616774658305
3038643940889754211677202624318662361700302117940553817884378201906645374

29271277569846191555178800570083256136294489497643961740521430038382710483623[In general there are tn�1 graphs on n labeled verties with maximum degree 1, wheretn is the number of involutions, Eq. 5.1.4{(40).℄The methods of Setion 7.2.3 are superior to BDDs for enumerations suh as these,when n is large, beause labeled graphs have n! symmetries. But when n has a moderatesize, BDDs produe answers quikly, and niely haraterize all the solutions.79. In the following ounts, obtained from the BDDs in the previous answer, eahgraph with k edges is weighted by 266�k. Divide by 366 to get probabilities.737869762948382064645531567499308052900741125985355028683152365484769286837983522058455011716759552013803589275645776834792332984327024096376298397076969081536512
116467254834302955464842637475847767741687870924305547518803968251445753455897591860866868838445273361563608993921819340390445968637738881805341545676736209319558048031381829229498580. If the original funtions f and g have no BDD nodes in ommon, both algorithmsenounter almost exatly the same subproblems: Algorithm S deals with all nodes off � g that aren't desended from nodes of the forms � � ? or ? � �, while (55) alsoavoids nodes that desend from the forms � � > or > � �. Furthermore, (55) takesshortuts when it meets nontrivial subproblems AND(f 0; g0) with f 0 = g0; Algorithm Sannot reognize the fat that suh ases are easy. And (55) an also win if it happensto stumble aross a relevant memo left over from a previous omputation.81. Just hange `AND' to `XOR' and `^' to `�' throughout. The simple ases are nowf � 0 = f , 0� g = g, and f � g = 0 if f = g. We should also swap f $ g if f > g 6= 0.
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Notes: The author experimentally inserted further memos `f�r = g' and `g�r =f ' in the bottom line; but these additional ahe entries seemed to do more harmthan good. Considering other binary operators, there's no need to implement bothBUTNOT(f; g) = f ^ �g and NOTBUT(f; g) = �f ^ g, sine the latter is BUTNOT(g; f).Also, XOR(1;OR(f; g)) may be better than an implementation of NOR(f; g) = :(f_g).82. A top-level omputation of F  AND(f; g) begins with f and g in omputerregisters, but REF(f) and REF(g) do not inlude \referenes" suh as those. (We do,however, assume that f and g are both alive.)If (55) disovers that f ^ g is obviously r, it inreases REF(r) by 1.If (55) �nds f ^ g = r in the memo ahe, it inreases REF(r), and reursivelyinreases REF(LO(r)) and REF(HI(r)) in the same way if r was dead.If step U1 �nds p = q, it dereases REF(p) by 1 (believe it or not); this won't kill p.If step U2 �nds r, there are two ases: If r was alive, it sets REF(r) REF(r)+1,REF(p) REF(p) � 1, REF(q) REF(q) � 1. Otherwise it simply sets REF(r) 1.When step U3 reates a new node r, it sets REF(r) 1.Finally, after the top-level AND returns a value r that we wish to assign to F ,we must �rst dereferene F , if F 6= �; this means setting REF(F)  REF(F) � 1,and reursively dereferening LO(F) and HI(F) if REF(F) has beome 0. Then we setF  r (without adjusting REF(r)).[Furthermore, in a quanti�ation routine suh as (65) or in the omposition rou-tine (72), both rl and rh should be dereferened after the OR or MUX has omputed r.℄83. Exerise 61 shows that the subproblem f ^ g ours at most one per top-levelall, when REF(f) = REF(g) = 1. [This idea is due to F. Somenzi; see the paperited in answer 84. Many nodes have referene ount 1, beause the average ountis approximately 2, and beause the sinks usually have large ounts. However, suhahe-avoidane did not improve the overall performane in the author's experiments,possibly beause of the examples investigated, or possibly beause \aidental" ahehits in other top-level operations an be useful.℄84. Many possibilities exist, and no simple tehnique appears to be a lear winner.The ahe and table sizes should be powers of 2, to failitate alulating the hashfuntions. The size of the unique table for xv should be roughly proportional to thenumber of nodes that urrently branh on xv (alive or dead). It's neessary to rehasheverything when a table is downsized or upsized.In the author's experiments while writing this setion, the ahe size was doubledwhenever the number of insertions sine the beginning of the most reent top-levelommand exeeded ln 2 times the urrent ahe size. (At that point a random hashfuntion will have �lled about half of the slots.) After garbage olletion, the ahewas downsized, if neessary, so that it either had 256 slots or was at least 1/4 full.It's easy to keep trak of the urrent number of dead nodes; hene we know atall times how muh memory a garbage olletion will relaim. The author obtainedsatisfatory results by inserting a new step U2 12 between U2 and U3: \Inrease C by 1,where C is a global ounter. If C mod 1024 = 0, and if at least 1/8 of all urrentnodes are dead, ollet garbage."[See F. Somenzi, Software Tools for Tehnology Transfer 3 (2001), 171{181 fornumerous further suggestions based on extensive experiene.℄85. The omplete table would have 232 entries of 32 bits eah, for a total of 234bytes (� 17:2 gigabytes). The BDD base disussed after (58), with about 136 million



92 ANSWERS TO EXERCISES 7.1.4 zip-orderedIMPLIESBUTNOTremainders mod 3assoiative lawommutativedistributive lawrestritionofatorliteralsCoudertBerthetMadrerestrited to

nodes using zip-ordered bits, an be stored in about 1.1 gigabyte; the one disussed inCorollary Y, whih ranks all of the multiplier bits �rst, needs only about 400 megabytes.86. If f = 0 or g = h, return g. If f = 1, return h. If g = 0 or f = g, return AND(f; h).If h = 1 or f = h, return OR(f; g). If g = 1, return IMPLIES(f; h); if h = 0, returnBUTNOT(g; f). (If binary IMPLIES and/or BUTNOT aren't implemented diretly, it'sOK to let the orresponding ases propagate in ternary guise.)87. Sort so that f � g � h. If f = 0, return AND(g; h). If f = 1, return OR(g; h). Iff = g or g = h, return g.88. The trio of funtions (f; g; h) = (R0; R1; R2) makes an amusing example, whenRa(x1; : : : ; xn) = [(xn : : : x1)2 mod 3 6= a℄ = R(2a+x1) mod 3(x2; : : : ; xn):Thanks to the memos, the ternary reursion �nds f ^ g ^ h = 0 by examining only onease at eah level; the binary omputation of, say, f ^ g = �h de�nitely takes longer.More dramatially, let f = x1 ^ (x2? F : G), g = x2 ^ (x1? G: F ), and h =x1? �x2 ^F : x2 ^G, where F and G are funtions of (x3; : : : ; xn) suh that B(F ^G) =�(B(F )B(G)) as in exerise 63. Then f ^ g, g ^ h, and h^ f all have large BDDs, butthe ternary reursion immediately disovers that f ^ g ^ h = 0.89. (a) True; the left side is (f00_f01)_(f10_f11), the right side is (f00_f10)_(f01_f11).(b) Similarly true. (And 's are ommutative too.)() Usually false; see part (d).(d) 8x19x2f = (f00 _ f01) ^ (f10 _ f11) = (9x28x1f) _ (f00 ^ f11) _ (f01 ^ f10).90. Change 9j1 : : :9jm to j1 : : : jm.91. (a) f # 1 = f , f # xj = f1, and f # �xj = f0, in the notation of (63).(b) This distributive law is obvious, by the de�nition of #. (Also true for _, �, et.)() True if and only if g is not identially zero. (Consequently the value off(x1; : : : ; xn) # g for g 6= 0 is determined solely by the values of xj # g for 1 � j � n.)(d) f(x1; 1; 0; x4; 0; 1; x7; : : : ; xn). This is the restrition of f with respet tox2 = 1, x3 = 0, x5 = 0, x6 = 1 (see exerise 57), also alled the ofator of f withrespet to the subube g. (A similar result holds when g is any produt of literals.)(e) f(x1; : : : ; xn�1; x1�� � ��xn�1�1). (Consider the ase f = xj , for 1 � j � n.)(f) x1? f(1; : : : ; 1): f(0; : : : ; 0).(g) f(1; x2; : : : ; xn) # g(x2; : : : ; xn).(h) If f = x2 and g = x1 _ x2 we have f # g = �x1 _ x2.(i) CONSTRAIN(f; g) = \If f # g has an obvious value, return it. Otherwise, iff # g = r is in the memo ahe, return r. Otherwise represent f and g as in (52);set r  CONSTRAIN(fh; gh) if gl = 0, r  CONSTRAIN(fl; gl) if gh = 0, otherwiser  UNIQUE(v;CONSTRAIN(fl; gl);CONSTRAIN(fh; gh)); put `f # g = r' into thememo ahe, and return r." Here the obvious values are f # 0 = 0 # g = 0; f # 1 = f ;1 # g = g # g = [g 6=0℄.[The operator f # g was introdued in 1989 by O. Coudert, C. Berthet, and J. C.Madre. Examples suh as the funtions in (h) led them to propose also the modi�edoperator f + g, \f restrited to g," whih has a similar reursion exept that it usesf +(9xvg) instead of (�xv? fl+gl: fh+gh) when fl = fh. See Leture Notes in ComputerSiene 407 (1989), 365{373.℄92. See answer 91(d) for the \if" part. Notie also that (i) x1 # g = x1 if and only ifg0 6= 0 and g1 6= 0, where g = g(; x2; : : : ; xn); (ii) xn # g = xn if and only if xng = 0and g 6= 0.
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Suppose f�#g� = (f#g)� for all f and �. If g 6= 0 isn't a subube, there's an index jsuh that g0 6= 0 and g1 6= 0 and xj g 6= 0, where g = g(x1; : : : ; xj�1; ; xj+1; : : : ; xn).By the previous paragraph, we have (i) xj #g = xj and (ii) xj #g 6= xj , a ontradition.93. Let f = J(x1; : : : ; xn; f1; : : : ; fn) and g = J(x1; : : : ; xn; g1; : : : ; gn), wherefv = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; [v��1℄; : : : ; [v��n℄);gv = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; [v=1℄+[v��1℄; : : : ; [v=n℄+[v��n℄);and J is the juntion funtion of exerise 52.If G an be 3-olored, let f̂ = J(x1; : : : ; xn; f̂1; : : : ; f̂n), wheref̂v = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; f̂v1; : : : ; f̂vn);and f̂vw = [v and w have di�erent olors℄. Then B(f̂) < n+ 3(5n) + 2.Conversely, suppose there's an approximating f̂ suh that B(f̂) < 16n + 2, andlet f̂v be the subfuntion with x1 = [v=1℄, : : : , xn = [v=n℄. At most three ofthese subfuntions are distint, beause every distint f̂v must branh on eah of xn+1,: : : , x5n. Color the verties so that u and v get the same olor if and only if f̂u = f̂v;this an happen only if u /���v, so the oloring is legitimate.[M. Sauerho� and I. Wegener, IEEE Transations CAD-15 (1996), 1435{1437.℄94. Case 1: v 6= gv. Then we aren't quantifying over xv ; hene g = gh, and f E g =�xv? fl E g : fh E g.Case 2: v = gv. Then g = xv ^ gh and f E g = (fl E gh) _ (fh E gh) = rl _ rh. Inthe subase v 6= fv, we have fl = fh = f ; hene rl = rh, and we an diretly reduef E g to f E gh (an instane of \tail reursion").[Rudell observes that the order of quanti�ation in (65) orresponds to bottom-up order of the variables. That order is onvenient, but not always best; sometimesit's better to remove the 9s one by one in another order, based on knowledge of thefuntions involved.℄95. If rl = 1 and v = gv , we an set r  1 and forget about rh. (This hange led to a100-fold speedup in some of the author's experiments.)96. For 8, just hange E to A and OR to AND. For , hange E to D and OR to XOR;also, if v 6= fv, return 0. [Routines for the yes/no quanti�ers and are analogous to .Yes/no quanti�ers should be used only when m = 1; otherwise they make little sense.℄97. Proeeding bottom-up, the amount of work on eah level is at worst proportionalto the number of nodes on that level.98. The funtion NOTEND(x) = 9y9z(ADJ(x; y) ^ ADJ(x; z) ^ [y 6= z ℄) identi�es allverties of degree � 2. Hene ENDPT(x) = KER(x)^:NOTEND(x). And PAIR(x; y) =ENDPT(x) ^ ENDPT(y) ^ ADJ(x; y).[For example, when G is the ontiguous-USA graph, with the states ordered asin (104), we have B(NOTEND) = 992, B(ENDPT) = 264, and B(PAIR) = 203. Beforeapplying 9y9z the BDD size is 50511. There are exatly 49 kernels of degree 1. Thenine omponents of size 2 are obtained by mixing the following three solutions:
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The total ost of this alulation, using the stated algorithms, is about 14 megamems,in 6.3 megabytes of memory|only about 52 memory referenes per kernel.℄99. Find a triangle of mutually adjaent states, and �x their olors. The BDD sizealso dereases substantially if we hoose states of high degree in the \middle" levels.For example, by setting aMO = bMO = aTN = �bTN = �aAR = bAR = 1 we redue the 25,579nodes to only 4642 (and the total exeution time also drops below 2 megamems).[Bryant's original manusript about BDDs disussed graph oloring in detail, buthe deided to substitute other material when his paper was published in 1986.℄100. Replae IND(xME; : : : ; xCA) by IND(xME; : : : ; xCA) ^ S12(xME; : : : ; xCA), to get the12-node independent sets; this BDD has size 1964. Then use (73) as before, and thetrik of answer 99, getting a COLOR funtion with 184,260 nodes and 12,554,677,864solutions. (The running time is approximately 26 megamems.)101. If a state's weight is w, assign 2w and w as therespetive weights of its a and b variables, and useAlgorithm B. (For example, variable aWY gets weight2(23 + 25) = 96.) The solution, shown here witholor odes 1 2 3 4 , is unique. CA ID
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102. The main idea is that, when gj hanges, all results in the ahe for funtionswith fv > j remain valid. To exploit this priniple we an maintain an array of \timestamps" G1 � G2 � � � � � Gn � 0, one for eah variable. There's a master lok timeG � G1, representing the number of distint ompositions done or prepared; anothervariable G0 reords whether G has hanged sine COMPOSE was last invoked. InitiallyG = G0 = G1 = � � � = Gn = 0. The subroutine NEWG(j; g) is implemented as follows:N1. [Easy ase?℄ If gj = g, exit the subroutine. Otherwise set gj  g.N2. [Can we reset?℄ If g 6= xj , or if j < n and Gj+1 > 0, go to N4.N3. [Reset stamps.℄ While j > 0 and gj = xj , set Gj  0 and j  j � 1. Thenif j = 0, set G G�G0, G0  0, and exit.N4. [Update G?℄ If G0 = 0, set G G+ 1 and G0  1.N5. [New stamps.℄ While j > 0 and Gj 6= G, set Gj  G and j  j � 1.Exit.(Referene ounts also need to be maintained appropriately.) Before launhing a top-level all of COMPOSE, set G0  0. Change the COMPOSE routine (72) to use f [Gv℄in referenes to the ahe, where v = fv ; the test `v > m' beomes `Gv = 0'.103. The equivalent formula g(f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)) an be implementedwith the COMPOSE operation (72). (However, Dull was vindiated when it turned outthat his formula ould be evaluated more than a hundred times faster than Quik's, inspite of the fat that it uses twie as many variables! In his appliation, the omputationof (y1 = f1(x1; : : : ; xn))^ � � � ^ (ym = fm(x1; : : : ; xn))^ g(y1; : : : ; ym) turned out to bemuh easier than COMPOSE's omputation of gj(f1; : : : ; fm) for every subfuntion gjof g ; see, for example, exerise 162.)104. The following reursive algorithm COMPARE(f; g) needs at most O(B(f)B(g))steps when used with a memo ahe: If f = g, return `='. Otherwise, if f = 0 org = 1, return `<'; if f = 1 or g = 0, return `>'. Otherwise represent f and g asin (52); ompute rl  COMPARE(fl; gl). If rl is `k', return `k'; otherwise omputerh  COMPARE(fh; gh). If rh is `k', return `k'. Otherwise if rl is `=', return rh; if rhis `=', return rl; if rl = rh, return rl. Otherwise return `k'.



7.1.4 ANSWERS TO EXERCISES 95 depend onboolean di�ereneglobal variablesHoriyamaIbarakibranhing programsorderedredued2m-way multiplexLiawLinBreitbartHuntRosenkrantz

105. (a) A unate funtion with polarities (y1; : : : ; yn) has xjf = 0 when yj = 1 andxjf = 0 when yj = 0, for 1 � j � n. Conversely, f is unate if these onditions holdfor all j. (Notie that xjf = xjf = 0 if and only if xjf = 0, if and only if f doesn'tdepend on xj . In suh ases yj is irrelevant; otherwise yj is uniquely determined.)(b) The following algorithm maintains global variables (p1; : : : ; pn), initially zero,with the property that pj = +1 if yj must be 0 and pj = �1 if yj must be 1; pj willremain zero if f doesn't depend on xj . With this understanding, UNATE(f) is de�ned asfollows: If f is onstant, return true. Otherwise represent f as in (50). Return false if ei-ther UNATE(fl) or UNATE(fh) is false; otherwise set r  COMPARE(fl; fh) using exer-ise 104. If r is `k', return false. If r is `<', return false if pv < 0, otherwise set pv  +1and return true. If r is `>', return false if pv > 0, otherwise set pv  �1 and return true.This algorithm often terminates quikly. It relies on the fat that f(x) � g(x) forall x if and only if f(x�y) � g(x�y) for all x, when y is �xed. If we simply want to testwhether or not f is monotone, the p variables should be initialized to +1 instead of 0.106. De�ne HORN(f; g; h) thus: If f > g, interhange f $ g. Then if f = 0 or h = 1,return true. Otherwise if g = 1 or h = 0, return false. Otherwise represent f , g,and h as in (59). Return true if HORN(fl; gl; hl), HORN(fl; gh; hl), HORN(fh; gl; hl),and HORN(fh; gh; hh) are all true; otherwise return false. [This algorithm is due toT. Horiyama and T. Ibaraki, Arti�ial Intelligene 136 (2002), 189{213, who alsointrodued an algorithm similar to that of answer 105(b).℄107. Let e$f $g$h mean that e(x) = f(y) = g(z) = 1 implies h(hxyzi) = 1. Thenf is Krom if and only if f $f $f $f , and we an use the following reursive algorithmKROM(e; f; g; h): Rearrange fe; f; gg so that e � f � g. Then if e = 0 or h = 1, returntrue. Otherwise if f = 1 or h = 0, return false. Otherwise represent e, f , g, h with thequaternary analog of (59). Return true if KROM(el; fl; gl; hl), KROM(el; fl; gh; hl),KROM(el; fh; gl; hl), KROM(el; fh; gh; hh), KROM(eh; fl; gl; hl), KROM(eh; fl; gh; hh),KROM(eh; fh; gl; hh), and KROM(eh; fh; gh; hh) are all true; otherwise return false.108. Label the nodes f1; : : : ; sg with root 1 and sinks fs�1; sg; then (s�3)! permuta-tions of the other labels give di�erent dags for the same funtion. The stated inequalityfollows beause eah instrution (�vk? lk: hk) has at most n(s � 1)2 possibilities, for1 � k � s � 2. (In fat, it holds also for arbitrary branhing programs, namely forbinary deision diagrams in general, whether or not they are ordered and/or redued.)Sine 1=(s � 3)! < (s � 1)3=s! and s! > (s=e)s, we have (generously) b(n; s) <(nse)s. Let sn = 2n=(n + �), where � = lg e = 1=ln 2; then lg b(n; sn) < sn lg(nsne) =2n(1 � (lg(1 + �=n))=(n + �)) = 2n � 
(2n=n2). So the probability that a random n-variable Boolean funtion has B(f) � sn is at most 1=2
(2n=n2). And that is really tiny.109. 1=2
(2n=n2) is really tiny even when multiplied by n!.110. Let fn = Mm(xn�m+1; : : : ; xn; 0; : : : ; 0; x1; : : : ; xn�m) _ (�xn�m+1 ^ � � � ^ �xn ^[0 : : : 0x1 : : : xn�m is a square℄), when 2m�1 + m � 1 < n < 2m + m. Eah term ofthis formula has 2m +m� n zeros; the seond term destroys all of the 2m-bit squares.[See H.-T. Liaw and C.-S. Lin, IEEE Transations C-41 (1992), 661{664; Y. Breitbart,H. Hunt III, and D. Rosenkrantz, Theoretial Comp. Si. 145 (1995), 45{69.℄111. Let �n = �(n � �n), and notie that �n = m if and only if 2m + m � n <2m+1+m+1. The sum for 0 � k < n��n is 2n��n� 1; the other terms sum to 22�n.112. Suppose k = n� lgn+ lg�. Then(22n�k� 1)2k22n = exp�2n�n ln�1� 12n=��� = exp��2n�n=��n �1 +O� 12n=����:
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If � � 12 we have 2n�n=��=n � 1=(n2n+1); hene b̂k = (2n=�� 2n=(2�))(2n�n=��=n)�(1 +O(2�n=�)) = 2k(1�O(2�n=(2�))). And if � � 2 we have 2n�n=��=n � 2n=2+1=n;thus b̂k = (22n�k� 22n�k�1)(1 +O(exp(�2n=2=n))).[For the variane of bk, see I. Wegener, IEEE Trans. C-43 (1994), 1262{1269.℄113. The idea looks attrative at �rst glane, but loses its luster when examined losely.Comparatively few nodes of a BDD base appear on the lower levels, by Theorem U;and algorithms like Algorithm S spend omparatively little of their time dealing withthose levels. Furthermore, nononstant sink nodes would make several algorithms moreompliated, espeially those for reordering.114. For example, the truth table might be 01010101 00110011 00001111 00001111.115. Let Nk = b0+ � � �+bk�1 be the number of nodes jj of the BDD for whih j � k.The sum of the in-degrees of those nodes is at least Nk; the sum of the out-degrees is2Nk; and there's an external pointer to the root. Thus at most Nk + 1 branhes anross from the upper k levels to lower levels. Every suh branh orresponds to somesubtable of order n� k. Therefore qk � Nk + 1.Moreover, we must have qk � bk+ � � �+ bn, beause every subtable of order n� korresponds to a unique bead of order � n� k.For (124), hange `BDD' to `ZDD', `bk' to `zk', `bead' to `zead' in these arguments.116. (a) Let vk = 22k + 22k�1 + � � �+ 220 . Then Q(f) �Pn+1k=1 min(2k�1; 22n+1�k ) =Un+ v�(n��n)�1. Examples like (78) show that this upper bound annot be improved.(b) q̂k=b̂k = 22n�k=(22n�k � 22n�k�1) for 0 � k < n; q̂n = b̂n.117. qk = 2k for 0 � k � m, and qm+k = 2m + 2 � k for 1 � k � 2m. HeneQ(f) = 22m�1+7 �2m�1�1 � B(f)2=8. (Suh fs make QDDs unattrative in pratie.)118. If n = 2m � 1 we have hn(x1; : : : ; xn) = Mm(zm�1; : : : ; z0; 0; x1; : : : ; xn), where(zm�1 : : : z0)2 = x1 + � � � + xn is omputable in 5n � 5m steps by exerise 7.1.2{30,and Mm takes another 2n + O(pn ) by exerise 7.1.2{39. Sine hn(x1; : : : ; xn) =hn+k(x1; : : : ; xn; 0; : : : ; 0), we have C(hn) � 14n + O(pn ) for all n. (A little morework will bring this down to 7n+O(pn logn); an the reader do better?)The ost of h4 is 6 = L(h4), and x2 � ((x1 � (x2 ^ �x4)) ^ (�x3 � (�x2 ^ x4))) is aformula of shortest length. (Also C(h5) = 10 and L(h5) = 11.)119. True. For example, S2;3;5(x1; : : : ; x6) = h13(x1; x2; 0; 0; 1; 1; 0; 1; 0; x3; x4; x5; x6).120. We have h�n(x1; : : : ; xn) = hn(y1; : : : ; yn), where yj = xj� for 1 � j � n. Andhn(y1; : : : ; yn) = yy1+���+yn = yx1+���+xn = x(x1+���+xn)� .121. (a) If yk = �xn+1�k we have hn(y1; : : : ; yn) = y�y = yn��x = �xn+1�(n��x) = �x�x+1.(b) If x= (x1; : : : ; xn) and t 2 f0; 1g we have hn+1(x; t) = (t? x�x+1: x�x).() No. For example,  sends 0k11 7! 0k�1101 7! 0k�21021 7! � � � 7! 10k1 7! 0k11.(In spite of its simple de�nition,  has remarkable properties, inluding �xed pointssuh as 10011010000101011000111001011 and 11101111011001011101111101111.)(d) In fat, ĥn(x1 : : : xn) = x1(!), by indution using reurrene (b).(If f(x1; : : : ; xn) is any Boolean funtion and � is any permutation of the binaryvetors x1 : : : xn, we an write f(x) = f̂(x�), and the transformed funtion f̂ may wellbe muh easier to work with. Sine f(x) ^ g(x) = f̂(x�) ^ ĝ(x�), the transform of theAND of two funtions is the AND of their transforms, et. The vetor permutations(x1 : : : xn)� = x1� : : : xn� that merely transform the indies, as onsidered in the text,are a simple speial ase of this general priniple. But the priniple is, in a sense, toogeneral, beause every funtion f trivially has at least one � for whih f̂ is skinny
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in the sense of exerise 170; all the omplexity of f an be transferred to � . Evensimple transformations like  have limited utility, beause they don't ompose well;for example,   is not a transformation of the same type. But linear transformations,whih take x 7! xT for some nonsingular binary matrix T , have proved to be usefulways to simplify BDDs. [See S. Aborhey, IEEE Trans.C-37 (1988), 1461{1465; J. Bern,C. Meinel, and A. Slobodov�a, ACM/IEEE Conf. Design Automation 32 (1995), 408{413; C. Meinel, F. Somenzi, and T. Theobald, IEEE Trans.CAD-19 (2000), 521{533.℄)122. For example, when n = 7 the reurrene in answer 121(b) gives765 64 5 63 4 5 61

11 21 2 31 2 3 4 62 3 4 5? ? ? ? ? ?> > > > > >
;

where shaded nodes ompute the subfuntion hDR on the variables that haven't yet beentested. Simpli�ations our at the bottom, beause h2(x1; x2) = x1 and hDR2 (x1; x2) =x2. [See D. Sieling and I. Wegener, Theoretial Comp. Si. 141 (1995), 283{310.℄123. Let t = k � s = �x1 + � � �+ �xk. There's a slate for every ombination of s0 1s andt0 0s suh that s0 + t0 = w, s0 � s, and t0 � t. The sum of �ws0� = �wt0� over all suh(s0; t0) is (97). (Notie furthermore that it equals 2w if and only if w � min(s; t).)124. Letm = n�k. Eah slate [r0; : : : ; rm℄ orresponds to a funtion of (xk+1; : : : ; xn),whose truth table is a bead exept in four ases: (i) [0; : : : ; 0℄ = 0; (ii) [1; : : : ; 1℄ = 1;(iii) [0; xn; 1℄ = xn (whih doesn't depend on xn�1); (iv) [1; : : : ; 1; xk+1; 0; : : : ; 0℄, wherethere are p 1s so that xk+1 = rp, is S<p(xk+2; : : : ; xn).The following polynomial-time algorithm omputes qk = q and bk = q � q0 byounting all slates. A subtle aspet arises when the entries of [r0; : : : ; rm℄ are all 0 or 1,beause suh slates an our for di�erent values of s; we don't want to ount themtwie. The solution is to maintain four setsCab = fr1 + � � �+ rm�1 j r0 = a and rm = b in some slateg:The value of 0� should be arti�ially set to n+ 1, not 0. Assume that 0 � k < n.H1. [Initialize.℄ Set m n� k, q  q0  s 0, C00  C01  C10  C11  ;.H2. [Find v and w.℄ Set v = Pm�1j=1 [(s+ j)�� k ℄ and w  v + [s�� k ℄ +[(s+m)�� k ℄. If v = m� 1, go to step H5.H3. [Chek for nonbeads.℄ Set p  �1. If v 6= m � 2, go to H4. Otherwise, ifm = 2 and (s + 1)� = n, set p  [(s+ 2)�� k ℄. Otherwise, if w = m and(s+ j)� = k + 1 for some j 2 [1 : :m�1℄, set p j.H4. [Add binomials.℄ For all s0 and t0 suh that s0 + t0 = w, 0 � s0 � s, and0 � t0 � k � s, set q  q + �ws0� and q0  q0 + [s0= p℄. Then go to H6.H5. [Remember 0{1 slates.℄ Do the following for all s0 and t0 as in step H4: If(s+m)� � k, set C00  C00 [ fs0g and C01  C01 [ fs0�1g; otherwise set
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C01  C01 [ fs0g. If s� � k and (s+m)� � k, set C10  C10 [ fs0�1g andC11  C11 [ fs0�2g. If s� � k and (s+m)� > k, set C11  C11 [ fs0�1g.H6. [Loop on s.℄ If s < k, set s s+ 1 and return to H2.H7. [Finish.℄ For ab = 00, 01, 10, and 11, set q  q+ �m�1r � for all r 2 Cab. Alsoset q0  q0 + [02C00 ℄ + [m�12C11 ℄.125. Let S(n;m) = �n0� + � � �+ �nm�. There are S(k + 1 � s; s)� 1 nononstant slateswhen 0 < s � k and s � 2k � n + 2. The only other nononstant slates, one eah,arise when s = 0 and k < (n � 1)=2. The onstant slates are trikier to ount, butthere usually are S(n + 1 � k; 2k + 1 � n) of them, appearing when s = 2k � n ors = 2k+1�n. Taking aount of nitpiky boundary onditions and nonbeads, we �ndbk = S(n� k; 2k � n) + n�kXs=0 S(n�k�s; 2k+1�n+s)�min(k; n� k)� [n=2k ℄� [3k� 2n� 1℄� 1for 0 � k < n. Although S(n;m) has no simple form, we an express Pn�1k=0 bk asBn=2 +P0�m�n�2k�n(n+ 3 �m � 2k)� km� + (small hange) when n is even, and thesame expression works when n is odd if we replae Bn=2 by A(n+1)=2. The double suman be redued by summing �rst on k, sine (k + 1)� km� = (m+ 1)� k+1m+1�:nXm=0�(n+ 5�m)�b(n�m+ 2)=2m+ 1 �� (2m+ 2)�b(n�m+ 4)=2m+ 2 ��:And the remaining sum an be takled by breaking it into four parts, depending onwhetherm and/or n is odd. Generating funtions are helpful: LetA(z) =Pk�n�n�k2k �znand B(z) =Pk�n�n�k2k+1�zn. Then A(z) = 1 +Pk<n �n�k�12k �zn +Pk<n �n�k�12k�1 �zn =1 +Pk�n �n�k2k �zn+1 +Pk�n �n�k2k+1�zn+2 = 1 + zA(z) + z2B(z). A similar derivationproves that B(z) = zB(z) + zA(z). ConsequentlyA(z) = 1�z1�2z+z2�z3 = 1�z21�z�z2�z4 ; B(z) = z1�2z+z2�z3 = z+z21�z�z2�z4 :Thus An = 2An�1 � An�2 + An�3 = An�1 + An�2 + An�4 for n � 4, and Bnsatis�es the same reurrenes. In fat, we have An = (3P2n+1 + 7P2n � 2P2n�1)=23and Bn = (3P2n+2 + 7P2n+1 � 2P2n)=23, using the Perrin numbers of exerise 15.Furthermore, setting A�(z) =Pk�n k�n�k2k �zn and B�(z) =Pk�n k�n�k2k+1�zn, we�nd A�(z) = z2A(z)B(z) and B�(z) = z2B(z)2. Putting it all together now yields theremarkable exat formulaB(hn) = 56Pn+2 + 77Pn+1 + 47Pn23 � jn24 k� j7n+ 13 k+ (nmod 2)� 10:Historial notes: The sequene hAni was apparently �rst studied by R. Austinand R. K. Guy, Fibonai Quarterly 16 (1978), 84{86; it ounts binary x1 : : : xn�1 witheah 1 next to another. The plasti onstant � was shown by C. L. Siegel to be thesmallest \Pisot number," namely the smallest algebrai integer > 1 whose onjugatesall lie inside the unit irle; see Duke Math. J. 11 (1944), 597{602.126. When n � 6, we have bk = Fb(k+7)=2 + Fd(k+7)=2e � 4 for 1 � k < 2n=3, andbk = 2n�k+2 � 6� [k=n� 2℄ for 4n=5 � k < n. But the main ontributions to B(h�n)ome from the 2n=15 pro�le elements between those two regions, and the methods of
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answer 125 an be extended to deal with them. The interesting sequenesAn = bn=2Xk=0 �n� 2k3k �; Bn = bn=2Xk=0 �n� 2k3k + 1�; Cn = bn=2Xk=0 �n� 2k3k + 2�have respetive generating funtions (1� z)2=p(z), (1� z)z=p(z), z2=p(z), where p(z) =(1� z)3 � z5. These sequenes arise in this problem beause Pnk=0�bn�2k=3k � = An +Bn�1 + Cn�2. They grow as �n, where � � 1:7016 is the real root of (��1)3�2 = 1.The BDD size an't be expressed in losed form, but there is a losed form in termsof Abn=3 through Abn=3+4 that is aurate to O(2n=4=pn). Thus B(h�n) = �(�n=3).127. (The permutation � = (3, 5, 7, : : : , 2n0 � 1, n, n � 1, n � 2, : : : , 2n0, 2n0 � 2,: : : , 4, 2, 1), n0 = b2n=5, turns out to be optimum for hn when 12 < n � 24; but itgives B(h�100) = 1,366,282,025. Sifting does muh better, as shown in answer 152; butstill better permutations almost surely exist.)128. Consider, for example, M3(x4; x2; x7;x6; x1; x8; x3; x9; x11; x5; x10). The �rst mvariables fx4; x2; x7g are alled \address bits"; the other 2m are alled \targets." Thesubfuntions orresponding to x1 = 1, : : : , xk = k an be desribed by slates ofoptions analogous to (96). For example, when k = 2 there are three slates [x6; 0; x9; x11℄,[x6; 1; x9; x11℄, [x8; x3; x5; x10℄, where the result is obtained by using (x4x7)2 to seletthe appropriate omponent. Only the third of these depends on x3; hene q2 = 3 andb2 = 1. When k = 6 the slates are [0; 0℄, [0; 1℄, [1; 0℄, [1; 1℄, [x8; 0℄, [x8; 1℄, [x9; x11℄,[0; x10℄, and [1; x10℄, with omponents seleted by x7; hene q6 = 9 and b6 = 7.In general, if the variables fx1; : : : ; xkg inlude a address bits and t targets, theslates will have A = 2m�a entries. Divide the set of all 2m targets into 2a subsets,depending on the known address bits, and suppose sj of those subsets ontain j knowntargets. (Thus s0 + s1 + � � � + sA = 2a and s1 + 2s2 + � � � + AsA = t. We have(s0; : : : ; s4) = (1; 1; 0; 0; 0) when k = 2 and a = t = 1 in the example above; and(s0; s1; s2) = (1; 2; 1) when k = 6, a = 2, t = 4.) Then the total number of slates, qk,is 20s0 + 21s1 + � � � + 2A�1sA�1 + 2A[sA> 0℄. If xk+1 is an address bit, the numberbk of slates that depend on xk+1 is qk � 2A=2[sA> 0℄. Otherwise bk = 2, where  isthe number of onstants that appear in the slates ontaining target xk+1.129. (Solution by M. Sauerho�; see I. Wegener, Branhing Programs (2000), Theorem6.2.13.) Sine Pm(x1; : : : ; xm2) = Qm(x1; : : : ; xm2) ^ Sm(x1; : : : ; xm2) and B(Sm) =m3 + 2, we have B(P�m) � (m3 + 2)B(Q�m). Apply Theorem K.(A stronger lower bound should be possible, beause Qm seems to have largerBDDs than Pm. For example, when m = 5 the permutation (1�; : : : ; 25�) = (3, 1, 5,7, 9, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 20, 23, 17, 21, 19, 18, 22, 24, 25) is optimumfor Q5; but B(Q�5 ) = 535, while B(P5) = 229.)130. (a) Eah path that starts at the root of the BDD and takes s HI branhes and tLO branhes de�nes a subfuntion that orresponds to graphs in whih s adjaeniesare fored and t are forbidden. We shall show that these �s+ts � subfuntions are distint.If subfuntions g and h orrespond to di�erent paths, we an �nd k verties Wwith the following properties: (i) W ontains verties w and w0 with w���w0 foredin g and forbidden in h. (ii) No adjaenies between verties of W are fored in h orforbidden in g. (iii) If u 2 W and v =2 W and u��� v is fored in h, then u = w oru = w0. (These onditions make at most 2s+ t = m� k verties ineligible to be in W .)We an set the remaining variables so that u���v if and only if fu; vg �W , when-ever adjaeny is neither fored nor forbidden. This assignment makes g = 1, h = 0.
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(b) Consider the subfuntion of Cm;dm=2e in whih verties f1; : : : ; kg are requiredto be isolated, but u ��� v whenever k < u � dm=2e < v � m. Then a k-lique onthe bm=2 verties fdm=2e+1; : : : ;mg is equivalent to an dm=2e-lique on f1; : : : ;mg.In other words, this subfuntion of Cm;dm=2e is Cbm=2;k.Now hose k �pm=3 and apply (a). [I. Wegener, JACM 35 (1988), 461{471.℄131. (a) The pro�le an be shown to be (1, 1, 2, 4, : : : , 2q�1, (p�2)�(2q�1; q�2q�1),2q � 1, 2q�1, : : : , 4, 2, 1, 2), where r � b denotes the r-fold repetition of b. Hene thetotal size is (pq + 2p� 2q + 2)2q�1 � p+ 2.(b) With the ordering x1, x2, : : : , xp, y11, y21, : : : , yp1, : : : , y1q, y2q, : : : , ypq,the pro�le omes to (1, 2, 4, : : : , 2p�1, (q�1)p� (2p�1), 2p�1, : : : , 4, 2, 1, 2), makingthe total size (pq � p+ 4)2p�1.() Suppose exatly m = bmin(p; q)=2 x's our among the �rst k variables insome ordering; we may assume that they are fx1; : : : ; xmg. Consider the 2m paths inthe QDD for C suh that xj = �xm+j for 1 � j � p �m and yij = [i= j or i= j+mor j >m℄. These paths must pass through distint nodes on level k. Hene qk � 2m;use (85). [See M. Nikolskaia and L. Nikolskaia, Theor. Comp. Si. 255 (2001), 615{625.℄Optimum orderings for (p; q) = (4; 4), (4; 5), and (5; 4), via exerise 138, are:x1y11x2y21x3y31y41y12y22y32y42y13y23y33y43y14y24y34y44x4 (size 108);x1y11x2y21x2y31y41y12y22y32y42y13y23y33y43y14y24y34y44y15y25y35y45x4 (size 140);x1y11x2y21y12y22y13y23y14y24x3y31y32y33y34x2y41y42y51y52y43y53y44y54x5 (size 167):132. There are 616,126 essentially di�erent lasses of 5-variable funtions, by Table7.1.1{5. The maximum Bmin(f), 17, is attained by 38 of those lasses. Three lasseshave the property that B(f�) = 17 for all permutations �; one suh example, ((x2 �x4 � (x1 ^ (x3 _ �x4))) ^ ((x2 � x5) _ (x3 � x4))) � (x5 ^ (x3 � (x1 _ �x2))), has theinteresting symmetries f(x1; x2; x3; x4; x5) = f(�x2; �x3; �x4; �x1; �x5) = f(x2; �x5; x1; x3; �x4).Inidentally, the maximum di�erene Bmax(f)�Bmin(f) = 10 ours only in the\juntion funtion" lass x1? x2: x3? x4: x5, when Bmin = 7 and Bmax = 17.(When n = 4 there are 222 lasses; and Bmin(f) = 10 in 25 of them, inluding S2and S2;4. The lass exempli�ed by truth table 16ad is uniquely hardest, in the sensethat Bmin(f) = 10 and most of the 24 permutations give B(f�) = 11.)133. Represent eah subset X � f1; : : : ; ng by the n-bit integer i(X) = Px2X 2x�1,and let bi(X);x be the weight of the edge between X and X [ x. Set 0  0, and for1 � i < 2n set i  minfi�j + bi�j;x j j = 2x�1 and i & j 6= 0g. Then Bmin(f) =2n�1 + 2, and an optimum ordering an be found by remembering whih x = x(i)minimizes eah i. For Bmax, replae `min' by `max' in this reipe.134. ;f1g f2gf1; 2g f3gf1; 3g f2; 3gf1; 2; 3g

f4gf1; 4g f2; 4gf1; 2; 4g f3; 4gf1; 3; 4g f2; 3; 4gf1; 2; 3; 4g
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The maximum pro�le, (1; 2; 4; 2; 2), ours on paths suh as ; ! f2g ! f2; 3g !f2; 3; 4g ! f1; 2; 3; 4g. The minimum pro�le, (1; 2; 2; 1; 2), ours only on the paths; ! (f3g or f4g) ! f3; 4g ! f1; 3; 4g ! f1; 2; 3; 4g. (Five of the 24 possible pathshave the pro�le (1; 2; 3; 2; 2) and are unimprovable by sifting on any variable.)135. Let �0 = 1, �1 = x1, �2 = x1 ^ x2, and �n = xn? �n�1: �n�3 for n � 3. One anprove that, when n � 4, B(��n) = n+2 if and only if (n�; : : : ; 1�) = (1; : : : ; n). The keyfat is that if k < n and n � 5, the subfuntions obtained by setting xk  0 or xk  1 are distint, and they both depend on the variables fx1; : : : ; xk�1; xk+1; : : : ; xng,exept that the subfuntion for xn�1  0 does not depend on xn�2. Thus the weightsfxkg ! fxk; xlg in the master pro�le hart are 2 exept when k = n or (k; l) =(n�1; n�2). Below fxn�1; xn�2g there are three subfuntions, namely xn? �n�4: �n�3,xn? �n�5: �n�3, and �n�3; all of them depend on fx1; : : : ; xn�3g, and two of them on xn.136. Let n = 2n0 � 1 and m = 2m0 � 1. The inputs form an m� n matrix, and we'reomputing the median of m row-medians. Let Vi be the variables in row i. If X isa subset of the mn variables, let Xi = X \ Vi and ri = jXij. Subfuntions of type(s1; : : : ; sm) arise when exatly si elements of Xi are set to 1; these subfuntions arehS1S2 : : : Smi; where Si = S�n0�si(VinXi) and 0 � si � ri for 1 � i � m.When x =2 X, we want to ount how many of these subfuntions depend on x. Bysymmetry we may assume that x = xmn. Notie that the symmetri threshold funtionS�t(x1; : : : ; xn) equals 0 if t > n, or 1 if t � 0; it depends on all n variables if 1 � t � n.In partiular, Sm depends on x for exatly rm$n = min(rm + 1; n� rm) hoies of sm.Let aj = Pm�1i=1 [ri= j ℄ for 0 � j � n. Then an of the funtions fS1; : : : ; Sm�1gare onstant, and an�1 + � � �+ an0 of them might or might not be onstant. Choosingi to be nononstant gives us (rm$n)((an+an�1+ � � �+an0�n�1�� � ��n0)$m) times�an�1n�1 � � � ��an0n0 �1a02a1 : : : (n0)an0�1(n0 � 1)n0 (n0 � 2)n0+1 : : : 1n�1distint subfuntions that depend on x. Summing over fn�1; : : : ; n0g gives the answer.When variables have the natural row-by-row order, these formulas apply withrm = k mod n, an = bk=n, a0 = m� 1� an. The pro�le element bk for 0 � k < mn istherefore (bk=n$m)((kmod n)$n), and we havePmnk=0 bk = (m0n0)2+2. This orderingis optimum, although no easy proof is apparent; for example, some orderings anderease bn+2 or b2n�2 from 4 to 3 while inreasing bk for other k.Every path from top to bottom of the master hart an be represented as �0 !�1 ! � � � ! �mn, where eah �j is a string rj1 : : : rjm with 0 � rj1 � � � � � rjm � n,rj1+ � � �+rjm = j, one oordinate inreasing at eah step. For example, one path whenm = 5 and n = 3 is 00000 ! 00001 ! 00011 ! 00111 ! 00112 ! 00122 ! 00123 !01123 ! 11123! 11223 ! 12223 ! 12233! 12333 ! 22333! 23333! 33333. Wean onvert this path to the \natural" path by a series of steps that don't inrease thetotal edge weight, as follows: In the initial segment up to the �rst time rjm = n, doall transitions on the rightmost oordinate �rst. (Thus the �rst steps of the examplepath would beome 00000 ! 00001 ! 00002 ! 00003 ! 00013 ! 00113 ! 00123.)Then in the �nal segment after the last time rj1 = 0, do all transitions on the leftmostoordinate last. (The �nal steps would thereby beome 01123 ! 01223 ! 02223 !02233 ! 02333 ! 03333 ! 13333 ! 23333 ! 33333.) Then, after the �rst n steps,normalize the seond-last oordinates in a similar fashion (00003! 00013! 00023!00033! 00133! 01133! 01233! 02233); and before the last n steps, normalize theseond oordinates (00133! 00233! 00333! 01333! 02333! 03333). Et etera.
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[This bak-and-forth proof tehnique was inspired by the paper of Bollig andWegener ited below. Can every nonoptimal ordering be improved by merely sifting?℄137. If we add a lique of  new verties and �2� new edges, the ost of the opti-mum arrangement inreases by �+13 �. So we may assume that the given graph hasm edges and n verties f1; : : : ; ng, where m and n are odd and suÆiently large. Theorresponding funtion f, whih depends on mn + m + 1 variables xij and sk for1 � i � m, 1 � j � n, and 0 � k � m, is J(s0; s1; : : : ; sm;h; g1; : : : ; gm), wheregi = (xiui � xivi) ^Vfxiw j w =2 fui; vigg when the ith edge is ui ��� vi, and whereh = hhx11 : : : xm1i : : : hx1n : : : xmnii is the transpose of the funtion in exerise 136.One an show that Bmin(f) = min�Pu��v ju��v�j+(m+12 )2(n+12 )2+mn+m+2;the optimum ordering uses (m+12 )2(n+12 )2 nodes for h, n+ jui�� vi�j nodes for gi, onenode for eah sk, and two sink nodes, minus one node that is shared between h andsome gi. [See B. Bollig and I. Wegener, IEEE Trans.C-45 (1996), 993{1002. D. Sieling,in J. Computer and System Si. 74 (2008), 394{403, has proved that Bmin(f) an't beapproximated within a onstant fator in polynomial time, unless P = NP.℄138. (a) LetXk = fx1; : : : ; xkg. The QDD nodes at depth k represent the subfuntionsthat an arise when onstants replae the variables of Xk. We an add an n-bit �eldDEP to eah node, to speify exatly whih variables of Xn n Xk it depends on. Forexample, the QDD for f in (92) has the following subfuntions and DEPs:depth 0: 0011001001110010 [1111℄;depth 1: 00110010 [0111℄, 01110010 [0111℄;depth 2: 0010 [0011℄, 0011 [0010℄, 0111 [0011℄;depth 3: 00 [0000℄, 01 [0001℄, 10 [0001℄, 11 [0000℄.An examination of all DEP �elds at depth k tells us the master pro�le weights betweenXk and Xk [ xl, for 0 � k < l � n.(b) Represent the nodes at depth k as triples Nkp = (lkp; hkp; dkp) for 0 � p < qk,where (lkp; hkp) are the (LO,HI) pointers and dkp reords the DEP bits. If k < n,these nodes branh on xk+1, so we have 0 � lkp; hkp < qk+1; but if k = n, we haveln0 = hn0 = 0 and ln1 = hn1 = 1 to represent ? and > . We de�ne dkp =Pf2t�k�1 jNkp depends on xtg; hene 0 � dkp < 2n�k. For example, the QDD (82) is equivalentto N00 = (0; 1; 7); N10 = (0; 1; 3), N11 = (1; 2; 3); N20 = (0; 0; 0), N21 = (0; 1; 1),N22 = (1; 1; 0); N30 = (0; 0; 0), N31 = (1; 1; 0).To jump up from depth b to depth a, we essentially make two opies of the nodesat depths b� 1, b� 2, : : : , a, one for the ase xb+1 = 0 and one for the ase xb+1 = 1.Those opies are moved down to depths b, b � 1, : : : , a + 1, and redued to eliminatedupliates. Then every original node at depth a is replaed by a node that branhes onxb+1; its LO and HI �elds point respetively to the 0-opy and the 1-opy of the original.This proess involves some simple (but ool) list proessing to update DEPs whilebuket sorting: Nodes are unpaked into a work area onsisting of auxiliary arrays r, s,t, u, and v, initially zero. Instead of using lkp and hkp for LO and HI, we store HI in ellup of the work area, and we let vp link to the previous node (if any) with the same LO�eld; furthermore we make sl point to the last node (if any) for whih LO = l. The algo-rithm below uses UNPACK(p; l; h) as an abbreviation for \up  h, vp  sl, sl  p+1."When nodes of depth k have been unpaked in this way to arrays s, u, and v,the following subroutine ELIM(k) paks them bak into the main QDD struture withdupliates eliminated. It also sets rp to the new address of node p.



7.1.4 ANSWERS TO EXERCISES 103 hidden weighted bitFriedmanSupowittruth tablesE1. [Loop on l.℄ Set q  0 and th  0 for 0 � h < qk+1. Do step E2 for 0 � l < qk+1.Then set qk  q and terminate.E2. [Loop on p.℄ Set p sl and sl  0. While p > 0, do step E3 and set p vp�1.Then resume step E1.E3. [Pak node p � 1.℄ Set h  up�1. (The unpaked node has (LO;HI) = (l; h).) Ifth 6= 0 and lk(th�1) = l, set rp�1  th�1. Otherwise set lkq  l, hkq  h, dkq  ((d(k+1)l jd(k+1)h)�1)+[l 6=h℄, rp�1  q, q  q+1, th  q. Resume step E2.We an now use ELIM to jump up from b to a. (i) For k = b � 1, b � 2, : : : , a,do the following steps: For 0 � p < qk, set l  lkp, h  hkp; if k = b � 1,UNPACK(2p; lbl; hbl) and UNPACK(2p+1; lbh; hbh), otherwise UNPACK(2p; r2l; r2h) andUNPACK(2p + 1; r2l+1; r2h+1) (thereby making two opies of Nkp in the work area).Then ELIM(k + 1). (ii) For 0 � p < qa, UNPACK(p; r2p; r2p+1). Then ELIM(a).(iii) If a > 0, set l l(a�1)p, h h(a�1)p, l(a�1)p  rl, h(a�1)p  rh, for 0 � p < qa�1.This jump-up proedure garbles the DEP �elds above depth a, beause the vari-ables have been reordered. But we'll use it only when those �elds are no longer needed.() By indution, the �rst 2n�2 steps aount for all subsets that do not ontain n;then omes a jump-up from n� 1 to 0, and the remaining steps aount for all subsetsthat do ontain n.(d) Start by setting yk  k and wk  2k � 1 for 0 � k < n. In the followingalgorithm, the y array represents the urrent variable ordering, and the bitmap wk =Pf2yj j 0 � j < kg represents the set of variables on the top k levels.We augment the subroutine ELIM(k) so that it also omputes the desired edgeweights of the master pro�le: Counters j are initially 0 for 0 � j < n � k; aftersetting dkq in step E3, we set j  j + 1 for eah j suh that 2j � dkq; �nally we setbwk;yk+j+1  j for 0 � j < n�k, using the notation of answer 133. [To speed this up,we ould ount bytes not bits, inreasing j;(dkq�8j)&#ff by 1 for 0 � j < (n� k)=8.℄We initialize the DEP �elds by doing the following for k = n � 1, n � 2, : : : , 0:UNPACK(p; lkp; hkp) for 0 � p < qk; ELIM(k); if k > 0, set l  l(k�1)p, h  h(k�1)p,l(k�1)p  rl, and h(k�1)p  rh, for 0 � p < qk�1.The main loop of the algorithm now does the following for 1 � i < 2n�1: Seta �i� 1 and b �i+ �i. Set (ya; : : : ; yb) (yb; ya; : : : ; yb�1) and (wa+1; : : : ; wb) (2yb + wa; : : : ; 2yb + wb�1). Jump up from b to a with the proedure of part (b); butuse the original (non-augmented) ELIM routine for ELIM(a) in step (ii).(e) The spae required for nodes at depth k is at most Qk = min(2k; 22n�k); wealso need spae for 2max(Q1; : : : ; Qn) elements in arrays r, u, v, plus max(Q1; : : : ; Qn)elements in arrays s and t. So the total is dominated by O(2nn) for the outputs bw;x.Subroutine ELIM(k) is alled �nk� times in augmented form, for 0 � k < n, and�n�1k+1� times non-augmented. Its running time in either ase is O(qk(n� k)). Thus thetotal omes to O(Pk�nk�2k(n � k)) = O(3nn), and it will be substantially less if theQDD never gets large. (For example, it's O((1 +p2)nn) for the funtion hn.)[The �rst exat algorithm to determine optimum variable ordering in a BDD wasintrodued by S. J. Friedman and K. J. Supowit, IEEE Trans. C-39 (1990), 710{713.They used extended truth tables instead of QDDs, obtaining a method for m = 1 thatrequired �(3n=pn) spae and �(3nn2) time, improvable to �(3nn).℄139. The same algorithm applies, almost unhanged: Consider all QDD nodes thatbranh on xa to be at level 0, and all nodes that branh on xb+1 to be sinks. Thuswe do 2b�a jump-ups, not 2n�1. (The algorithm doesn't rely on the assumptions thatq0 = 1 and qn = 2, exept in the spae and time analyses of part (e).)
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140. We an �nd shortest paths in a network without knowing the network in advane,by generating verties and ars \on the y" as needed. Setion 7.3 points out that thedistane d(X;Y ) of eah arX ! Y an be hanged to d0(X;Y ) = d(X;Y )�l(X)+l(Y )for any funtion l(X), without hanging the shortest paths. If the revised distanes d0are nonnegative, l(X) is a lower bound on the distane from X to the goal; the trik isto �nd a good lower bound that fouses the searh yet isn't diÆult to ompute.If jXj = l, and if a QDD for f with X on its top l levels has q nononstant nodeson the next level, then l(X) = max(q; n � l) is a suitable lower bound for the Bminproblem. [See R. Drehsler, N. Drehsler, and W. G�unther, ACM/IEEE Conf. DesignAutomation 35 (1998), 200{205.℄ However, a stronger lower bound is needed to makethis approah ompetitive with the algorithm of exerise 138, unless f has a relativelyshort BDD that annot be attained in very many ways.141. False. Consider g(x1 _ � � � _ x6; x7 _ � � � _ x12; (x13 _ � � � _ x16)� x18; x17; x19 _� � � _ x22), where g(y1; : : : ; y5) = ((((�y1 _ y5) ^ y4) � y3) ^ ((y1 ^ y2) � y4 � y5)) � y5.Then B(g) = 40 = Bmin(g) an't be ahieved with fx13; : : : ; x16; x18g onseutive.[M. Teslenko, A. Martinelli, and E. Dubrova, IEEE Trans. C-54 (2005), 236{237.℄142. (a) Supposem is odd. The subfuntions that arise after (x1; : : : ; xm+1) are knownare [wm+2xm+2 + � � �+ wnxn> 2m�1m� 2m�2� t℄, where 0 � t � 2m. The subasesxm+2 + � � �+ xn = (m� 1)=2 show that at least � m�1(m�1)=2� of these subfuntions di�er.But organ-pipe order, hx1x2m�12 x13x2m�24 x25 : : : x2m�2m�2n�2 x2m�2n�1 x2m�1n i, is muhbetter: Let tk = x1+(2m�1)x2+x3+� � �+(2m�2k�1)x2k+2k�1x2k+1, for 1 � k < m�1.The remaining subfuntion depends on at most 2k + 2 di�erent values, dtk=2ke.(b) Let n = 1+ 4m2. The variables are x0 and xij for 0 � i; j < 2m; the weightsare w0 = 1 and wij = 2i + 22m+1+jm. Let Xl be the �rst l variables in some ordering,and suppose Xl inludes elements in il rows and jl olumns of the matrix (xij). Ifmax(il; jl) = m, we will prove that ql � 2m; hene B(f) > 2m by (85).Let I and J be subsets of f1; : : : ; 2mg with jIj = jJ j = m and Xl � x0 [ fxij ji 2 I; j 2 Jg; let I 0 and J 0 be the omplementary subsets. Choose m elementsX 0 � Xl n x0, in di�erent rows (or, if il < m, in di�erent olumns). Consider 2mpaths in the QDD de�ned as follows: x0 = 0, and xij = 0 if xij 2 Xl n X 0; alsoxi0j = xij0 = �xi0j0 = �xij for i 2 I, j 2 J , where i $ i0 and j $ j0 are mathingsbetween I $ I 0 and J $ J 0. Then there are 2m distint values t = Pi2I;j2J wijxij ;but P0�i;j<2m wijxij = (22m�1)(1+22m+1m) on eah path. The paths must passthrough distint nodes on level l. Otherwise, if t 6= t0, one of the lower subpaths wouldlead to ? , the other to > .[These results are due to K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima,Theoretial Comp. Si. 180 (1997), 47{60, who also proved that jQ(f)�Q(fR)j < n.Do self-dual threshold funtions always satisfy also jB(f)�B(fR)j < n?℄143. In fat, the algorithm of exerises 133 and 138 proves that organ-pipe order isbest for these weights: (1, 1023, 1, 1022, 2, 1020, 4, 1016, 8, 1008, 16, 992, 32, 960, 64,896, 128, 768, 256, 512) gives the pro�le (1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 4, 8, 3, 6, 2, 4,1, 2, 2, 1, 2) and B(f) = 80. The worst ordering, (1022, 896, 512, 64, 8, 1, 4, 32, 1008,1020, 768, 992, 1016, 1023, 960, 256, 128, 16, 2, 1), makes B(f) = 1913.(One might think that properties of binary notation are ruial to this example.But hx1x2x23x44x85x166 x317 x608 x1169 x22410 x22411 x44812 x56413 x62014 x64915 x66416 x67217 x67618 x67819 x67920 i is atu-ally the same funtion, by exerise 7.1.1{103(!).)144. (5; 7; 7; 10; 6; 9; 5; 4; 2); the QDD-not-BDD nodes orrespond to f1, f2, f3, 0, 1.
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145. Bmin = 31 is attained in (36). The worst ordering for (x3x2x1x0)2 + (y3y2y1y0)2is y0, y1, y2, y3, x2, x1, x0, x3, making Bmax = 107. Inidentally, the worst orderingfor the 24 inputs of 12-bit addition, (x11 : : : x0)2 + (y11 : : : y0)2, turns out to be y0, y1,: : : , y11, x10, x8, x6, x4, x3, x5, x2, x7, x1, x9, x0, x11, yielding Bmax = 39111.[B. Bollig, N. Range, and I. Wegener, Leture Notes in Comp. Si. 4910 (2008),174{185, have proved that Bmin = 9n� 5 for addition of two n-bit numbers whenevern > 1, and also that Bmin(Mm) = 2n� 2m+ 1 for the 2m-way multiplexer.℄146. (a) Obviously b0 � q0; and if q0 = b0 + a0, then b1 � 2b0 + a0 = b0 + q0. Alsoq0�b0 = a0 � b1+q2 � q22 , the number of strings of length 2 on a q2-letter alphabet; sim-ilarly b0+b1+q2 � (b1+q2)2. (The same relations hold between qk, qk+2, bk, and bk+1.)(b) Let the subfuntions at level 2 have truth tables �j for 1 � j � q2, and usethem to onstrut beads �1, : : : , �b1 at level 1. Let (1; : : : ; q2+b1) be the truth tables(�1�1; : : : ; �q2�q2 ; �1; : : : ; �b1). If b0 � b1=2, let the funtions at level 0 have truthtables f�2i�1�2i j 1 � i � b0g [ f�j�j j 2b0 < j � b1g [ fjj j 1 � j � b0 + q0 � b1g.Otherwise it's not diÆult to de�ne b0 beads that inlude all the �'s, and use them atlevel 0 together with the nonbeads fjj j 1 � j � q0 � b0g.147. Before doing any reordering, we lear the ahe and ollet all garbage. Thefollowing algorithm interhanges levels ju $ jv when v = u+1. It works by reatinglinked lists of solitary, tangled, and hidden nodes, pointed to by variables S, T , andH (initially �), using auxiliary LINK �elds that an be borrowed temporarily from thehash-table algorithm of the unique lists as they are being rebuilt.T1. [Build S and T .℄ For eah ju -node p, set q  LO(p), r  HI(p), and delete pfrom its hash table. If V(q) 6= v and V(r) 6= v (p is solitary), set LINK(p) S andS  p. Otherwise (p is tangled), set REF(q) REF(q)�1, REF(r) REF(r)�1,LINK(p) T , and T  p.T2. [Build H and move the visible nodes.℄ For eah jv -node p, set q  LO(p),r  HI(p), and delete p from its hash table. If REF(p) = 0 (p is hidden), setREF(q) REF(q)�1, REF(r) REF(r)�1, LINK(p) H, andH  p; otherwise(p is visible) set V(p) u and INSERT(u; p).T3. [Move the solitary nodes.℄ While S 6= �, set p  S, S  LINK(p), V(p)  v,and INSERT(v; p).T4. [Transmogrify the tangled nodes.℄ While T 6= �, set p  T , T  LINK(p), anddo the following: Set q  LO(p), r  HI(p). If V(q) > v, set q0  q1  q;otherwise set q0  LO(q) and q1  HI(q). If V(r) > v, set r0  r1  r;otherwise set r0  LO(r) and r1  HI(r). Then set LO(p) UNIQUE(v; q0; r0),HI(p) UNIQUE(v; q1; r1), and INSERT(u; p).T5. [Kill the hidden nodes.℄ While H 6= �, set p  H, H  LINK(p), and reylenode p. (All of the remaining nodes are alive.)The subroutine INSERT(v; p) simply puts node p into xv's unique table, using the key(LO(p); HI(p)); this key will not already be present. The subroutine UNIQUE in stepT4 is like Algorithm U, but instead of using answer 82 it treats referene ounts quitedi�erently in steps U1 and U2: If U1 �nds p = q, it inreases REF(p) by 1; if U2 �nds r,it simply sets REF(r) REF(r) + 1.Internally, the branh variables retain their natural order 1, 2,: : : , n from top tobottom. Mapping tables � and � represent the urrent permutation from the externaluser's point of view, with � = ��; thus the user's variable xv appears on level v� � 1,
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and node UNIQUE(v; p; q) on level v � 1 represents the user's funtion (�xv�? p: q). Tomaintain these mappings, set j  u�, k  v�, u� k, v� j, j�  v, k�  u.148. False. For example, onsider six sinks and nine soure funtions, with extendedtruth tables 1156, 2256, 3356, 4456, 5611, 5622, 5633, 5644, 5656. Eight of the nodesare tangled and one is visible, but none are hidden or solitary. There are 16 newbies:15, 16, 25, 26, 35, 36, 45, 46, 51, 61, 52, 62, 53, 63, 54, 64. So the swap takes 15 nodesinto 31. (We an use the nodes of B(x3 � x4; x3 � �x4) for the sinks.)149. The suessive pro�les are bounded by (b0; b1; : : : ; bn), (b0 + b1; 2b0; b2; : : : ; bn),(b0 + b1; 2b0 + b2; 4b0; b3; : : : ; bn), : : : , (20b0 + b1; : : : ; 2k�2b0 + bk�1; 2k�1b0; bk; : : : ; bn).Similarly, we also have B(f�1 ; : : : ; f�m) � B(f1; : : : ; fm)+2(b0+� � �+bk�1) in addi-tion to Theorem J+, beause swaps ontribute at most 2bk�1, 2bk�2, : : : , 2b0 new nodes.150. We may assume that m = 1, as in exerise 52. Suppose we want to jump xk tothe position that is jth in the ordering, where j 6= k. First ompute the restritionsof f when xk = 0 and xk = 1 (see exerise 57); all them g and h. Then renumberthe remaining variables: If j < k, hange (xj ; : : : ; xk�1) to (xj+1; : : : ; xk); otherwisehange (xk+1; : : : ; xj) to (xk; : : : ; xj�1). Then ompute f  (�xj ^ g) _ (xj ^ h), usingthe linear-time variant of Algorithm S in exerise 72.To show that this method has the desired running time, it suÆes to prove thefollowing: Let g(x1; : : : ; xn) and h(x1; : : : ; xn) be funtions suh that g(x) = 1 impliesxj = 0 and h(x) = 1 implies xj = 1. Then the meld g � h has at most twie as manynodes as g _ h. But this is almost obvious, when truth tables are onsidered: Forexample, if n = 3 and j = 2, the truth tables for g and h have the respetive formsab00d00 and 00st00uv. The beads � of g _ h on levels < j orrespond uniquely to thebeads �0 � �00 of g � h on those levels, beause � = �0 _ �00 an be \fatored" in onlyone way by putting 0s in the appropriate plaes. And the beads � of g _ h on levels� j orrespond to at most two beads of g � h, namely to � � ? and/or ? � �.[See P. Savik�y and I. Wegener, Ata Informatia 34 (1997), 245{256, Theorem 1.℄151. Set tk  0 for 1 � k � n, and make the swapping operation xj�1$ xj also swaptj�1$ tj . Then set k  1 and do the following until k > n: If tk = 1 set k  k + 1;otherwise set tk  1 and sift xk.(This method repeatedly sifts on the topmost variable that hasn't yet been sifted.Researhers have tried fanier strategies, suh as to sift the largest level �rst; but nosuh method has turned out to dominate the simple-minded approah proposed here.)152. Applying Algorithm J as in answer 151 yields B(h�100) = 1,382,685,050 after17,179 swaps, whih is almost as good as the result of the \hand-tuned" permuta-tion (95). Another sift brings the size down to 300,451,396; and further repetitionsonverge down to just 231,376,264 nodes, after a total of 232,951 swaps.If the loops of steps J2 and J5 are aborted when S > 1:05s, the results areeven better(!), although fewer swaps are made. The �rst sift redues the size to1,342,191,700, and iteration produes B(h�100) = 208,478,228 after 139,245 swaps, where� is the following permutation:3 4 6 8 10 12 14 16 18 20 22 24 27 28 30 32 35 67 37 3943 41 45 51 47 49 55 80 53 83 85 92 93 94 78 75 77 95 73 7196 98 97 68 57 58 60 65 63 62 61 87 64 59 66 88 56 69 70 99100 72 76 91 79 74 90 89 86 84 52 82 81 48 54 50 46 44 42 4038 36 34 33 31 29 26 25 23 21 19 17 15 13 11 9 7 5 2 1
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Inidentally, if we sift the variables h100 in order of pro�le size, so that x60 issifted �rst, then x59, x61, x58, x57, x62, x56, et. (wherever they urrently happen tobe), the resulting BDD turns out to have 2,196,768,534 nodes.Simple \downhill swapping" instead of full sifting is of no use whatever for h100:The �1002 � swaps x1 $ x2, x3 $ x1, x3 $ x2, : : : , x100 $ x1, : : : , x100 $ x99ompletely reverse the order of all variables without hanging the BDD size at any step.153. Eah gate is easily synthesized using reursions like (55). About 1 megabyte ofmemory and 3.5 megamems of omputation suÆe to onstrut the entire BDD base of8242 nodes. Using exerise 138 we may onlude that the ordering x7, x3, x9, x1, o9, o1,o3, o7, x4, x6, o6, o4, o2, o8, x2, x8, o5, x5 is optimum, and that Bmin(y1; : : : ; y9) = 5308.Reordering of variables is not advisable for a problem suh as this, sine thereare only 18 variables. For example, autosifting whenever the size doubles would requiremore than 100 megamems of work, just to redue 8242 nodes to about 6400.154. Yes: CA was moved between ID and OR at the last sifting step, and we an workbakwards all the way to dedue that the �rst sift moved ME between MA and RI.155. The author's best attempt for (a) isME NH VT MA CT RI NY DE NJ MD PA DC VA OH WV KY NC SC GA FL AL IN MI IAIL MO TN AR MS TX LA CO WI KS SD ND NE OK WY MN ID MT NM AZ OR CA WA UT NVgiving B(f�1 ) = 403, B(f�2 ) = 677, B(f�1 ; f�2 ) = 1073; and for (b) the orderingNH ME MA VT CT RI NY DE NJ MD PA VA DC OH WV KY TN NC SC GA FL AL IN MIIL IA AR MO MS TX LA CO KS OK WI SD NE ND MN WY ID MT AZ NM UT OR CA WA NVgives B(f�1 ) = 352, B(f�2 ) = 702, B(f�1 ; f�2 ) = 1046.156. One might expet two \siftups" to be at least as good as a single sifting proessthat goes both up and down. But in fat, benhmark tests by R. Rudell show that siftupalone is de�nitely unsatisfatory. Oasional jump-downs are needed to ompensate forvariables that temporarily jump up, although their optimum �nal position lies below.157. A areful study of answer 128 shows that we always improve the size when the �rstaddress bit that follows a target bit is jumped up past all targets. [But simple swapsare too weak. For example,M2(x1; x6;x2; x3; x4; x5) andM3(x1; x10; x11;x2; x3; : : : ; x9)are loally optimal under the swapping of xj�1$ xj for any j.℄158. Consider �rst the ase when m = 1 and n = 3t � 1 � 5. Then if n� = k, thenumber of nodes that branh on j is aj if j� < k, bj if j� = k, and an+2�j if j� > k,where aj = j � 3max(j � 2t; 0); bj = min(j; t; n+ 1� j):The ases with fx1; : : : ; xn�1g onseutive are k = 1 and B(f�) = 3t2 + 2; k = n andB(f�) = 3t2+1. But when k = dn=2e we have B(f�) = b3t=2(d3t=2e�1)+n�bt=2+2.Similar alulations apply when m > 1: We have B(f�) > 6�p=32 � + B(g�)when � makes fx1; : : : ; xpg onseutive, but B(f�) � 2�p=22 � + p3B(g�) when � putsfxp+1; : : : ; xp+mg in the middle. Sine g is �xed, pB(g�) = O(n) as n!1.[If g is a funtion of the same kind, we obtain examples where symmetri variableswithin g are best split up, and so on. But no Boolean funtions are known for whihthe optimum B(f�) is less than 3/4 of the best that is obtainable under the onstraintthat no bloks of symmetri variables are split. See D. Sieling, Random Strutures &Algorithms 13 (1998), 49{70.℄159. The funtion is almost symmetri, so there are only nine possibilities. Whenthe enter element x is plaed in position (1; 2; : : : ; 9) from the top, the BDD size isrespetively (43; 43; 42; 39; 36; 33; 30; 28; 28).
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160. (a) Compute V9i=0V9j=0(:Lij(X)), a Boolean funtion of 64 variables| for ex-ample, by applying COMPOSE to the relatively simple L funtion of exerise 159,100 times. With the author's experimental programs, about 320 megamems and 35megabytes are needed to �nd this BDD, whih has 251,873 nodes with the normalordering. Then Algorithm C quikly �nds the desired answer: 21,929,490,122. (Thenumber of 11�11 solutions, 5,530,201,631,127,973,447, an be found in the same way.)(b) The generating funtion is 1+64z+2016z2+39740z3+ � � �+80z45+8z46, andAlgorithm B rapidly �nds the eight solutions of weight 46. Three of them are distintunder hessboard symmetry; the most symmetri solution is shown as (A0) below.() The BDD for V8i=1V8j=1(:Lij(X)) has 305,507 nodes and 21,942,036,750solutions. So there must be 12,546,628 wild ones.(d) Now the generating funtion is 40z14+936z15+10500z16+ � � �+16z55+ z56;examples of weight 14 and 56 appear below as (A1) and (A2).(e) Exatly 28 of weight 27 and 54 of weight 28, all tame; see (A3).(f) There are respetively (26260, 5, 347, 0, 122216) solutions, found with about(228, 3, 32, 1, 283) megamems of alulation. Among the lightest and heaviest solutionsto (1) are (A4) and (A5); the niest solution to (2) is (A6); (A7) and (A9) solve (3)lightly and (5) heavily. Pattern (4), whih is based on the binary representation of �,has no 8� 8 predeessor; but it does, for example, have the 9� 8 in (A8):

(A0) (A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)161. (a) With the normal row-by-row ordering (x11; x12; : : : ; xn(n�1); xnn), the BDDhas 380,727 nodes and haraterizes 4,782,725 solutions. The omputational ost isabout 2 gigamems, in 100 megabytes. (Similarly, the 29,305,144,137 still Lifes of size10� 10 an be enumerated with 14,492,923 nodes, after fewer than 50 gigamems.)(b) This solution is essentially unique; see (B1) below. There's also a unique (andobvious) solution of weight 36.() Now the BDD has 128 variables, with the ordering (x11; y11; : : : ; xnn; ynn).We ould �rst set up BDDs for [L(X)=Y ℄ and [L(Y )=X ℄, then interset them; butthat turns out to be a bad idea, requiring some 36 million nodes even in the 7 � 7ase. Muh better is to apply the onstraints Lij(X) = yij and Lij(Y ) = xij row byrow, and also to add the lexiographi onstraint X < Y so that still Lifes are ruledout early. The omputation an then be ompleted with about 20 gigamems and 1.6gigabytes; there are 978,563 nodes and 582,769 solutions.(d) Again the solution is unique, up to rotation; see the \spark plug" (B2)$ (B3).(And (B4)$ (B5) is the unique 7�7 ip-op of onstant weight 26. Life is astonishing.)
(B1) (B2) (B3) (B4) (B5) (B6)162. Let T (X) = [X is tame℄ and Ek(X) = [X esapes after k steps℄. We an omputethe BDD for eah Ek by using the reurreneE1(X) = :T (X); Ek+1(X) = 9Y (T (X) ^ [L(X)=Y ℄ ^ Ek(Y )):



7.1.4 ANSWERS TO EXERCISES 109 quanti�ationtruth table(Here 9Y stands for 9y11 9y12 � � � 9y66. As noted in answer 103, this reurrene turnsout to be muh more eÆient than the rule Ek+1 = T (X) ^ Ek(L11(X); : : : ; L66(X)),although the latter looks more \elegant.") The number of solutions, jEkj, is foundto be (806544 � 216, 657527179 � 24, 2105885159, 763710262, 331054880, 201618308,126169394, 86820176, 63027572, 41338572, 30298840, 17474640, 9797472, 5258660,3058696, 1416132, 523776, 204192, 176520, 62456, 13648, 2776, 2256, 440, 104, 0)for k = (1, 2, : : : , 26); thus P25k=1 jEkj = 67,166,017,379 of the 236 = 68,719,476,736possible on�gurations eventually esape from the 6� 6 age. (One of the 104 proras-tinators in E25 is shown in (B6) above.)BDD tehniques are exellent for this problem when k is small; for example,B(E1) = 101 andB(E2) = 14441. But Ek eventually beomes a ompliated \nonloal"funtion: The size peaks at B(E6) = 28,696,866, after whih the number of solutionsgets small enough to keep the size down. More than 80 million nodes are present in theformula T (X)^ [L(X)=Y ℄^E5(Y ) before quanti�ation; this strethes memory limits.Indeed, the BDD for W25k=1 Ek(X) takes up more spae than its 233-byte truth table.Therefore a \forward" method for this exerise would be preferable to the use of BDDs.(Cages larger than 6�6 appear to be impossibly diÆult, by any known method.)163. Suppose �rst that Æ is ^. We obtain the BDD for f = g ^ h by taking the BDDfor g and replaing its > sink by the root of the BDD for h. To represent also �f , makea separate opy of the BDD for g, and use a BDD base for both h and �h; replae the? in the opy by > , and replae the > in the opy by the root of the BDD for �h.This deision diagram is redued beause h isn't onstant.Similarly, if Æ is �, we obtain a BDD for f = g�h (and possibly �f) from the BDDfor g (and possibly �g) after replaing ? and > by the roots of BDDs for h and �h.The other binary operations Æ are essentially the same, beause B(f) = B( �f). Forexample, if f = g�h = g^�h, we have B(f) = B( �f) = B(g)+B(�h)�2 = B(g)+B(h)�2.164. Let U1(x1) = V1(x1) = x1, Un+1(x1; : : : ; xn+1) = x1 � Vn(x2; : : : ; xn+1), andVn+1(x1; : : : ; xn+1) = Un(x1; : : : ; xn) ^ xn+1. Then one an show by indution thatB(f) � B(Un) = 2d(n+1)=2e+2b(n+1)=2�1 for all read-one f , and also that we alwayshave B(f; �f) � B(Vn; Vn) = 2dn=2e+1+2bn=2+1�2. (But an optimum ordering reduesthese sizes dramatially, to B(U�n ) = b 32n+ 2 and B(V �n ; Vn�) = 2n+ 2.)165. By indution, we prove also thatB(u2m; �u2m) = 2mF2m+3+2, B(u2m+1; �u2m+1) =2m+1F2m+3 + 2, B(v2m; �v2m) = 2m+1F2m+1 + 2, B(v2m+1; �v2m+1) = 2m+1F2m+3 + 2.166. We may assume as in answer 163 that Æ is either ^ or �. By renumbering,we an also assume that j� = j for 1 � j � n, hene f� = f . Let (b0; : : : ; bn)be the pro�le of f , and (b00; : : : ; b0n) the pro�le of (f; �f); let (1�; : : : ; (n+1)�) and(01�; : : : ; 0(n+1)�) be the pro�les of f� and (f�; �f�), where (n + 1)� = n + 1. Thenj� is the number of subfuntions of f� = g� Æ h� that depend on xj� after settingthe variables fx1�; : : : ; x(j�1)�g to �xed values. Similarly, 0j� is the number of suhsubfuntions of f� or �f�. We will try to prove that bj��1 � j� and b0j��1 � 0j� for all j.Case 1: Æ is ^. We may assume that n� = n, sine ^ is ommutative. Case1a: 1 � j� � k. Then bj��1 and b0j��1 ount subfuntions in whih only the variablesxi� with 1 � i < j and 1 � i� � k are spei�ed. These subfuntions of g ^ h or�g _ �h have ounterparts that are ounted in j� and 0j� , beause h� is not onstant inany subfuntion when n� = n. Case 1b: k < j� � n. Then bj��1 and b0j��1 ountsubfuntions of h or �h, whih have ounterparts ounted in j� and 0j�.Case 2: Æ is �. We may assume that 1� = 1, sine � is ommutative. Then anargument analogous to Case 1 applies. [Disrete Applied Math. 103 (2000), 237{258.℄
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167. Let f = f1n; proeed reursively to ompute ij = Bmin(fij), 0ij = Bmin(fij ; �fij),and a permutation �ij of fi; : : : ; jg for eah subfuntion fij(xi; : : : ; xj) as follows: Ifi = j, we have fij(xi) = xi; let ij = 3, 0ij = 4, �ij = i. Otherwise i < j, andwe have fij(xi; : : : ; xj) = fik(xi; : : : ; xk) Æ f(k+1)j(xk+1; : : : ; xj) for some k and someoperator Æ. If Æ is like ^, let ij = ik + (k+1)j � 2, and either (0ij = 2ik + 0(k+1)j � 4,�ij = �ik�(k+1)j) or (0ij = 2(k+1)j + 0ik � 4, �ij = �(k+1)j�ik), whihever minimizes0ij . If Æ is like �, let 0ij = 0ik + 0(k+1)j � 2, and either (ij = ik + 0(k+1)j � 2,�ij = �ik�(k+1)j) or (ij = (k+1)j+0ik�2, �ij = �(k+1)j�ik), whihever minimizes ij .(The permutations �ij represented as strings in this desription would be repre-sented as linked lists inside a omputer. We ould also onstrut an optimum BDDfor f reursively in O(Bmin(f)) steps, using answer 163.)168. (a) This statement transforms and simpli�es the reurrenes (112) and (113).(b) True by indution; also x � n.() Easily veri�ed. Notie that T is a reetion about the 22 12Æ line y = (p2�1)x.(d) If z 2 Sk and z0 2 Sn�k we have jzj = q� and jz0j = q0� , where q � k andq0 � n�k by indution. By symmetry we may let q = (1� Æ)t and q0 = (1+ Æ)t, wheret = 12 (q + q0) � 12n. Then if the �rst hint is true, we have jz �z0j � (2t)� � n� . And wealso will have jz Æ z0j � n� , by (), sine jzT j = jzj.To prove the �rst hint, we note that the maximum jz � z0j ours when y = y0.For when y � y0 we have jz �z0j2 = (x+x0+y0)2+y2 = r2+2(x0+y0)x+(x0+y0)2; thelargest value, given z0, ours when y = y0. A similar argument applies when y0 � y.Now when y = y0 we have y = prr0 sin � for some �; and one an show thatx+x0 � (r+ r0) os �. Thus z � z0 = (x+x0+ y; y) lies in the ellipse of the seond hint.On that ellipse we have (a os �+ b sin �)2+(b sin �)2 = a2=2+ b2+ u sin 2�+ v os 2� =a2=2 + b2 +w sin(2� + �), where u = ab, v = 12a2 � b2, w2 = u2 + v2, and os � = u=w.Hene jz�z0j2 � 12a2+b2+w. And 4w2 = (r+r0)4+4(rr0)2 � (r2+(2p5�2)rr0+r02)2, sojz � z0j2 � r2 + (p5 + 1)rr0 + r02; r = (1� Æ)� ; r0 = (1 + Æ)� :The remaining task is to prove that this quantity is at most 22� = 2�2; equivalently,ft(2) � ft(2�), where ft(�) = (et=� + e�t=�)� � 2� and t = � ln((1� Æ)=(1 + Æ)). Onean show, in fat, that ft is an inreasing funtion of � when � � 2.[The O(n�) bound on Sn seems to require a deliate analysis; an earlier attemptby Sauerho�, Wegener, and Werhner was awed. The proof given here is due to A. X.Chang and V. I. Spitkovsky in 2007.℄169. This onjeture has been veri�ed for m � 7. [Many other urious properties alsoremain unexplained. A paper that desribes what is known so far is urrently beingprepared by members of the \urious researh group."℄170. (a) 22n�1. There are four hoies at jj when 1 � j < n, namely LO = ? orLO = > or HI = ? or HI = > ; and there are two hoies for jn .(b) 2n�1, sine half the hoies at eah branh are ruled out.() Indeed, if t = (t1 : : : tn)2 we have LO = ? at jj when tj = 1 and HI = > atjj when tj = 0. (This idea was applied to random bit generation in exerise 3.4.1{25.Sine there are 2n�1 suh values of t, we've shown that every monotone, skinny funtionis a threshold funtion, with weights f2n�1; : : : ; 2; 1g. The other skinny funtions areobtained by omplementing individual variables.)(d) �ft(�x) = [(�x)2<t℄ = [(x)2>�t ℄ = [(x)2> 2n � 1� t℄ = f2n�t(x).(e) By Theorem 7.1.1Q, the shortest DNF is the OR of the prime impliants, andits general pattern is exhibited by the ase n = 10 and t = (1100010111)2: (x1^x2^x3)_
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(x1^x2^x4)_ (x1^x2^x5)_ (x1^x2^x6^x7)_ (x1^x2^x6^x8^x9^x10). (One term foreah 0 in t, and one more.) The shortest CNF is the dual of the shortest DNF of thedual, whih orresponds to 2n � t = (0011101001)2: (x1) ^ (x2) ^ (x3_x4_x5_x6) ^(x3_x4_x5_x7_x8) ^ (x3_x4_x5_x7_x9) ^ (x3_x4_x5_x7_x10).171. Note that the lasses of read-one, regular, skinny, and monotone funtions areeah losed under the operations of taking duals and restritions. A skinny funtion islearly read-one; a monotone threshold funtion with w1 � � � � � wn is regular; and aregular funtion is monotone. We must show that a regular read-one funtion is skinny.Suppose f(x1; : : : ; xn) = g(xi1 ; : : : ; xik ) Æ h(xj1 ; : : : ; xjl), where Æ is a nontriv-ial binary operator and we have i1 < � � � < ik, j1 < � � � < jl, k + l = n, andfi1; : : : ; ik; j1; : : : ; jlg = f1; : : : ; ng. (This ondition is weaker than being \read-one.")We an assume that i1 = 1. By taking restritions and using indution, both g and hare skinny and monotone; thus their prime impliants have the speial form in exerise170(e). The operator Æ must be monotone, so it is either _ or ^. By duality we anassume that Æ is _.Case 1: f has a prime impliant of length 1. Then x1 is a prime impliant of f ,by regularity. Hene f(x1; : : : ; xn) = x1 _ f(0; x2; : : : ; xn), and we an use indution.Case 2: All prime impliants of g and h have length > 1. Then xj1^ � � � ^xjp is aprime impliant, for some p � 2, but xj1�1^xj2^ � � � ^xjp is not, ontraditing regular-ity. [See T. Eiter, T. Ibaraki, and K. Makino, Theor. Comp. Si. 270 (2002), 493{524.℄172. By examining the CNF for ft in exerise 170(e), we see that when t = (t1 : : : tn)2the number of Horn funtions obtainable by omplementing variables is one more thanthe number for (t2 : : : tn)2 when t1 = 0, but twie that number when t1 = 1. Thus theexample t = (1100010111)2 orresponds to 2�(2�(1+(1+(1+(2�(1+(2�(2�2))))))))Horn funtions. Summing over all t gives sn where sn = (2n�2+ sn�1) + 2sn�1, wheres1 = 2; and the solution to this reurrene is 3n � 2n�1.To make both f and �f Horn funtions, assume (by duality) that tmod 4 = 3.Then we must omplement xj if and only if tj = 0, exept for the string of 1s at theright of t. For example, when t = (1100010111)2, we should omplement x3, x4, x5,x7, and then at most one of fx8; x9; x10g. This gives �(t + 1) + 1 � 3 hoies relatedto ft. Summing over all t with tmod 4 = 3 gives 2n � 1; so the answer is 2n+1 � 2.173. Consider monotone funtions �rst. We an write t = (0a11a2 : : : 0a2k�11a2k )2,where a1+ � � �+a2k = n, a1 � 0, aj � 1 for 1 < j < 2k, and a2k � 2 when tmod 4 = 3.When tmod 4 = 1, 2n� t has this form. Then ft has a1! a2! : : : a2k! automorphisms, soit is equivalent to n!=(a1! a2! : : : a2k!) � 1 others, none of whih are skinny. Summingover all t gives 2(Pn � nPn�1) monotone Boolean funtions that are reorderable toskinny form, when n � 2, where Pn is the number of weak orderings (exerise 5.3.1{3).[See J. S. Beissinger and U. N. Peled, Graphs and Combinatoris 3 (1987), 213{219.℄Every suh monotone funtion orresponds to 2n di�erent unate funtions thatare equally skinny, when variables are omplemented. (These are the funtions with theproperty that all of their restritions are analizing, known also as \unate asades,"\1-deision list funtions," or \generalized read-one threshold funtions.")174. (a) Assign the numbers 0, : : : , n�1, n, n+1 to nodes j1 , : : : , jn , > , ? ; andlet the (LO;HI) branhes from node k go to nodes (a2k+1; a2k+2) for 0 � k < n. Thende�ne pk as follows, for 1 � k � 2n: Let l = b(k � 1)=2 and Pl = fp1; : : : ; p2lg. Setpk  ak if ak =2 Pl; otherwise, if ak is the mth smallest element of Pl\fl+1; : : : ; n+1g,set pk to the mth smallest element of fn+ 2; : : : ; n+ l+ 1g n Pl. (This onstrution isdue to T. Dahlheimer.)



112 ANSWERS TO EXERCISES 7.1.4 Genohi numbersmedian Genohi numbersEulerBernoulli numbersGenohiSeidel
(b) The inverse p�11 : : : p�12n of a Della permutation satis�es 2(k�n)� 1 � p�1k �2k. It orresponds to a Genohi derangement q1 : : : q2n+2 when q2 = 1, q2n+1 = 2n+2,and q2k+2 = 1 + p�1k , q2k�1 = 1 + p�1k+n for 1 � k � n.() Given a permutation q1 : : : q2n+2, let rk be the �rst element of the sequeneq�1k , q�2k , : : : that is � k. This transformation takes Genohi permutations intoDumont pistols, and has the property that qk = k if and only if rk = k =2 fr1; : : : ; rk�1g.(d) Eah node (j; k) represents a set of strings r1 : : : rj , where (1; 0) = f1g and theother sets are de�ned by the following transition rules: Suppose r1 : : : rj 2 (j; k), and letl = 2k. If k = 0 then (j + 1; k) ontains 1r+1 : : : r+j when j is even, 2r+1 : : : r+j when j isodd, where r+ denotes r+1. If k > 0 then (j +1; k) ontains r+1 : : : r+l (l+1)r+l+1 : : : r+jwhen j is even, r�1 : : : r�l�1(l)r�l : : : r�j when j is odd, where r� denotes r + 1 whenr � l, r � 1 when r < l. Going vertially, if l � j � 3 and j is odd, (j; k + 1)ontains r1 : : : rlrl+2rl+3(l+3)rl+4 : : : rj . On the other hand if k = 1 and j is even,(j; 0) ontains r2r1r3 : : : rj . Finally if k > 1 and j is even, (j; k � 1) ontains thestring r01 : : : r0l�3(l�2)r0l�2r0l�1r0l+1 : : : r0j , where r0 denotes l when r = l � 2, otherwiser0 = r. (One an show that the elements of (2j; k) are the Dumont pistols for Genohipermutations of order 2j whose largest �xed point is 2k.)All of these onstrutions are invertible. For example, the path (1;0)! (2;0)!(3;0) ! (3;1) ! (4;1) ! (5;1) ! (6;1) ! (7;1) ! (7;2) ! (7;3) ! (8;3) ! (8;2) !(8;1) ! (8;0) orresponds to the pistols 1 ! 22 ! 133 ! 333 ! 4244 ! 53355 !624466 ! 7335577 ! 7355577 ! 7355777 ! 82448688 ! 82646888 ! 82466888 !28466888. The latter pistol, whih an be represented by the diagram , or-responds to the Genohi derangement q1 : : : q8 = 61537482. And this derangementorresponds to p�11 : : : p�16 = 231546 and the Della permutation p1 : : : p6 = 312546.That permutation, in turn, orresponds to a1 : : : a6 = 312343, whih stands for thethin BDD 1 2 3 > ? :Let djk be the number of pistols in (j; k), whih is also the number of diretedpaths from (1; 0) to (j; k). These numbers are readily found by addition, beginning with38227 38227 � � �2073 2073 38227 76454 � � �155 155 2073 4146 36154 112608 � � �17 17 155 310 1918 6064 32008 144616 � � �3 3 17 34 138 448 1608 7672 25944 170560 � � �1 1 3 6 14 48 104 552 1160 8832 18272 188832 � � �1 1 1 2 2 8 8 56 56 608 608 9440 9440 198272 � � � ;and the olumn totals Dj = Pk djk are (D1;D2; : : : ) = (1; 1; 2; 3; 8; 17; 56; 155; 608;2073; 9440; 38227; 198272; 929569; : : : ). The even-numbered elements of this sequene,D2n, have long been known as the Genohi numbers G2n+2. The odd-numberedelements, D2n+1, have therefore been alled \median Genohi numbers." The numberSn of thin BDDs is d(2n+2)0 = D2n+1.Referenes: L. Euler disussed the Genohi numbers in the seond volume ofhis Institutiones Caluli Di�erentialis (1755), Chapter 7, where he showed that theodd integers G2n are expressible in terms of the Bernoulli numbers: In fat, G2n =(22n+1 � 2)jB2nj, and z tan z2 = P1n=1G2nz2n=(2n)!. A. Genohi examined thesenumbers further in Annali di Sienze Matematihe e Fisihe 3 (1852), 395{405; andL. Seidel, in Sitzungsberihte math.-phys. Classe, Akademie Wissen. M�unhen 7 (1877),
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157{187, disovered that they ould be omputed additively via the numbers djk. Theirombinatorial signi�ane was not disovered until muh later; see D. Dumont, DukeMath. J. 41 (1974), 305{318; D. Dumont and A. Randrianarivony, Disrete Math. 132(1994), 37{49. Meanwhile H. Della had proposed an apparently unrelated problem,equivalent to enumerating what we have alled Della permutations; see L'Interm�ediairedes Math. 7 (1900), 9{10, 328; Annales de la Fault�e si. Marseille 11 (1901), 141{164.There's also a diret onnetion between thin BDDs and the paths of (d), disov-ered in 2007 by Thorsten Dahlheimer. Notie �rst that unrestrited Dumont pistols oforder 2n + 2 orrespond to thin BDDs that are ordered but not neessarily redued,beause we an let r1 : : : r2nr2n+1r2n+2 = (2a1) : : : (2a2n)(2n+2)(2n+2). The numberof suh pistols in whih minfi j r2i�1 = r2ig = l turns out to be d(2n+2)(n+1�l).To prove this, we an use new transition rules instead of those in answer (d):Suppose r1 : : : rj 2 (j; k), and let l = j� 2k. Then (j+1; k) ontains r+1 : : : r+l r+l : : : r+jwhen j is odd, r�1 : : : r�l�1(l�1)r�l : : : r�j when j is even. If j is odd, (j; k + 1) ontains1r1r3 : : : rj when l = 3, and when l > 3 it ontains r01 : : : r0l�4(l�4)r0l�3r0l�2r0l : : : r0j ,where r0 = r + 2[r= l�4℄. Finally, if j is even and k > 0, (j; k � 1) ontainsr1 : : : rl�1qrl+2rl+2 : : : rj , where q = l if rl = rl+1, otherwise q = rl+1.With these magi transitions the path above orresponds to 1 ! 22 ! 313 !133 ! 2244 ! 31355 ! 424466 ! 5153577 ! 5135577 ! 1535577 ! 22646688 !26446688! 26466688! 26466888; so a1 : : : a6 = 132334.175. This problem seems to require a di�erent approah from the methods that workedwhen b0 = � � � = bn�1 = 1. Suppose we have a BDD base of N nodes inluding the twosinks ? and > together with various branhes labeled j2 , : : : , jn , and assume thatexatly s of the nodes are soures (having in-degree zero). Let (b; s; t; N) be the numberof ways to introdue b additional nodes labeled j1 , in suh a way that exatly s+ b� tsoure nodes remain. (Thus 0 � t � 2b; exatly t of the old soure nodes are nowreahable from a j1 branh.) Then the number of nononstant Boolean funtionsf(x1; : : : ; xn) having the BDD pro�le (b0; : : : ; bn) is equal to T (b0; : : : ; bn�1; 1), whereT (b0; s) = 2[s= b0=1℄ + [s=2℄[b0=0℄ + [s=2℄[b0=2℄;T (b0; : : : ; bn�1; s) = 2b0Xt=max(0;b0�s)(b0; s+t�b0; t; b1+ � � �+bn�1+2)T (b1; : : : ; bn�1; s+t�b0):One an show that (b; s; t;N) =P2br=0 arbptr(s;N)=b!, where we have (N(N � 1))b =P2br=0 arbNr and ptr(s;N) = Pk �rk��kt	st(N � s)r�k = Pk �rk	�kt�st(N � s)k�t =r! [wtzr ℄ e(N�s)z(wez � w + 1)s.176. (a) If p 6= p0 we have Pa2A;b2B [ha;b(p)=ha;b(p0)℄ � jAjjBj=2l, by the de�nitionof universal hashing. Let ri(a; b) be the number of p 2 P suh that ha;b(p) = i. ThenXa2A;b2B X0�i<2l ri(a; b)2 = Xa2A;b2BXp2P Xp02P [ha;b(p)=ha;b(p0)℄� jP jjAjjBj+Xp2P Xp02P [p 6= p0 ℄ jAjjBj2l = 2tjAjjBj�1 + 2t�12l �:On the other hand P2l�1i=0 ri(a; b)2 = P2l�1i=0 (ri(a; b) � 2t=jIj)2 + 22t=jIj � 22t=jIj, forany a and b. Similar formulas apply when there are sj(a; b) solutions to ha;b(q) = j.



114 ANSWERS TO EXERCISES 7.1.4 arriesSo there must be a 2 A and b 2 B suh that22tjIj + 22tjJ j � Xi2I ri(a; b)2 +Xj2J sj(a; b)2 � 2t+1�1 + 2t�12l � � 22t2l + 22t(1� �)2l :(b) The middle l bits of aqk + b and aqk+2 + b di�er by at least 2, so the middlel � 1 bits of aqk and aqk+2 must be di�erent.() Let q and q0 be di�erent elements of Q� with (g(q0)� g(q)) mod 2l�1 � 2l�2.(Otherwise we an swap q $ q0.) If l � 3, the ondition g(p) + g(q) = 2l�1 impliesthat fq(p) = 0. Now (g(p)+g(q0)) mod (2l�1) = (g(q0)�g(q)) mod (2l�1); furthermoreg(q0) and g(p) are both even. Therefore no arry an propagate to hange the middlebit, and we have fq0(p) = 1.(d) The set Q00 has at least (1��)2l�1 elements, and so does the analogous set P 00.At most 2l�2 elements of Q00 have g(q) odd; and at most 2l�1+1�jP 00j of the elementswith g(q) even are not in Q�. Thus jQ�j � (1� �)2l�1�2l�2�2l�1�1+(1� �)2l�1 =(1� 4�)2l�2 � 1, and we have Bmin(Zn;y) � (1� 4�)2l�1 � 2 by (85).Finally, hoose l = t� 4 and � = 1=9. The theorem is obvious when n < 14.177. Suppose k � n=2 and x = 2k+1xh + xl, y = 2kyh + yl. Then (xy� k) mod 2n�kdepends on 2xhyl, xlyh, and xlyl� k, modulo 2n�k, so q2k+1 � 2n�k�1+n�k+n�k.Summing up, we get P2nk=0 qk � P0�k�6n=5 2k +P6n=5<k�2n 23n�2bk=2�dk=2e.If n = 5t+ (0; 1; 2; 3; 4) the total omes to exatly (2d6n=5e � (19; 10; 12; 13; 17)� 12)=7.178. We an write x = 2kxh + xl as in the proof of Theorem A; but now xl = x̂l +(xmod 2), where x̂l is even and xmod 2 is not yet known. Similarly y = 2kyh + yl =2kyh + ŷl + (ymod 2). Let ẑl = x̂lŷl mod 2k. At level 2k� 2, for n=2 � k < n, we needonly \remember" three (n� k)-bit numbers x̂l mod 2n�k, ŷl mod 2n�k, (x̂lŷl� k) mod2n�k, and three \arries" 1 = (x̂l+ ẑl)� k, 2 = (ŷl+ ẑl)� k, 3 = (x̂l+ ŷl+ ẑl)� k.These six quantities will suÆe to determine the middle bit, after xh, yh, xmod 2, andy mod 2 beome known.There are only six possibilities for the arries: 123 = 000, 001, 011, 101, 111,or 112. Thus q2k�2 � 6 � 2(n�k�1)+(n�k�1)+(n�k). Similarly, when n=2 � k < n� 1, wehave q2k�1 � 6 � 2(n�k�2)+(n�k�1)+(n�k). With these estimates, together with qk � 2k,we get P2n�4k=0 qk � (26t � (37; 86; 184; 464; 1024)� 268)=28 when n = 5t+ (0; 1; 2; 3; 4).The atual BDD sizes, for the funtion f of Theorem A and the funtion g of thisexerise, are B(f) = (169, 381, 928, 2188, 5248, 12373, 29400, 68777, 162768, 377359,879709) and B(g) = (165, 352, 806, 1802, 4195, 9774, 22454, 52714, 121198, 278223,650188) for 6 � n � 16; so this variant appears to save about 25%. A slightly betterordering is obtained by testing (lo-bit(x), hi-bit(y), hi-bit(x), lo-bit(y)) on the last fourlevels, giving B(h) = B(g)�20 for n � 6. Then B(h)=Bmin(f) � (1:07, 1.05, 1.04, 1.04,1.04, 1.01, 1.02) for 6 � n � 12, so this ordering may be lose to optimal as n!1.180. By letting am+1 = am+2 = � � � = 0, we may assume that m � p. Let a =(ap : : : a1)2, and write x = 2kxh + xl as in the proof of Theorem A. If p � n, we haveqk � 2p�k for 0 � k < p, beause the given funtion f = Z(p)m;n(a;x) depends only ona, xh, and (axl� k) mod 2p�k. We may therefore assume that p > n.Consider the multiset A = f2kxhamod 2p�1 j 0 � xh < 2n�kg. Write A =f2p�1 � �1; : : : ; 2p�1 � �sg, where s = 2n�k and 0 < �1 � � � � � �s = 2p�1, and let�s+i = �i + 2p�1 for 0 � i � s. Then qk � 2s, beause f depends only on a, xh, andthe index i 2 [0 : : 2s) suh that �i � axl mod 2p < �i+1.Consequently Pnk=0 qk �Pnk=0min(2k; 2n+1�k) = 2bn=2+1 + 2dn=2e+1 � 3.



7.1.4 ANSWERS TO EXERCISES 115 Bolligzeadsde Bruijn ylebraes181. For every (x1; : : : ; xm) the remaining funtion of (y1; : : : ; yn) requires O(n) nodes,by exerise 170.182. Yes; B. Bollig [Leture Notes in Comp. Si. 4978 (2008), 306{317℄ has shownthat it is 
(2n=432). Inidentally, Bmin(L12;12) = 1158 is obtained with the strange or-dering L12;12(x18; x17; x16; x15; x14; x12; x10; x8; x6; x4; x2; x1; x19; x20; x21; x22; x23; x13;x11; x9; x7; x5; x3; x24); and Bmax(L12;12) = 9302 arises with L12;12(x24; x23; x20; x19;x22; x11; x6; x7; x8; x9; x10; x13; x1; x2; x3; x4; x5; x21; x18; x17; x16; x15; x14; x12). Simi-larly Bmin(L8;16) = 606 and Bmax(L8;16) = 3415 aren't terribly far apart. CouldBmin(Lm;n) and Bmax(Lm;n) both oneivably be �(2min(m;n))?183. The pro�le (b0; b1; : : : ) begins (1, 1, 1, 2, 3,5, 7, 11, 15, 23, 31, 47, 63, 95, : : : ). When k > 0there's a node on level 2k for every pair of inte-gers (a; b) suh that 2k�1 � a; b < 2k and ab <22k�1 < (a + 1)(b + 1); this node represents thefuntion [((a + x)=2k)((b + y)=2k) � 12 ℄. Whenb is given, in the appropriate range, there ared22k�1=be � b22k�1=(b + 1) hoies for a; heneb2k =P2k�1�b<2k(d22k�1=be � b22k�1=(b+1)),whih telesopes to 2k � 1. A similar argument shows that b2k+1 = 2k + 2k�1 � 1.
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184. Two kinds of beads ontribute to bm(i�1)+j�1: One for every hoie of i olumns,at least one of whih is <j; and one for every hoie of i�1 olumns, missing at least oneelement � j. Thus bm(i�1)+j�1 = (�mi ���m+1�ji �)+ (� mi�1��� j�1m+1�i�). Summing over1 � i; j � m gives B(Pm) = (2m�3)2m+5. (Inidentally, qk = bk+1 for 2 � k < m2.)The ZDD has simply zm(i�1)+j�1 = �n�1i�1� for 1 � i; j � m, one for every hoieof i � 1 olumns 6= j; hene Z(Pm) = m2m�1 + 2 � 14B(Pm). (The lower bound ofTheorem K applies also to ZDD nodes, beause only suh nodes get tikets; thereforethe natural ordering of variables is optimum for ZDDs. The natural ordering might beoptimum also for BDDs; this onjeture is known to be true for m � 5.)185. Suppose f(x) = t�x for some binary vetor t0 : : : tn. Then the subfuntionsof order d > 0 orrespond to the distint substrings ti : : : ti+d. Suh substrings �orrespond to beads if and only if � 6= 0d+1 and � 6= 1d+1; they orrespond to zeads ifand only if � 6= 0d+1 and � 6= 10d.Thus the maximum Z(f) is the funtion Sn of answer 44. To attain this worstase we need a binary vetor of length 2d+1+d�2 that ontains all (d+1)-tuples exept0d+1 and 10d as substrings; suh vetors an be haraterized as the �rst 2d+1+d�2elements of any de Bruijn yle of period 2d+1, beginning with 0d1.186. �x1 ^ �x2 ^ x3 ^ �x4 ^ �x5 ^ �x6.187. (These diagrams should be ompared with the answer to exerise 1.)
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3188. To avoid nested braes, let �, a, b, and ab stand for the subsets ;, f1g, f2g,and f1; 2g. The families are then ;, fabg, fag, fa; abg, fbg, fb; abg, fa; bg, fa; b; abg,f�g, f�; abg, f�; ag, f�; a; abg, f�; bg, f�; b; abg, f�; a; bg, f�; a; b; abg, in truth-table order.189. When n = 0, only the onstant funtions; when n > 0, only 0 and x1 ^ � � � ^ xn.(But there are many funtions, suh as x2 ^ (x1_ �x3), with (b0; : : : ; bn) = (z0; : : : ; zn).)
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190. (a) Only x1 � � � � � xn and 1� x1 � � � � � xn, for n � 0. (b) This ondition holdsif and only if all subtables of order 1 are either 01 or 11. So there are 22n�1 solutionswhen n > 0, namely all funtions suh that f(x1; : : : ; xn�1; 1) = 1.191. The language Ln of truth tables for all suh funtions has the ontext-free gram-mar L0 ! 1; Ln+1 ! LnLn j Ln02n. The desired number ln = jLnj therefore satis�esl0 = 1, ln+1 = ln(ln + 1); so (l0; l1; l2; : : : ) is the sequene (1, 2, 6, 1806, 3263442, : : : ).Asymptotially, ln = �2n � 12 � �, where 0 < � < ��2n=8 and� = 1:59791 02180 31873 17833 80701 18157 45531 23622+:[See CMath exerises 4.37 and 4.59, where ln+1 is alled en+1 (a \Eulid number") and� is alled E2. The numbers ln+1 were introdued by J. J. Sylvester in onnetion withhis study of Egyptian frations, Amer. J. Math. 3 (1880), 388. Notie that a monotonedereasing funtion, like a funtion representing independent sets, always has zn = 1.℄192. (a) 10101101000010110.(b) True, by indution on j� j, beause � 6= � 6= 0n if and only if �Z 6= �Z 6= 0n.() The beads of f of order k are the zeads of fZ of order k, for 0 < k � n.Hene the beads of fZ are also the zeads of (fZ)Z = f . Therefore, if (b0; : : : ; bn) and(z0; : : : ; zn) are the pro�le and z-pro�le of f while (b00; : : : ; b0n) and (z00; : : : ; z0n) are thepro�le and z-pro�le of fZ , we have bk = z0k and zk = b0k for 0 � k < n.(We also have zn = z0n, but they might both be 1 instead of 2. The quasi-pro�lesof f and fZ may di�er, but only by at most 1 at eah level, beause of all-0 subtables.)193. S�k(x1; : : : ; xn), by indution on n. (Hene we also have SZ�k(x1; : : : ; xn) =Sk(x1; : : : ; xn). Exerise 249 gives similar examples.)194. De�ne a1 : : : a2n as in answer 174, but use the ZDD instead of the BDD. Then(1; : : : ; 1) is the z-pro�le if and only if (2a1) : : : (2a2n) is an unrestrited Dumont pistolof order 2n. So the answer is the Genohi number G2n+2.195. The z-pro�le is (1; 2; 4; 4; 3; 2; 2). We get an optimum z-pro�le (1; 2; 3; 2; 3; 2; 2)from M2(x4; x2;x5; x6; x3; x1), and a pessimum z-pro�le (1; 2; 4; 8; 12; 2; 2) omes fromM2(x5; x6;x1; x2; x3; x4) as in (78). (Inidentally, the algorithm of exerise 197 an beused to show that Zmin(M4) = 116 is obtained with the strikingly peuliar orderingM4(x8; x5; x17; x2;x20; x19; x18; x16; x15; x13; x14; x12; x11; x9; x10; x4; x7; x6; x3; x1)!)196. For example, Mm(x1; : : : ; xm; em+1; : : : ; en), where n = m + 2m and ej is theelementary funtion of exerise 203. Then we have Z(f) = 2(n �m) + 1 and Z( �f) =(n�m+ 7)(n�m)=2� 2.197. The key idea is to hange the signi�ane of the DEP �elds so that dkp is nowPf2t�k�1 j Nkp supports xtg, where we say that g(x1; : : : ; xm) supports xj if there isa solution to g(x1; : : : ; xm) = 1 with xj = 1.To implement this hange, we introdue an auxiliary array (�0; : : : ; �n), where wewill have �k = q if Nkq denotes the subfuntion 0 and �k = �1 if that subfuntiondoes not appear on level k. Initially �n  0, and we set �k  �1 at the beginningof step E1. In step E3, the operation of setting dkq should beome the following: \Ifd(k+1)h 6= �k+1, set dkq  ((d(k+1)l j d(k+1)h)�1)+1; otherwise set dkq  d(k+1)l� 1.Also set �k  q if d(k+1)l = d(k+1)h = �k+1."(The master z-pro�le hart an be used as before to minimize z0 + � � � + zn�1;but additional work is needed to onsider zn if the absolute minimum is important.)198. Reinterpreting (50), we represent an arbitrary family of sets f as (�xv? fl: fh),where v = fv indexes the �rst variable that f supports; see answer 197. Thus fl is the
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subfamily of f that doesn't support xv , and fh is the subfamily that does (but with xvdeleted). We also let fv =1 if f has no support (i.e., if f is either ; or f;g, representedinternally by ? or > ; see answer 200). In (52), v = min(fv; gv) now indexes the�rst variable supported by either f or g; thus fh = ; if fv > gv, and gh = ; if fv < gv .Subroutine AND(f; g), ZDD-style, is now the following instead of (55): \Repre-sent f and g as in (52). While fv 6= gv , return ; if either f = ; or g = ;; otherwiseset f  fl if fv < gv , set g  gl if fv > gv. Swap f $ g if f > g. Return f iff = g or f = ;. Otherwise, if f ^ g = r is in the memo ahe, return r. Otherwiseompute rl  AND(fl; gl) and rh  AND(fh; gh); set r  ZUNIQUE(v; rl; rh), usingan algorithm like Algorithm U exept that the �rst step returns p when q = ; insteadof when q = p; put `f ^ g = r' into the memo ahe, and return r." (See also thesuggestion in answer 200.)Referene ounts are updated as in exerise 82, with slight hanges; for example,step U1 will now derease the referene ount of ? (and only of this node), whenq = ;. It is important to write a \sanity hek" routine that double-heks all refereneounts and other redundanies in the entire BDD/ZDD base, so that subtle errors arenipped in the bud. The sanity heker should be invoked frequently until all subroutineshave been thoroughly tested.199. (a) If f = g, return f . If f > g, swap f $ g. If f = ;, return g. If f _ g = r is inthe memo ahe, return r. Otherwiseset v  fv, rl  OR(fl; gl), rh  OR(fh; gh), if fv = gv;set v  fv, rl  OR(fl; g), rh  fh, inrease REF(fh) by 1, if fv < gv;set v  gv , rl  OR(f; gl), rh  gh, inrease REF(gh) by 1, if fv > gv.Then set r  ZUNIQUE(v; rl; rh); ahe it and return it as in answer 198.(b) If f = g, return ;. Otherwise proeed as in (a), but use (�;XOR) not (_;OR).() If f = ; or f = g, return ;. If g = ;, return f . Otherwise, if gv < fv, setg  gl and begin again. Otherwiseset rl  BUTNOT(fl; gl), rh  BUTNOT(fh; gh), if fv = gv;set rl  BUTNOT(fl; g), rh  fh, inrease REF(fh) by 1, if fv < gv.Then set r  ZUNIQUE(fv; rl; rh) and �nish as usual.200. If f = ;, return g. If f = h, return OR(f; g). If g = h, return g. If g = ; orf = g, return AND(f; h). If h = ;, return BUTNOT(g; f). If fv < gv and fv < hv , setf  fl and start over. If hv < fv and hv < gv , set h  hl and start over. Otherwisehek the ahe and proeed reursively as usual.201. In appliations of ZDDs where projetion funtions and/or the omplementationoperation are permitted, it's best to �x the set of Boolean variables at the beginning,when everything is being initialized. Otherwise, every external funtion in a ZDD basemust hange whenever a new variable enters the fray.Suppose therefore that we've deided to deal with funtions of (x1; : : : ; xN ), whereN is prespei�ed. In answer 198, we let fv = N + 1, not 1, when f = ; or f = f;g.Then the tautology funtion 1 = } has the (N +1)-node ZDD 1 2 N >: : : ,whih we onstrut as soon as N is known. Let tj be node j of this struture, withtN+1 = > . The ZDD for xj is now 1 j ?: : : tj+1 ; thus the ZDD base for theset of all xj will oupy �N+12 � nodes in addition to the representations of ; and }.If N is small, all N projetion funtions an be prepared in advane. But N islarge in many appliations of ZDDs; and projetion funtions are rarely needed when
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\family algebra" is used to build the strutures as in exerises 203{207. So it's generallybest to wait until a projetion funtion is atually required, before reating it.Inidentally, the partial-tautology funtions tj an be used to speed up the synthe-sis operations of exerises 198{199: If v = fv � gv and f = tv, we have AND(f; g) = g,OR(f; g) = f , and (if v � hv) also MUX(f; g; h) = h, MUX(g; h; f) = OR(g; h).202. In the transmogri�ation step T4, hange `q0  q1  q' to `q0  q, q1  ;' and`r0  r1  r' to `r0  r, r1  ;'. Also use ZUNIQUE instead of UNIQUE; within T4,this subroutine inreases REF(p) by 1 if step U1 �nds q = ;.A subtler hange is needed to keep the partial-tautology funtions of answer 201up to date, beause of their speial meaning. Corret behavior is to keep tu unhangedand set tv  LO(tu).203. (a) f t g = ff1; 2g; f1; 3g; f1; 2; 3g; f3gg = (e1 t ((e2 t (e3 [ �)) [ e3)) [ e3; theother is (e1 t e2) [ �, beause f u g = (e1 t (e2 [ �)) [ e3 [ � and f e1 = e1 [ e2 [ e3.(b) (f t g)(z) = 9x 9y (f(x) ^ g(y) ^ (z � x _ y)); (f u g)(z) = 9x 9y (f(x) ^g(y) ^ (z � x ^ y)); (f g)(z) = 9x9y (f(x) ^ g(y) ^ (z � x� y)). Another formula is(f g)(z) = Wff(z � y) j g(y) = 1g = Wfg(z � x) j f(x) = 1g.() Both (i) and (ii) are true; also f (g [ h) = (f g) [ (f h). Formula (iii)fails in general, although we do have f t (guh) � (f t g)u (f th). Formula (iv) makeslittle sense; the right-hand side is (f t f) [ (f t h) [ (g t f) [ (g t h), by (i). Formula(v) is true beause all three parts are ;. And (vi) is true if and only if f 6= ;.(d) Only (ii) is always true. For (i), the ondition should be f u g � �, sinef u g = ; implies f ? g. For (iii), notie that jf t gj = jf u gj = jf gj = 1 wheneverjf j = jgj = 1. Finally, in statement (iv), we do have f ? g =) f t g = f g; but theonverse fails when, say, f = g = e1 [ �.(e) f = ; in (i) and f = � in (ii); also � g = g for all g. There's no solutionto (iii), beause f would have to be ff1; 2; 3; : : : gg and we are onsidering only �nitesets. But in the �nite universe of answer 201 we have f = ff1; : : : ; Ngg. (This family Uhas the property that (f U) t (g U) = (f u g) U .) The general solution to (iv)is f = e1 t e2 t f 0, where f 0 is an arbitrary family; similarly, the general solutionto (v) is f = (e1 t f 0) [ (e2 t f 00) [ (e1 t e2 t (f 0 [ f 00 [ f 000)), where f 0, f 00, and f 000are arbitrary. In (vi), f = ((((e1 t e2) [ �) t f 0) [ ((e1 [ e2) t f 00)) t (e3 [ �), wheref 0 [ f 00 ? e1 [ e2 [ e3; this representation follows from exerise 204(f). In (vii), jf j = 1.Finally, (viii) haraterizes Horn funtions (Theorem 7.1.1H).204. (a) This relation is obvious from the de�nition. (Also (f [g)=h � (f=h)[ (g=h).)(b) f=e2 = ff1g; ;g = e1 [ �; f=e1 = e2 [ e3; f=� = f ; hene f=(e1 [ �) = e2 [ e3.() Division by ; gives trouble, beause all sets � belong to f=;. (But if werestrit onsideration to families of subsets of f1; : : : ; Ng, as in exerises 201 and 207,we have f=; = }; also }=} = �, and f=} = ; when f 6= }.) Clearly f=� = f . Andf=f = � when f 6= ;. Finally, (f mod g)=g = ; when g 6= ;, beause � 2 (f mod g)=gand � 2 g implies that � [ � 2 f , � 2 f=g, and � [ � =2 (f=g) t g|a ontradition.(d) If � 2 g, we have � [ � 2 f and � \ � = ; for all � 2 f=g; this proves thehint. Hene f=g � f=(f=(f=g)). Also f=h � f=g when h � g, by (a); let h = f=(f=g).(e) Let f==g be the family in the new de�nition. Then f=g � f==g, beauseg t (f=g) � f and g ? (f=g). Conversely, if � 2 f==g and � 2 g, we have � 2 h forsome h with g t h � f and g ? h; onsequently � [ � 2 f and � \ � = ;.(f) If f has suh a representation, we must have g = f=ej and h = f mod ej .Conversely, those families satisfy ej ? g [ h. (This law is the fundamental reursive
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priniple underlying ZDDs| just as the unique representation f = (xj? g: h), with gand h independent of xj , underlies BDDs.)(g) Both true. (To prove them, represent f and g as in part (f).)[R. K. Brayton and C. MMullen introdued the quotient and remainder opera-tions in Pro. Int. Symp. Ciruits and Systems (IEEE, 1982), 49{54, but in a slightlydi�erent ontext: They dealt with families of inomparable sets of sububes.℄205. In all ases we onstrut a reursion based on exerise 204(f). For example, iffv = gv = v, we have f t g = (�v? fl t gl: (fl t gh) [ (fh t gl) [ (fh t gh)); f u g =(�v? (flugl)[(flugh)[(fhugl): fhugh); f g = (�v? (fl gl)[(fh gh): (fh gl)[(fl gh)).(a) If fv < gv or (fv = gv and f > g), swap f $ g. If f = ;, return f ; if f = �,return g. If f t g = r is in the memo ahe, return r. If fv > gv , set rl  JOIN(f; gl)and rh  JOIN(f; gh); otherwise set rl  JOIN(fl; gl), rlh  JOIN(fl; gh), rhl  JOIN(fh; gl), rhh  JOIN(fh; gh), rh  OROR(rlh; rhl; rhh), and dereferene rlh, rhl,rhh. Finish with r  ZUNIQUE(gv; rl; rh); ahe it and return it as in exerise 198.(We ould also ompute rh via the formula OR(rlh; JOIN(fh;OR(gl; gh))), or viaOR(rhl; JOIN(OR(fl; fh); gh)). Sometimes one way is muh better than the other two.)The DISJOIN operation, whih produes the family of disjoint unions f� [ � j� 2 f , � 2 g, � \ � = ;g, is similar but with rhh omitted.(b) If fv < gv or (fv = gv and f > g), swap f $ g. If f � �, return f . (Weonsider ; < � and � < all others.) Otherwise, if MEET(f; g) hasn't been ahed, thereare two ases. If fv > gv, set rh  OR(gl; gh), r  MEET(f; rh), and dereferene rh;otherwise proeed analogously to (a) but with l$ h. Cahe and return r as usual.() This operation is similar to (a), but rl  OR(rll; rhh) and rh  OR(rlh; rhl).(d) First we implement the important simple ases f=ev and f mod ev:EZDIV(f; v) = 8<: If fv = v, return fh; if fv > v, return ;. Otherwise look forf=ev = r in the ahe; if it isn't present, ompute it viar  ZUNIQUE(fv;EZDIV(fl; v);EZDIV(fh; v)).EZMOD(f; v) = 8<: If fv = v, return fl; if fv > v, return f . Otherwise look forf mod ev = r in the ahe; if it isn't present, ompute it viar  ZUNIQUE(fv;EZMOD(fl; v);EZMOD(fh; v)).Now DIV(f; g) = \If g = ;, see below; if g = �, return f . Otherwise, if f � �, return ;;if f = g, return �. If gl = ; and gh = �, return EZDIV(f; gv). Otherwise, if f=g = r isin the memo ahe, return r. Otherwise set rl  EZDIV(f; gv), r  DIV(rl; gh), anddereferene rl. If r 6= ; and gl 6= ;, set rh  EZMOD(f; gv) and rl  DIV(rh; gl), deref-erene rh, set rh  r and r  AND(rl; rh), dereferene rl and rh. Insert f=g = r in thememo ahe and return r." Division by ; returns } if there is a �xed universe f1; : : : ; Ngas in exerise 201. Otherwise it's an error (beause the universal family } doesn't exist).(e) If g = ;, return f . If g = �, return ;. If (gl; gh) = (;; �), return EZMOD(f; gv).If f mod g = r is ahed, return it. Otherwise set r  DIV(f; g) and rh  JOIN(r; g),dereferene r, set r  BUTNOT(f; rh), and dereferene rh. Cahe and return r.[S.Minato gave EZDIV(f; v), EZREM(f; v), and DELTA(f; ev) in his originalpaper on ZDDs. His algorithms for JOIN(f; g) and DIV(f; g) appeared in the sequel,ACM/IEEE Design Automation Conf. 31 (1994), 420{424.℄206. The upper bound O(Z(f)3Z(g)3) is not diÆult to prove for ases (a) and (b),as well as O(Z(f)2Z(g)2) for ase (). But are there examples that take suh a longtime? And an the running time for (d) be exponential? All �ve routines seem to bereasonably fast in pratie.
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207. If f = ei1 [ � � � [ eil and k � 0, let SYM(f; v; k) be the Boolean funtion that istrue if and only if exatly k of the variables fxi1 ; : : : ; xilg \ fxv; xv+1; : : : g are 1 andx1 = � � � = xv�1 = 0. We ompute (ei1 [ � � � [ eil) x k by alling SYM(f; 1; k).SYM(f; v; k) = \While fv < v, set f  fl. If fv = N + 1 and k > 0, return ;.If fv = N + 1 and k = 0, return the partial-tautology funtion tv (see answer 201). Iff xv xk = r is in the ahe, return r. Otherwise set r  SYM(f; fv+1; k). If k > 0, setq  SYM(fl; fv +1; k� 1) and r  ZUNIQUE(fv; r; q). While fv > v, set fv  fv � 1,inrease REF(r) by 1, and set r  ZUNIQUE(fv; r; r). Put f x v x k = r in the ahe,and return r." The running time is O((k + 1)N). Notie that ; x 0 = }.208. Just omit the fators 2vs�1�1, 2vl�vk�1, and 2vh�vk�1 from steps C1 and C2.(And we get the generating funtion by setting k  l+zh in step C2; see exerise 25.)The number of solutions equals the number of paths in the ZDD from the root to > .209. Initially ompute Æn  ? and Æj  (�xj+1 Æ xj+1) � Æj+1 for n > j � 1. Then,where answer 31 says `�  (�xj Æ xj) � �', hange it to `�  (�xj � �) Æ (xj � Æj)'. Alsomake the analogous hanges with � and  in plae of �.210. In fat, when x = x1 : : : xn we an replae �x in the de�nition of g by any linearfuntion (x) = 1x1 + � � � + nxn, thus haraterizing all of the optimal solutions tothe general Boolean programming problem treated by Algorithm B.For eah branh node x of the ZDD, with �elds V(x), LO(x), HI(x), we an om-pute its optimum value M(x) and new links L(x), H(x) as follows: Let ml = M(LO(x))andmh = V(x)+M(HI(x)), where M( ? ) = �1 and M( > ) = 0. Then L(x) LO(x)if ml � mh, otherwise L(x) ? ; H(x) HI(x) if ml � mh, otherwise H(x) ? .The ZDD for g is obtained by reduing the L and H links aessible from the root.Notie that Z(g) � Z(f), and the entire omputation takes O(Z(f)) steps. (This nieproperty of ZDDs was pointed out by O. Coudert; see answer 237.)211. Yes, unless the matrix has all-zero rows. Without suh rows, in fat, the pro�leand z-pro�le of f satisfy bk � qk � 1 � zk for 0 � k < n, beause the only level-ksubfuntion independent of xk+1 is the onstant 0.212. The best alternative in the author's experiments was to make ZDDs for eahterm Tj = S1(Xj) in (129), using the algorithm of exerise 207, and then to AND themtogether. For example, in problem (128) we have X1 = fx1; x2g, X2 = fx1; x3; x4g,: : : , X64 = fx105; x112g; to make the term S1(X2) = S1(x1; x3; x4), whose ZDD has 115nodes, just form the 5-node ZDD for e1 [ (e3 [ e4) and ompute T2  (e1 [ e3 [ e4) x 1.But in what order should the ANDs be done, after we've got the individual termsT1, : : : , Tn of (129)? Consider problem (128). Method 1: T1  T1 ^ T2, T1  T1 ^ T3,: : : , T1  T1 ^ T64. This \top-down" method �lls in the upper levels �rst, and takesabout 6.2 megamems. Method 2: T64  T64 ^ T63, T64  T64 ^ T62, : : : , T64  T64 ^ T1. By �lling in the lower levels �rst (\bottom-up"), the time goes down toabout 1.75 megamems. Method 3: T2  T2 ^ T1, T4  T4 ^ T3, : : : , T64  T64 ^ T63;T4  T4 ^ T2, T8  T8 ^ T6, : : : , T64  T64 ^ T62; T8  T8 ^ T4, T16  T16 ^ T12, : : : ,T64  T64 ^T60; : : : ; T64  T64 ^T32. This \balaned" approah also takes about 1.75megamems. Method 4: T33  T33 ^ T1, T34  T34 ^ T2, : : : , T64  T64 ^ T32; T49  T49 ^T33, T50  T50 ^T34, : : : , T64  T64 ^T48; T57  T57 ^T49, T58  T58 ^T50, : : : ,T64  T64 ^ T56; : : : ; T64  T64 ^ T63. This is a muh better way to balane the work,needing only about 850 kilomems. Method 5: An analogous balaning strategy that usesthe ternary ANDAND operation turns out to be still better, osting just 675 kilomems.(In all �ve ases, add 190 kilomems for the time to form the 64 initial terms Tj .)
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Inidentally, we an redue the ZDD size from 2300 to 1995 by insisting thatx1 = 0 and x2 = 1 in (128) and (129), beause the \transpose" of every overing isanother overing. This idea does not, however, redue the running time substantially.The rows of (128) appear in dereasing lexiographi order, and that may not beideal. But dynami variable ordering is unhelpful when so many variables are present.(Sifting redues the size from 2300 to 1887, but takes a long time.)Further study, with a variety of exat over problems, would learly be desirable.213. It is a bipartite graph with 30 verties in one part and 32 in the other. (Think ofa hessboard as a hekerboard : Every domino joins a white square to a blak square,and we've removed two blak squares.) A row sum of (1; : : : ; 1; 1; �; �) has 1s in at least31 \white" positions, so its last two oordinates must be either (2; 1) or (3; 2).214. Add further onstraints to the overing ondition (128), namely V14j=1 S�1(Yj),where Yj is the set of xi that ross the jth potential fault line. (For example, Y1 =fx2; x4; x6; x8; x10; x12; x14; x15g is the set of ways to plae a domino vertially in thetop two rows of the board; eah jYj j = 8.) The resulting ZDD has 9812 nodes, andharaterizes 25,506 solutions. Inidentally, the BDD size is 26622. [Faultfree dominotilings of m � n boards exist if and only if mn is even, m � 5, n � 5, and (m;n) 6=(6; 6); see R. L. Graham, The Mathematial Gardner (Wadsworth International, 1981),120{126. The solution in (127) is the only 8� 8 example that is symmetri under bothhorizontal and vertial reetion; see Fig. 29(b) for symmetry under 90Æ rotation.℄215. This time we add the onstraints V49j=1 S�1(Zj), where Zj is the set of four plae-ments xi that surround an internal orner point. (For example, Z1 = fx1; x2; x4; x16g.)These onstraints redue the ZDD size to 66. There are just two solutions, one thetranspose of the other, and they an readily be found by hand. [See Y. Kotani, Puzzlers'Tribute (A. K. Peters, 2002), 413{420.℄Conjeture: The generating funtion for the number of m � n tatami tilings,when n � m� 2 � 0 and m is even, is (1 + z)2(zm�2 + zm)=(1� zm�1 � zm+1).216. (a) Assign three variables (ai; bi; i) to eah row of (128), orresponding to thedomino's olor if row i is hosen. Every branh node of the ZDD for f in (129) nowbeomes three branh nodes. We an take advantage of symmetry under transpositionby replaing f by f ^ x2; this redues the ZDD size from 2300 to 1995, whih grows to5981 when eah branh node is tripliated.Now we AND in the adjaeny onstraints, for all 682 ases fi; i0g where rows iand i0 are adjaent domino positions. Suh onstraints have the form :((ai ^ ai0) _(bi ^ bi0) _ (i ^ i0)), and we apply them bottom-up as in Method 2 of answer 212.This omputation inates the ZDD until it reahes more than 800 thousand nodes; buteventually it settles down and ends up with size 584,205.The desired answer turns out to be 13,343,246,232 (whih, of ourse, is a multipleof 3! = 6, beause eah permutation of the three olors yields a di�erent solution).(b) This question is distint from part (a), beause many overings (inludingFig. 29(b)) an be 3-olored in several ways; we want to ount them only one.Suppose f(a1; b1; 1; : : : ; am; bm; m) = f(x1; : : : ; x3m) is a funtion with ai =x3i�2, bi = x3i�1, and i = x3i, suh that f(x1; : : : ; x3m) = 1 implies ai + bi + i � 1for 1 � i � m. Let's de�ne the unoloring $f of f to be$f(x1; : : : ; xm) = 9y1 � � � 9y3m(f(y1; : : : ; y3m)^ (x1 = y1 + y2 + y3) ^ � � � ^ (xm = y3m�2 + y3m�1 + y3m)):
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A straightforward reursive subroutine will ompute the ZDD for $f from the ZDDfor f . This proess transforms the 584,205 nodes obtained in part (a) into a ZDD ofsize 33,731, from whih we dedue the answer: 3,272,232.(The running time is 1.2 gigamems for part (a), plus 1.3 gigamems to unolor;the total memory requirement is about 44 megabytes. A similar omputation based onBDDs instead of ZDDs ost 13:6 + 1:5 gigamems and oupied 185 megabytes.)217. The separation ondition adds 4198 further onstraints of the form :(xi ^ xi0),where rows i and i0 speify adjaent plaements of ongruent piees. Applying theseonstraints while also evaluating V468j=1 S1(Xj) turned out to be a bad idea, in theauthor's experiments; even worse was an attempt to onstrut a separate ZDD for thenew onstraints alone. Muh better was to build the 512,227-node ZDD as before, thento inorporate the new onstraints one by one, �rst onstraining the variables at thelowest levels. The resulting ZDD of size 31,300,699 was �nally ompleted after 286gigamems of work, proving that exatly 7,099,053,234,102 separated solutions exist.We might also ask for strongly separated solutions, where ongruentpiees are not allowed to touh even at their orners; this requirementadds 1948 more onstraints. There are 42,159,777,732 strongly separatedoverings, found after 304 gigamems with a ZDD of size 20,659,124.(Other methods may well be better than ZDDs for this problem.)218. This is an exat over problem. For example, the matrix when n = 3 is001001010 ({{2{{2)010001001 ({3{{{3)010010010 ({2{{2{)010100100 ({1{1{{)100010001 (3{{{3{)100100010 (2{{2{{)101000100 (1{1{{{)and in general there are 3n olumns and �2n�12 �� �n2� rows. Consider the ase n = 12:The ZDD on 187 variables has 192,636 nodes. It an be found with a ost of 300megamems, using Method 4 of answer 212 (binary balaning); Method 5 turns out tobe 25% slower than Method 4 in this ase. The BDD is muh larger (2,198,195 nodes)and it osts more than 900 megamems.Thus the ZDD is learly preferable to the BDD for this problem, and it identi�esthe L12 = 108;144 solutions with reasonable eÆieny. (However, the \daning links"tehnique of Setion 7.2.2 is about four times faster, and it needs far less memory.)219. (a) 1267; (b) 2174; () 2958; (d) 3721; (e) 4502. (To form the ZDD for WORDS(n)we do n�1 ORs of the 7-node ZDDs for w1th2ti3t4th5, t1th2te3tr4te5, et.)220. (a) There is one a2 node for the desendants of eah initial letter that an befollowed by a in the seond position (aargh, babel, : : : , zappy); 23 letters qualify,all exept q, u, and x. And there's one b2 node for eah initial letter that an be followedby b (abbey, ebony, oboes). However, the atual rule isn't so simple; for example, thereare three z2 nodes, not four, beause of sharing between zars and tzars.(b) There's no v5 beause no �ve-letter word ends with v. (The SGB olletiondoesn't inlude arxiv or webtv.) The three nodes for w5 arise beause one stands forases where the letters < w5 must be followed by w (aglo and many others); anothernode stands for ases where either w or y must follow (stra, or resa, or when we'veseen allo but not allot); and there's also a w5 node for the ase when unse is not



7.1.4 ANSWERS TO EXERCISES 123 zeadinlusion and exlusionKnuthjokefollowed by e or t, beause it must then be followed by either w or x. Similarly, thetwo nodes for x5 represent the ases where x is fored, or where the last letter must beeither x or y (following rela). There's only one y5 node, beause no four letters anbe followed by both y and z. Of ourse there's just one z5 node, and two sinks.221. We ompute, for every possible zead �, the probability that � will our, andsum over all �. For de�niteness, onsider a zead that orresponds to branhing on r3,and suppose it represents a subfamily of 10 three-letter suÆxes. There are exatly�608410 �� �540810 � � 1:3� 1031 suh zeads, and by the priniple of inlusion and exlusionthey eah arise with probability Pk�1 �676k �(�1)k+1�11881376�6084k5757�10k �=�118813765757 � � 2:5�10�32. [Hint: jfr; s; t; u; v; w; x; y; zgj = 9, 676 = 262, and 6084 = 9� 262.℄ Thus suhzeads ontribute about 0.33 to the total. The r3-zeads for subfamilies of sizes 1, 2, 3, 4,5, : : : , ontribute approximately 11.5, 32.3, 45.1, 41.9, 29.3, : : : , by a similar analysis;so we expet about 188.8 branhes on r3 altogether, on average. The grand total5Xl=1 26Xj=1 5757Xs=1��265�l(27�j)s �� �265�l(26�j)s ��
� 1Xk=1�26l�1k �(�1)k+1�265 � 265�l(27�j)k5757� sk �.� 2655757�;plus 2 for the sinks, omes to � 7151:986. The average z-pro�le is � (1:00, : : : , 1.00;25.99, : : : , 25.99; 188.86, : : : , 171.43; 86.31, : : : , 27.32; 3.53, : : : , 1.00; 2).222. (a) It's the set of all subsets of the words of F . (There are 50,569 suh subwords,out of 275 = 14;348;907 possibilities. They are desribed by a ZDD of size 18,784,onstruted from F and } via answer 205(b) at a ost of about 15 megamems.)(b) This formula gives the same result as F u }, beause every member of Fontains exatly one element of eah Xj . But the omputation turns out to be muhslower|about 370 megamems| in spite of the fat that Z(X) = 132 is almost assmall as Z(}) = 131. (Notie that j}j = 2130 while jXj = 265 � 223:5.)() (F=P ) t P , where P = t1 t u3 t h5 is the pattern. (The words are touh,tough, truth. This omputation osts about 3000 mems with the algorithms of answer205.) Other ontenders for simple formulas are F \Q, where Q desribes the admissiblewords. If we set Q = t1 t X2 t u3 t X4 t h5, we have Z(Q) = 57 and the ost oneagain is � 3000�. With Q = (t1 [ u3 [ h5) x 3, on the other hand, we have Z(Q) = 132and the ost rises to about 9000 mems. (Here jQj is 262 in the �rst ase, but 2127 inthe seond| reversing any intuition gained from (a) and (b)! Go �gure.)(d) F \((V1[ � � � [V5)xk). The number of suh words is (24, 1974, 3307, 443, 9, 0)for k = (0, : : : , 5), respetively, from ZDDs of sizes (70, 1888, 3048, 686, 34, 1). (\Seeexerise 7{34 for the words F mod y1 mod y2 mod � � � mod y5," said the author wryly.)(e) The desired patterns satisfy P = (F u})\Q, where Q = ((X1[� � �[X5) x3).We have Z(Q) = 386, Z(P ) = 14221, and jP j = 19907.(f) The formula for this ase is trikier. First, P2 = F u F gives F together withall patterns satis�ed by two distint words; we have Z(P2) = 11289, jP2j = 21234, andjP2\Qj = 7753. But P2\Q is not the answer; for example, it omits the pattern *at*,whih ours eight times but only in the ontext *ath. The orret answer is given byP 02\Q, where P 02 = (P2nF )u}. Then Z(P 02) = 8947, Z(P 02\Q) = 7525, jP 02\Qj = 10472.(g) G1[ � � � [G5, where Gj = (F=(bj[oj))tbj). The answers are bared, bases,basis, baths, bobby, bring, busts, herbs, limbs, tribs.



124 ANSWERS TO EXERCISES 7.1.4 omplementary familyKnuthleft-hild/right-sibling linksright-sibling/left-hild linksfrontier
(h) Patterns that admit all vowels in seond plae: b*lls, b*nds, m*tes, p*ks.(i) The �rst gives all words whose middle three letters are vowels. The seondgives all patterns with �rst and last letter spei�ed, for whih there's at least onemath with three vowels inserted. There are 30 solutions to the �rst, but only 27 tothe seond (beause, e.g., louis and luaus yield the same pattern). Inidentally, theomplementary family } n F has 2130 � 5757 members, and 46316 nodes in its ZDD.223. (a) d(�; �) + d(�; �) + d(; �) = 5, sine d(�; �) = [�1 6=�1 ℄ + � � �+ [�5 6=�5 ℄.(b) Given families f , g, h, the family f� j � = h��i for some � 2 f , � 2 g, 2 h with � 6= �, � 6= �,  6= �, and � \ � \  = ;g an be de�ned reursively toallow ZDD omputation, if we onsider eight variants in whih subsets of the inequalityonstraints are relaxed. In the author's experimental system, the ZDDs for mediansof WORDS(n) for n = (100, 1000, 5757) have respetively (595, 14389, 71261) nodesand haraterize (47, 7310, 86153) �ve-letter solutions. Among the 86153 medianswhen n = 5757 are hads, stent, blogs, ditzy, phish, bling, and teth; in fat,teth = hfeth teah totali arises already when n = 1000. (The running times ofabout (.01, 2, 700) gigamems, respetively, were not espeially impressive; ZDDs areprobably not the best tool for this problem. Still, the programming was instrutive.)() When n = 100, exatly (1, 14, 47) medians of WORDS(n) belong to WORDS(100),WORDS(1000), WORDS(5757), respetively; the solution with most ommon words iswhile = hwhite whole stilli. When n = 1000, the orresponding numbers are (38,365, 1276); and when n = 5757 they are (78, 655, 4480). The most ommon Englishwords that aren't medians of three other English words are their, first, and right.224. Every ar u��! v of the dag orresponds to a vertex v of the forest. The ZDDhas exatly one branh node for every ar. The LO pointer of that node leads to theright sibling of the orresponding vertex v, or to ? if v has no right sibling. The HIpointer leads to the left hild of v, or to > if v is a leaf. The ars an be ordered inmany ways (e.g., preorder, postorder, level order), without hanging this ZDD.225. As in exerise 55, we try to number the verties in suh a way that the \frontier"between early and late verties remains fairly small; then we needn't remember toomuh about what deisions were made on the early verties. In the present ase wealso want the soure vertex s to be number 1.In answer 55, the relevant state from previous branhes orresponded to anequivalene relation (a set partition); but now we express it by a table mate[i℄ forj � i � l, where j = uk is the smaller vertex of the urrent edge uk��� vk and wherel = maxfv1; : : : ; vk�1g. Let mate[i℄ = i if vertex i is untouhed so far; let mate[i℄ = 0if vertex i has been touhed twie already. Otherwise mate[i℄ = r and mate[r℄ = i, ifprevious edges form a simple path with endpoints fi; rg. Initially we set mate[i℄ i for1 � i � n, exept that mate[1℄ t and mate[t℄ 1. (If t > l, the value of mate[t℄ neednot be stored, beause it an be determined from the values of mate[i℄ for j � i � l.)Let j0 = uk+1 and l0 = maxfv1; : : : ; vkg be the values of j and l after edge khas been onsidered; and suppose uk = j, vk = m, mate[j℄ = |̂, mate[m℄ = m̂. Weannot hoose edge j���m if |̂ = 0 or m̂ = 0. Otherwise, if |̂ 6= m, the new mate tableafter hoosing edge j ���m an be omputed by doing the assignments mate[j℄  0,mate[m℄ 0, mate[|̂℄ m̂, mate[m̂℄ |̂ (in that order).Otherwise we have |̂ = m and m̂ = j; we must ontemplate the endgame. Leti be the smallest integer suh that i > j, i 6= m, and either i > l0 or mate[i℄ 6= 0 andmate[i℄ 6= i. The new state after hoosing edge j���m is ; if i � l0, otherwise it is �.



7.1.4 ANSWERS TO EXERCISES 125 Hamiltoniangenerating funtionstandard deviationvarianeWhether or not the edge is hosen, the new state will be ; if mate[i℄ 6= 0 andmate[i℄ 6= i for some i in the range j � i < j0.For example, here are the �rst steps for paths from 1 to 9 in a 3�3 grid (see (132)):k j l m mate[1℄ : : :mate[9℄ |̂ m̂ mate 0[1℄ : : :mate 0[9℄1 1 1 2 9 2 3 4 5 6 7 8 1 9 2 0 9 3 4 5 6 7 8 22 1 2 3 9 2 3 4 5 6 7 8 1 9 3 0 2 9 4 5 6 7 8 32 1 2 3 0 9 3 4 5 6 7 8 2 0 3 |3 2 3 4 0 2 9 4 5 6 7 8 3 2 4 0 4 9 2 5 6 7 8 33 2 3 4 0 9 3 4 5 6 7 8 2 9 4 0 0 3 9 5 6 7 8 4where mate 0 desribes the next state if edge j ���m is hosen. The state transitionsmatej::l 7! mate 0j0::l0 are 9 7! (12? 92: 09); 92 7! (13? ;: 29); 09 7! (13? 93: ;);29 7! (24? 294: 492); 93 7! (24? 934: 039).After all reahable states have been found, the ZDD an be obtained by reduingequivalent states, using a proedure like Algorithm R. (In the 3 � 3 grid problem,57 branh nodes are redued to 28, plus two sinks. The 22-branh ZDD illustrated inthe text was obtained by subsequently optimizing with exerise 197.)226. Just omit the initial assignments `mate[1℄ t, mate[t℄ 1.'227. Change the test `mate[i℄ 6= 0 and mate[i℄ 6= i' to just `mate[i℄ 6= 0' in two plaes.Also, hange `i � l0' to `i � n'.228. Use the previous answer with the following further hanges: Add a dummy vertexd = n+1, with new edges v���d for all v 6= s; aepting this new edge will mean \endat v." Initialize the mate table with mate[1℄  d, mate[d℄  1. Leave d out of themaximization when alulating l and l0. When beginning to examine a stored matetable, start with mate[d℄ 0 and then, if enountering mate[i℄ = d, set mate[d℄ i.229. 149,692,648,904 of the latter paths go from VA to MD; graph (133) omits DC.(However, the graphs of (18) have fewer Hamiltonian paths than (133), beause (133)has 1,782,199 Hamiltonian paths from CA to ME that do not go from VA to MD.)230. The unique minimum and maximum routes from ME both end at WA:
11698 miles; 18040 miles.Let g(z) = P zmiles(r), summed over all routes r. The average ost, g0(1)=g(1) =1022014257375=68656026 � 14886:01, an be omputed rapidly as in answer 29.(Similarly, g00(1) = 15243164303013274, so the standard deviation is � 666:2.)231. The algorithm of answer 225 gives a proto-ZDD with 8,062,831 branh nodes; itredues to a ZDD with 3,024,214 branhes. The number of solutions, via answer 208,is 50,819,542,770,311,581,606,906,543.232. With answer 227 we �nd h = 721,613,446,615,109,970,767 Hamiltonian pathsfrom a orner to its horizontal neighbor, and d = 480,257,285,722,344,701,834 of themto its diagonal neighbor; in both ases the relevant ZDD has about 1.3 million nodes.The number of oriented Hamiltonian yles is 2h+ d = 1,923,484,178,952,564,643,368.(Divide by 2 to get the number of undireted Hamiltonian yles.)
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Essentially only two king's tours ahieve the maximal length 8 + 56p2:
:

233. A similar proedure an be used but with mate[i℄ = r and mate[r℄ = �i whenthe previous hoies de�ne an oriented path from i to r. Proess all ars uk��!vk anduk ��vk onseutively when uk = j < vk = m. De�ne |̂ = �j if mate[j℄ = j, otherwise|̂ = mate[j℄. Choosing j��!m is illegal if |̂ � 0 or m̂ � 0. The updating rule for thathoie, when legal, is: mate[j℄ 0, mate[m℄ 0, mate[�|̂℄ m̂, mate[m̂℄ |̂.234. The 437 oriented yles an be represented by a ZDD of � 800 nodes. The short-est are, of ourse, AL��!LA��!AL and MN��!NM��!MN. There are 37 of length 17 (themaximum), suh as (ALARINVTNMIDCOKSC)| i.e., AL��!LA��!� � ���!SC��!CA��!AL.Inidentally, the direted graph in question is the ar-digraphD� of the digraphDon 26 verties fA; B; : : : ; Zg whose 49 ars are A��!L, A��!R, : : : , W��!Y. Every orientedwalk of D� is an oriented walk of D, and onversely (see exerise 2.3.4.2{21); but theoriented yles of D� are not neessarily simple in D. In fat, D has only 37 orientedyles, the longest of whih is unique: (ARINMOKSDC).If we extend onsideration to the 62 postal odes in exerise 7{54(), the numberof oriented yles rises to 38336, inluding the unique 1-yle (A), as well as 192 thathave length 23, suh as (APRIALASCTNMNVINCOKSDCA). About 17000 ZDD nodes suÆeto haraterize the entire family of oriented yles in this ase.235. The digraph has 7912 ars; but we an prune them dramatially by removingars from verties of in-degree zero, or ars to verties of out-degree zero. For example,owner��!nerdy goes away, beause nerdy is a dead end; in fat, all suessors of ownerare likewise eliminated, so rown is out too. Eventually we're left with only 112 arsamong 85 words, and the problem an basially be done by hand.There are just 74 oriented yles. The unique shortest one, slant��! antes��!tesla��!slant, an be abbreviated to `(slante)' as in the previous answer. The twolongest are (�!) and (�!), where � = piastepsomaso, � = pointrotherema, and! = niadrearedidoserumoreliiteslabsitaresetuplenatoriedarerunihesto.236. (a) Suppose � 2 f and � 2 g. If � � �, then � 2 f u g. If � \ � 2 f, then�\� =2 f%g. A similar argument, or the use of part (b), shows that f&g = f n (f tg).Notes: The omplementary operations \f - g = f n (f & g) = f� 2 f j � � �for some � 2 gg" for supersets, and \f . g = f n (f % g) = f� 2 f j � � � for some� 2 gg" for subsets, are also important in appliations. They were omitted from thisexerise only beause �ve operations are already rather intimidating. The supersetoperation was introdued by O. Coudert, J. C. Madre, and H. Fraisse [ACM/IEEEDesign Automation Conferene 30 (1993), 625{630℄. The identity f - g = f \ (f t g)was noted by H. G. Okuno, S. Minato, and H. Isozaki [Information Proessing Letters66 (1998), 195{199℄, who also listed several of the laws in (d).(b) Elementary set theory suÆes. (The �rst six identities appear in pairs, eahof whih is equivalent to its mate. Stritly speaking, fC involves in�nite sets, and Uis the AND of in�nitely many variables; but the formulas hold in any �nite universe.Notie that, when ast in the language of Boolean funtions, fC(x) = f(�x) is theomplement of fD, the Boolean dual; see exerise 7.1.1{2. Is there any use for the dualof f ℄, namely f� j � 2 f implies � [ � 6= Ug"? If so, we might denote it by f [.)



7.1.4 ANSWERS TO EXERCISES 127 lutterpower set}hypergraphreurrenesCoudertKnuthontiguous USAahinggarbage-olletion
() All true exept (ii), whih should have said that x"1 = xC#C1 = �x#C1 = �C = U .(d) The \identities" to ross out here are (ii), (viii), (ix), (xiv), and (xvi); theothers are worth remembering. Regarding (ii){(vi), notie that f = f" if and only iff = f#, if and only if f is a lutter. Formula (xiv) should be f & g# = f & g, the dualof (xiii). Formula (xvi) is almost right; it fails only when f = ; or g = ;. Formula (ix)is perhaps the most interesting: We atually have f ℄℄ = f if and only if f is a lutter.(e) Assuming that the universe of all verties is �nite, we have (i) f = }& g and(ii) g = (} n f)#, where } is the universal family of exerises 201 and 222, beause g isthe family of minimal dependent sets. (Purists should substitute }V = Fv2V (� [ ev)for } in these formulas. The same relations hold in any hypergraph for whih no edgeis ontained in another.)237. MAXMAL(f) = \If f = ; or f = �, return f . If f" = r is ahed, return r. Oth-erwise set r  MAXMAL(fl), rh  MAXMAL(fh), rl  NONSUB(r; rh), dereferene r,and r  ZUNIQUE(fv; rl; rh); ahe and return r."MINMAL(f) = \If f = ; or f = �, return f . If f# = r is ahed, return r. Oth-erwise set rl  MINMAL(fl), r  MINMAL(fh), rh  NONSUP(r; rl), dereferene r,and r  ZUNIQUE(fv; rl; rh); ahe and return r."NONSUB(f; g) = \If g = ;, return f . If f = ; or f = � or f = g, return ;.If f % g = r is ahed, return r. Otherwise represent f and g as in (52). If v < gv ,set rl  NONSUB(fl; g), rh  fh, and inrease REF(fh) by 1; otherwise set rh  NONSUB(fl; gl), r  NONSUB(fl; gh), rl  AND(r; rh), dereferene r and rh, and setrh  NONSUB(fh; gh). Finally r  ZUNIQUE(v; rl; rh); ahe and return r."NONSUP(f; g) = \If g = ;, return f . If f = ; or g = � or f = g, return ;.If fv > gv, return NONSUP(f; gl). If f & g = r is ahed, return r. Otherwise setv = fv. If v < gv , set rl  NONSUP(fl; g) and rh  NONSUP(fh; g); otherwise setrl  NONSUP(fh; gh), r  NONSUP(fh; gl), rh  AND(r; rl), dereferene r and rl,and set rl  NONSUP(fl; gl). Finally r  ZUNIQUE(v; rl; rh); ahe and return r."CROSS(f) = \If f = ;, return �. If f = �, return ;. If f ℄ = r is ahed,return r. Otherwise set r  OR(fl; fh), rl  CROSS(r), dereferene r, r  CROSS(fl),rh  NONSUP(r; rl), dereferene r, and r  ZUNIQUE(fv; rl; rh); ahe and return r."As in exerise 206, the worst-ase running times of these routines are unknown.Although NONSUB and NONSUP an be omputed via JOIN or MEET and BUTNOT,by exerise 236(a), this diret implementation tends to be faster. It may be preferableto replae `f = �' by `� 2 f ' in MINMAL and CROSS; also `g = �' by � 2 g' in NONSUP.[Olivier Coudert introdued and implemented the operators f", f% g, and f & gin Pro. Europ. Design and Test Conf. (IEEE, 1997), 224{228. He also gave a reursiveimplementation of the interesting operator f � g = (f t g)"; however, in the author'sexperiments, muh better results have been obtained without it. For example, if f isthe 177-node ZDD for the independent sets of the ontiguous USA, the operation g  JOIN(f; f) osts about 350 kilomems and h MAXMAL(g) osts about 3.6 megamems;but more than 69 gigamems are needed to ompute h  MAXJOIN(f; f) all at one.Improved ahing and garbage-olletion strategies may, of ourse, hange the piture.℄238. We an ompute the 177-node ZDD for the family f of independent sets, usingthe ordering (104), in two ways: With Boolean algebra (67), f = :Wu��v(xu ^ xv);the ost is about 1.1 megamems with the algorithms of answers 198{201. With familyalgebra, on the other hand, we have f = } & Wu��v(eu t ev) by exerise 236(e); theost, via answer 237, is less than 175 kilomems.



128 ANSWERS TO EXERCISES 7.1.4 generating funtionsmaximum versus maximalBergeThe subsets that give 2-olorable and 3-olorable subgraphs are g = f t f andh = g t f , respetively; the maximal ones are g" and h". We have Z(g) = 1009,Z(g") = 3040, Z(h) = 179, Z(h") = 183, jgj = 9,028,058,789,780, jg"j = 2,949,441,jhj = 543,871,144,820,736, and jh"j = 384. The suessive osts of omputing g, g",h, and h" are approximately 350 K� (kilomems), 3.6 M�, 1.1 M�, and 230 K�. (Weould ompute h" by, say, (g" t f)"; but that turns out to be a bad idea.)The maximal indued bipartite and tripartite subgraphs have the respetivegenerating funtions 7654z25 + � � � + 9040z33 + 689z34 and 128z43 + 84z44 + 112z45 +36z46 + 24z47. Here are typial examples of the smallest and largest:
(Compare with the smallest and largest \1-partite" subgraphs in 7{(61) and 7{(62).)Notie that the families g and h tell us exatly whih indued subgraphs an be2-olored and 3-olored, but they don't tell us how to olor them.239. Sine h = ((e1 [ � � � [ e49) x 2) n g is the set of nonedges of G, the liques aref = }& h, and the maximal liques are f". For example, we have Z(f) = 144 for the214 liques of the USA graph, and Z(f") = 130 for the 60 maximal ones. In this asethe maximal liques onsist of 57 triangles (whih are easily visible in (18)), togetherwith three edges that aren't part of any triangle: AZ���NM, WI���MI, NH���ME.Let fk desribe the sets overable by k liques. Then f1 = f, and fk+1 = fk t ffor k � 1. (It's not a good idea to ompute f16 as f8 t f8; muh faster is to do eahjoin separately, even if the intermediate results are not of interest.)The maximum elements of fk in the USA graph have sizes 3, 6, 9, : : : , 36, 39,41, 43, 45, 47, 48, 49 for 1 � k � 19; these maxima an readily be determined by hand,in a small graph suh as this. But the question of maximal elements is muh moresubtle, and ZDDs are probably the best tool for investigating them. The ZDDs forf1, : : : , f19 are quikly found after about 30 megamems of alulation, and they aren'tlarge: maxZ(fk) = Z(f11) = 9547. Another 400 megamems produes the ZDDs forf"1 , : : : , f"19, whih likewise are small: maxZ(f"k ) = Z(f"11) = 9458.We �nd, for example, that the generating funtion for f"18is 12z47 + 13z48; eighteen liques suÆe to over all but one ofthe 49 verties, if we leave out CA, DC, FL, IL, LA, MI, MN, MT,SC, TN, UT, WA, or WV. There also are twelve ases where we anmaximally over 47 verties; for example, if all but NE and NM areovered by 18 liques, then neither of those states are overed. An unusual example ofmaximal lique overing is illustrated here: If the 29 \blak" states are overed by 12liques, none of the \white" states will also be overed.240. (a) In fat, the subformula f(x) = Vv(xv _Wu��v xu) of (67) preisely harater-izes the dominating sets x. And if any element of a kernel is removed, it isn't dominatedby the others. [C. Berge, Th�eorie des graphes et ses appliations (1958), 44.℄(b) The Boolean formula of part (a) yields a ZDD with Z(f) = 888 after about1.5 M� of omputation; then another 1.5 M� with the MINMAL algorithm of answer237 gives the minimal elements, with Z(f#) = 2082.A more lever way is to start with h = Wv(ev tFu��v eu), and then to omputeh℄, beause h℄ = f#. However, leverness doesn't pay in this ase: About 80 K� suÆeto ompute h, but the omputation of h℄ by the CROSS algorithm osts about 350 M�.



7.1.4 ANSWERS TO EXERCISES 129 generating funtionkernels8-queens problemno three queens in a straight lineLoydde JaenishDudeneyDudeneyvon SzilyAhrens
Either way, we dedue that there are exatly 7,798,658 minimal dominating sets.More preisely, the generating funtion has the form 192z11+58855z12+� � �+4170z18+40z19 (whih an be ompared to 80z11 + 7851z12 + � � �+ 441z18 + 18z19 for kernels).() Proeeding as in answer 239, we an determine the sets of verties dk that aredominated by subsets of size k = 1, 2, 3, : : : , beause dk+1 = dk t d1. Here it's muhfaster to start with d1 = } u h instead of d1 = h, even thoughZ(}uh) = 313 while Z(h) = 213, beause we aren't interested indetails about the small-ardinality members of dk. Using the fatthat the generating funtion for d7 is � � �+61z42+z43, one an ver-ify that the illustrated solution is unique. (Total ost � 300 M�.)241. Let g the family of all 728 edges. Then, as in previous exerises, f = } & g isthe family of independent sets, and the liques are  = }& (((Sv ev) x 2) n g). We haveZ(g) = 699, Z(f) = 20244, Z() = 1882.(a) Among jf j = 118969 independent sets, there are jf"j = 10188 kernels, withZ(f") = 8577 and generating funtion 728z5+6912z6+2456z7+92z8. The 92 maximumindependent sets are the famous solutions to the lassi 8-queens problem, whih weshall study in Setion 7.2.2; example (C1) is the only solution with no three queens in astraight line, as noted by Sam Loyd in the Brooklyn Daily Eagle (20 Deember 1896).The 728 = 91�8 minimum kernels were �rst listed by C. F. de Jaenish, Trait�e des ap-pliations de l'analyse math. au jeu des �ehes 3 (1863), 255{259, who asribed them to\Mr de R���." The upper left queen in (C0) an be replaed by king, bishop, or pawn,still dominating every open square [H. E. Dudeney, The Weekly Dispath (3 De 1899)℄.Q Q QQ Q(C0)
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qqq qq qq q(C9)(b) Here Z(") = 866; the 310 maximal liques are desribed in exerise 7{129.() These subsets are omputationally more diÆult: The ZDD for all dominatingsets d has Z(d) = 12,663,505, jdj = 18,446,595,708,474,987,957; the minimal ones haveZ(d#) = 11,363,849, jd#j = 28,281,838, and generating funtion 4860z5 + 1075580z6 +14338028z7+11978518z8+873200z9+11616z10+36z11. One an ompute the ZDD for din 1.5 G� by Boolean algebra, and then the ZDD for d# in another 680 G�; alternatively,the \lever" approah of answer 240 obtains d# in 775 G� without omputing d. The11-queen arrangement in (C5) is the only suh minimal dominating set that is on�nedto three rows. H. E. Dudeney presented (C4), the only 5-queen solution that avoids theentral diamond, in Tit Bits (1 Jan 1898), 257. The set of all 4860 minimum solutionswas �rst enumerated by K. von Szily [Deutshe Shahzeitung 57 (1902), 199℄; his om-plete list appears in W. Ahrens, Math. Unterhaltungen und Spiele 1 (1910), 313{318.
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(d) Here it suÆes to ompute ( \ d)# instead of  \ (d#), if we don't alreadyknow d#, beause u} = . We have Z(\d#) = 342 and j\d#j = 92, with generatingfuntion 20z5 + 56z6 + 16z7. One again, Dudeney was �rst to disover all 20 of the5-queen solutions [The Weekly Dispath (30 July 1899)℄.(e) We have Z(f t f) = 91,780,989 at a ost of 24 G�; then Z((f t f)") =11,808,436 after another 290 G�. There are 27,567,390 maximal indued bipartite sub-graphs, with generating funtion 109894z10+2561492z11+13833474z12+9162232z13+1799264z14+99408z15+1626z16. Any 8 independentqueens an be ombined with their mirror reetionto obtain a 16-queen solution, as (C1) yields (C9).But the disjoint union of minimum kernels is not al-ways a maximal indued bipartite subgraph; for ex-ample, onsider the union of (C0) with its reetion:
Q Q QQ Q

qqq qq � Q Q QQQ Q Q
qqq q qqq .

Parts (a), (b), (d), and possibly () an be solved just as well without the useof ZDDs; see, for example, exerise 7.1.3{132 for (a) and (b). But the ZDD approahseems best for (e). And the omputation of all the maximal tripartite subgraphs of Q8may be beyond the reah of any feasible algorithm.[In larger queen graphs Qn, the smallest kernels and the minimum dominatingsets are eah known to have sizes either dn=2e or dn=2e + 1 for 12 � n � 120. SeeP. R. J. �Osterg�ard and W. D. Weakley, Eletroni J. Combinatoris 8 (2001), #R29;D. Finozhenok and W. D. Weakley, Australasian J. Combinatoris 37 (2007), 295{200.The largest minimal dominating sets have been investigated by A. P. Burger, E. J.Cokayne, and C. M. Mynhardt, Disrete Mathematis 163 (1997), 47{66.℄242. These are the kernels of an interesting 3-regular hypergraph with 1544 edges. Its4,113,975,079 independent subsets f (that is, its subsets with no three ollinear points)have Z(f) = 52,322,105, omputable with about 12 gigamems using family algebraas in answer 236(e). Another 575 G� will ompute the kernels f", for whih we haveZ(f") = 31,438,750 and jf"j = 66,509,584; the generating funtion is 228z8+8240z9+728956z10+9888900z11+32215908z12+20739920z13+2853164z14+73888z15+380z16.
[The problem of �nding an independent set of size 16 was �rst posed by H. E. Dudeneyin The Weekly Dispath (29 Apr 1900 and 13 May 1900), where he gave the leftmostpattern shown above. Later, in the London Tribune (7 Nov 1906), Dudeney askedpuzzlists to �nd the seond pattern, whih has two points in the enter. The full set ofmaximum kernels, inluding 51 that are distint under symmetry, was found by M. A.Adena, D. A. Holton, and P. A. Kelly, Leture Notes in Math. 403 (1974), 6{17, whoalso noted the existene of an 8-point kernel. The middle pattern above is the only suhkernel with all points in the entral 4 � 4. The other two patterns yield kernels thathave respetively (8; 8; 10; 10; 12; 12; 12) points in n�n grids for n = (8; 9; : : : ; 14); theywere found by S. Ainley and desribed in a letter to Martin Gardner, 27 Ot 1976.℄243. (a) This result is readily veri�ed even for in�nite sets. (Notie that, as a Booleanfuntion, f\ is the least Horn funtion that is � f , by Theorem 7.1.1H.)(b) We ould form f (2) = f uf , then f (4) = f (2)uf (2), : : : , until f (2k+1) = f (2k),using exerise 205. But it's faster to devise a reurrene that goes to the limit all atone. If f = f0 [ (e1 t f1) we have f\ = f 0 [ (e1 t f\1 ), where f 0 = f\0 [ (f\0 u f\1 ).
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[An alternative formula is f 0 = (f0 [ f1)\ n (f\1 % f0); see S. Minato and H. Arimura,Transations of the Japanese Soiety for Arti�ial Intelligene 22 (2007), 165{172.℄() With the �rst suggestion of (b), the omputation of F (2), F (4), and F (8) =F (4) osts about (610 + 450 + 460) megamems. In this example it turns out thatF (4) = F (3), and that just three patterns belong to F (3) n F (2), namely ***f, *k*t*,and ***sp. (The words that math ***sp are lasp, risp, and grasp.) A diretomputation of F\ using the reurrene based on f\0 u f\1 osts only 320 M�; andin this example the alternative reurrene based on (f0 [ f1)\ osts 470 M�. Thegenerating funtion is 1 + 124z + 2782z2 + 7753z3 + 4820z4 + 5757z5.244. To onvert Fig. 22 from a BDD to a ZDD, we add appropriate nodes with LO = HIwhere links jump levels, obtaining the z-pro�le (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). Toonvert it from a ZDD to a BDD, we add nodes in the same plaes, but with HI = ? ,obtaining the pro�le (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). (In fat, the onnetedness funtionand the spanning tree funtion are Z-transforms of eah other; see exerise 192.)245. See exerise 7.1.1{26. (It should be interesting to ompare the performane ofthe Fredman{Khahiyan algorithm in exerise 7.1.1{27 with the ZDD-based algorithmCROSS in answer 237, on a variety of di�erent funtions.)246. If a nononstant funtion doesn't depend on x1, we an replae x1 in the formulasby xv, as in (50). Let P and Q be the prime impliants of funtions p and q. (Forexample, if P = e2 [ (e3 t e4) then p = x2 _ (x3 ^ x4).) By (137) and indution on jf j,the funtion f desribed in the theorem is sweet if and only if p and q are sweet andPI(f0) \ PI(f1) = ;. The latter equality holds if and only if p � q.247. We an haraterize them with BDDs as in (49) and exerise 75; but this time�n(x1; : : : ; x2n) = �n�1(x1; : : : ; x2n�1) ^�(�x2 ^ � � � ^ �x2n) _ ��n�1(x2; : : : ; x2n) ^ 2k�1̂j=0 ��x2j+1 __i�j x2i+2���:The answers j�nj for 0 � n � 7 are (2, 3, 6, 18, 106, 2102, 456774, 7108935325). (Thisomputation builds a BDD of size B(�7) = 7,701,683, using about 900 megamems and725 megabytes altogether.)248. False; for example, (x1_x2)^(x2_x3) isn't sweet. (But the onjuntion is sweetif f and g depend on disjoint sets of variables, or if x1 is the only variable on whihthey both depend.)249. (Solution by Shaddin Dughmi and Ian Post.) A nonzero monotone Booleanfuntion is ultrasweet if and only if its prime impliants are the bases of a matroid; seeSetion 7.6.1. By extending answer 247 we an determine the number of ultrasweetfuntions f(x1; : : : ; xn) for 0 � n � 7: (2, 3, 6, 17, 69, 407, 3808, 75165).250. Exhaustive analysis shows that ave B(f) = 76726=7581 � 10:1; ave Z(PI(f)) =71513=7581 � 9:4; Pr(Z(PI(f)) > B(f)) = 151=7581 � :02; and max Z(PI(f))=B(f) =8=7 ours uniquely when f is (x1^x4) _ (x1^x5) _ (x2^x3^x4) _ (x2^x5).251. More strongly, ould it be that lim supZ(PI(f))=B(f) = 1?252. The ZDD should desribe all words on fe1; e01; : : : ; en; e0ng that have exatly junprimed letters and k � j primed letters, and no ourrenes of both ei and e0i in thesame word, for some set of pairs (j; k). For example, if n = 9 and f(x) = v�x, wherev = 110111011, the pairs are (0; 8), (3; 6), and (8; 8). Regardless of the set of pairs, the
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z-pro�le elements will all be O(n2), hene Z(PI(f)) = O(n3). (We order the variablesso that xi and x0i are adjaent.) And f(x) = Sbn=3;:::;b2n=3(x) has Z(PI(f)) = 
(n3).253. Let I(f) be the family of all impliants of f ; then PI(f) = I(f)#. The formulaI(f) = I(f0 ^ f1) [ (e01tI(f0)) [ (e1tI(f1)) is easy to verify. Thus I(f)# = A [ (e01 t(PI(f0) & A)) [ (e1 t (PI(f1) & A)), as in exerise 237. But PI(f0) & A = PI(f0) n A,sine A � I(f).[This reurrene for prime impliants is due to O. Coudert and J. C. Madre,ACM/IEEE Design Automation Conf. 29 (1992), 36{39. Partial results had previouslybeen formulated by B. Reush, IEEE Trans. C{24 (1975), 924{930.℄254. By (53) and (137), we need to show that PI(gh) nPI(fh [ gl) = (PI(gh)nPI(gl)) n(PI(fh)nPI(fl)). But both of these are equal to PI(gh) n (PI(fh) [ PI(gl)), beausefl � fh � gh and fl � gl � gh.[This reurrene produes a ZDD diretly from the BDDs for f and g, and ityields PI(g) when f = 0. Thus it is easier to implement than (137), whih requires alsothe set-di�erene operator on ZDDs. And it sometimes runs muh faster in pratie.℄255. (a) A typial item � like e2 t e5 t e6 has a very simple ZDD. We an readilydevise a BUMP routine that sets g  g � � and returns [�2 g ℄, given ZDDs g and �.To insert � into the multifamily f , start with k    0; then while  = 0, set  BUMP(fk) and k  k + 1. To delete �, assuming that it is present, start withk  0 and  1; while  = 1, set  BUMP(fk) and k  k + 1.(b) Suppose fk and gk are ; for k � m. Set k  0 and t  ; (the ZDD ? ).While k < m, set hk  fk � gk � t and t hfkgk ti. Finally set hm  t.[This representation and its insertion algorithm are due to S. Minato and H. Ari-mura, Pro. Workshop, Web Information Retrieval and Integration (IEEE, 2005), 3{10.℄256. (a) Reet the binary representation from left to right, and append 0s until thenumber of bits is 2n for some n. The result is the truth table of the orrespondingBoolean funtion f(x1; : : : ; xn), with xk orresponding to 22n�k 2 U . When x = 41,for example, 10010100 is the truth table of (x1^�x2^x3) _ (�x1^x2^x3) _ (�x1^�x2^�x3).(b) If x < 22n , we have Z(x) � Un = O(2n=n), by (79) and exerise 192.() There's a simple reursive routine ADD(x; y; ), whih takes a \arry bit" and pointers to the ZDDs for x and y and returns a pointer to the ZDD for x+ y + .This routine is invoked at most 4Z(x)Z(y) times.(d) We annot laim that Z(x .� y) = O(Z(x)Z(y)), beause Z(x .� y) = n + 1and Z(x) = 3 and Z(y) = 1 when x = 22n and y = 1. But by omputing x .� y =(x + 1 + ((22n � 1) � y)) � 22n when y � x < 22n , we an show that Z(x .� y) =O(Z(x)Z(y) log log x). (See the ZDD nodes tj in answer 201.) So the answer is \yes."(e) No. For example, if x = (222k+k � 1)=(22k � 1), we have Z(x) = 2k + 1 butZ(x2) = 3 � (22k � 1) = U2k+k+1 � 2, where U2k+k+1 is the largest possible ZDD sizefor numbers with lg lg x2 < 2k + k + 1 (see part (b)).[This exerise was inspired by Jean Vuillemin, who began to experiment withsuh sparse integers about 1993. Unfortunately the numbers that are of greatest im-portane in ombinatorial alulations, suh as Fibonai numbers, fatorials, binomialoeÆients, et., rarely turn out to be sparse in pratie.℄257. See Pro. Europ. Design and Test Conf. (IEEE, 1995), 449{454. With signed oef-�ients one an use f�2; 4;�8; : : : g instead of f2; 4; 8; : : : g, as in negabinary arithmeti.[In the speial ase where the degree is at most 1 in eah variable and whereaddition is done modulo 2, the polynomials of this exerise are equivalent to the
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multilinear representations of Boolean funtions (see 7.1.1{(19)), and the ZDDs areequivalent to \binary moment diagrams" (BMDs). See R. E. Bryant and Y.-A. Chen,ACM/IEEE Design Automation Conf. 32 (1995), 535{541.℄258. If n is odd, the BDD must depend on all its variables, and there must be at leastdlgne of them. Thus B(f) � dlgne+2 when n > 1, and the skinny funtions of exerise170() ahieve this bound. If n is even, add an unused variable to the solution for n=2.The ZDD question is easily seen to be equivalent to �nding a shortest additionhain, as in Setion 4.6.3. Thus the smallest Z(f) for jf j = n is l(n)+1, inluding > .259. The theory of nested parentheses (see, for example, exerise 2.2.1{3) tells us thatNn(x) = 1 if and only if �x1 + � � � + �xk � x1 + � � � + xk for 0 � k � 2n, with equalitywhen k = 2n. Equivalently, k � n � x1 + � � � + xk � k=2 for 0 � k � 2n. So theBDD for Nn is rather like the BDD for Sn(x), but simpler; in fat, the pro�le elementsare bk = bk=2 + 1 for 0 � k � n and bk = n + 1 � dk=2e for n � k < 2n. HeneB(Nn) = b0 + � � � + b2n�1 + 2 = �n+22 � + 1. The z-pro�le has zk = bk � [k even℄ for0 � k < 2n, beause of HI branhes to ? on even levels; hene Z(Nn) = B(Nn)� n.[An interesting BDD base for the n+1 Boolean funtions that orrespond to Cnn,C(n�1)(n+1), : : : , C0(2n) in 7.2.1.6{(21) an be onstruted by analogy with exerise 49.℄260. (a, b) Arrange the variables xn;0, xn;1, : : : , xn;n�1, xn�1;0, : : : , x1;0, from topto bottom. Then the HI branh from the ZDD root of Rn is the ZDD root of Rn�1.(This ordering atually turns out to minimize Z(Rn) for n � 6, probably also forall n.) The z-pro�le is 1, : : : , 1; n � 2, : : : , 2, 1, 1; n � 3, : : : , 2, 1, 1; : : : ; heneZ(Rn) = �n3� + 2n + 1 � 16n3 and Z(R100) = 161;901. The ordinary pro�le is 1, 2, 2,3, 4, : : : , n�1; n�1, 2n�4, 2n�5, : : : , n�1; n�2, 2n�6, : : : , n�2; : : : ; altogetherB(Rn) = 3�n3�+ �n+12 �+ 3 for n � 5, and B(R100) = 490;153.[See I. Semba and S. Yajima, Trans. Inf. Pro. So. Japan 35 (1994), 1666{1667.Inidentally, the method of exerise 7.2.1.5{26 leads to a ZDD for set partitions that hasonly �n2� variables and �n2�+ 1 nodes. But the onnetion between that representationand the partitions themselves is less diret, thus harder to restrit in a natural way.℄() Now there are 573 variables instead of 5050 when n = 10; the number ofvariables in general is nl � 2l + 1, where l = dlg ne, by Eq. 5.3.1{(3). We examine thebits of an, an�1, : : : , with the most signi�ant bit �rst. Then B(R0100) = 31;861, andone an show that B(R0n) = �n2�l� 164l� 122l��(n�1)+ l+ 83 for n > 2. The ZDD sizeis more ompliated, and appears to be roughly 60% larger; we have Z(R0100) = 50;154.261. Given a Boolean funtion f(x1; : : : ; xn), the set of all binary strings x1 : : : xnsuh that f(x1; : : : ; xn) = 1 is a �nite language, so it is regular. The minimum-statedeterministi automaton A for this language is the QDD for f . (In general, when L isregular, the state ofA after reading x1 : : : xk aepts the language f� j x1 : : : xk� 2 Lg.)[The quoted theorem was disovered in a more general ontext by D. A. Hu�man,Journal of the Franklin Institute 257 (1954), 161{190, and independently by E. F.Moore, Annals of Mathematis Studies 34 (1956), 129{153.℄An interesting example of the onnetion between this theory and the theory ofBDDs an be found in early work by Yuri Breitbart that is summarized in DokladyAkad. Nauk SSSR 180 (1968), 1053{1055. Lemma 7 of Breitbart's paper states, in es-sene, that Bmin( ) = 
(2n=4), where  is the funtion of 2n variables x = (x1; : : : ; xn)and y = (y1; : : : ; yn) de�ned by  (x; y) = x�y � y�x, with the understanding thatx0 = y0 = 0. (Notie that  is sort of a \two-sided" hidden weighted bit funtion.)262. (a) If a denotes the funtion or subfuntion f , we an for example let C(a) =a � 1 denote �f , assuming that eah node oupies an even number of bytes. Then
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C(C(a)) = a, and a link to a denotes a nonnormal funtion if and only if a is odd;a&�2 always points to a node, whih always represents a normal funtion.The LO pointer of every node is even, beause a normal funtion remains normalwhen we replae any variable by 0. But the HI pointer of any node might be omple-mented, and an external root pointer to any funtion of a normalized BDD base mightalso be omplemented. Notie that the > sink is now impossible.(b) Uniqueness is obvious beause of the relation to truth tables: A bead is eithernormal (i.e., begins with 0) or the omplement of a normal bead.() In diagrams, eah omplement link is onveniently indiated by a dot:
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3 ?1(d) There are 22m�1�22m�1�1 normal beads of orderm. The worst ase, B0(f) �B0(fn) = 1 +Pn�1k=0 min(2k; 22n�k�1� 22n�k�1�1) = (Un+1 � 1)=2, ours with thefuntions of answer 110. For the average normalized pro�le, hange 22n�k � 1 in (80)to 22n�k � 2, and divide the whole formula by 2; again the average ase is very loseto the worst ase. For example, instead of (81) we have(1:0; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 127:3; 103:9; 6:0; 1:0; 1:0):(e) We save > , one j6 , two j5 s, and three j4 s, leaving 45 normalized nodes.(f) It's probably best to have subroutines AND, OR, BUTNOT for the ase wheref and g are known to be normal, together with a subroutine GAND for the general ase.The routine GAND(f; g) returns AND(f; g) if f and g are even, BUTNOT(f;C(g)) if fis even but g is odd, BUTNOT(g;C(f)) if g is even but f is odd, C(OR(C(f); C(g))) iff and g are odd. The routine AND(f; g) is like (55) exept that rh  GAND(fh; gh);only the ases f = 0, g = 0, and f = g need be tested as \obvious" values.Notes: Complement links were proposed by S. Akers in 1978, and independentlyby J. P. Billon in 1987. Although suh links are used by all the major BDD pakages,they are hard to reommend beause the omputer programs beome muh moreompliated. The memory saving is usually negligible, and never better than a fatorof 2; furthermore, the author's experiments show little gain in running time.With ZDDs instead of BDDs, a \normal family" of funtions is a family thatdoesn't ontain the empty set. Shin-ihi Minato has suggested using C(a) to denotethe family f � �, instead of �f , in ZDD work.263. (a) If Hx = 0 and x 6= 0, we an't have �x = 1 or 2 beause the olumns of Hare nonzero and distint. [R. W. Hamming, Bell System Teh. J. 29 (1950), 147{160.℄(b) Let rk be the rank of the �rst k olumns of H, and sk the rank of the last kolumns. Then bk = 2rk+sn�k�rn for 0 � k < n, beause this is the number of elementsin the intersetion of the vetor spaes spanned by the �rst k and last n� k olumns.In the Hamming ode, rk = 1+�k and sk = min(m; 2+ �(k� 1)) for k > 1; so we �ndB(f) = (n2 + 5)=2. [See G. D. Forney, Jr., IEEE Trans. IT-34 (1988), 1184{1187.℄() Let qk = 1�pk. MaximizingQnk=1 p[xk=yk℄k q [xk 6=yk℄k is the same as maximizingPnk=1 wkxk, where wk = (2yk � 1) log(pk=qk), so we an use Algorithm B.Notes: Coding theorists, beginning with unpublished work of Forney in 1967,have developed the idea of a ode's so-alled trellis. In the binary ase, the trellis is thesame as the QDD for f , but with all nodes for the onstant subfuntion 0 eliminated.(Useful odes have distane > 1; then the trellis is also the BDD for f , but with ?
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eliminated.) Forney's original motivation was to show that the deoding algorithm ofA. Viterbi [IEEE Trans. IT-13 (1967), 260{269℄ is optimum for onvolutional odes.A few years later, L. R. Bahl, J. Coke, F. Jelinek, and J. Raviv [IEEE Trans. IT-20(1974), 284{287℄ extended trellis struture to linear blok odes and presented furtheroptimization algorithms. See also the papers of G. B. Horn and F. R. Kshishang[IEEE Trans. IT-42 (1996), 2042{2047℄; J. La�erty and A. Vardy [IEEE Trans. C-48(1999), 971{986℄.264. Proedures that ombine the \bottom-up" methods of Algorithm B with \top-down" methods that optimize over predeessors of a node might be more eÆient thanmethods that go stritly in one diretion.
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Bryant, Randal Everitt, v, 33, 35, 52{53,55, 63, 88, 94, 133.Buket sort, 15, 20{21, 89, 102.Burger, Alewyn Petrus, 130.Butler, Jon Terry, 84.BUTNOT subroutine, 70, 71, 91, 92,117, 119, 134.C(f): Length of shortest Booleanhain for f , 64.C~n (oriented yle of order n), 57.Cahe memory, 24, 89.Cahe memos, 24{28, 30{31, 54, 62, 63,94, 105, 117, 127.Caged Life, 68.Camion, Paul Fr�ed�eri Roger, 56.Canalizing funtions, 59, 111.Capitol, Montana, 52.Care set, 62.Carries, 14, 114, 132.Catalan, Eug�ene Charles, numbers, 76.Ceruzzi, Paul Edward, iii.Chaining with separate lists, 20.Chandra, Ashok Kumar (afok k� mAr�}dA), 82.Chang, Angel Xuan ( ), 110.Charateristi polynomial of a Booleanfuntion, see Reliability polynomials.Chekerboard, 121.Chen, Yirng-An ( ), 133.Cheong, Matthew Chao ( ), 89.Chessboard, 49{50, 67{68, 72, 74, 75.Chinese remainder algorithm, 5.Ciruit omplexity, 62.Clearing the ahe, 105.Cliques, 57, 65, 75, 102.overing by, 75.Clone of a node, 19, 21.Closed item sets, see f\.Closure of a family, 75.Clutters, 61, 89, 119, 127.CMath: Conrete Mathematis, a bookby R. L. Graham, D. E. Knuth, andO. Patashnik, 116.CNF (onjuntive normal form), 69, 75.Cobham, Alan, 55.Cokayne, Ernest James, 130.Coke, John, 135.Coding theorists, 134{135.Cofator, 71, 92.Colex order, 36.Collinear points, 75.Collisions in a hash table, 20, 24.Colorings, 31, 44, 56, 63, 72, 75, 93.Combinatorial explosion, 22, 130.Common subfuntions, 14, 22, 27,85, 86, 132.Commutative law, 25, 59, 68, 71, 92,109, 119.Complement links, 77.



138 INDEX AND GLOSSARYComplementary family, 124.Complementation, 44{45, 77.in a ZDD, 70, 117.Complete binary tree, 12.Complexity theory, 62.Components of size two, 63.COMPOSE subroutine, 30, 63.Composition of Boolean funtions,30{31, 61, 63, 94.Compression of data, 2, 31.Computed table, seeMemo ahe.Condensation, 11, 59.Conditional expression, see If-then-elsefuntion.Conjuntion, 17, see AND subroutine.Connetedness funtion, 9{10, 54, 60, 75, 81.Conseutive 1s forbidden, 6, 57, 61.Constrained-by operation (f # g), 62{63.Context-free grammar, 116.Contiguous United States of Ameria,8{9, 29{31, 42{44, 48, 52{53, 63,67, 74, 75, 93, 127.Conway, John Horton, 67.Coolean algebra: An undisovered sequelto Boolean algebra.Coudert, Olivier Ren�e Raymond, 56, 82,92, 120, 126, 127, 132.Counting the number of solutions,4{5, 49, 55, 57.Covering funtion (C(x; y)), 65.Cross elements of a family, 74.Curious properties, 110.Cyle graph Cn, 6, 47, 57.Cyles of a graph, generation of all, 52, 73.(di�erential quanti�ation), 29, 63, 92, 95.Dags, 1, 13, 51, 55, 57.Dahlheimer, Thorsten, 81, 111, 113.Daning links, 122.Dashed lines in diagrams, 0.de Bruijn, Niolaas Govert, yles, 84, 115.de Jaenish, Carl Friedrih Andreevith(�nix�, Karl� Andreeviq�), 129.Dead nodes, 26, 91.Debugging, 117.Deision tables, iv.Deomposition of funtions, 66.Della, Hippolyte, 113.permutations, 69.Delta operation (f g), 71.Dependeny on a variable, 2, 23, 29, 87,95, 102, 131, 132.Depth-�rst searh, 15.Depth-�rst synthesis, 23{31, 62.Derangements, 69.Dereferening, 91, 119, 127.Derivative of a reliability polynomial, 10, 58.Ditionary, 24, 50{51.Di�erene operation (f n g), 71.

Di�erential quanti�ation ( ), 29, 63, 92, 95.Direted ayli graphs, 1, 13, 51, 55, 57.Disjoint deomposition, 66.Disjoint unions, family of, 119.Disjuntive prime form, 53.Distributive laws, 10{11, 59, 71, 92.DNF (disjuntive normal form), 56, 69.Dominating sets, 56, 75.Dominoes, 49{50, 72.Don't-ares, 62.Drehsler, Niole, 104.Drehsler, Rolf, 104.Dual of a Boolean funtion, 64, 69,79, 111, 126.Duality laws, 74.Dubrova, Elena Vladimirovna (Dubrova,Elena Vladimirovna), 79, 104.Dudeney, Henry Ernest, 129, 130.Dughmi, Shaddin Faris(ÞÌ¯�¿ ��n³ Î�n�), 131.Dull, Brutus Cylops, 63.Dumont, Dominique, 113.pistols, 69, 116.Dynami reordering of variables, 41{44,49, 66{67, 121.Dynami storage alloation, 25{26, 62.ek (an elementary family), 71{73, 116.Egyptian frations, 116.Eiter, Thomas Robert, 111.Elaborated truth tables, 10{11, 58{59, 72.Elementary families (ek), 71, 116.Elusive funtions, see Evasive funtions.Empty ase, 48.Empty family, 71.Enumeration of solutions, 4{5, 49, 55, 57.Equality testing of Boolean funtions,23, 55, 57.probabilisti, 58.Error-orreting odes, 77.Eulid (EÎkle�dh), numbers, 116.Euler, Leonhard (E�ler�, Leonard� =��ler, Leonard), 112.Evaluation of Boolean funtions, 4, 59.Evasive funtions, 59.EVBDD, 2.Exat over problems, 49{50, 72, 122.Exhaustive funtions, see Evasive funtions.Existential quanti�ation (9), 28, 63.Exponential growth, 23, 34, 36, 40, 66.Extended truth tables, 39, 106.fC (omplements of f), 74.fD (dual of f), 64, 69, 79, 111, 126.fR (reetion of f), 64, 104.fZ(x1; : : : ; xn) (Z-transform of f), 70.FALSE, 0.



INDEX AND GLOSSARY 139Families of sets, 48, 51, 61, 70{76, 116, 126.elementary (ek), 71{73, 116.unit (�), 71, 115, 119, 127.universal (}), 73, 117, 119, 120, 123, 127.Family algebra, 51, 53, 71, 73{75, 118, 130.Fault-tolerant systems, 65.Faultfree tilings, 72.FBDDs: Free BDDs, 2, 55, 59, 64.Fibonai, Leonardo, of Pisa (= Leonardo�lio Bonaii Pisano), numbers, 34,44, 68, 80, 132.Fibonai threshold funtions, 59.Finite-state automata, 77.Finozhenok, Dmitriy Nikolaevih (Fino-�enok, Dmitri� Nikolaeviq), 130.Five-letter words, 50{51, 73{75.Five-variable funtions, 65, 75.Flip-ops in Life, 68.Floating point arithmeti, 5.Forests, 73, 76.Forney, George David, Jr., 134{135.Fortet, Robert Marie, 56.Fortune, Steven Jonathon, 55.Four-variable funtions, 100.Fraisse, Henri, 126.Fredman, Mihael Lawrene, 131.Free binary deision diagrams, 55, 59, 64.Friedman, Steven Je�rey, 103.Frontiers, 86, 124.Fully elaborated truth tables, 10{11,58{59, 72.Funtional omposition, 30{31, 61, 63, 94.G�: One billion memory aesses, 129{130.Games, 80.Garbage olletion, 25{27, 62, 66, 105, 127.Gardner, Martin, 130.Generalization, sweeping, 10{11, 58{59, 78.Generating all solutions, 4, 57.Generating funtions, 98{99, 112.for solutions to Boolean equations, 4, 9,53, 58, 59, 108, 125, 128, 129.from ZDD for f , 120.Genohi, Angelo, 112.derangements, 69.numbers, 112, 116.Gigamems (G�): One billion memoryaesses, 27, 54, 129{130.Global variables, 18, 19, 91, 95.Graham, Ronald Lewis ( ), 121, 137.Graph theory, 56, 62.Grid graphs, 9{10, 50, 52, 54, 58, 75, 86.G�unther, Wolfgang Albreht, 104.Guy, Rihard Kenneth, 98.hn, see Hidden weighted bit funtion.Hadamard, Jaques Salomon, matries, 81.Hamilton, William Rowan, yles, 74.Hamiltonian paths, 52{53, 73{74, 125.

Hammer, P�eter L�aszl�o (= Peter Leslie =Iv�anesu, Petru Ladislav), 56.Hamming, Rihard Wesley, 134.ode, 77.distane, 73, 81.Hash tables, 19{21, 24{25, 51, 66, seealso Universal hashing.Hash values, 58.H�astad, Johan Torkel, 92.Heap, Mark Andrew, 84.HI �eld, 0{1, 14, 19, 24, 39, 47, 48, 57, 61.Hidden nodes, 38{40, 106.Hidden weighted bit funtion (hn), 33{36,38, 60, 64{65, 67, 103.two-way, 133.Holton, Derek Allan, 130.Hoproft, John Edward, 55.Horiyama, Takashi ( ), 95.Horn, Alfred, funtions, 64, 69, 118, 130.Horn, Gavin Bernard, 135.Hosaka, Kazuhisa ( ), 104.Hu�man, David Albert, 133.Hunt, Harry Bowen, III, 95.Hypergraphs, 50, 127.3-regular, 130.Ibaraki, Toshihide ( ), 95, 111.IBDD, 2.IEEE Transations, vi.If-then-else funtion (f? g: h), 4{5, 27,see also MUX subroutine.nested, see Juntion funtion.Impliants, 132, see also Prime impliantsof Boolean funtions.Impliit graphs, 30.IMPLIES subroutine, 92.In-degree of a vertex, 60.Inlusion and exlusion priniple, 123.Independent-set funtion, 29{31, 42, 67.Independent subsets, 6, 8{9, 29{30,47, 48, 116.maximal, seeKernels.of a hypergraph, 130.In�nite sets, 130.Integer multilinear representation, 9, seeReliability polynomials.Integer programming problems, 56.Integer variables, 56.Interhanging adjaent variables, 38{44, 107.Interleaved bits (x z y), 29, 40, 92.Internet, ii, iii, v.Intersetion operation (f \ g), 71, seealso AND subroutine.Involutions: Self-inverse permutations,64, 90.Isolated verties, 29{30, 100.Isomorphism of BDDs, 57.Isozaki, Hideki ( ), 126.ITE, see If-then-else funtion.



140 INDEX AND GLOSSARYJ(x; f) funtion, 60, 93, 100.Jaenish, Carl Friedrih Andreevith de(�nix�, Karl� Andreeviq�), 129.Jain, Jawahar (jvAhr j{n), 88.Jelinek, Frederik, 135.Jeong, Seh-Woong ( ), 83.Johnson, Samuel, vi.Join operation (f t g), 71, 73{76.Joke, 123.Jump-down, 40{41, 67.Jump-up, 40{41, 67.Juntion funtion (J(x; f)), 60, 93, 100.Kasmar, Andrew Charles, v.Kaneda, Takayuki ( ), 104.Kelly, Patrik Arthur, 130.Kernels, 6{9, 29{30, 47, 48, 56{58, 67,75, 129, 130.Khahiyan, Leonid Genrikhovih (Haqi�n,Leonid Genrihoviq), 131.King paths, simple, 74.King's tours, 74.Knuth, Donald Ervin ( ), i, iii, v,52, 91, 93, 107, 108, 120, 122{124,127, 134, 137.Kotani, Yoshiyuki ( ), 121.Krom, Melven Robert, funtion, 64.Kshishang, Frank Robert, 135.La�erty, John David, 135.Langford, Charles Dudley, pairs, 72.Leading bit of a produt, 45, 70.Lee, Chester Chi Yuan ( ) = ChiLee ( ), 55.Left-hild/right-sibling links, 124.Lexiographi order, 12, 81, 121.Lexiographially largest solution, 57.Lexiographially smallest solution, 4, 55.Liaw, Heh-Tyan ( ), 95.Life game, 67{68.Lin, Bill Chi Wah ( = ), 56.Lin, Chen-Shang ( ), 95.Linear blok odes, 77.Linear Boolean programming, 4, 7{9,56, 59, 120.Linear inequalities, 56.Linear transformations, 97.Linked lists, 89, 105, 110.Listing all solutions, 4, 57.Literals, 10, 92.LO �eld, 0{1, 14, 18{19, 24, 39, 47,48, 57, 61.L�obbing, Martin, 36, 41, 67.Loality of referene, 20, 61.Loyd, Samuel, 129.Lu, Yuan ( ), 88.Luas, Fran�ois �Edouard Anatole,numbers, 80.

M�: One million memory aesses, 43.Mahiarulo, Lua, 79.Madre, Jean Christophe, 82, 92, 126, 132.Maghout, Kh�aled (¢Ø¯nË �¿n�), 56.Majority funtion hxyzi, vi, 0{3, 10, 27,33, 53, 61, 62, 95.Makino, Kazuhisa ( ), 111.Martinelli, Andr�es, 104.Maruoka, Akira ( ), 46, 69.Master pro�le hart, 37, 38, 43, 65{66, 101.Master z-pro�le hart, 70.Mathings, perfet, 50.Mathews, Edwin Lee (= 41), 76.Matries of 0s and 1s, 28, 36, 49, 62, 65,67{68, 77, 81, 90, 101, 122.Matrix multipliation mod 2, 62.Matroids, 131.Maximal liques, 57, 75.Maximal elements (f"), 74.Maximal independent subsets, seeKernels.Maximal indued bipartite subgraphs, 75.Maximization, 4, 7{9, 56, 59, 77, 120.Maximum likelihood, 77.Maximum operator (max(x; y)), 11.Maximum versus maximal, 128.MMillan, Kenneth Lauhlin, 85.MMullen, Curtis Tray, 119.Median funtion hxyzi, vi, 0{3, 10, 27,33, 53, 61, 62, 95.median-of-medians, 66, 102.Median Genohi numbers, 112.Median words, 73.Meet operation (f u g), 71, 73, 74, 129{131.Megamems (M�): One million memoryaesses, 30, 43.Meinel, Christoph, 97.Melding operation (f � g), 16{17, 29,23, 40, 60{61, 87, 106.Memo ahe, 24{28, 30{31, 54, 62, 63,94, 105, 117, 127.Memoization tehnique, 24, 31.Mems: Memory aesses, 22.Middle bit of a produt, 27, 45{47, 69{70.Min-plus algebra, 83.Minato, Shin-ihi ( ), 47, 56, 76,119, 126, 131, 132, 134.Minimal dominating sets, 56, 75.Minimal elements (f #), 74.Minimal solutions, 53.Minimal vertex overs, 57.Minimization redued to maximization, 58.Minimum spanning trees, 58, 75.Minterms, 51, 58.MMIX, 14.Modular arithmeti, 5.Modules in a network, 12{13, 60.Mohanram, Kartik (E� Ç�E� �d� �oX�§ �d), 87.Monominoes, 50, 72.



INDEX AND GLOSSARY 141Monotone Boolean funtions, 29, 53, 54,56, 61, 63, 68{69, 75, 76.dereasing, 116.prime impliants of, 53{54, 89, 110,111, 131.self-dual, 54, 61, 66, 89, 104.Monotone-funtion funtion (�n),21{22, 26, 61, 89.Monus operation (x .� y), vii, 76.Moore, Edward Forrest, 133.MOR (multiple or), 62.Morgenstern, Oskar, 80.Morse, Harold Marston, 81.sequene, 7{8, 58.Moundanos, Konstantinos (= Dinos;Mound�no, Kwnstant�no), 88.Multifamily of sets, 76.Multilinear representation of a Booleanfuntion, 29, 133, see also Reliabilitypolynomials.Multiplex operation (f? g: h), 4{5, 27, 75,see also MUX subroutine.2m-way multiplexer (Mm(x; y)), 12,33, 37, 41, 61, 64, 65, 67, 70, 85,88, 95, 96, 105, 116.Multipliation, binary, 26{27, 45{47,62, 69{70, 76.Multipreision arithmeti, 5.Multiset union (f ℄ g), 76.Mutilated hessboard, 50, 72.Mutually inomparable sets, 61.MUX subroutine, 27, 30, 62, 70, 87, 118.MXOR (multiple xor), 62.Mynhardt, Christina (Kieka) Magdalena,130.n-ube, 38, 55.Natural orrespondene between forestsand binary trees, 73.Neklaes, 13.Negabinary arithmeti, 132.Negative literals, 75{76.Nested parentheses, 76.Network model of omputation, 12{13, 60.Neumann, John von (= MargittaiNeumann J�anos), 80.New England, 8, 53.Newbies, 38{40, 106.Nikolskaia, Ludmila Nikolaievna(Nikol'ska�, L�dmila Nikolaevna),100.Nikolskaia, Maria (= Maha) Nikolaievna(Nikol'ska�, Mari� Nikolaevna),100.Nim-like games, 80.No-three-on-a-line problem, 75.with no two queens attaking, 129.Nonstandard ordering of variables, 34.Nonsubsets (f % g), 74, 131.

Nonsupersets (f & g), 74, 127{129, 132.Nonuniform Turing mahines, 55.Normal Boolean funtions, 77.Normal families of sets, 134.Normalized BDDs, 77.Notational onventions, vi, 126.J(u1; : : : ; un; v1; : : : ; vn) (juntion), 60.Mm(x; y) (2m-way multiplexer), 12, 88.� � � (meld), 16.hxyzi (median), vi.jf j (number of solutions), 5.f # (minimal elements), 74.f� (permuted variables), 34.f℄ (ross elements), 74.f" (maximal elements), 74.f\ (losure), 75.f k g (inomparability), 63.f # g (onstrained-by), 62.f t g (join), 71.f u g (meet), 71.f g (delta), 71.f=g (quotient), 71.f mod g (remainder), 71.f % g (nonsubsets), 74.f . g (subsets), 126.f & g (nonsupersets), 74.f - g (supersets), 126.a x k (symmetrizing), 72.NOTBUT subroutine, 91.NP-omplete problems, 38, 63.O-notation, 36.OBDD, 2.OFDD, 2.OKFDD, 2.Okuno, Hiroshi \Githang" ( ), 126.Omphaloskepsis, 33.op: Four-bit binary operation ode, 18{19.Optimal versus optimum, 44.Optimizing the order of variables, 37{38,43, 44, 65{67, 101.for ZDDs, 70.Optimum linear arrangement problem, 66.Optimum solutions to Boolean equations,4, 7{9, 49, 56, 59, 77, 120.OR subroutine, 70, 71, 117, 118, 134.Ordered BDDs, 0, 1, 14, 55, 57, 95, 113.Ordered pair of two Boolean funtions, 17.Ordering of variables, 14, 34, 69, 77, 84.by loal transformations, 38{44, 107.optimum, 37{38, 43, 46, 65{68, 70,101, 115, 116.Organ-pipe order, 37, 65, 84, 104.Oriented yles, 57, 74.Oriented paths, 51.OROR, 119, see ANDAND.Orthogonal families of sets, 71.�Osterg�ard, Patri Ralf Johan, 130.Overlapping subtrees, 1, 55.



142 INDEX AND GLOSSARY} (power set, the family of all subsets),73, 117{120, 123, 127.P = NP(?), 102.Pakages for BDD operations, v, 22, 55, 134.Pakages for ZDD operations, v, 70,71, 74, 134.Page in a virtual address, 61.Parentheses, nested, 76.Parity, 8.Parity hek matrix, 77.Partial-tautology funtions (tj), 117{118,120, 132.Partially symmetri funtions, 67, 100, 107.Partitions of a set, 77, 86.Patashnik, Oren, 137.Patriia, 55.PBDD, 2.Peled, Uri Natan (CLT OZP IXE�), 111.Perfet mathings, 50.Permutation funtion (Pm), 36, 70.Permutation matries, 36.Permutation of variables, 14, 34, 69, 77, 84.by loal transformations, 38{44, 71, 107.optimum, 37{38, 43, 65{67, 70, 101.Permutations, 69.Permuted 2m-way multiplexer, 33,37, 65, 70.Perrin, Fran�ois Olivier Raoul, numbers,80, 98.Phi (�, 34, 44, 68.Pi (�), as soure of \random" data, 3,45, 70, 99, 108.PI(f): The prime impliants of f ,53{54, 75{76.Pisot, Charles, number, 98.Pistols, 69, 116.Planar graphs, 31.Plasti onstant, 34, 98.Polynomials, omputed from BDDs,9{10, 58.Polynomials, represented by ZDDs, 76.Polyominoes, 50, 72.Pool of available memory, 18.Positive Boolean funtions, seeMonotoneBoolean funtions.Post, Ian Thomas, 131.Postal odes, 74.Power set (}), 73, 117{120, 123, 127.Prime lauses, 75.Prime impliants of Boolean funtions,56, 75{76.monotone, 53{54, 89, 110, 111, 131.Primitive polynomials modulo 2, 84.Primitive strings: Not a power ofshorter strings, 2.Produt of binary numbers, 26{27,45{47, 69{70, 76.Pro�le (b0; : : : ; bn) of a funtion, 31{34, 38,60, 61, 64, 69, 77, 87, 89, 120.

Projetion funtions (xk), 63, 70, 72.Q(f) (the QDD size of f), 33, 46, 70, 85.QDD: A quasi-BDD, 32.Quanti�ed formulas, 28{30, 62{63, 109.Quasi-BDDs, 32{33, 46, 66, 85, 96,100, 133, 134.Quasi-pro�le (q0; : : : ; qn) of a funtion, 33,35, 38, 48, 60, 64, 66, 69, 87, 116.Queen graphs Qn, 75.Quik, Jonathan Horatio, 63.Quotient operation (f=g), 71.Random bit generation, 110.Random solutions to Boolean equations,4, 6{7, 31.Randrianarivony, Arthur, 113.Range, Niko, 105.Rank of a matrix mod 2, 77.Raviv, Josef (AIAX SQEI), 135.Reahable nodes, 15.Read-one branhing programs, see FBDDs.Read-one funtions, 44{45, 68, 69.generalized, 111.Read-one threshold funtions, 111.Reurrene relations, 9, 22, 26, 44, 64, 68,80, 98, 101, 108, 111, 127, 130.Reursive algorithms, 23{31, 54, 62{64,70{71, 74{75, 81, 110.Reursive priniple underlying BDDs, 23, 27.Reursive priniple underlying ZDDs,116{119.Redued BDDs, 0{1, 23, 24, 33, 55,57, 60, 95, 113.Redution to a BDD, 14{16.Referene ounters, 25{26, 62, 66, 91,94, 117, 119, 127.Reetion of a binary representation, 132.Reetion of a Boolean funtion, 64, 104.Regular Boolean funtions, 61, 69.enumeration of, 89.Regular hypergraphs, 130.Regular languages, 77.Relay-ontat networks, 55.Reliability polynomials, 4, 9{10, 58, 59, 65.Remainder operation (f mod g), 71,118, 123.Remainders mod 3, 92.Reordering of variables, 14, 34, 69, 77, 84.by loal transformations, 38{44, 71, 107.optimum, 37{38, 43, 65{67, 70, 101.Replaement funtions, 63.Replaement of variables by onstants,16, 60, 92.Replaement of variables by funtions, 61.Restrited growth sequenes, 77.Restrited-to operation (f + g), 92.Restrition of a Boolean funtion, 16, 60, 87,92, 111, see also Subfuntions.Reush, Bernd, 132.



INDEX AND GLOSSARY 143Right-sibling/left-hild links, 124.Rivest, Ronald Linn, 59.ROBDD: A redued, ordered binarydeision diagram, 0.Rookwise-onneted, 50.Root of a BDD, 0{2, 5, 13, 25, 78, 96, 134.Rosenkrantz, Daniel Jay, 95.Rudeanu, Sergiu, 56.Rudell, Rihard Lyle, v, 28, 39, 41, 42,55, 66, 93, 107.Ruler funtion (�n), 66.Sanity hek routine, 117.Sasao, Tsutomu ( ), 84.SAT-ounting, see Enumeration of solutions.Saturating subtration (x .� y), vii, 76.Sauerho�, Martin Paul, 36, 44, 93, 99, 110.Savik�y, Petr, 106.Shmidt, Erik Meinehe, 55.Seidel, Philipp Ludwig von, 112{113.Self-avoiding walks, 52.Self-dual Boolean funtions, monotone,54, 61, 66, 89, 104.Semba, Ihiro ( ), 85, 133.Separated tilings, 72.Sequential representation of BDDs,4{5, 57, 59, 60.Sequential staks, 18, 25.Set partitions, 77, 86.Sets of ombinations, see Families of sets.Seven-segment display, 60.SGB word: A word in WORDS(5757), 73.Shannon, Claude Elwood, Jr., 55.Shared BDDs, 13, 55, see BDD base.Shared subtrees, 1, 55.Sheep-and-goats operation (� � �), 40.Shortest paths, 104.Sideways addition, 7{9, 11, 29, 33,49, 66, 72, 81.Siegel, Carl Ludwig, 98.Sieling, Detlef Hermann, 14, 97, 102, 107.Sifting, 41{44, 48, 49, 67, 99, 101, 102, 121.automati, 43, 107.partial, 43.Simon, Imre, 83.Simple paths, 51{53, 73{74.Sink nodes, 0{1, 5, 17, 39.? , 0{6, 47, 48, 51{52, 57, 70, 71, 134.> , 0{7, 48, 57, 71, 134.more than two, 64.Sink verties, 51, 80.Size of a BDD (B(f)), 3, 31{33.Size of a BDD base (B(f1; : : : ; fm)),14, 27, 38.Skinny Boolean funtions, 68{69, 132.Slates of options, 35, 64, 99.Slobodov�a, Anna Mikl�a�sov�a, 97.Slot in a virtual address, 61.Solitary nodes, 38{40, 106.

Solutions to Boolean equations, 4,49, 76, 120.average weight of, 74.omputing the generating funtions for, 4,9, 53, 58, 59, 108, 120, 125, 128, 129.enumerating, 4{5, 49, 55, 57.generating all, 4, 57.lexiographially least, 4, 55.lexiographially greatest, 57.minimal, 53.optimum, 4, 7{9, 49, 56, 59, 79, 120.random, 4, 6{7, 31.weighted, 7{9, 57{59, 79.Somenzi, Fabio, v, 56, 83, 91, 97.Sorerer's apprentie, 23.Sorting, 40.Soure verties, 51.Spae omplexity, 55.Spae versus time, 18.Spanning subgraphs, 9.Spanning tree funtion, 75.Spanning trees, 9, 54, 58.Spark plug, 108.Sparse Boolean funtions, 49, 51.Sparse integers, 76.Spitkovsky, Valentin Ilyih (Spitkovski�,Valentin Il~iq), 110.Square routes, 52, 74.Square strings, 2{3.Standard deviation, 125.Stanford GraphBase, ii, iii, 50.Stanford University, v.State apitols, 52{53, 74.Still Life, 68.Storage aess funtion, see 2m-waymultiplexer.Stringology, 2.Strong produt of graphs (G�H), 74.Sububes, 55, 63, 75, 119.Subfuntions, 2{3, 12, 13, 55.Subset funtion, 37.Substituting an expression for a variable, 57.Substituting one variable for another, 59.Substitution of onstants for variables,16, 60, 92.Substitution of funtions for variables, 61.Subtables, 2{3, 17, 32, 33, 38, 59, 85,87, 96, 116.Subtration of sparse integers, 76.Sum of squares, 58.Sum of sparse integers, 76.Summation of binomial oeÆients, 98{99.Supowit, Kenneth Jay, 103.Support of a family, 116.Swap-in-plae algorithm, 38{40, 66, 71.Swapping adjaent levels, 38{44, 107.Sweet Boolean funtions, 54, 75.Sylvester, James Joseph, 116.
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