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KnuthCERUZZIInternetStanford GraphBaseInternetPREFACE
How 
an Knuth �nish the series,given all that has happened in 
omputingsin
e volume 1 appeared in 1968?| P. E. CERUZZI, Computing Reviews 8805-0370 (May 1988)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those 
arefully-
he
ked volumes,alas, were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is huge; I 
annot hope to have surrounded it enough to 
orral it
ompletely. So I beg you to let me know about any de�
ien
ies that you dis
over.To put the material in 
ontext, this pre-fas
i
le 
ontains Se
tion 7.1.4 of along, long 
hapter on 
ombinatorial algorithms. Chapter 7 will eventually �ll atleast three volumes (namely Volumes 4A, 4B, and 4C), more likely four, assumingthat I'm able to remain healthy. It will begin with a short review of graphtheory, with emphasis on some highlights of signi�
ant graphs in the StanfordGraphBase, from whi
h I will be drawing many examples. Then 
omes Se
tion7.1: Zeros and Ones, beginning with basi
 material about Boolean operationsin Se
tion 7.1.1 and Boolean evaluation in Se
tion 7.1.2. Se
tion 7.1.3 appliesthose ideas to make 
omputer programs run fast. And Se
tion 7.1.4, whi
h you'reabout to read here, dis
usses the representation of Boolean fun
tions.The next part, 7.2, is about generating all possibilities, and it begins withSe
tion 7.2.1: Generating Basi
 Combinatorial Patterns. Se
tion 7.2.2 will dealwith ba
ktra
king in general. And so it will 
ontinue, if all goes well; an outlineof the entire Chapter 7 as 
urrently envisaged appears on the tao
p webpagethat is 
ited on page ii. Fas
i
les for everything that pre
edes Se
tion 7.2.2 havealready been published, ex
ept for Se
tions 7.1.3 and 7.1.4 (whi
h will soon bepa
kaged into Volume 4 Fas
i
le 1, �lling the gap between Volume 4 Fas
i
le 0and Volume 4 Fas
i
le 2). The pre-fas
i
le for Se
tion 7.1.3 is available on theInternet for beta-testing. iii



iv PREFACE de
ision tablesThis part of The Art of Computer Programming gave me many more sur-prises than anything else so far. It deals with a topi
 that burst on the s
ene in1986, long after old-timers like me thought that we had already seen all of thebasi
 data stru
tures that would ever prove to be of extraspe
ial importan
e.I didn't a
tually learn about binary de
ision diagrams until 1995 or so, be
auseI was preo

upied with other things. At that time I wrote some experimentalprograms and realized that I must try to \shoehorn" this topi
 into Se
tion 7.1somehow. I kept seeing more and more papers about it in the literature, andI �led them away with the evergrowing pile of things-to-read-before-revising-Se
tion-7.1. (My �rst draft of Se
tion 7.1, written in 1977, in
luded a dozen orso pages of material about \de
ision tables," whi
h I've now dis
arded be
ausethe new ideas are mu
h more important.)I began to write Se
tion 7.1.4 in May of 2007, thinking that it wouldeventually �ll roughly 35 pages, and that I 
ould easily draft it in three months.Now, more than a year later, I'm looking at more than 130 
ompleted pages|even though I've 
onstantly had to 
ut, 
ut, 
ut! Every week I've been 
ominga
ross fas
inating new things that simply 
ry out to be part of The Art.Binary de
ision diagrams (BDDs) are wonderful, and the more I play withthem the more I love them. For �fteen months I've been like a 
hild with a newtoy, being able now to solve problems that I never imagined would be tra
table.(Just last week I was �nally able to answer resear
h problem 7.1.1{68 for n � 15,resolving a question that had been bugging me for years.) Every time I've trieda new appli
ation, I've learned more. I suspe
t that many readers will havethe same experien
e, and that there will always be more to learn about su
h afertile subje
t. Already I know that I 
ould easily tea
h a one-semester 
ollege
ourse about binary de
ision diagrams, at either the undergraduate or graduatelevel, with more than enough important material to 
over. Many aspe
ts of thissubje
t are still ripe for further investigation and improvement.Most of the theory and pra
ti
e related to BDDs is due to resear
hers inthe areas of hardware design, testing, and veri�
ation. I have, however, tried topresent it from the standpoint of a programmer who is primarily interested in
ombinatorial algorithms. The topi
 of Boolean fun
tions and binary de
isiondiagrams 
an of 
ourse be interpreted so broadly that it en
ompasses the entiresubje
t of 
omputer programming. The real goal of this fas
i
le is to fo
uson 
on
epts that appear at the lowest levels, 
on
epts on whi
h we 
an ere
tsigni�
ant superstru
tures. And even these apparently lowly notions turn outto be surprisingly ri
h, with expli
it ties to se
tions 2.2.1, 2.3.2, 2.3.3, 2.3.4.1,2.3.4.2, 3.2.2, 3.4.1, 4.3.2, 4.6.4, 5.1.4, 5.3.1, 5.3.4, 6.3, and 6.4 of the �rst threevolumes. I strongly believe in building up a �rm foundation, so I have dis
ussedBoolean topi
s mu
h more thoroughly than I will be able to do with material thatis newer or less basi
. Se
tion 7.1.4 presented me with an extreme embarrassmentof ri
hes: After typing the manus
ript I was astonished to dis
over that I had
ome up with 264 exer
ises, even though|believe it or not| I had to eliminatequite a lot of the interesting material that appears in my �les. In fa
t, I knowthat I've only begun to s
rat
h the surfa
e in some areas of this topi
.



PREFACE v InternetBryantRudellSomenziKa
smarStanfordKnuth
The published literature about binary de
ision diagrams is vast, and stillgrowing rapidly. Most of it appears in the pro
eedings of 
onferen
es that I havenever attended, or in spe
ialized journals that I rarely have o

asion to read.So I fear that in several respe
ts my knowledge is woefully behind the times,although I've tried my best. Please look, for example, at the exer
ises that I've
lassed as resear
h problems (rated with diÆ
ulty level 46 or higher), namelyexer
ises 127, 169, 179, 206, 251, and 264; I've also impli
itly mentioned or posedadditional unsolved questions in the answers to exer
ises 41, 74, 118, 121(
), 129,136, 142, 145, 158, 182, 184, 212, 215, 237, 241, and 245. Are those problemsstill open? Please inform me if you know of a solution to any of these intriguingquestions. And of 
ourse if no solution is known today but you do make progresson any of them in the future, I hope you'll let me know.I urgently need your help also with respe
t to dozens of ideas that o

urredto me as I was preparing this material. I 
ouldn't help thinking of basi
 questionswhose answers were not given in any of the publi
ations I had seen. I 
ertainlydon't like to re
eive 
redit for things that have already been published by others,and most of these results are quite natural \fruits" that were just waiting to be\plu
ked." Therefore please tell me if you know who deserves to be 
redited,with respe
t to Theorem P, or to the ideas found in exer
ises 2, 15, 17, 23, 29,30, 32, 33, 34, 36, 38, 40, 55, 59(b), 60, 61, 63, 64, 72, 74, 76, 77, 88, 92, 100,107, 110, 111, 119, 120, 124, 125, 126, 132, 135, 146, 156, 157, 160, 161, 162, 164,174(a,b), 175, 181, 183, 184, 190, 191, 192, 193, 196, 207, 221, 222, 226, 232, 233,244, 247, 252, 254, 258, or 259, and/or the implementation of f ℄ in the answerto exer
ise 236. Have any of those results appeared in print, to your knowledge?The experimental toolkits that I wrote for working with BDDs and ZDDswhile writing this se
tion are available (in unpolished form) on the Internet frommy \downloadable programs" page.I owe a great debt of gratitude to Randy Bryant, Ri
k Rudell, and FabioSomenzi, who helped me signi�
antly at several 
ru
ial stages as I was preparingSe
tion 7.1.4. Andy Ka
smar generously provided guest a

ounts on some ofStanford InfoLab's ever-
hanging 
omputers, and held my hand as I ran some ofthe larger programs des
ribed herein. And as usual I thank dozens of people whohave patiently read what I've written and 
orre
ted dozens of dozens of mistakes.I happily o�er a \�nder's fee" of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually do my best to give youimmortal glory, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.28 August 2008



vi PREFACE BOSWELLJohnsonnotation hxyzimedian fun
tionmajority fun
tionNotationIEEE Transa
tions
I at last deliver to the world a Work whi
h I have long promised,and of whi
h, I am afraid, too high expe
tations have been raised.The delay of its publi
ation must be imputed, in a 
onsiderable degree,to the extraordinary zeal whi
h has been shown by distinguished personsin all quarters to supply me with additional information.| JAMES BOSWELL, The Life of Samuel Johnson, LL.D. (1791)A note on notation. Several formulas in Se
tion 7.1.4 use the notation hxyzi,for the median fun
tion (aka majority fun
tion) that is dis
ussed extensively inSe
tion 7.1.1. If you run a
ross other notations that may be unfamiliar, pleaselook at the Index to Notations at the end of Volumes 1, 2, or 3, and/or the entriesunder \Notation" in the index to the present booklet. Of 
ourse Volume 4 willsome day 
ontain its own Index to Notations.A note on referen
es. Referen
es to IEEE Transa
tions in
lude a letter 
odefor the type of transa
tions, in boldfa
e pre
eding the volume number. Forexample, `IEEE Trans. C-35' means the IEEE Transa
tions on Computers,volume 35. The IEEE no longer uses these 
onvenient letter 
odes, but the
odes aren't too hard to de
ipher: `EC' on
e stood for \Ele
troni
 Computers,"`IT' for \Information Theory," `SE' for \Software Engineering," and `SP' for\Signal Pro
essing," et
.; `CAD' meant \Computer-Aided Design of IntegratedCir
uits and Systems."



PREFACE vii Woelfeluniversal hashingsaturating subtra
tionmonusAn external exer
ise. This fas
i
le refers to exer
ise 6.4{78, whi
h did notappear in the se
ond edition of Volume 3 until the 24th printing. Here is a 
opyof that exer
ise and its answer. (Please don't peek at the answer until you'veworked on the exer
ise.)
x 78. [M26 ℄ (P. Woelfel.) If 0 � x < 2n, let ha;b(x) = b(ax + b)=2k
mod 2n�k. Showthat the set fha;b j 0 < a < 2n; a odd, and 0 � b < 2kg is a universal family of hashfun
tions from n-bit keys to (n� k)-bit keys. (These fun
tions are parti
ularly easy toimplement on a binary 
omputer.)
78. Let g(x) = bx=2k
mod 2n�k and Æ(x; x0) = P2k�1b=0 [g(x+ b)= g(x0 + b)℄. ThenÆ(x + 1; x0 + 1) = Æ(x; x0) + [g(x+ 2k)= g(x0 + 2k)℄ � [g(x)= g(x0)℄ = Æ(x; x0). AlsoÆ(x; 0) = (2k .� (xmod 2n)) + (2k .� ((�x) mod 2n)) when 0 < x < 2n, where a .� b =max(a� b; 0). Therefore Æ(x; x0) = (2k .� ((x� x0) mod 2n))+ (2k .� ((x0 � x) mod 2n))when x 6� x0 (modulo 2n).Now let A = fa j 0 < a < 2n; a oddg and B = fb j 0 � b < 2kg. We want toshow that Pa2APb2B [g(ax+ b)= g(ax0 + b)℄ � R=M = 2n�1+k=2n�k = 22k�1 when0 � x < x0 < 2n. And indeed, if x0 � x = 2pq with q odd, then we haveXa2A Xb2B [g(ax+ b)= g(ax0 + b)℄ =Xa2A Æ(ax; ax0) = 2Xa2A(2k .� ((2paq) mod 2n))
= 2p+12n�p�1�1Xj=0 (2k .�2p(2j+1)) = 2p+12k�p�1�1Xj=0 (2k�2p(2j+1))[p<k ℄ = 22k�1[p<k ℄:[See Le
ture Notes in Computer S
ien
e 1672 (1999), 262{272.℄



0 COMBINATORIAL ALGORITHMS (F1B) BDDROBDDWIKIPEDIAbinary de
ision diagrams{triesmedian fun
tion+++rootbran
h nodedashed lineLOHIsink node

In popular usage, the term BDDBDDBDD almost always refers toRedu
ed Ordered Binary De
ision Diagram (ROBDD in the literature,used when the ordering and redu
tion aspe
ts need to be emphasized).| WIKIPEDIA, The Free En
y
lopedia (7 July 2007)7.1.4. Binary De
ision DiagramsLet's turn now to an important family of data stru
tures that have rapidly be-
ome the method of 
hoi
e for representing and manipulating Boolean fun
tionsinside a 
omputer. The basi
 idea is a divide-and-
onquer s
heme somewhat likethe binary tries of Se
tion 6.3, but with several new twists.Figure 21 shows the binary de
ision diagram for a simple Boolean fun
tionof three variables, the median fun
tion hx1x2x3i of Eq. 7.1.1{(43). We 
an un-derstand it as follows: The node at the top is 
alled the root. Every internal nodekj , also 
alled a bran
h node, is labeled with a name or index j = V ( kj ) thatdesignates a variable; for example, the root node k1 in Fig. 21 designates x1.Bran
h nodes have two su

essors, indi
ated by des
ending lines. One of thesu

essors is drawn as a dashed line and 
alled LO; the other is drawn as a solidline and 
alled HI. These bran
h nodes de�ne a path in the diagram for any valuesof the Boolean variables, if we start at the root and take the LO bran
h fromnode kj when xj = 0, the HI bran
h when xj = 1. Eventually this path leadsto a sink node, whi
h is either ? (denoting FALSE) or > (denoting TRUE).



7.1.4 BINARY DECISION DIAGRAMS 1 FALSETRUEBDDbinary de
ision dagbinary treeshared subtreesdire
ted a
y
li
 graphdagOrdered BDDRedu
ed BDD
? >

12 23 Fig. 21. The binary de
ision diagram (BDD)for the majority or median fun
tion hx1x2x3i.
In Fig. 21 it's easy to verify that this pro
ess yields the fun
tion value FALSEwhen at least two of the variables fx1; x2; x3g are 0, otherwise it yields TRUE.Many authors use 0 and 1 to denote the sink nodes. We use ? and >instead, hoping to avoid any 
onfusion with the bran
h nodes k0 and k1 .Inside a 
omputer, Fig. 21 would be represented as a set of four nodes inarbitrary memory lo
ations, where ea
h node has three �elds V LO HI .The V �eld holds the index of a variable, while the LO and HI �elds ea
h pointto another node or to a sink: 12 23? >? >

ROOT (1)
With 64-bit words, we might for example use 8 bits for V, then 28 bits for LOand the other 28 bits for HI.Su
h a stru
ture is 
alled a \binary de
ision diagram," or BDD for short.Small BDDs 
an readily be drawn as a
tual diagrams on a pie
e of paperor a 
omputer s
reen. But in essen
e ea
h BDD is really an abstra
t set oflinked nodes, whi
h might more properly be 
alled a \binary de
ision dag"|abinary tree with shared subtrees, a dire
ted a
y
li
 graph in whi
h exa
tly twodistinguished ar
s emanate from every nonsink node.We shall assume that every BDD obeys two important restri
tions. First, itmust be ordered : Whenever a LO or HI ar
 goes from bran
h node ki to bran
hnode kj , we must have i < j. Thus, in parti
ular, no variable xj will ever bequeried twi
e when the fun
tion is evaluated. Se
ond, a BDD must be redu
ed,in the sense that it doesn't waste spa
e. This means that a bran
h node's LOand HI pointers must never be equal, and that no two nodes are allowed to havethe same triple of values (V; LO; HI). Every node should also be a

essible fromthe root. For example, the diagrams

? >
12 33 2 and 12 23 3 3 3? ? ? > ? > > > (2)

are not BDDs, be
ause the �rst one isn't ordered and the other one isn't redu
ed.Many other 
avors of de
ision diagrams have been invented, and the liter-ature of 
omputer s
ien
e now 
ontains a ri
h alphabet soup of a
ronyms like



2 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 a
ronymsEVBDDFBDDIBDDOBDDOFDDOKFDDPBDDZDDtruth table+bead+square+primitivestringologydependen
y on a variablerootsubfun
tionssubtables
ompression of databeads

EVBDD, FBDD, IBDD, OBDD, OFDD, OKFDD, PBDD, : : : , ZDD. In thisbook we shall always use the unadorned 
ode name \BDD" to denote a binaryde
ision diagram that is ordered and redu
ed as des
ribed above, just as wegenerally use the word \tree" to denote an ordered (plane) tree, be
ause su
hBDDs and su
h trees are the most 
ommon in pra
ti
e.Re
all from Se
tion 7.1.1 that every Boolean fun
tion f(x1; : : : ; xn) 
or-responds to a truth table, whi
h is the 2n-bit binary string that starts withthe fun
tion value f(0; : : : ; 0) and 
ontinues with f(0; : : : ; 0; 1), f(0; : : : ; 0; 1; 0),f(0; : : : ; 0; 1; 1), : : : , f(1; : : : ; 1; 1; 1). For example, the truth table of the medianfun
tion hx1x2x3i is 00010111. Noti
e that this truth table is the same as the se-quen
e of leaves in the unredu
ed de
ision tree of (2), with 0 7! ? and 1 7! > .In fa
t, there's an important relationship between truth tables and BDDs, whi
his best understood in terms of a 
lass of binary strings 
alled \beads."A truth table of order n is a binary string of length 2n. A bead of order n isa truth table � of order n that is not a square; that is, � doesn't have the form�� for any string � of length 2n�1. (Mathemati
ians would say that a bead is a\primitive string of length 2n.") There are two beads of order 0, namely 0 and 1;and there are two of order 1, namely 01 and 10. In general there are 22n� 22n�1beads of order n when n > 0, be
ause there are 22n binary strings of length 2nand 22n�1 of them are squares. The 16� 4 = 12 beads of order 2 are0001; 0010; 0011; 0100; 0110; 0111; 1000; 1001; 1011; 1100; 1101; 1110; (3)these are also the truth tables of all fun
tions f(x1; x2) that depend on x1, inthe sense that f(0; x2) is not the same fun
tion as f(1; x2).Every truth table � is a power of a unique bead, 
alled its root. For if � haslength 2n and isn't already a bead, it's the square of another truth table � 0; andby indu
tion on the length of � , we must have � 0 = �k for some root �. Hen
e� = �2k, and � is the root of � as well as � 0. (Of 
ourse k is a power of 2.)A truth table � of order n > 0 always has the form �0�1, where �0 and �1 aretruth tables of order n � 1. Clearly � represents the fun
tion f(x1; x2; : : : ; xn)if and only if �0 represents f(0; x2; : : : ; xn) and �1 represents f(1; x2; : : : ; xn).These fun
tions f(0; x2; : : : ; xn) and f(1; x2; : : : ; xn) are 
alled subfun
tions of f ;and their truth tables, �0 and �1, are 
alled subtables of � .Subtables of a subtable are also 
onsidered to be subtables, and a table is
onsidered to be a subtable of itself. Thus, in general, a truth table of order nhas 2k subtables of order n � k, for 0 � k � n, 
orresponding to 2k possiblesettings of the �rst k variables (x1; : : : ; xk). Many of these subtables often turnout to be identi
al; in su
h 
ases we're able to represent � in a 
ompressed form.The beads of a Boolean fun
tion are the subtables of its truth table that hap-pen to be beads. For example, let's 
onsider again the median fun
tion hx1x2x3i,with its truth table 00010111. The distin
t subtables of this truth table aref00010111; 0001; 0111; 00; 01; 11; 0; 1g; and all of them ex
ept 00 and 11 arebeads. Therefore the beads of hx1x2x3i aref00010111; 0001; 0111; 01; 0; 1g: (4)



7.1.4 BINARY DECISION DIAGRAMS 3 B(f)size of its BDDpi as random exAnd now we get to the point: The nodes of a Boolean fun
tion's BDD are inone-to-one 
orresponden
e with its beads. For example, we 
an redraw Fig. 21by pla
ing the relevant bead inside of ea
h node:
0 1
000101110001 011101 : (5)

In general, a fun
tion's truth tables of order n + 1 � k 
orrespond to its sub-fun
tions f(
1; : : : ; 
k�1; xk; : : : ; xn) of that order; so its beads of order n+1� k
orrespond to those subfun
tions that depend on their �rst variable, xk. There-fore every su
h bead 
orresponds to a bran
h node kk in the BDD. And if kk isa bran
h node 
orresponding to the truth table � 0 = � 00� 01, its LO and HI bran
hespoint respe
tively to the nodes that 
orrespond to the roots of � 00 and � 01.This 
orresponden
e between beads and nodes proves that every Booleanfun
tion has one and only one representation as a BDD. The individual nodesof that BDD might, of 
ourse, be pla
ed in di�erent lo
ations inside a 
omputer.If f is any Boolean fun
tion, let B(f) denote the number of beads that it has.This is the size of its BDD|the total number of nodes, in
luding the sinks. Forexample, B(f) = 6 when f is the median-of-three fun
tion, be
ause (5) has size 6.To �x the ideas, let's work out another example, the \more-or-less random"fun
tion of 7.1.1{(22) and 7.1.2{(6). Its truth table, 1100100100001111, is abead, and so are the two subtables 11001001 and 00001111. Thus we know thatthe root of its BDD will be a k1 bran
h, and that the LO and HI nodes below theroot will both be k2 s. The subtables of length 4 are f1100; 1001; 0000; 1111g;here the �rst two are beads, but the others are squares. To get to the next level,we break the beads in half and 
arry over the square roots of the nonbeads,identifying dupli
ates; this leaves us with f11; 00; 10; 01g. Again there are twobeads, and a �nal step produ
es the desired BDD:12 23 34 4 ? >> ? > ?
: (6)

(In this diagram and others below, it's 
onvenient to repeat the sink nodes ?and > in order to avoid ex
essively long 
onne
ting lines. Only one ? nodeand one > node are a
tually present; so the size of (6) is 9, not 13.)An alert reader might well be thinking at this point, \Very ni
e, but whatif the BDD is huge?" Indeed, fun
tions 
an easily be 
onstru
ted whose BDD isimpossibly large; we'll study su
h 
ases later. But the wonderful thing is that agreat many of the Boolean fun
tions that are of pra
ti
al importan
e turn outto have reasonably small values of B(f). So we shall 
on
entrate on the good



4 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 evaluationlexi
ographi
ally smallesttruth table
ount the number of solutionsenumeration of solutionsSAT-
ounting, see enumeration of solutionsrandom solutionslist all solutionsBoolean programming problemlinear Boolean programminggenerating fun
tionreliability polynomialsequential representation of BDDs+

news �rst, postponing the bad news until we've seen why BDDs have proved tobe so popular.BDD virtues. If f(x) = f(x1; : : : ; xn) is a Boolean fun
tion whose BDD isreasonably small, we 
an do many things qui
kly and easily. For example:� We 
an evaluate f(x) in at most n steps, given any input ve
tor x = x1 : : : xn,by simply starting at the root and bran
hing until we get to a sink.� We 
an �nd the lexi
ographi
ally smallest x su
h that f(x) = 1, by start-ing at the root and repeatedly taking the LO bran
h unless it goes dire
tlyto ? . The solution has xj = 1 only when the HI bran
h was ne
essary at kj .For example, this pro
edure gives x1x2x3 = 011 in the BDD of Fig. 21, andx1x2x3x4 = 0000 in (6). (It lo
ates the value of x that 
orresponds to theleftmost 1 in the truth table for f .) Only n steps are needed, be
ause everybran
h node 
orresponds to a nonzero bead; we 
an always �nd a downwardpath to > without ba
king up. Of 
ourse this method fails when the root itselfis ? . But that happens only when f is identi
ally zero.� We 
an 
ount the number of solutions to the equation f(x) = 1, usingAlgorithm C below. That algorithm does B(f) operations on n-bit numbers; soits running time is O(nB(f)) in the worst 
ase.� After Algorithm C has a
ted, we 
an speedily generate random solutionsto the equation f(x) = 1, in su
h a way that every solution is equally likely.� We 
an also list all solutions x to the equation f(x) = 1. The algorithm inexer
ise 16 does this in O(nN) steps when there are N solutions.� We 
an solve the linear Boolean programming problem: Find x su
h thatw1x1 + � � �+ wnxn is maximum, subje
t to f(x1; : : : ; xn) = 1; (7)given 
onstants (w1; : : : ; wn). Algorithm B (below) does this inO(n+B(f)) steps.� We 
an 
ompute the generating fun
tion a0 + a1z + � � �+ anzn, where thereare aj solutions to f(x1; : : : ; xn) = 1 with x1 + � � �+ xn = j. (See exer
ise 25.)� We 
an 
al
ulate the reliability polynomial F (p1; : : : ; pn), whi
h is the prob-ability that f(x1; : : : ; xn) = 1 when ea
h xj is independently set to 1 with agiven probability pj . Exer
ise 26 does this in O(B(f)) steps.Moreover, we will see that BDDs 
an be 
ombined and modi�ed eÆ
iently. Forexample, it is not diÆ
ult to form the BDDs for f(x1; : : : ; xn) ^ g(x1; : : : ; xn)and f(x1; : : : ; xj�1; g(x1; : : : ; xn); xj+1; : : : ; xn) from the BDDs for f and g.Algorithms for solving basi
 problems with BDDs are often des
ribed mosteasily if we assume that the BDD is given as a sequential list of bran
h instru
-tions Is�1, Is�2, : : : , I1, I0, where ea
h Ik has the form (�vk? lk:hk). For example,(6) might be represented as a list of s = 9 instru
tionsI8 = (�1? 7: 6);I7 = (�2? 5: 4);I6 = (�2? 0: 1); I5 = (�3? 1: 0);I4 = (�3? 3: 2);I3 = (�4? 1: 0); I2 = (�4? 0: 1);I1 = (�5? 1: 1);I0 = (�5? 0: 0); (8)with v8 = 1, l8 = 7, h8 = 6, v7 = 2, l7 = 5, h7 = 4, : : : , v0 = 5, l0 = h0 = 0. Ingeneral the instru
tion `(�v? l:h)' means, \If xv = 0, go to Il, otherwise go to Ih,"
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al ordering
ounting solutionssatis�ability 
ountingnotation jf jmultipre
ision arithmeti
modular arithmeti
Chinese remainder algorithm
oating point arithmeti

ex
ept that the last 
ases I1 and I0 are spe
ial. We require that the LO and HIbran
hes lk and hk satisfylk < k; hk < k; vlk > vk; and vhk > vk; for s > k � 2; (9)in other words, all bran
hes move downward, to variables of greater index. Butthe sink nodes > and ? are represented by dummy instru
tions I1 and I0, inwhi
h lk = hk = k and the \variable index" vk has the impossible value n+ 1.These instru
tions 
an be numbered in any way that respe
ts the topologi
alordering of the BDD, as required by (9). The root node must 
orrespond to Is�1,and the sink nodes must 
orrespond to I1 and I0, but the other index numbersaren't so rigidly pres
ribed. For example, (6) might also be expressed asI 08 = (�1? 7: 2);I 07 = (�2? 4: 6);I 06 = (�3? 3: 5); I 05 = (�4? 0: 1);I 04 = (�3? 1: 0);I 03 = (�4? 1: 0); I 02 = (�2? 0: 1);I 01 = (�5? 1: 1);I 00 = (�5? 0: 0); (10)
and in 46 other isomorphi
 ways. Inside a 
omputer, the BDD need not a
tu-ally appear in 
onse
utive lo
ations; we 
an readily traverse the nodes of anya
y
li
 digraph in topologi
al order, when the nodes are linked as in (1). Butwe will imagine that they've been arranged sequentially as in (8), so that variousalgorithms are easier to understand.One te
hni
ality is worth noting: If f(x) = 1 for all x, so that the BDDis simply the sink node > , we let s = 2 in this sequential representation.Otherwise s is the size of the BDD. Then the root is always represented by Is�1.Algorithm C (Count solutions). Given the BDD for a Boolean fun
tion f(x) =f(x1; : : : ; xn), represented as a sequen
e Is�1, : : : , I0 as des
ribed above, thisalgorithm determines jf j, the number of binary ve
tors x = x1 : : : xn su
h thatf(x) = 1. It also 
omputes the table 
0, 
1, : : : , 
s�1, where 
k is the numberof 1s in the bead that 
orresponds to Ik.C1. [Loop over k.℄ Set 
0  0, 
1  1, and do step C2 for k = 2, 3, : : : , s � 1.Then return the answer 2vs�1�1
s�1.C2. [Compute 
k.℄ Set l lk, h hk, and 
k  2vl�vk�1
l + 2vh�vk�1
h.For example, when presented with (8), this algorithm 
omputes
2  1; 
3  1; 
4  2; 
5  2; 
6  4; 
7  4; 
8  8;the total number of solutions to f(x1; x2; x3; x4) = 1 is 8.The integers 
k in Algorithm C satisfy0 � 
k < 2n+1�vk ; for 2 � k < s; (11)and this upper bound is best possible. Therefore multipre
ision arithmeti
 maybe needed when n is large. If extra storage spa
e for high pre
ision is problemati
,one 
ould use modular arithmeti
 instead, running the algorithm several timesand 
omputing 
k mod p for various single-pre
ision primes p; then the �nalanswer would be dedu
ible with the Chinese remainder algorithm, Eq. 4.3.2{(24).On the other hand, 
oating point arithmeti
 is usually suÆ
ient in pra
ti
e.



6 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 
y
le graphindependentmaximal indep subsetskernels
onse
utive 1s forbiddentwo-in-a-row fun
tionrandom solutions to f(x) = 1+
Let's look at some examples that are more interesting than (6). The BDDs12 23 3 34 4 4 45 5 56

??? ?? ?> ?Independent sets

1 23456The 
y
le C6

12 23 3 34 4 4 45 5 566
?? ?? ?> ?

?
? Kernels (12)represent fun
tions of six variables that 
orrespond to subsets of verti
es in the
y
le graph C6. In this setup a ve
tor su
h as x1 : : : x6 = 100110 stands for thesubset f1; 4; 5g; the ve
tor 000000 stands for the empty subset; and so on. On theleft is the BDD for whi
h we have f(x) = 1 when x is independent in C6; on theright is the BDD for maximal independent subsets, also 
alled the kernels of C6(see exer
ise 12). In general, the independent subsets of Cn 
orrespond to ar-rangements of 0s and 1s in a 
ir
le of length n, with no two 1s in a row; the kernels
orrespond to su
h arrangements in whi
h there also are no three 
onse
utive 0s.Algorithm C de
orates a BDD with 
ounts 
k, working from bottom to top,where 
k is the number of paths from node k to > . When we apply thatalgorithm to the BDDs in (12) we get12 23 3 34 4 4 45 5 56

??? ?? ?> ?

1813 58 5 55 3 3 23 2 11
000 00 01 0

12 23 3 34 4 4 45 5 566
?? ?? ?> ?

?
?

53 21 2 22 1 1 11 1 111
00 00 01 0

0
0

; (13)
hen
e C6 has 18 independent sets and 5 kernels.These 
ounts make it easy to generate uniformly random solutions. Forexample, to get a random independent set ve
tor x1 : : : x6, we know that 13 ofthe solutions in the left-hand BDD have x1 = 0, while the other 5 have x1 = 1.So we set x1  0 with probability 13/18, and take the LO bran
h; otherwise weset x1  1 and take the HI bran
h. In the latter 
ase, x1 = 1 for
es x2  0, butthen x3 
ould go either way.Suppose we've 
hosen to set x1  1, x2  0, x3  0, and x4  0; this 
aseo

urs with probability 518 � 55 � 35 � 23 = 218 . Then there's a bran
h from k4 tok6 , so we 
ip a 
oin and set x5 to a 
ompletely random value. In general, a



7.1.4 BINARY DECISION DIAGRAMS 7 Boolean programming problem++binate 
overing problem, see Boolean programming problemweightedThue sequen
e+Morse sequen
e+
bran
h from ki to kj means that the j � i� 1 intermediate bits xi+1 : : : xj�1should independently be
ome 0 or 1 with equal probability. Similarly, a bran
hfrom ki to > should assign random values to xi+1 : : : xn.Of 
ourse there are simpler ways to make a random 
hoi
e between 18solutions to a 
ombinatorial problem. Moreover, the right-hand BDD in (13)is an embarrassingly 
omplex way to represent the �ve kernels of C6: We 
ouldsimply have listed them, 001001, 010010, 010101, 100100, 101010! But the pointis that this same method will yield the independent sets and kernels of Cn whenn is mu
h larger. For example, the 100-
y
le C100 has 1,630,580,875,002 kernels,yet the BDD des
ribing them has only 855 nodes. One hundred simple steps willtherefore generate a fully random kernel from this vast 
olle
tion.Boolean programming and beyond. A bottom-up algorithm analogous toAlgorithm C is also able to �nd optimum weighted solutions (7) to the Booleanequation f(x) = 1. The basi
 idea is that it's easy to dedu
e an optimum solutionfor any bead of f , on
e we know optimum solutions for the LO and HI beadsthat lie dire
tly below it.Algorithm B (Solutions of maximum weight). Let Is�1, : : : , I0 be a sequen
eof bran
h instru
tions that represents the BDD for a Boolean fun
tion f, as inAlgorithm C, and let (w1; : : : ; wn) be an arbitrary sequen
e of integer weights.This algorithm �nds a binary ve
tor x = x1 : : : xn su
h that w1x1 + � � �+ wnxnis maximum, over all x with f(x) = 1. We assume that s > 1; otherwise f(x)is identi
ally 0. Auxiliary integer ve
tors m1 : : :ms�1 and W1 : : :Wn+1 are usedin the 
al
ulations, as well as an auxiliary bit ve
tor t2 : : : ts�1.B1. [Initialize.℄ Set Wn+1  0 and Wj  Wj+1 +max(wj ; 0) for n � j � 1.B2. [Loop on k.℄ Set m1  0 and do step B3 for 2 � k < s. Then do step B4.B3. [Pro
ess Ik.℄ Set v  vk, l  lk, h  hk, tk  0. If l 6= 0, set mk  ml +Wv+1 �Wvl . Then if h 6= 0, 
ompute m  mh +Wv+1 �Wvh + wv;and if l = 0 or m > mk, set mk  m and tk  1.B4. [Compute the x's.℄ Set j  0, k  s � 1, and do the following operationsuntil j = n: While j < vk � 1, set j  j + 1 and xj  [wj > 0℄; if k > 1,set j  j + 1 and xj  tk and k  (tk=0? lk: hk).A simple 
ase of this algorithm is worked out in exer
ise 18. Step B3 does te
h-ni
al maneuvers that may look a bit s
ary, but their net e�e
t is just to 
omputemk  max(ml +Wv+1 �Wvl ; mh +Wv+1 �Wvh + wv); (14)and to re
ord in tk whether l or h is better. In fa
t, vl and vh are usually bothequal to v + 1; then the 
al
ulation simply sets mk  max(ml;mh + wv), 
or-responding to the 
ases xv = 0 and xv = 1. Te
hni
alities arise only be
ause wewant to avoid fet
hingm0, whi
h is �1, and be
ause vl or vh might ex
eed v+1.With this algorithm we 
an, for example, qui
kly �nd an optimum set of ker-nel verti
es in an n-
y
le Cn, using weights based on the \Thue{Morse" sequen
e,wj = (�1)�j ; (15)



8 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 �jsideways additionparityUnited States of Ameri
a, 
ontiguous
ontiguous USANew Englandindependent sets+
here �j denotes sideways addition, Eq. 7.1.3{(59). In other words, wj is �1 or+1, depending on whether j has odd parity or even parity when expressed asa binary number. The maximum of w1x1 + � � � + wnxn o

urs when the even-parity verti
es 3, 5, 6, 9, 10, 12, 15, : : : most strongly outnumber the odd-parityverti
es 1, 2, 4, 7, 8, 11, 13, : : : that appear in a kernel. It turns out thatf1; 3; 6; 9; 12; 15; 18; 20; 23; 25; 27; 30; 33; 36; 39; 41; 43; 46; 48;51; 54; 57; 60; 63; 66; 68; 71; 73; 75; 78; 80; 83; 86; 89; 92; 95; 97; 99g (16)is an optimum kernel in this sense when n = 100; only �ve verti
es of odd parity,namely f1; 25; 41; 73; 97g, need to be in
luded in this set of 38 to satisfy the kernel
onditions, hen
e max(w1x1+� � �+w100x100) = 28. Thanks to Algorithm B, a fewthousand 
omputer instru
tions are suÆ
ient to sele
t (16) from more than a tril-lion possible kernels, be
ause the BDD for all those kernels happens to be small.Mathemati
ally pristine problems related to 
ombinatorial obje
ts like 
y
lekernels 
ould also be resolved eÆ
iently with more traditional te
hniques, whi
hare based on re
urren
es and indu
tion. But the beauty of BDD methods is thatthey apply also to real-world problems that don't have any elegant stru
ture. Forexample, let's 
onsider the graph of 49 \united states" that appeared in 7{(17)and 7{(61). The Boolean fun
tion that represents all the maximal independentsets of that graph (all the kernels) has a BDD of size 780 that begins as follows:MENH NHVT VTMA MA MARI RI RI RICT CT CT CTNY NY NY

?? ? ?? ? ?
(17)

Algorithm B qui
kly dis
overs the following kernels of minimum and maximumweight, when ea
h state vertex is simply weighted a

ording to the sum of lettersin its postal 
ode (wCA = 3 + 1, wDC = 4 + 3, : : : , wWY = 23 + 25):

ALAZ AR
CT

FL
IL INKS KY MD

MIMN
MS

MO
MT NENV

NH
NJ

NM
NY

NCOK
OR PA RI

SC

SD
TNTX

UT
VT

VA
WA

WV
WIWY

DCCA CO DE
GA

ID IA
LA

MEMAND
OH

Minimum weight = 155 ALAZ ARCA CO CTDE
GA

ID ILIA KY
LA

MD
MAMIMN

MS
MO

MT NE
NH

NM
NY

NC
OH

OK
OR PASD

UT VA DC
FL

INKS
ME

NV NJ
ND

RI
SC

TNTX

VTWA
WV

WIWY

Maximum weight = 492 (18)This graph has 266,137 kernels; but with Algorithm B, we needn't generate themall. In fa
t, the right-hand example in (18) 
ould also be obtained with a smallerBDD of size 428, whi
h 
hara
terizes the independent sets, be
ause all weights
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onne
tedness+spanning subgraphsgenerating fun
tionreliability polynomial+availability polynomial of a Boolean fun
tion, see reliability
hara
teristi
 polynomial of a Boolean fun
tion, see reliabilitypolynomialmultilinearinteger multilinear representationsBoole

are positive. (A kernel of maximum weight is the same thing as an independentset of maximum weight, in su
h 
ases.) There are 211,954,906 independent setsin this graph, many more than the number of kernels; yet we 
an�nd an independent set of maximum weight more qui
kly thana kernel of maximum weight, be
ause the BDD is smaller.1 2 43 5 76 8 9Fig. 22. The grid P3 P3, anda BDD for its 
onne
ted subgraphs.
8979 7968 68 6858 58 58 58 5857 57 5736 36 36 363635 35 3525 25 25 2547 47 47 4724 2413 1312

>??
? ??

?
?? ?
?

A quite di�erent sort of graph-related BDD is shown inFig. 22. This one is based on the 3�3 grid P3 P3; it 
hara
terizesthe sets of edges that 
onne
t all verti
es of the grid together. Thus,it's a fun
tion f(x12; x13; : : : ; x89) of the twelve edges 1��� 2, 1��� 3, : : : ,8��� 9 instead of the nine verti
es f1; : : : ; 9g. Exer
ise 55 des
ribes one way to
onstru
t it. When Algorithm C is applied to this BDD, it tells us that exa
tly431 of the 212 = 4096 spanning subgraphs of P3 P3 are 
onne
ted.A straightforward extension of Algorithm C (see exer
ise 25) will re�ne thistotal and 
ompute the generating fun
tion of these solutions, namelyG(z) = Xx z�xf(x) = 192z8 + 164z9 + 62z10 + 12z11 + z12: (19)Thus P3 P3 has 192 spanning trees, plus 164 spanning subgraphs that are
onne
ted and have nine edges, and so on. Exer
ise 7.2.1.6{106(a) gives a formulafor the number of spanning trees in Pm Pn for general m and n; but thefull generating fun
tion G(z) 
ontains 
onsiderably more information, and itprobably has no simple formula unless min(m;n) is small.Suppose ea
h edge u��� v is present with probability puv, independent ofall other edges of P3 P3. What is the probability that the resulting subgraphis 
onne
ted? This is the reliability polynomial, whi
h also goes by a varietyof other names be
ause it arises in many di�erent appli
ations. In general, asdis
ussed in exer
ise 7.1.1{12, every Boolean fun
tion f(x1; : : : ; xn) has a uniquerepresentation as a polynomial F (x1; : : : ; xn) with the properties thati) F (x1; : : : ; xn) = f(x1; : : : ; xn) whenever ea
h xj is 0 or 1;ii) F (x1; : : : ; xn) is multilinear: Its degree in xj is � 1 for all j.This polynomial F has integer 
oeÆ
ients and satis�es the basi
 re
urren
eF (x1; : : : ; xn) = (1� x1)F0(x2; : : : ; xn) + x1F1(x2; : : : ; xn); (20)where F0 and F1 are the integer multilinear representations of f(0; x2; : : : ; xn)and f(1; x2; : : : ; xn). Indeed, (20) is George Boole's \law of development."Two important things follow from re
urren
e (20). First, F is pre
iselythe reliability polynomial F (p1; : : : ; pn) mentioned earlier, be
ause the reliability



10 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 derivativegeneralization, sweeping+abstra
t algebra+fully elaborated truth table+asso
iativedistributive lawsfully elaborated truth tabletruth tableliteralsmedian fun
tion
polynomial obviously satis�es the same re
urren
e. Se
ond, F is easily 
al
ulatedfrom the BDD for f , working upward from the bottom and using (20) to 
omputethe reliability of ea
h bead. (See exer
ise 26.)The 
onne
tivity fun
tion for an 8� 8 grid P8 P8 is, of 
ourse, mu
h more
ompli
ated than the one for P3 P3; it is a Boolean fun
tion of 112 variables andits BDD has 43790 nodes, 
ompared to only 37 in Fig. 22. Still, 
omputationswith this BDD are quite feasible, and in a se
ond or two we 
an 
omputeG(z) = 126231322912498539682594816z63+ 1006611140035411062600761344z64+ � � �+ 6212z110 + 112z111 + z112;as well as the probability F (p) of 
onne
tednessand its derivative F 0(p), when ea
h of the edges ispresent with probability p (see exer
ise 29):F (p): 0 p 1 ; F 0(p): 0 p 1 : (21)
*A sweeping generalization. Algorithms B and C and the algorithms we'vebeen dis
ussing for bottom-up BDD s
anning are a
tually spe
ial 
ases of a mu
hmore general s
heme that 
an be exploited in many additional ways. Consideran abstra
t algebra with two asso
iative binary operators Æ and �, satisfying thedistributive laws� � (� Æ 
) = (� � �) Æ (� � 
); (� Æ 
) � � = (� � �) Æ (
 � �): (22)Every Boolean fun
tion f(x1; : : : ; xn) 
orresponds to a fully elaborated truth tableinvolving the symbols Æ, �, ?, and >, together with �xj and xj for 1 � j � n, ina way that's best understood by 
onsidering a small example: When n = 2 andwhen the ordinary truth table for f is 0010, the fully elaborated truth table is(�x1 � �x2 � ?) Æ (�x1 � x2 � ?) Æ (x1 � �x2 � >) Æ (x1 � x2 � ?): (23)The meaning of su
h an expression depends on the meanings that we atta
h tothe symbols Æ, �, ?, >, and to the literals �xj and xj ; but whatever the expressionmeans, we 
an 
ompute it dire
tly from the BDD for f .For example, let's return to Fig. 21, the BDD for hx1x2x3i. The elaborationsof nodes ? and > are �? = ? and �> = >, respe
tively. Then the elaborationof k3 is �3 = (�x3 ��?) Æ (x3 ��>); the elaborations of the nodes labeled k2 are�l2 = (�x2�(�x3Æx3)��?)Æ(x2��3) on the left and �r2 = (�x2��3)Æ(x2�(�x3Æx3)��>)on the right; and the elaboration of node k1 is �1 = (�x1 � �l2) Æ (x1 � �r2).(Exer
ise 31 dis
usses the general pro
edure.) Expanding these formulas via thedistributive laws (22) leads to a full elaboration with 2n = 8 \terms":�1 = (�x1��x2��x3�?) Æ (�x1��x2�x3�?) Æ (�x1�x2��x3�?) Æ (�x1�x2�x3�>)Æ (x1��x2��x3�?) Æ (x1��x2�x3�>) Æ (x1�x2��x3�>) Æ (x1�x2�x3�>): (24)



7.1.4 BINARY DECISION DIAGRAMS 11 maximum operatorsymmetri
 fun
tionsideways addition
ondensationthreshold fun
tion
Algorithm C is the spe
ial 
ase where `Æ' is addition, `�' is multipli
ation,`?' is 0, `>' is 1, `�xj ' is 1, and `xj ' is also 1. Algorithm B arises when `Æ' is themaximum operator and `�' is addition; the distributive laws�+max(�; 
) = max(�+�; �+
); max(�; 
) + � = max(�+�; 
+�) (25)are easily 
he
ked. We interpret `?' as �1, `>' as 0, `�xj ' as 0, and `xj ' as wj .Then, for example, (24) be
omesmax(�1;�1;�1; w2 + w3;�1; w1 + w3; w1 + w2; w1 + w2 + w3);and in general the full elaboration under this interpretation is equivalent to theexpression maxfw1x1 + � � �+ wnxn j f(x1; : : : ; xn) = 1g.Friendly fun
tions. Many families of fun
tions are known to have BDDs ofmodest size. If f is, for example, a symmetri
 fun
tion of n variables, it's easyto see that B(f) = O(n2). Indeed, when n = 5 we 
an start with the triangularpattern 12 23 3 34 4 4 45 5 5 5 5�=0 �=1 �=2 �=3 �=4 �=5

(26)
and set the leaves to ? or > depending on the respe
tive values of f when thevalue of �x = x1+� � �+x5 equals 0, 1, 2, 3, 4, or 5. Then we 
an remove redundantor equivalent nodes, always obtaining a BDD whose size is �n+22 � or less.Suppose we take any fun
tion f(x1; : : : ; xn) and make two adja
ent variablesequal: g(x1; : : : ; xn) = f(x1; : : : ; xk�1; xk; xk; xk+2; : : : ; xn): (27)Exer
ise 40 proves that B(g) � B(f). And by repeating this 
ondensationpro
ess, we �nd that a fun
tion su
h as f(x1; x1; x3; x3; x3; x6) has a small BDDwheneverB(f) is small. In parti
ular, the threshold fun
tion [2x1+ 3x3 + x6� t℄must have a small BDD for any value of t, be
ause it's a 
ondensed version ofthe symmetri
 fun
tion f(x1; : : : ; x6) = [x1 + � � �+ x6� t℄. This argument showsthat any threshold fun
tion with nonnegative integer weights,f(x1; x2; : : : ; xn) = [w1x1 + w2x2 + � � �+ wnxn� t℄; (28)
an be obtained by 
ondensing a symmetri
 fun
tion of w1 + w2 + � � � + wnvariables, so its BDD size is O(w1 + w2 + � � �+ wn)2.Threshold fun
tions often turn out to be easy even when the weights growexponentially. For example, suppose t = (t1t2 : : : tn)2 and 
onsiderft(x1; x2; : : : ; xn) = [2n�1x1 + 2n�2x2 + � � �+ xn� t℄: (29)
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ographi
ally2m-way multiplexerstorage a

ess fun
tion, see 2m � way multiplexerNotation Mm
omplete binary treenetwork model of 
omputation+modules in a network+subfun
tions
This fun
tion is true if and only if the binary string x1x2 : : : xn is lexi
ographi
allygreater than or equal to t1t2 : : : tn, and its BDD always has exa
tly n+ 2 nodeswhen tn = 1. (See exer
ise 170.)Another kind of fun
tion with small BDD is the 2m-way multiplexer ofEq. 7.1.2{(31), a fun
tion of n = m+ 2m variables:Mm(x1; : : : ; xm;xm+1; : : : ; xn) = xm+1+(x1:::xm)2 : (30)Its BDD begins with 2k�1 bran
h nodes kk for 1 � k � m. But below that 
om-plete binary tree, there's just one kk for ea
h xk in the main blo
k of variableswith m < k � n. Hen
e B(Mm) = 1+2+ � � �+2m�1+2m+2 = 2m+1+1 < 2n.A linear network model of 
omputation, illustrated in Fig. 23, helps to
larify the 
ases where a BDD is espe
ially eÆ
ient. Consider an arrangementof 
omputational modules M1, M2, : : : , Mn, in whi
h the Boolean variable xkis input to module Mk; there also are wires between neighboring modules, ea
h
arrying a Boolean signal, with ak wires from Mk to Mk+1 and bk wires fromMk+1 to Mk for 1 � k � n. A spe
ial wire out of Mn 
ontains the output ofthe fun
tion, f(x1; : : : ; xn). We de�ne a0 = b0 = bn = 0 and an = 1, so thatmoduleMk has exa
tly 
k = 1+ak�1+bk input ports and exa
tly dk = ak+bk�1output ports for ea
h k. It 
omputes dk Boolean fun
tions of its 
k inputs.The individual fun
tions 
omputed by ea
h module 
an be arbitrarily 
om-pli
ated, but they must be well de�ned in the sense that their joint values are
ompletely determined by the x's: Every 
hoi
e of (x1; : : : ; xn) must lead toexa
tly one way to set the signals on all the wires, 
onsistent with all of thegiven fun
tions.TheoremM. If f 
an be 
omputed by su
h a network, thenB(f)�Pnk=0 2ak2bk.Proof. We will show that the BDD for f has at most 2ak�12bk�1 bran
h nodeskk , for 1 � k � n. This is 
lear if bk�1 = 0, be
ause at most 2ak�1 subfun
tionsare possible when x1 through xk�1 have any given values. So we will show thatany network that has ak�1 forward wires and bk�1 ba
kward wires betweenMk�1and Mk 
an be repla
ed by an equivalent network that has ak�12bk�1 forwardwires and none that run ba
kward.For 
onvenien
e, let's 
onsider the 
ase k = 4 in Fig. 23, with a3 = 4 andb3 = 2; we want to repla
e those 6 wires by 16 that run only forward. SupposeAli
e is in 
harge ofM3 and Bob is in 
harge ofM4. Ali
e sends a 4-bit signal, a,to Bob while he sends a 2-bit signal, b, to her. More pre
isely, for any �xedvalue of (x1; : : : ; xn), Ali
e 
omputes a 
ertain fun
tion A and Bob 
omputes afun
tion B, where A(b) = a and B(a) = b: (31)Ali
e's fun
tion A depends on (x1; x2; x3), so Bob doesn't know what it is; Bob'sfun
tion B is, similarly, unknown to Ali
e, sin
e it depends on (x4; : : : ; xn).But those unknown fun
tions have the key property that, for every 
hoi
e of(x1; : : : ; xn), there's exa
tly one solution (a; b) to the equations (31).
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tionne
kla
eShared BDDs, see BDD baseBDD base+beadtruth tablesroot pointerssubfun
tionaddition, binaryM1
x1

M2
x2

M3
x3

M4
x4

Mn
xn� a4g b4

an�1�bn�1 n
: : : : :: : : : :: : : : :: : : : : Output

Fig. 23. A generi
 network of Boolean modules for whi
h Theorem M is valid.So Ali
e 
hanges the behavior of module M3: She sends Bob four 4-bitvalues, A(00), A(01), A(10), and A(11), thereby revealing her A fun
tion. AndBob 
hanges the behavior of M4: Instead of sending any feedba
k, he looks atthose four values, together with his other inputs (namely x4 and the b4 bitsre
eived from M5), and dis
overs the unique a and b that solve (31). His newmodule uses this value of a to 
ompute the a4 bits that he outputs to M5.Theorem M says that the BDD size will be reasonably small if we 
an
onstru
t su
h a network with small values of ak and bk. Indeed, B(f) will beO(n) if the a's and b's are bounded, although the 
onstant of proportionalitymight be huge. Let's work an example by 
onsidering the three-in-a-row fun
tion,f(x1; : : : ; xn) = x1x2x3_x2x3x4_� � �_xn�2xn�1xn_xn�1xnx1_xnx1x2; (32)whi
h is true if and only if a 
ir
ular ne
kla
e labeled with bits x1, : : : , xn hasthree 
onse
utive 1s. One way to implement it via Boolean modules is to giveMkthree inputs (uk; vk; wk) from Mk�1 and two inputs (yk; zk) from Mk+1, whereuk = xk�1; vk = xk�2xk�1; wk = xn�1xnx1 _ � � � _ xk�3xk�2xk�1;yk = xn; zk = xn�1xn: (33)Here subs
ripts are treated modulo n, and appropriate 
hanges are made at theleft or right when k = 1 or k � n� 1. Then Mk 
omputes the fun
tionsuk+1 = xk; vk+1 = ukxk; wk+1 = wk _ vkxk; yk�1 = yk; zk�1 = zk (34)for nearly all values of k; exer
ise 45 has the details. With this 
onstru
tion wehave ak � 3 and bk � 2 for all k, hen
e Theorem M tells us that B(f) � 212n =4096n. In fa
t, the truth is mu
h sweeter: B(f) is a
tually< 9n (see exer
ise 46).Shared BDDs. We often want to deal with several Boolean fun
tions at on
e,and related fun
tions often have 
ommon subfun
tions. In su
h 
ases we 
anwork with the \BDD base" for ff1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)g, whi
h isa dire
ted a
y
li
 graph that 
ontains one node for every bead that o

urswithin the truth tables of any of the fun
tions. The BDD base also has m\root pointers," Fj , one for ea
h fun
tion fj ; the BDD for fj is then the set ofall nodes rea
hable from node Fj . Noti
e that node Fj itself is rea
hable fromnode Fi if and only if fj is a subfun
tion of fi.For example, 
onsider the problem of 
omputing the n + 1 bits of the sumof two n-bit numbers,(fn+1fnfn�1 : : : f1)2 = (x1x3 : : : x2n�1)2 + (x2x4 : : : x2n)2: (35)



14 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 
arrybinary de
ision diagramSielingWegenerMMIXorderedredu
tion to a BDD++AVAIL sta
k+
The BDD base for those n+ 1 bits looks like this when n = 4:

x1x3x5x7+ x2x4x6x8f5f4f3f2f1
1 12 2 2 23 3 34 4 4 4 4 45 5 56 6 6 6 6 67 7 78 8

? >
? > ? >
? > ? >? >? >

F1
F2
F3
F4F5

(36)
The way we've numbered the x's in (35) is important here (see exer
ise 51). Ingeneral there are exa
tly B(f1; : : : ; fn+1) = 9n�5 nodes, when n > 1. The nodejust to the left of Fj , for 1 � j � n, represents the subfun
tion for a 
arry 
j outof the jth bit position from the right; the node just to the right of Fj representsthe 
omplement of that 
arry, �
j ; and node Fn+1 represents the �nal 
arry 
n.Operations on BDDs. We've been talking about lots of things to do when aBDD is given. But how do we get a BDD into the 
omputer in the �rst pla
e?One way is to start with an ordered binary de
ision diagram su
h as (26) orthe right-hand example in (2), and to redu
e it so that it be
omes a true BDD.The following algorithm, based on ideas of D. Sieling and I.Wegener [InformationPro
essing Letters 48 (1993), 139{144℄, shows that an arbitrary N -node binaryde
ision diagram whose bran
hes are properly ordered 
an be redu
ed to a BDDin O(N + n) steps when there are n variables.Of 
ourse we need some extra memory spa
e in order to de
ide whethertwo nodes are equivalent, when doing su
h a redu
tion. Having only the three�elds (V; LO; HI) in ea
h node, as in (1), would give us no room to maneuver.Fortunately, only one additional pointer-size �eld, 
alled AUX, is needed, togetherwith two additional state bits. We will assume for 
onvenien
e that the state bitsare impli
itly present in the signs of the LO and AUX �elds, so that the algorithmneeds to deal with only four �elds: (V; LO; HI; AUX). The fa
t that the sign ispreempted does mean that a 28-bit LO �eld will a

ommodate only 227 nodes atmost|about 134 million| instead of 228. (On a 
omputer like MMIX, we mightprefer to assume that all node addresses are even, and to add 1 to a �eld insteadof 
omplementing it as done here.)Algorithm R (Redu
tion to a BDD). Given a binary de
ision diagram thatis ordered but not ne
essarily redu
ed, this algorithm transforms it into a validBDD by removing unne
essary nodes and rerouting all pointers appropriately.Ea
h node is assumed to have four �elds (V; LO; HI; AUX) as des
ribed above, andROOT points to the diagram's top node. The AUX �elds are initially irrelevant, ex-
ept that they must be nonnegative; they will again be nonnegative at the end ofthe pro
ess. All deleted nodes are pushed onto a sta
k addressed by AVAIL, linkedtogether by the HI �elds of its nodes. (The LO �elds of these nodes will be neg-ative; their 
omplements point to equivalent nodes that have not been deleted.)
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omplementdepth-�rst sear
hrea
hableBu
ket sortThe V �elds of bran
h nodes are assumed to run from V(ROOT) up to vmax,in in
reasing order from the top downwards in the given dag. The sink nodes ?and > are assumed to be nodes 0 and 1, respe
tively, with nonnegative LO andHI �elds. They are never deleted; in fa
t, they are left untou
hed ex
ept for theirAUX �elds. An auxiliary array of pointers, HEAD[v℄ for V(ROOT) � v � vmax, isused to 
reate temporary lists of all nodes that have a given value of V.R1. [Initialize.℄ Terminate immediately if ROOT � 1. Otherwise, set AUX(0)  AUX(1)  AUX(ROOT)  �1, and HEAD[v℄  �1 for V(ROOT) � v � vmax.(We use the fa
t that �1 = �0 is the bitwise 
omplement of 0.) Then sets ROOT and do the following operations while s 6= 0:Set p s, s �AUX(p), AUX(p) HEAD[V(p)℄, HEAD[V(p)℄ �p.If AUX(LO(p)) � 0, set AUX(LO(p)) �s and s LO(p).If AUX(HI(p)) � 0, set AUX(HI(p)) �s and s HI(p).(We've essentially done a depth-�rst sear
h of the dag, temporarily markingall nodes rea
hable from ROOT by making their AUX �elds negative.)R2. [Loop on v.℄ Set AUX(0) AUX(1) 0, and v  vmax.R3. [Bu
ket sort.℄ (At this point all remaining nodes whose V �eld ex
eeds vhave been properly redu
ed, and their AUX �elds are nonnegative.) Setp �HEAD[v℄, s 0, and do the following steps while p 6= 0:Set p0  �AUX(p).Set q  HI(p); if LO(q) < 0, set HI(p) �LO(q).Set q  LO(p); if LO(q) < 0, set LO(p) �LO(q) and q  LO(p).If q = HI(p), set LO(p) �q, HI(p) AVAIL, AUX(p) 0, AVAIL p;otherwise if AUX(q) � 0, set AUX(p) s, s �q, and AUX(q) �p;otherwise set AUX(p) AUX(�AUX(q)) and AUX(�AUX(q)) p.Then set p p0.R4. [Clean up.℄ (Nodes with LO = x 6= HI have now been linked together viatheir AUX �elds, beginning with �AUX(x).) Set r  �s, s 0, and do thefollowing while r � 0:Set q  �AUX(r) and AUX(r) 0.If s = 0 set s q; otherwise set AUX(p) q.Set p q; then while AUX(p) > 0, set p AUX(p).Set r  �AUX(p).R5. [Loop on p.℄ Set p s. Go to step R9 if p = 0. Otherwise set q  p.R6. [Examine a bu
ket.℄ Set s LO(p). (At this point p = q.)R7. [Remove dupli
ates.℄ Set r  HI(q). If AUX(r) � 0, set AUX(r)  �q;otherwise set LO(q)  AUX(r), HI(q)  AVAIL, and AVAIL  q. Then setq  AUX(q). If q 6= 0 and LO(q) = s, repeat step R7.R8. [Clean up again.℄ If LO(p) � 0, set AUX(HI(p)) 0. Then set p AUX(p),and repeat step R8 until p = q.R9. [Done?℄ If p 6= 0, return to R6. Otherwise, if v > V(ROOT), set v  v � 1and return to R3. Otherwise, if LO(ROOT) < 0, set ROOT �LO(ROOT).
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tion of a Boolean fun
tionrestri
tion, see also subfun
tionsrepla
ement of variables by 
onstantssubstitution of 
onstants for variablesmelding+notation � � �0
The intri
ate link manipulations of Algorithm R are easier to program than toexplain, but they are highly instru
tive and not really diÆ
ult. The reader isurged to work through the example in exer
ise 53.Algorithm R 
an also be used to 
ompute the BDD for any restri
tion of agiven fun
tion, namely for any fun
tion obtained by \hardwiring" one or morevariables to a 
onstant value. The idea is to do a little extra work between stepsR1 and R2, setting HI(p) LO(p) if variable V(p) is supposed to be �xed at 0,or LO(p)  HI(p) if V(p) is to be �xed at 1. We also need to re
y
le all nodesthat be
ome ina

essible after restri
tion. Exer
ise 57 
eshes out the details.Synthesis of BDDs. We're ready now for the most important algorithm onbinary de
ision diagrams, whi
h takes the BDD for one fun
tion, f , and 
ombinesit with the BDD for another fun
tion, g, in order to obtain the BDD for furtherfun
tions su
h as f ^ g or f � g. Synthesis operations of this kind are theprin
ipal way to build up the BDDs for 
omplex fun
tions, and the fa
t thatthey 
an be done eÆ
iently is the main reason why BDD data stru
tures havebe
ome popular. We will dis
uss several approa
hes to the synthesis problem,beginning with a simple method and then speeding it up in various ways.The basi
 notion that underlies synthesis is a produ
t operation on BDDstru
tures that we shall 
all melding. Suppose � = (v; l; h) and �0 = (v0; l0; h0)are BDD nodes, ea
h 
ontaining the index of a variable together with LO andHI pointers. The \meld" of � and �0, written � � �0, is de�ned as follows when� and �0 are not both sinks:� � �0 = 8<: (v; l � l0; h � h0); if v = v0;(v; l � �0; h � �0); if v < v0;(v0; � � l0; � � h0); if v > v0. (37)For example, Fig. 24 shows how two small but typi
al BDDs are melded. Theone on the left, with bran
h nodes (�; �; 
; Æ), represents f(x1; x2; x3; x4) =(x1 _ x2)^ (x3 _ x4); the one in the middle, with bran
h nodes (!;  ; �; '; �; �),represents g(x1; x2; x3; x4) = (x1�x2)_ (x3�x4). Nodes Æ and � are essentiallythe same, so we would have Æ = � if f and g were part of a single BDD base; butmelding 
an be applied also to BDDs that do not have 
ommon nodes. At theright of Fig. 24, � � ! is the root of a de
ision diagram that has eleven bran
hnodes, and it essentially represents the ordered pair (f; g).
1234? >

��
Æ
12 234 4? >

!�  '� �
12 23 3 34 4 4 4 4

� � !� � � 
 �  ? � ' 
 �> 
 � '? � � ? � � Æ �> Æ � � >� �
? � > ? � ? > � > > � ?Fig. 24. Two BDDs 
an be melded together with the � operation (37).



7.1.4 BINARY DECISION DIAGRAMS 17 ordered pair of two Boolean fun
tionstruth tableBeadssubtablessinks
onjun
tionsymmetri
 fun
tion
An ordered pair of two Boolean fun
tions 
an be visualized by pla
ing thetruth table of one above the truth table of the other. With this interpretation,� � ! stands for the ordered pair 00000111011101110110111111110110 , and � � � stands for 0000011101101111 ,et
. The melded BDD of Fig. 24 
orresponds to the diagram000001110111011101101111111101100000011101101111 011101111111011000000110 01111111 011101100001 0010 0111 0101 111001 00 11 10

; (38)
whi
h is analogous to (5) ex
ept that ea
h node denotes an ordered pair offun
tions instead of a single fun
tion. Beads and subtables are de�ned on orderedpairs just as before. But now we have four possible sinks instead of two, namely? � ?; ? � >; > � ?; and > � >; (39)
orresponding to the ordered pairs 00 , 01 , 10 , and 11 .To 
ompute the 
onjun
tion f ^ g, we AND together the truth tables of fand g. This operation 
orresponds to repla
ing 00 , 01 , 10 , and 11 by 0, 0, 0, and 1,respe
tively; so we get the BDD for f ^ g from f � g by repla
ing the respe
tivesink nodes of (39) by ? , ? , ? , and > , then redu
ing the result. Similarly,the BDD for f � g is obtained if we repla
e the sinks (39) by ? , > , > ,and ? . (In this parti
ular 
ase f � g turns out to be the symmetri
 fun
tionS1;4(x1; x2; x3; x4), as 
omputed in Fig. 9 of Se
tion 7.1.2.) The melded diagramf � g 
ontains all the information needed to 
ompute any Boolean 
ombinationof f and g ; and the BDD for every su
h 
ombination has at most B(f �g) nodes.Clearly B(f � g) � B(f)B(g), be
ause ea
h node of f � g 
orresponds toa node of f and a node of g. Therefore the meld of small BDDs 
annot beextremely large. Usually, in fa
t, melding produ
es a result that is 
onsiderablysmaller than this worst-
ase upper bound, with something like B(f) + B(g)nodes instead of B(f)B(g). Exer
ise 60 dis
usses a sharper bound that shedssome light on why melds often turn out to be small. But exer
ises 59(b) and 63present interesting examples where quadrati
 growth does o

ur.Melding suggests a simple algorithm for synthesis: We 
an form an array ofB(f)B(g) nodes, with node � � �0 in row � and 
olumn �0 for every � in theBDD for f and every �0 in the BDD for g. Then we 
an 
onvert the four sinknodes (39) to ? or > as desired, and apply Algorithm R to the root nodef � g. Voil�a|we've got the BDD for f ^ g or f � g or f _ �g or whatever.The running time of this algorithm is 
learly of order B(f)B(g). We 
anredu
e it to order B(f � g), be
ause there's no need to �ll in all of the matrixentries ���0; only the nodes that are rea
hable from f�g are relevant, and we 
angenerate them on the 
y when ne
essary. But even with this improvement in the
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espa
e versus timeBoolean fun
tion 
al
ulatorsequential sta
kpooltemplates+++binary operatorstruth tableop+
running time, the simple algorithm is unsatisfa
tory be
ause of the requirementfor B(f)B(g) nodes in memory. When we deal with BDDs, time is 
heap butspa
e is expensive: Attempts to solve large problems tend to fail more oftenbe
ause of \spa
eout" than be
ause of \timeout." That's why Algorithm R was
areful to perform its ma
hinations with only one auxiliary link �eld per node.The following algorithm solves the synthesis problem with working spa
e oforder B(f �g); in fa
t, it needs only about sixteen bytes per element of the BDDfor f � g. The algorithm is designed to be used as the main engine of a \Booleanfun
tion 
al
ulator," whi
h represents fun
tions as BDDs in 
ompressed form ona sequential sta
k. The sta
k is maintained at the lower end of a large array
alled the pool . Ea
h BDD on the sta
k is a sequen
e of nodes, whi
h ea
h havethree �elds (V; LO; HI). The rest of the pool is available to hold temporary results
alled templates, whi
h ea
h have four �elds (L; H; LEFT; RIGHT). A node typi
allyo

upies one o
tabyte of memory, while a template o

upies two.The purpose of Algorithm S is to examine the top two Boolean fun
tionson the sta
k, f and g, and to repla
e them by the Boolean 
ombination f Æ g,where Æ is one of the 16 possible binary operators. This operator is identi�ed byits 4-bit truth table, op. For example, Algorithm S will form the BDD for f � gwhen op is (0110)2 = 6; it will deliver f ^ g when op = 1.When the algorithm begins, operand f appears in lo
ations [f0 : : g0) ofthe pool, and operand g appears in lo
ations [g0 : : NTOP). All higher lo
ations[NTOP : : POOLSIZE) are available for storing the templates that the algorithmneeds. Those templates will appear in lo
ations [TBOT : : POOLSIZE) at the highend of the pool; the boundary markers NTOP and TBOT will 
hange dynami
allyas the algorithm pro
eeds. The resulting BDD for f Æg will eventually be pla
edin lo
ations [f0 : : NTOP), taking over the spa
e formerly o

upied by f and g. Weassume that a template o

upies the spa
e of two nodes. Thus, the assignments\t TBOT�2, TBOT t" allo
ate spa
e for a new template, pointed to by t; theassignments \p NTOP, NTOP p+ 1" allo
ate a new node p. For simpli
ity ofexposition, Algorithm S does not 
he
k that the 
ondition NTOP � TBOT remainsvalid throughout the pro
ess; but of 
ourse su
h tests are essential in pra
ti
e.Exer
ise 69 remedies this oversight.The input fun
tions f and g are spe
i�ed to Algorithm S as sequen
es ofinstru
tions (Is�1; : : : ; I1; I0) and (I 0s0�1; : : : ; I 01; I 00), as in Algorithms B and Cabove. The lengths of these sequen
es are s = B+(f) and s0 = B+(g), whereB+(f) = B(f) + [f is identi
ally 1℄ (40)is the number of BDD nodes when the sink ? is for
ed to be present. Forexample, the two BDDs at the left of Fig. 24 
ould be spe
i�ed by the instru
tionsI5 = (�1? 4: 3);I4 = (�2? 0: 3); I3 = (�3? 2: 1);I2 = (�4? 0: 1); I 07 = (�1? 5: 6);I 06 = (�2? 1: 4);I 05 = (�2? 4: 1); I 04 = (�3? 2: 3);I 03 = (�4? 1: 0);I 02 = (�4? 0: 1); (41)
as usual, I1, I0, I 01, and I 00 are the sinks. These instru
tions are pa
ked intonodes, so that if Ik = (�vk? lk: hk) we have V(f0 + k) = vk, LO(f0 + k) = lk, and
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lonetri
khash table++binary sear
h treesHI(f0 + k) = hk for 2 � k < s when Algorithm S begins. Similar 
onventionsapply to the instru
tions I 0k that de�ne g. FurthermoreV(f0) = V(f0 + 1) = V(g0) = V(g0 + 1) = vmax + 1; (42)where we assume that f and g depend only on the variables xv for 1 � v � vmax.Like the simple but spa
e-hungry algorithm des
ribed earlier, Algorithm Spro
eeds in two phases: First it builds the BDD for f �g, 
onstru
ting templatesso that every important meld � � �0 is represented as a template t for whi
hLEFT(t) = �; RIGHT(t) = �0; L(t) = LO(� � �0); H(t) = HI(� � �0): (43)(The L and H �elds point to templates, not nodes.) Then the se
ond phaseredu
es these templates, using a pro
edure similar to Algorithm R; it 
hangestemplate t from (43) toLEFT(t) = ��(t); RIGHT(t) = �(t);L(t) = �(LO(� � �0)); H(t) = �(HI(� � �0)); (44)where �(t) is the unique template to whi
h t has been redu
ed, and where �(t)is the \
lone" of t if �(t) = t. Every redu
ed template t 
orresponds to aninstru
tion node in the BDD of f Æ g, and �(t) is the index of this node relativeto position f0 in the sta
k. (Setting LEFT(t) to ��(t) instead of �(t) is a sneakytri
k that makes steps S7{S10 run faster.) Spe
ial overlapping templates arepermanently reserved for sinks at the bottom of the pool, so that we always haveLEFT(0) = �0; RIGHT(0) = 0; LEFT(1) = �1; RIGHT(1) = 1; (45)in a

ord with the 
onventions of (42) and (44).We needn't make a template for � ��0 when the value of � Æ�0 is obviously
onstant. For example, if we're 
omputing f ^ g, we know that � � �0 willeventually redu
e to ? if � = 0 or �0 = 0. Su
h simpli�
ations are dis
overedby a subroutine 
alled �nd level (f; g), whi
h returns the positive integer j if theroot of f �g begins with the bran
h kj , unless f Æg 
learly has a 
onstant value;in the latter 
ase, �nd level (f; g) returns the value �(f Æ g), whi
h is 0 or �1.The pro
edure is slightly te
hni
al, but simple, using the global truth table op:Subroutine �nd level (f; g), with lo
al variable t:If f � 1 and g � 1, return �((op� (3� 2f � g)) & 1), whi
h is �(f Æ g).If f � 1 and g > 1, set t (f? op & 3: op� 2); return 0 if t = 0, �1 if t = 3.If f > 1 and g � 1, set t (g? op: op� 1) & 5; return 0 if t = 0, �1 if t = 5.Otherwise return min(V(f0 + f); V(g0 + g)). (46)The main diÆ
ulty that fa
es us, when generating a template for a des
en-dant of � � �0 a

ording to (37), is to de
ide whether or not su
h a templatealready exists|and if so, to link to it. The best way to solve su
h problems isusually to use a hash table; but then we must de
ide where to put su
h a table,and how mu
h extra spa
e to devote to it. Alternatives su
h as binary sear
htrees would be mu
h easier to adapt to our purposes, but they would add anunwanted fa
tor of logB(f � g) to the running time. The synthesis problem 
an
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ket sort
hainingbreadth-�rst synthesis+lo
ality of referen
ea
tually be solved in worst-
ase time and spa
e O(B(f � g)) by using a bu
ketsort method analogous to Algorithm R (see exer
ise 72); but that solution is
ompli
ated and somewhat awkward.Fortunately there's a ni
e way out of this dilemma, requiring almost no extramemory and only modestly 
omplex 
ode, if we generate the templates one levelat a time. Before generating the templates for level l, we'll know the numberNl of templates to be requested on that level. So we 
an temporarily allo
atespa
e for 2b templates at the top of the 
urrently free area, where b = dlgNle,and put new templates there while hashing into the same area. The idea is touse 
haining with separate lists, as in Fig. 38 of Se
tion 6.4; the H and L �elds ofour templates and potential templates play the roles of heads and links in thatillustration, while the keys appear in (LEFT; RIGHT). Here's the logi
, in detail:Subroutine make template (f; g), with lo
al variable t:Set h  HBASE + 2(((314159257f + 271828171g) mod 2d)� (d � b)), where dis a 
onvenient upper bound on the size of a pointer (usually d = 32). Thenset t  H(h). While t 6= � and either LEFT(t) 6= f or RIGHT(t) 6= g, sett L(t). If t = �, set t TBOT � 2, TBOT t, LEFT(t) f , RIGHT(t) g,L(t) H(h), and H(h) t. Finally, return the value t. (47)The 
alling routine in steps S4 and S5 ensures that NTOP � HBASE � TBOT.This breadth-�rst, level-at-a-time strategy for 
onstru
ting the templateshas an added payo�, be
ause it promotes \lo
ality of referen
e": Memory a
-
esses tend to be 
on�ned to nearby lo
ations that have re
ently been seen, hen
e
ontrolled in su
h a way that 
a
he misses and page faults are signi�
antlyredu
ed. Furthermore, the eventual BDD nodes pla
ed on the sta
k will alsoappear in order, so that all bran
hes on the same variable appear 
onse
utively.Algorithm S (Breadth-�rst synthesis of BDDs). This algorithm 
omputes theBDD for f Æ g as des
ribed above, using subroutines (46) and (47). Auxiliaryarrays LSTART[l℄, LCOUNT[l℄, LLIST[l℄, and HLIST[l℄ are used for 0 � l � vmax.S1. [Initialize.℄ Set f  g0� 1� f0, g  NTOP� 1� g0, and l �nd level (f; g).See exer
ise 66 if l � 0. Otherwise set LSTART[l � 1℄  POOLSIZE, andLLIST[k℄  HLIST[k℄  �, LCOUNT[k℄  0 for l < k � vmax. SetTBOT POOLSIZE � 2, LEFT(TBOT) f , and RIGHT(TBOT) g.S2. [S
an the level-l templates.℄ Set LSTART[l℄ TBOT and t LSTART[l � 1℄.While t > TBOT, s
hedule requests for future levels by doing the following:Set t t�2, f LEFT(t), g  RIGHT(t), vf  V(f0+f), vg  V(g0+g),ll  �nd level ((vf � vg? LO(f0 + f): f); (vf � vg ? LO(g0 + g): g)),lh  �nd level ((vf � vg ? HI(f0 + f): f); (vf � vg ? HI(g0 + g): g)).If ll � 0, set L(t) �ll ; otherwise set L(t) LLIST[ll ℄, LLIST[ll ℄ t,LCOUNT[ll ℄  LCOUNT[ll ℄ + 1. If lh � 0, set H(t)  �lh ; otherwise setH(t) HLIST[lh℄, HLIST[lh℄ t, LCOUNT[lh℄ LCOUNT[lh℄+ 1.S3. [Done with phase one?℄ Go to S6 if l = vmax. Otherwise set l  l + 1, andreturn to S2 if LCOUNT[l℄ = 0.
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tion fun
tion+truth tableS4. [Initialize for hashing.℄ Set b  dlg LCOUNT[l℄e, HBASE  TBOT � 2b+1,and H(HBASE+ 2k) � for 0 � k < 2b.S5. [Make the level-l templates.℄ Set t  LLIST[l℄. While t 6= �, set s  L(t), f  LEFT(t), g  RIGHT(t), vf  V(f0 + f), vg  V(g0 + g),L(t)  make template ((vf � vg ? LO(f0+f): f); (vf � vg ? LO(g0+g): g)),t  s. (We're half done.) Then set t  HLIST[l℄. While t 6= �, sets  H(t), f  LEFT(t), g  RIGHT(t), vf  V(f0 + f), vg  V(g0 + g),H(t)  make template ((vf � vg ? HI(f0+f): f); (vf � vg ? HI(g0+g): g)),t s. (Now the other half is done.) Go ba
k to step S2.S6. [Prepare for phase two.℄ (At this point it's safe to obliterate the nodes of fand g, be
ause we've built all the templates (43). Now we'll 
onvert themto form (44). Note that V(f0) = V(f0 + 1) = vmax +1.) Set NTOP f0 +2.S7. [Bu
ket sort.℄ Set t LSTART[l � 1℄. Do the following while t > LSTART[l℄:Set t t� 2, L(t) RIGHT(L(t)), and H(t) RIGHT(H(t)).If L(t) = H(t), set RIGHT(t) L(t). (This bran
h is redundant.)Otherwise set RIGHT(t) �1, LEFT(t) LEFT(L(t)), LEFT(L(t)) t.S8. [Restore 
lone addresses.℄ If t = LSTART[l � 1℄, set t  LSTART[l℄ � 2and go to S9. Otherwise, if LEFT(t) < 0, set LEFT(L(t))  LEFT(t). Sett t+ 2 and repeat step S8.S9. [Done with level?℄ Set t t+2. If t = LSTART[l � 1℄, go to S12. Otherwise,if RIGHT(t) � 0 repeat step S9.S10. [Examine a bu
ket.℄ (Suppose L(t1) = L(t2) = L(t3), where t1 > t2 >t3 = t and no other templates on level l have this L value. Then at this pointwe have LEFT(t3) = t2, LEFT(t2) = t1, LEFT(t1) < 0, and RIGHT(t1) =RIGHT(t2) = RIGHT(t3) = �1.) Set s  t. While s > 0, do the following:Set r  H(s), RIGHT(s) LEFT(r); if LEFT(r) < 0, set LEFT(r) s; andset s LEFT(s). Finally set s t again.S11. [Make 
lones.℄ If s < 0, go ba
k to step S9. Otherwise if RIGHT(s) � 0,set s  LEFT(s). Otherwise set r  LEFT(s), LEFT(H(s))  RIGHT(s),RIGHT(s)  s, q  NTOP, NTOP  q + 1, LEFT(s)  �(q � f0), LO(q)  �LEFT(L(s)), HI(q) �LEFT(H(s)), V(q) l, s r. Repeat step S11.S12. [Loop on l.℄ Set l  l � 1. Return to S7 if LSTART[l℄ < POOLSIZE.Otherwise, if RIGHT(POOLSIZE � 2) = 0, set NTOP  NTOP � 1 (be
ausef Æ g is identi
ally 0).As usual, the best way to understand an algorithm like this is to tra
e throughan example. Exer
ise 67 dis
usses what Algorithm S does when it is asked to
ompute f ^ g, given the BDDs in (41).Algorithm S 
an be used, for example, to 
onstru
t the BDDs for interestingfun
tions su
h as the \monotone-fun
tion fun
tion" �n(x1; : : : ; x2n), whi
h istrue if and only if x1 : : : x2n is the truth table of a monotone fun
tion:�n(x1; : : : ; x2n) = ^0�i�j<2n[xi+1�xj+1 ℄: (48)
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ombinatorial explosion
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Fig. 25. �2(x1; x3; x5; x7)^ �2(x2; x4; x6; x8)^G8(x1; : : : ; x8) = �3(x1; : : : ; x8),as 
omputed by Algorithm S.Starting with �0(x1) = 1, this fun
tion satis�es the re
ursion relation�n(x1; : : : ; x2n) =�n�1(x1; x3; : : : ; x2n�1) ^ �n�1(x2; x4; : : : ; x2n) ^G2n(x1; : : : ; x2n); (49)where G2n(x1; : : : ; x2n) = [x1�x2 ℄ ^ [x3�x4 ℄ ^ � � � ^ [x2n�1�x2n ℄. So itsBDD is easy to obtain with a BDD 
al
ulator like Algorithm S: The BDDs for�n�1(x1; x3; : : : ; x2n�1) and �n�1(x2; x4; : : : ; x2n) are simple variants of the onefor �n�1(x1; x2; : : : ; x2n�1), and G2n has an extremely simple BDD (see Fig. 25).Repeating this pro
ess six times will produ
e the BDD for �6, whi
h has103,924 nodes. There are exa
tly 7,828,354 monotone Boolean fun
tions of sixvariables (see exer
ise 5.3.4{31); this BDD ni
ely 
hara
terizes them all, and weneed only about 4.8 million memory a

esses to 
ompute it with Algorithm S.Furthermore, 6.7 billion mems will suÆ
e to 
ompute the BDD for �7, whi
hhas 155,207,320 nodes and 
hara
terizes 2,414,682,040,998 monotone fun
tions.We must stop there, however; the size of the next 
ase, B(�8), turns out tobe a whopping 69,258,301,585,604 (see exer
ise 77).Synthesis in a BDD base. Another approa
h is 
alled for when we're dealingwith many fun
tions at on
e instead of 
omputing a single BDD on the 
y.The fun
tions of a BDD base often share 
ommon subfun
tions, as in (36).Algorithm S is designed to take disjoint BDDs and to 
ombine them eÆ
iently,afterwards destroying the originals; but in many 
ases we would rather form
ombinations of fun
tions whose BDDs overlap. Furthermore, after forming anew fun
tion f ^ g, say, we might want to keep f and g around for future use;indeed, the new fun
tion might well share nodes with f or g or both.Let's therefore 
onsider the design of a general-purpose toolkit for manip-ulating a 
olle
tion of Boolean fun
tions. BDDs are espe
ially attra
tive for
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ursive formulationdepth-�rst synthesis{meldingredu
edequality testing of Boolean fun
tionssor
erer's apprenti
eexponential growth
this purpose be
ause most of the ne
essary operations have a simple re
ursiveformulation. We know that every non
onstant Boolean fun
tion 
an be writtenf(x1; x2; : : : ; xn) = (�xv? fl: fh); (50)where v = fv indexes the �rst variable on whi
h f depends, and where we havefl = f(0; : : : ; 0; xv+1; : : : ; xn); fh = f(1; : : : ; 1; xv+1; : : : ; xn): (51)This rule 
orresponds to bran
h node kv at the top of the BDD for f ; andthe rest of the BDD follows by using (50) and (51) re
ursively, until we rea
h
onstant fun
tions that 
orrespond to ? or > . A similar re
ursion de�nes any
ombination of two fun
tions, f Æg: For if f and g aren't both 
onstant, we havef(x1; : : : ; xn) = (�xv? fl: fh) and g(x1; : : : ; xn) = (�xv? gl: gh); (52)where v = min(fv; gv) and where fl, fh, gl, gh are given by (51). Then, presto,f Æ g = (�xv? fl Æ gl: fh Æ gh): (53)This important formula is another way of stating the rule by whi
h we de�nedmelding, Eq. (37).Caution: The notations above need to be understood 
arefully, be
ause thesubfun
tions fl and fh in (50) might not be the same as the fl and fh in (52).Suppose, for example, that f = x2 _ x3 while g = x1 � x3. Then Eq. (50) holdswith fv = 2 and f = (�x2? fl: fh), where fl = x3 and fh = 1. We also havegv = 1 and g = (�x1? x3: �x3). But in (52) we use the same bran
h variable xv forboth fun
tions, and v = min(fv; gv) = 1 in our example; so Eq. (52) holds withf = (�x1? fl: fh) and fl = fh = x2 _ x3.Every node of a BDD base represents a Boolean fun
tion. Furthermore, aBDD base is redu
ed; therefore two of its fun
tions or subfun
tions are equalif and only if they 
orrespond to exa
tly the same node. (This 
onvenientuniqueness property was not true in Algorithm S.)Formulas (51){(53) immediately suggest a re
ursive way to 
ompute f ^ g:

AND(f; g) = 8><>: If f ^ g has an obvious value, return it.Otherwise represent f and g as in (52);
ompute rl  AND(fl; gl) and rh  AND(fh; gh);return the fun
tion (�xv? rl: rh). (54)
(Re
ursions always need to terminate when a suÆ
iently simple 
ase arises. The\obvious" values in the �rst line 
orrespond to the terminal 
ases f ^ 1 = f ,1 ^ g = g, f ^ 0 = 0 ^ g = 0, and f ^ g = f when f = g.) When f and g arethe fun
tions in our example above, (54) redu
es f ^ g to the 
omputation of(x2_x3)^x3 and (x2_x3)^�x3. Then (x2_x3)^x3 redu
es to x3^x3 and 1^x3; et
.But (54) is problemati
 if we simply implement it as stated, be
ause everynonterminal step laun
hes two more instan
es of the re
ursion. The 
omputationexplodes, with 2k instan
es of AND when we're k levels deep!Fortunately there's a good way to avoid that blowup. Sin
e f has only B(f)di�erent subfun
tions, at most B(f)B(g) distin
tly di�erent 
alls of AND 
an
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edhashingdi
tionaryunique table+
ollisionsmemo 
a
he+
a
he memory
omputed table, see memo 
a
he
arise. To keep a lid on the 
omputations, we just need to remember what we'vedone before, by making a memo of the fa
t that f ^ g = r just before returningr as the 
omputed value. Then when the same subproblem o

urs later, we
an retrieve the memo and say, \Hey, we've already been there and done that."Previously solved 
ases thereby be
ome terminal; only distin
t subproblems 
angenerate new ones. (Chapter 8 will dis
uss this memoization te
hnique in detail.)The algorithm in (54) also glosses over another problem: It's not so easy to\return the fun
tion (�xv? rl: rh)," be
ause we must keep the BDD base redu
ed.If rl = rh, we should return the node rl ; and if rl 6= rh, we need to de
idewhether the bran
h node (�xv? rl: rh) already exists, before 
reating a new one.Thus we need to maintain additional information, besides the BDD nodesthemselves. We need to keep memos of problems already solved; we also needto be able to �nd a node by its 
ontent, instead of by its address. The sear
halgorithms of Chapter 6 now 
ome to our res
ue by telling us how to do both ofthese things, for example by hashing. To re
ord a memo that f ^ g = r, we 
anhash the key `(f;^; g)' and asso
iate it with the value r; to re
ord the existen
eof an existing node (V;LO;HI), we 
an hash the key `(V;LO;HI)' and asso
iateit with that node's memory address.The di
tionary of all existing nodes (V;LO;HI) in a BDD base is traditionally
alled the unique table, be
ause we use it to enfor
e the all-important uniqueness
riterion that forbids dupli
ation. Instead of putting all that information intoone giant di
tionary, however, it turns out to be better to maintain a 
olle
tionof smaller unique tables, one for ea
h variable V. With su
h separate tables we
an eÆ
iently �nd all nodes that bran
h on a parti
ular variable.The memos are handy, but they aren't as 
ru
ial as the unique table entries.If we happen to forget the isolated fa
t that f ^ g = r, we 
an always re
omputeit again later. Exponential blowup won't be worrisome, if the answers to thesubproblems fl ^ gl and fh ^ gh are still remembered with high probability.Therefore we 
an use a less expensive method to store memos, designed to doa pretty-good-but-not-perfe
t job of retrieval: After hashing the key `(f;^; g)'to a table position p, we need look for a memo only in that one position, notbothering to 
onsider 
ollisions with other keys. If several keys all share the samehash address, position p will re
ord only the most re
ent relevant memo. Thissimpli�ed s
heme will still be adequate in pra
ti
e, as long as the hash table islarge enough. We shall 
all su
h a near-perfe
t table the memo 
a
he, be
auseit is analogous to the hardware 
a
hes by whi
h a 
omputer tries to remembersigni�
ant values that it has dealt with in relatively slow storage units.Okay, let's 
esh out algorithm (54) by expli
itly stating how it intera
ts withthe unique tables and the memo 
a
he:

AND(f; g) =
8>>>>><>>>>>:
If f ^ g has an obvious value, return it.Otherwise, if f ^ g = r is in the memo 
a
he, return r.Otherwise represent f and g as in (52);
ompute rl  AND(fl; gl) and rh  AND(fh; gh);set r  UNIQUE(v; rl; rh), using Algorithm U;put `f ^ g = r' into the memo 
a
he, and return r. (55)
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 storage allo
ationgarbage 
olle
tion+referen
e 
ounters
Algorithm U (Unique table lookup). Given (v; p; q), where v is an integer whilep and q point to nodes of a BDD base with variable rank > v, this algorithm re-turns a pointer to a node UNIQUE(v; p; q) that represents the fun
tion (�xv? p: q).A new node is added to the base if that fun
tion wasn't already present.U1. [Easy 
ase?℄ If p = q, return p.U2. [Che
k the table.℄ Sear
h variable xv's unique table using the key (p; q). Ifthe sear
h su

essfully �nds the value r, return r.U3. [Create a node.℄ Allo
ate a new node r, and set V(r)  v, LO(r)  p,HI(r) q. Put r into xv's unique table using the key (p; q). Return r.Noti
e that we needn't zero out the memo 
a
he after �nishing a top-level
omputation of AND(f; g). Ea
h memo that we have made states a relationshipbetween nodes of the stru
ture; those fa
ts are still valid, and they might beuseful later when we want to 
ompute AND(f; g) for new fun
tions f and g.A re�nement of (55) will enhan
e that method further, namely to swapf $ g if we dis
over that f > g when f ^ g isn't obvious. Then we won't haveto waste time 
omputing f ^ g when we've already 
omputed g ^ f .With simple 
hanges to (55), the other binary operators OR(f; g), XOR(f; g),BUTNOT(f; g), NOR(f; g), : : : 
an also be 
omputed readily; see exer
ise 81.The 
ombination of (55) and Algorithm U looks 
onsiderably simpler thanAlgorithm S. Thus one might well ask, why should anybody bother to learn theother method? Its breadth-�rst approa
h seems quite 
omplex by 
omparisonwith the \depth-�rst" order of 
omputation in the re
ursive stru
ture of (55); yetAlgorithm S is able to deal only with BDDs that are disjoint, while Algorithm Uand re
ursions like (55) apply to any BDD base.Appearan
es 
an, however, be de
eiving: Algorithm S has been des
ribedat a low level, with every 
hange to every element of its data stru
tures spelledout expli
itly. By 
ontrast, the high-level des
riptions in (55) and Algorithm Uassume that a substantial infrastru
ture exists behind the s
enes. The memo
a
he and the unique tables need to be set up, and their sizes need to be 
arefullyadjusted as the BDD base grows or 
ontra
ts. When all is said and done, thetotal length of a program that implements Algorithms (55) and U properly \froms
rat
h" is roughly ten times the length of a similar program for Algorithm S.Indeed, the maintenan
e of a BDD base involves interesting questions ofdynami
 storage allo
ation, be
ause we want to free up memory spa
e whennodes are no longer a

essible. Algorithm S solves this problem in a last-in-�rst-out manner, by simply keeping its nodes and templates on sequential sta
ks, andby making do with a single small hash table that 
an easily be integrated withthe other data. A general BDD base, however, requires a more intri
ate system.The best way to maintain a dynami
 BDD base is probably to use referen
e
ounters, as dis
ussed in Se
tion 2.3.5, be
ause BDDs are a
y
li
 by de�nition.Therefore let's assume that every BDD node has a REF �eld, in addition to V, LO,and HI. The REF �eld tells us how many referen
es exist to this node, eitherfrom LO or HI pointers in other nodes or from external root pointers Fj as in (36).For example, the REF �elds for the nodes labeled k3 in (36) are respe
tively 4,
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tion fun
tionprodu
tmultipli
ation, binary1, and 2; and all of the nodes labeled k2 or k4 or k6 in that example haveREF = 1. Exer
ise 82 dis
usses the somewhat tri
ky issue of how to in
reaseand de
rease REF 
ounts properly in the midst of a re
ursive 
omputation.A node be
omes dead when its referen
e 
ount be
omes zero. When thathappens, we should de
rease the REF �elds of the two nodes below it; and thenthey too might die in the same manner, re
ursively spreading the plague.But a dead node needn't be removed from memory immediately. It stillrepresents a potentially useful Boolean fun
tion, and we might dis
over that weneed that fun
tion again as our 
omputation pro
eeds. For example, we might�nd a dead node in step U2, be
ause pointers from the unique table don't get
ounted as referen
es. Likewise, in (55), we might a

identally stumble a
ross a
a
he memo telling us that f ^ g = r, when r is 
urrently dead. In su
h 
ases,node r 
omes ba
k to life. (And we must in
rease the REF 
ounts of its LO andHI des
endants, possibly resurre
ting them re
ursively in the same fashion.)Periodi
ally, however, we will want to re
laim memory spa
e by removingthe deadbeats. Then we must do two things: We must purge all memos fromthe 
a
he for whi
h either f , g, or r is dead; and we must remove all deadnodes from memory and from their unique tables. See exer
ise 84 for typi
alheuristi
 strategies by whi
h an automated system might de
ide when to invokesu
h 
leanups and when to resize the tables dynami
ally.Be
ause of the extra ma
hinery that is needed to support a BDD base,Algorithm U and top-down re
ursions like (55) 
annot be expe
ted to mat
h theeÆ
ien
y of Algorithm S on one-shot examples su
h as the monotone-fun
tionfun
tion �n in (49). The running time is approximately quadrupled when themore general approa
h is applied to this example, and the memory requirementgrows by a fa
tor of about 2.4.But a BDD base really begins to shine in numerous other appli
ations.Suppose, for example, that we want the formulas for ea
h bit of the produ
tof two binary numbers,(z1 : : : zm+n)2 = (x1 : : : xm)2 � (y1 : : : yn)2: (56)Clearly z1 : : : zm = 0 : : : 0 when n = 0, and the simple re
urren
e(x1 : : : xm)2 � (y1 : : : ynyn+1)2 = (z1 : : : zm+n0)2 + (x1 : : : xm)2yn+1 (57)allows us to in
rease n by 1. This re
urren
e is easy to 
ode for a BDD base.Here's what we get when m = n = 3, with subs
ripts 
hosen to mat
h theanalogous diagram for binary addition in (36):x1x3x5� x2x4x6� � �� � �� � �f6f5f4f3f2f1
1 1 1 12 2 2 2 2 223 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 56 6

??? ?> ? >> ? ? > ?? > ? >

F6 F5 F3 F4F1 F2
(58)
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ommon subfun
tionsmiddle bitternary operations+multiplexing
Clearly multipli
ation is mu
h more 
ompli
ated than addition, bitwise. (Indeed,if it weren't, fa
torization wouldn't be so hard.) The 
orresponding BDD basefor binary multipli
ation when m = n = 16 is huge, with B(f1; : : : ; f32) =136;398;751 nodes. It 
an be found after doing about 56 gigamems of 
al
ulationwith Algorithm U, in 6.3 gigabytes of memory| in
luding some 1.9 billioninvo
ations of re
ursive subroutines, with hundreds of dynami
 resizings of theunique tables and the memo 
a
he, plus dozens of timely garbage 
olle
tions.A similar 
al
ulation with Algorithm S would be almost unthinkable, althoughthe individual fun
tions in this parti
ular example do not share many 
ommonsubfun
tions: It turns out that B(f1) + � � � + B(f32) = 168;640;131, with themaximum o

urring at the \middle bit," B(f16) = 38;174;143:*Ternary operations. Given three Boolean fun
tions f = f(x1; : : : ; xn), g =g(x1; : : : ; xn), and h = h(x1; : : : ; xn), not all 
onstant, we 
an generalize (52) tof = (�xv? fl: fh) and g = (�xv? gl: gh) and h = (�xv? hl: hh); (59)by taking v = min(fv; gv; hv). Then, for example, (53) generalizes tohfghi = ��xv? hflglhli: hfhghhhi�; (60)and similar formulas hold for any ternary operation on f , g, and h, in
luding( �f? g: h) = ��xv? ( �fl? gl: hl): ( �fh? gh: hh)�: (61)(The reader of these formulas will please forgive the two meanings of `h' in `hh'.)Now it's easy to generalize (55) to ternary 
ombinations like multiplexing:

MUX(f; g; h) =
8>>>>><>>>>>:
If ( �f? g: h) has an obvious value, return it.Otherwise, if ( �f? g: h) = r is in the memo 
a
he, return r.Otherwise represent f , g, and h as in (59);
ompute rl  MUX(fl; gl; hl) and rh  MUX(fh; gh; hh);set r  UNIQUE(v; rl; rh), using Algorithm U;put `( �f? g: h) = r' into the memo 
a
he, and return r.

(62)
(See exer
ises 86 and 87.) The running time is O�B(f)B(g)B(h)�. The memo
a
he must now be 
onsulted with a more 
omplex key than before, in
ludingthree pointers (f; g; h) instead of two, together with a 
ode for the relevantoperation. But ea
h memo (op; f; g; h; r) 
an still be represented 
onveniently in,say, two o
tabytes, if the number of distin
t pointer addresses is at most 231.The ternary operation f ^ g ^ h is an interesting spe
ial 
ase. We 
ould
ompute it with two invo
ations of (55), either as AND(f;AND(g; h)) or asAND(g;AND(h; f)) or as AND(h;AND(f; g)); or we 
ould use a ternary sub-routine, ANDAND(f; g; h), analogous to (62). This ternary routine �rst sortsthe operands so that the pointers satisfy f � g � h. Then if f = 0, it returns 0;if f = 1 or f = g, it returns AND(g; h); if g = h it returns AND(f; g); otherwise1 < f < g < h and the operation remains ternary at the 
urrent level of re
ursion.Suppose, for example, that f = �5(x1; x3; : : : ; x63), g = �5(x2; x4; : : : ; x64),and h = G64(x1; : : : ; x64), as in Eq. (49). The 
omputation AND(f;AND(g; h))
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ationnotation: 8notation: 9Boolean matrixRudell

osts 0:2 + 6:8 = 7:0 megamems in the author's experimental implementation;AND(g;AND(h; f)) 
osts 0:1 + 7:0 = 7:1; AND(h;AND(f; g)) 
osts 24:4 + 5:6 =30:0 (!); and ANDAND(f; g; h) 
osts 7:5. So in this instan
e the all-binaryapproa
h wins, if we don't 
hoose a bad order of 
omputation. But sometimesternary ANDAND beats all three of its binary 
ompetitors (see exer
ise 88).*Quanti�ers. If f = f(x1; : : : ; xn) is a Boolean fun
tion and 1 � j � n, logi
ianstraditionally de�ne existential and universal quanti�
ation by the formulas9xj f(x1; : : : ; xn) = f0 _ f1 and 8xj f(x1; : : : ; xn) = f0 ^ f1; (63)where f
 = f(x1; : : : ; xj�1; 
; xj+1; : : : ; xn). Thus the quanti�er `9xj ', pro-noun
ed \there exists xj ," 
hanges f to the fun
tion of the remaining variables(x1; : : : ; xj�1; xj+1; : : : ; xn) that is true if and only if at least one value of xjsatis�es f(x1; : : : ; xn); the quanti�er `8xj ', pronoun
ed \for all xj ," 
hanges fto the fun
tion that is true if and only if both values of xj satisfy f .Several quanti�ers are often applied simultaneously. For example, the for-mula 9x2 9x3 9x6 f(x1; : : : ; xn) stands for the OR of eight terms, representingthe eight fun
tions of (x1; x4; x5; x7; : : : ; xn) that are obtained when we plug thevalues 0 or 1 into the variables x2, x3, and x6 in all possible ways. Similarly,8x2 8x3 8x6 f(x1; : : : ; xn) stands for the AND of those same eight terms.One 
ommon appli
ation arises when the fun
tion f(i1; : : : ; il; j1; : : : ; jm)denotes the value in row (i1 : : : il)2 and 
olumn (j1 : : : jm)2 of a 2l� 2m Booleanmatrix F . Then the fun
tion h(i1; : : : ; il; k1; : : : ; kn) given by9j1 : : :9jm�f(i1; : : : ; il; j1; : : : ; jm) ^ g(j1; : : : ; jm; k1; : : : ; kn)� (64)represents the matrix H that is the Boolean produ
t F G.A 
onvenient way to implement multiple quanti�
ation in a BDD base hasbeen suggested by R. L. Rudell: Let g = xj1 ^ � � � ^ xjm be a 
onjun
tion ofpositive literals. Then we 
an regard 9xj1 : : :9xjm f as the binary operationf E g, implemented by the following variant of (55):

EXISTS(f; g) =
8>>>>>>>>><>>>>>>>>>:

If f E g has an obvious value, return it.Otherwise represent f and g as in (52);if v 6= fv, return EXISTS(f; gh).Otherwise, if f E g = r is in the memo 
a
he, return r.Otherwise, rl EXISTS(fl; gh) and rh EXISTS(fh; gh);if v 6= gv, set r  UNIQUE(v; rl; rh) using Algorithm U,otherwise 
ompute r  OR(rl; rh);put `f E g = r' into the memo 
a
he, and return r.
(65)

(See exer
ise 94.) The E operation is unde�ned when g does not have the statedform. Noti
e how the memo 
a
he ni
ely remembers existential 
omputationsthat have gone before.The running time of (65) is highly variable|not like (55) where we knowthat O(B(f)B(g)) is the worst possible 
ase|be
ause m OR operations areinvoked when g spe
i�es m-fold quanti�
ation. The worst 
ase now 
an be as
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eyes/no quanti�ersdepends onmultilinear representationmonotoneindependent sets+kernels+adja
ent subsets of verti
essymmetri
 fun
tioninterleavezipperwiseisolated verti
es+
ontiguous states+

bad as order B(f)2m, if all of the quanti�
ation o

urs near the root of the BDDfor f ; this is only O(B(f)2) if m = 1, but it might be
ome unbearably large as mgrows. On the other hand, if all of the quanti�
ation o

urs near the sinks, therunning time is simply O(B(f)), regardless of the size of m. (See exer
ise 97.)Several other quanti�ers are worthy of note, and equally easy, although theyaren't as famous as 9 and 8. The Boolean di�eren
e and the yes/no quanti�ersare de�ned by formulas analogous to (63):xj f = f0 � f1; xj f = �f0 ^ f1; xj f = f0 ^ �f1: (66)The Boolean di�eren
e, , is the most important of these: xj f is true forall values of fx1; : : : ; xj�1; xj+1; : : : ; xng su
h that f depends on xj . If themultilinear representation of f is f = (xjg + h) mod 2, where g and h aremultilinear polynomials in fx1; : : : ; xj�1; xj+1; : : : ; xng, then xj f = g mod 2.(See Eq. 7.1.1{(19).) Thus a
ts like a derivative in 
al
ulus, over a �nite �eld.A Boolean fun
tion f(x1; : : : ; xn) is monotone (nonde
reasing) if and onlyif Wnj=1 xjf = 0, whi
h is the same as saying that xj f = 0 for all j. However,exer
ise 105 presents a faster way to test a BDD for monotoni
ity.Let's 
onsider now a detailed example of existential quanti�
ation that isparti
ularly instru
tive. IfG is any graph, we 
an form Boolean fun
tions IND(x)and KER(x) for its independent sets and kernels as follows, where x is a bit ve
torwith one entry xv for ea
h vertex v of G:IND(x) = : _u��v(xu ^ xv); KER(x) = IND(x) ^ v̂ �xv _ _u��v xu�: (67)We 
an form a new graph G whose verti
es are the kernels of G, namely theve
tors x su
h that KER(x) = 1. Let's say that two kernels x and y are adja
entin G if they di�er in just the two entries for u and v, where (xu; xv) = (1; 0) and(yu; yv) = (0; 1) and u���v. In other words, kernels 
an be 
onsidered as 
ertainways to pla
e markers on verti
es of G; moving a marker from one vertex to aneighboring vertex produ
es an adja
ent kernel. Formally we de�nea(x) = [�(x)= 2℄ ^ :IND(x); (68)ADJ(x; y) = a(x� y) ^ KER(x) ^ KER(y): (69)Then x���y in G if and only if ADJ(x; y) = 1.Noti
e that, if x = x1 : : : xn, the fun
tion [�(x)= 2℄ is the symmetri
 fun
-tion S2(x1; : : : ; xn). Furthermore a(x � y) has at most 3 times as many nodesas a(x), if we interleave the variables zipperwise so that the bran
hing order is(x1; y1; : : : ; xn; yn). Thus B(a) and B(ADJ) will not be extremely large unlessB(IND) or B(KER) is large. It's now easy to express the 
ondition that x is anisolated vertex of G (a vertex of degree 0):ISO(x) = KER(x) ^ :9yADJ(x; y): (70)For example, suppose G is the graph of 
ontiguous states in the USA, asin (18). Then ea
h kernel ve
tor x has 49 entries xv for v 2 fME; NH; : : : ; CAg. Thegraph G has 266,137 verti
es, and we have observed earlier that the BDD sizes
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it graphsfun
tional 
omposition+
omposition of fun
tions+for IND(x) and KER(x) are respe
tively 428 and 780 (see (17)). In this 
ase theBDD sizes for a(x) and ADJ(x; y) in (68) and (69) turn out to be only 286 and7260, respe
tively, even though ADJ(x; y) is a fun
tion of 98 Boolean variables.The BDD for 9y ADJ(x; y), whi
h des
ribes all kernels x of G that have at leastone neighbor, turns out to have 842 nodes; and the one for ISO(x) has only 77.The latter BDD proves that graph G has exa
tly three isolated kernels, namely
(71)

and another that is a blend of these two. Using the algorithms above, this entire
al
ulation, starting from a list of the verti
es and edges of G (not G), 
an be
arried out with a total 
ost of about 4 megamems, in about 1.6 megabytes ofmemory; that's only about 15 memory a

esses per kernel of G.In a similar fashion we 
an use BDDs to work with other \impli
it graphs,"whi
h have more verti
es than 
ould possibly be represented in memory, if thoseverti
es 
an be 
hara
terized as the solution ve
tors of Boolean fun
tions. Whenthe fun
tions aren't too 
ompli
ated, we 
an answer queries about those graphsthat 
ould never be answered by representing the verti
es and ar
s expli
itly.*Fun
tional 
omposition. The pi�e
e de r�esistan
e of re
ursive BDD algorithmsis a general pro
edure to 
ompute f(g1; g2; : : : ; gn), where f is a given fun
tion offx1; x2; : : : ; xng and so is ea
h argument gj . Suppose we know a number m � 0su
h that gj = xj for m < j � n; then the pro
edure 
an be expressed as follows:
COMPOSE(f; g1; : : : ; gn) =

8>>>>>>>>><>>>>>>>>>:

If f = 0 or f = 1, return f .Otherwise suppose f = (�xv? fl: fh), as in (50);if v > m, return f ; otherwise, if f(g1; : : : ; gn)=ris in the memo 
a
he, return r.Compute rl  COMPOSE(fl; g1; : : : ; gn)and rh  COMPOSE(fh; g1; : : : ; gn);set r  MUX(gv; rl; rh) using (62);put `f(g1; : : : ; gn) = r' into the 
a
he, and return r.
(72)

The representation of 
a
he memos like `f(g1; : : : ; gn) = r' in this algorithm is abit tri
ky; we will dis
uss it momentarily.Although the 
omputations here look basi
ally the same as those we've beenseeing in previous re
ursions, there is in fa
t a huge di�eren
e: The fun
tions rland rh in (72) 
an now involve all variables fx1; : : : ; xng, not just the x's nearthe bottom of the BDDs. So the running time of (72) might a
tually be huge.But there also are many 
ases when everything works together harmoniously andeÆ
iently. For example, the 
omputation of a(x� y) in (69) is no problem.
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ontiguous statesplanar
olorings4-
olor{depth-�rst synthesisrandompro�le+++analysis of algorithms++beadstruth table
The key of a memo like `f(g1; : : : ; gn) = r' should not be a 
ompletelydetailed spe
i�
ation of (f; g1; : : : ; gn), be
ause we want to hash it eÆ
iently.Therefore we store only `f [G℄ = r', where G is an identi�
ation number for thesequen
e of fun
tions (g1; : : : ; gn). Whenever that sequen
e 
hanges, we 
an use anew number G; and we 
an remember the G's for spe
ial sequen
es of fun
tionsthat o

ur repeatedly in a parti
ular 
omputation, as long as the individualfun
tions gj don't die. (See also the alternative s
heme in exer
ise 102.)Let's return to the graph of 
ontiguous states for one more example. Thatgraph is planar; suppose we want to 
olor it with four 
olors. Sin
e the 
olors
an be given 2-bit 
odes f00; 01; 10; 11g, it's easy to express the valid 
oloringsas a Boolean fun
tion of 98 variables that is true if and only if the 
olor 
odesab are di�erent for ea
h pair of adja
ent states:COLOR(aME; bME; : : : ; aCA; bCA) =IND(aME ^ bME; : : : ; aCA ^ bCA) ^ IND(aME ^ �bME; : : : ; aCA ^ �bCA) (73)^ IND(�aME ^ bME; : : : ; �aCA ^ bCA) ^ IND(�aME ^ �bME; : : : ; �aCA ^ �bCA):Ea
h of the four INDs has a BDD of 854 nodes, whi
h 
an be 
omputed via (72)with a 
ost of about 70 kilomems. The COLOR fun
tion turns out to have only25,579 BDD nodes. Algorithm C now qui
kly establishes that the total numberof ways to 4-
olor this graph is exa
tly 25,623,183,458,304|or, if we divideby 4! to remove symmetries, about 1.1 trillion. The total time needed for this
omputation, starting from a des
ription of the graph, is less than 3.5 megamems,in 2.2 megabytes of memory. (We 
an also �nd random 4-
olorings, et
.)Nasty fun
tions. Of 
ourse there also are fun
tions of 98 variables that aren'tnearly so ni
e as COLOR. Indeed, the total number of 98-variable fun
tions is2298; exer
ise 108 proves that at most 2246 of them have a BDD size less thana trillion, and that almost all Boolean fun
tions of 98 variables a
tually haveB(f) � 298=98 � 3:2 � 1027. There's just no way to 
ompress 298 bits of datainto a small spa
e, unless that data happens to be highly redundant.What's the worst 
ase? If f is a Boolean fun
tion of n variables, how large
an B(f) be? The answer isn't hard to dis
over, if we 
onsider the pro�le ofa given BDD, whi
h is the sequen
e (b0; : : : ; bn�1; bn) when there are bk nodesthat bran
h on variable xk+1 and bn sinks. ClearlyB(f) = b0 + � � �+ bn�1 + bn : (74)We also have b0 � 1, b1 � 2, b2 � 4, b3 � 8, and in generalbk � 2k; (75)be
ause ea
h node has only two bran
hes. Furthermore bn = 2 whenever f isn't
onstant; and bn�1 � 2, be
ause there are only two legal 
hoi
es for the LO andHI bran
hes of kn . Indeed, we know that bk is the number of beads of ordern � k in the truth table for f , namely the number of distin
t subfun
tions of(xk+1; : : : ; xn) that depend on xk+1 after the values of (x1; : : : ; xk) have beenspe
i�ed. Only 22m � 22m�1 beads of order m are possible, so we must havebk � 22n�k � 22n�k�1 ; for 0 � k < n. (76)
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When n = 11, for instan
e, (75) and (76) tell us that (b0; : : : ; b11) is at most(1; 2; 4; 8; 16; 32; 64; 128; 240; 12; 2; 2): (77)Thus B(f) � 1 + 2 + � � �+ 128 + 240 + � � �+ 2 = 255 + 256 = 511 when n = 11.This upper bound is in fa
t obtained with the truth table00000000 00000001 00000010 : : : 11111110 11111111; (78)or with any string of length 211 that is a permutation of the 256 possible 8-bitbytes, be
ause all of the 8-bit beads are 
learly present, and be
ause all of thesubtables of lengths 16, 32, : : : , 211 are 
learly beads. Similar examples 
an be
onstru
ted for all n (see exer
ise 110). Therefore the worst 
ase is known:Theorem U. Every Boolean fun
tion f(x1; : : : ; xn) has B(f) � Un, whereUn = 2 + n�1Xk=0min(2k; 22n�k� 22n�k�1) = 2n��(n��n) + 22�(n��n)� 1: (79)Furthermore, expli
it fun
tions fn with B(fn) = Un exist for all n.If we repla
e � by lg, the right-hand side of (79) be
omes 2n=(n � lgn) +2n=n � 1. In general, Un is un times 2n=n, where the fa
tor un lies between 1and 2+O( lognn ). A BDD with about 2n+1=n nodes needs about n+1� lgn bitsfor ea
h of two pointers in every node, plus lgn bits to indi
ate the variable forbran
hing. So the total amount of memory spa
e taken up by the BDD for anyfun
tion f(x1; : : : ; xn) is never more than about 2n+2 bits, whi
h is four timesthe number of bits in its truth table, even if f happens to be one of the worstpossible fun
tions from the standpoint of BDD representation.The average 
ase turns out to be almost the same as the worst 
ase, if we
hoose the truth table for f at random from among all 22n possibilities. Again the
al
ulations are straightforward: The average number of � �� �k+1 nodes is exa
tlyb̂k = �22n�k� 22n�k�1��22n� (22n�k� 1)2k�Æ22n ; (80)be
ause there are 22n�k� 22n�k�1 beads of order n � k and (22n�k� 1)2k truthtables in whi
h any parti
ular bead does not o

ur. Exer
ise 112 shows that this
ompli
ated-looking quantity b̂k always lies extremely 
lose to the worst-
aseestimate min(2k; 22n�k� 22n�k�1), ex
ept for two values of k. The ex
eptionallevels o

ur when k � 2n�k and the \min" has little e�e
t. For example, theaverage pro�le (b̂0; : : : ; b̂n�1; b̂n) when n = 11 is approximately(1:0; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 127:4; 151:9; 12:0; 2:0; 2:0) (81)when rounded to one de
imal pla
e, and these values are virtually indistinguish-able from the worst 
ase (77) ex
ept when k = 7 or 8.A related 
on
ept 
alled a quasi-BDD, or \QDD," is also important. Everyfun
tion has a unique QDD, whi
h is similar to its BDD ex
ept that the rootnode is always k1 , and every kk node for k < n bran
hes to two � �� �k+1 nodes;thus every path from the root to a sink has length n. To make this possible,
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edquasi-pro�lesubtablestruth tablebeadsQ(f)multiplexerBryantomphaloskepsissideways addition
we allow the LO and HI pointers of a QDD node to be identi
al. But the QDDmust still be redu
ed, in the sense that di�erent nodes 
annot have the same twopointers (LO, HI). For example, the QDD for hx1x2x3i is

? >
12 233 3 ; (82)

it has two more nodes than the 
orresponding BDD in Fig. 21. Noti
e that theV �elds are redundant in a QDD, so they needn't be present in memory.The quasi-pro�le of a fun
tion is (q0; : : : ; qn�1; qn), where qk�1 is the numberof kk nodes in the QDD. It's easy to see that qk is also the number of distin
tsubtables of order n � k in the truth table, just as bk is the number of distin
tbeads. Every bead is a subtable, so we haveqk � bk; for 0 � k � n. (83)Furthermore, exer
ise 115 proves thatqk � 1 + b0 + � � �+ bk�1 and qk � bk + � � �+ bn; for 0 � k � n. (84)Consequently ea
h element of the quasi-pro�le is a lower bound on the BDD size:B(f) � 2qk � 1; for 0 � k � n. (85)Let Q(f) = q0 + � � � + qn�1 + qn be the total size of the QDD for f . Weobviously have Q(f) � B(f), by (83). On the other hand Q(f) 
an't be toomu
h bigger than B(f), be
ause (84) implies thatQ(f) � n+ 12 �B(f) + 1�: (86)Exer
ises 116 and 117 explore other basi
 properties of quasi-pro�les.The worst-
ase truth table (78) a
tually 
orresponds to a familiar fun
tionthat we've already seen, the 8-way multiplexerM3(x9; x10; x11; x1; : : : ; x8) = x1+(x9x10x11)2 : (87)But we've renumbered the variables perversely so that the multiplexing nowo

urs with respe
t to the last three variables (x9; x10; x11), instead of the �rstthree as in Eq. (30). This simple 
hange to the ordering of the variables raisesthe BDD size of M3 from 17 to 511; and an analogous 
hange when n = 2m+mwould 
ause B(Mm) to make a 
olossal leap from 2n� 2m+ 1 to 2n�m+1 � 1.R. E. Bryant has introdu
ed an interesting \navel-gazing" multiplexer 
alledthe hidden weighted bit fun
tion, de�ned as follows:hn(x1; : : : ; xn) = xx1+���+xn = x�x; (88)with the understanding that x0 = 0. For example, h4(x1; x2; x3; x4) has the truthtable 0000 0111 1001 1011. He proved [IEEE Trans. C-40 (1991), 208{210℄ thathn has a large BDD, regardless of how we might try to renumber its variables.
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i sequen
e�exponential growthplasti
 
onstantpermutationnotation f�nonstandard ordering
With the standard ordering of variables, the pro�le (b0; : : : ; b11) of h11 is(1; 2; 4; 8; 15; 27; 46; 40; 18; 7; 2; 2); (89)hen
e B(h11) = 172. The �rst half of this pro�le is a
tually the Fibona

i se-quen
e in slight disguise, with bk = Fk+4� k� 2. In general, hn always has thisvalue of bk for k < n=2; thus its initial pro�le 
ounts grow with order �k instead ofthe worst-
ase rate of 2k. This growth rate sla
kens after k surpasses n=2, so that,for example, B(h32) is only a modest 86,636. But exponential growth eventuallytakes over, and B(h100) is out of sight: 17,530,618,296,680. (When n = 100, themaximum pro�le element is b59 = 2,947,635,944,748, whi
h dwarfs b0+� � �+b49 =139,583,861,115.) Exer
ise 125 proves that B(hn) is asymptoti
ally 
�n+O(n2),where � = 3p27�p621 + 3p27 +p6213p54= 1:32471 79572 44746 02596 09088 54478 09734 07344+ (90)is the so-
alled \plasti
 
onstant," the positive root of �3 = � + 1, and the
oeÆ
ient 
 is 7�� 1 + 14=(3 + 2�) � 10:75115.On the other hand we 
an do substantially better if we 
hange the orderin whi
h the variables are tested in the BDD. If f(x1; : : : ; xn) is any Booleanfun
tion and if � is any permutation of f1; : : : ; ng, let us writef�(x1; : : : ; xn) = f(x1�; : : : ; xn�): (91)For example, if f(x1; x2; x3; x4) = (x3 _ (x1 ^ x4)) ^ (�x2 _ �x4) and if (1�; 2�;3�; 4�) = (3; 2; 4; 1), then f�(x1; x2; x3; x4) = (x4 _ (x3 ^ x1)) ^ (�x2 _ �x1); andwe have B(f) = 10, B(f�) = 6 be
ause the BDDs are

f :
12 23 3 34 4> ? > ? > >

; f� :
1 234? > >

? : (92)
The BDD for f� 
orresponds to a BDD for f that has a nonstandard ordering,in whi
h a bran
h is permitted from ki to kj only if i� < j�:

f :
4 213? > >

? : (93)
The root is ki , where i = 1�� is the index for whi
h i� = 1. When the bran
hvariables are listed from the top down, we have (4�; 2�; 1�; 3�) = (1; 2; 3; 4).



7.1.4 BINARY DECISION DIAGRAMS 35 quasi-pro�leslate of optionsBryantApplying these ideas to the hidden weighted bit fun
tion, we haveh�n(x1; : : : ; xn) = x(x1+���+xn)�; (94)with the understanding that 0� = 0 and x0 = 0. For example, h�3 (0; 0; 1) = 1 if(1�; 2�; 3�) = (3; 1; 2), be
ause x(x1+x2+x3)� = x3 = 1. (See exer
ise 120.)Element qk of the quasi-pro�le 
ounts the number of distin
t subfun
tionsthat arise when the values of x1 through xk are known. Using (94), we 
anrepresent all su
h subfun
tions by means of a slate of options [r0; : : : ; rn�k℄,where rj is the result of the subfun
tion when xk+1 + � � � + xn = j. Supposex1 = 
1, : : : , xk = 
k, and let s = 
1+ � � �+
k. Then rj = 
(s+j)� if (s+j)� � k;otherwise rj = x(s+j)�. However, we set r0  0 if s� > k, and rn�k  1 if(s+ n� k)� > k, so that the �rst and last options of every slate are 
onstant.For example, 
al
ulations show that the following permutation 1� : : : 100�redu
es the BDD size of h100 from 17.5 trillion to B(h�100) = 1,124,432,105:2 4 6 8 10 12 14 16 18 20 97 57 77 37 87 47 67 27 92 5272 32 82 42 62 22 100 60 80 40 90 50 70 30 95 55 75 35 85 4565 25 98 58 78 38 88 48 68 28 93 53 73 33 83 43 63 23 99 5979 39 89 49 69 29 94 54 74 34 84 44 64 24 96 56 76 36 86 4666 26 91 51 71 31 81 41 61 21 19 17 15 13 11 9 7 5 3 1 (95)
Su
h 
al
ulations 
an be based on an enumeration of all slates that 
an arise, for0 � s � k � n. Suppose we've tested x1, : : : , x83 and found that xj = [j� 42℄,say, for 1 � j � 83. Then s = 42; and the subfun
tion of the remaining 17variables (x84; : : : ; x100) is given by the slate [r0; : : : ; r17℄ = [
25; x98; 
58; 
78; 
38;x88; 
48; 
68; 
28; x93; 
53; 
73; 
33; 
83; 
43; 
63; 
23; x99℄, whi
h redu
es to[1; x98; 0; 0; 1; x88; 0; 0; 1; x93; 0; 0; 1; 0; 0; 0; 1; 1℄: (96)This is one of the 214 subfun
tions 
ounted by q83 when s = 42. Exer
ise 124explains how to deal similarly with the other values of k and s.We're ready now to prove Bryant's theorem:Theorem B. The BDD size of h�n ex
eeds 2bn=5
, for all permutations �.Proof. Observe �rst that two subfun
tions of h�n are equal if and only if theyhave the same slate. For if [r0; : : : ; rn�k℄ 6= [r00; : : : ; r0n�k℄, suppose rj 6= r0j . Ifboth rj and r0j are 
onstant, the subfun
tions di�er when xk+1 + � � � + xn = j.If rj is 
onstant but r0j = xi, we have 0 < j < n � k; the subfun
tions di�erbe
ause xk+1 + � � � + xn 
an equal j with xi 6= rj . And if rj = xi but r0j = xi0with i 6= i0, we 
an have xk+1 + � � �+ xn = j with xi 6= xi0 . (The latter 
ase 
anarise only when the slates 
orrespond to di�erent o�sets s and s0.)Therefore qk is the number of di�erent slates [r0; : : : ; rn�k℄. Exer
ise 123proves that this number, for any given k, n, and s as des
ribed above, is exa
tly� ww�s�+� ww�s+1�+ � � �+� wk�s� = � ws+w�k�+ � � �+� ws�1�+�ws �; (97)where w is the number of indi
es j su
h that s � j � s+ n� k and j� � k.Now 
onsider the 
ase k = b3n=5
+1, and let s = k�dn=2e, s0 = bn=2
+1.(Think of n = 100, k = 61, s = 11, s0 = 51. We may assume that n � 10.) Then
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olex orderpermutation fun
tion0{1 matri
espermutation matrixWegenerexponential growth

w + w0 = k � w00, where w00 
ounts the indi
es with j� � k and either j < sor j > s0 + n � k. Sin
e w00 � (s � 1) + (k � s0) = 2k � 2 � n, we must havew + w0 � n + 2 � k = d2n=5e + 1. Hen
e either w > bn=5
 or w0 > bn=5
; andin both 
ases (97) ex
eeds 2bn=5
�1. The theorem follows from (85).Conversely, there's always a permutation � su
h that B(h�n) = O(20:2029n),although the 
onstant hidden byO-notation is quite large. This result was provedby B. Bollig, M. L�obbing, M. Sauerho�, and I. Wegener, Theoreti
al Informati
sand Appli
ations 33 (1999), 103{115, using a permutation like (95): The �rstindi
es, with j� � n=5, 
ome alternately from j > 9n=10 and j � n=10; theothers are ordered by reading the binary representation of 9n=10� j from rightto left (
olex order).Let's also look brie
y at a mu
h simpler example, the permutation fun
tionPm(x1; : : : ; xm2), whi
h equals 1 if and only if the binary matrix with x(i�1)m+jin row i and 
olumn j is a permutation matrix:Pm(x1; : : : ; xm2) = m̂i=1S1(x(i�1)m+1; x(i�1)m+2; : : : ; x(i�1)m+m)^ m̂j=1S1(xj ; xm+j ; : : : ; xm2�m+j): (98)In spite of its simpli
ity, this fun
tion 
annot be represented with a small BDD,under any reordering of its variables:Theorem K. The BDD size of P�m ex
eeds m2m�1, for all permutations �.Proof. [See I. Wegener, Bran
hing Programs and Binary De
ision Diagrams(SIAM, 2000), Theorem 4.12.3.℄ Given the BDD for P�m, noti
e that ea
h of them! ve
tors x su
h that P�m(x) = 1 tra
es a path of length n = m2 from the rootto > ; every variable must be tested. Let vk(x) be the node from whi
h thepath for x takes its kth HI bran
h. This node bran
hes on the value in row i and
olumn j of the given matrix, for some pair (i; j) = (ik(x); jk(x)).Suppose vk(x) = vk0(x0), where x 6= x0. Constru
t x00 by letting it agreewith x up to vk(x) and with x0 thereafter. Then f(x00) = 1; 
onsequently wemust have k = k0. In fa
t, this argument shows that we must also havef(i1(x); j1(x)); (i2(x); j2(x)); : : : ; (ik�1(x); jk�1(x))g= f(i1(x0); j1(x0)); (i2(x0); j2(x0)); : : : ; (ik�1(x0); jk�1(x0))g: (99)Imagine m 
olors of ti
kets, with m! ti
kets of ea
h 
olor. Pla
e a ti
ket of
olor k on node vk(x), for all k and all x. Then no node gets ti
kets of di�erent
olors; and no node of 
olor k gets more than (k�1)! (m�k)! ti
kets altogether,by Eq. (99). Therefore at least m!=((k � 1)! (m � k)!) = k�mk � di�erent nodesmust re
eive ti
kets of 
olor k. Summing over k gives m2m�1 non-sink nodes.Exer
ise 184 shows that B(Pm) is less than m2m+1, so the lower bound inTheorem K is nearly optimum ex
ept for a fa
tor of 4. Although the size growsexponentially, the behavior isn't hopelessly bad, be
ause m = pn. For example,B(P20) is only 38,797,317, even though P20 is a Boolean fun
tion of 400 variables.
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tionorgan-pipe ordermaster pro�le 
hart
*Optimizing the order. Let Bmin(f) and Bmax(f) denote the smallest andlargest values of B(f�), taken over all permutations � that 
an pres
ribe anordering of the variables. We've seen several 
ases where Bmin and Bmax aredramati
ally di�erent; for example, the 2m-way multiplexer has Bmin(Mm) � 2nand Bmax(Mm) � 2n=n, when n = 2m + m. And indeed, simple fun
tions forwhi
h a good ordering is 
ru
ial are not at all unusual. Consider, for instan
e,f(x1; x2; : : : ; xn) = (�x1 _ x2) ^ (�x3 _ x4) ^ � � � ^ (�xn�1 _ xn); n even; (100)this is the important subset fun
tion [x1x3 : : : xn�1�x2x4 : : : xn ℄, and we haveB(f) = Bmin(f) = n + 2. But the BDD size explodes to B(f�) = Bmax(f) =2n=2+1 when � is \organ-pipe order," namely the ordering for whi
hf�(x1; x2; : : : ; xn) = (�x1 _ xn) ^ (�x2 _ xn�1) ^ � � � ^ (�xn=2 _ xn=2+1): (101)And the same bad behavior o

urs for the ordering [x1 : : : xn=2�xn=2+1 : : : xn ℄.In these orderings the BDD must \remember" the states of n=2 variables, whilethe original formulation (100) needs very little memory.Every Boolean fun
tion f has a master pro�le 
hart, whi
h en
apsulates theset of all its possible sizes B(f�). If f has n variables, this 
hart has 2n verti
es,one for ea
h subset of the variables; and it has n2n�1 edges, one for ea
h pair ofsubsets that di�er in just one element. For example, the master pro�le 
hart forthe fun
tion in (92) and (93) is ;f1g f2gf1; 2g f3gf1; 3g f2; 3gf1; 2; 3g

f4gf1; 4g f2; 4gf1; 2; 4g f3; 4gf1; 3; 4g f2; 3; 4gf1; 2; 3; 4g
: (102)

Every edge has a weight, illustrated here by the number of lines; for example,the weight between f1; 2g and f1; 2; 3g is 3. The 
hart has the following interpre-tation: If X is a subset of k variables, and if x =2 X, then the weight between Xand X[x is the number of subfun
tions of f that depend on x when the variablesof X have been repla
ed by 
onstants in all 2k possible ways. For example, ifX = f1; 2g, we have f(0; 0; x3; x4) = x3, f(0; 1; x3; x4) = f(1; 1; x3; x4) = x3^�x4,and f(1; 0; x3; x4) = x3 _ x4; all three of these subfun
tions depend on x3, butonly two of them depend on x4, as shown in the weights below f1; 2g.There are n! paths of length n from ; to f1; : : : ; ng, and we 
an let the path; ! fa1g ! fa1; a2g ! � � � ! fa1; : : : ; ang 
orrespond to the permutation �if a1� = 1, a2� = 2, : : : , an� = n. Then the sum of the weights on path � isB(f�), if we add 2 for the sink nodes. For example, the path ; ! f4g ! f2; 4g !f1; 2; 4g ! f1; 2; 3; 4g yields the only way to a
hieve B(f�) = 6 as in (93).
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ubehidden weighted bit fun
tionmaster pro�le 
hartNP-
ompletepro�lequasi-pro�lebeadssubtablesBmin(f1; : : : ; fm)Bmax(f1; : : : ; fm)swapping adja
ent levels{inter
hanging adja
ent variables{tangled nodes++solitary nodes++visible nodes++hidden nodes++transmogri�
ation+newbies++

Noti
e that the master pro�le 
hart is a familiar graph, the n-
ube, whoseedges have been de
orated so that they 
ount the number of beads in various setsof subfun
tions. The graph has exponential size, n2n�1; yet it is mu
h smallerthan the total number of permutations, n!. When n is, say, 25 or less, exer
ise 138shows that the entire 
hart 
an be 
omputed without great diÆ
ulty, and we 
an�nd an optimum permutation for any given fun
tion. For example, the hiddenweighted bit fun
tion turns out to have Bmin(h25) = 2090 and Bmax(h25) =35441; the minimum is a
hieved with (1�; : : : ; 25�) = (3, 5, 7, 9, 11, 13, 15, 17,25, 24, 23, 22, 21, 20, 19, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1), while the maximumresults from a strange permutation (22, 19, 17, 25, 15, 13, 11, 10, 9, 8, 7, 24, 6,5, 4, 3, 2, 12, 1, 14, 23, 16, 18, 20, 21) that tests many \middle" variables �rst.Instead of 
omputing the entire master pro�le 
hart, we 
an sometimes savetime by learning just enough about it to determine a path of least weight. (Seeexer
ise 140.) But when n grows and fun
tions get more weird, we are unlikelyto be able to determine Bmin(f) exa
tly, be
ause the problem of �nding the bestordering is NP-
omplete (see exer
ise 137).We've de�ned the pro�le and quasi-pro�le of a single Boolean fun
tion f , butthe same ideas apply also to an arbitrary BDD base that 
ontains m fun
tionsff1; : : : ; fmg. Namely, the pro�le is (b0; : : : ; bn) when there are bk nodes onlevel k, and the quasi-pro�le is (q0; : : : ; qn) when there are qk nodes on level k ofthe 
orresponding QDD base; the truth tables of the fun
tions have bk di�erentbeads of order n� k, and qk di�erent subtables. For example, the pro�le of the(4 + 4)-bit addition fun
tions ff1; f2; f3; f4; f5g in (36) is (2; 4; 3; 6; 3; 6; 3; 2; 2),and the quasi-pro�le is worked out in exer
ise 144. Similarly, the 
on
ept ofmaster pro�le 
hart applies to m fun
tions whose variables are reordered simul-taneously; and we 
an use it to �nd Bmin(f1; : : : ; fm) and Bmax(f1; : : : ; fm), theminimum and maximum of b0 + � � �+ bn taken over all pro�les.*Lo
al reordering. What happens to a BDD base when we de
ide to bran
hon x2 �rst, then on x1, x3, : : : , xn? Figure 26 shows that the stru
ture of thetop two levels 
an 
hange dramati
ally, but all other levels remain the same.A 
loser analysis reveals, in fa
t, that this level-swapping pro
ess isn'tdiÆ
ult to understand or to implement. The k1 nodes before swapping 
anbe divided into two kinds, \tangled" and \solitary," depending on whether theyhave k2 nodes as des
endants; for example, there are three tangled nodes atthe left of Fig. 26, pointed to by s1, s2, and s3, while s4 points to a solitarynode. Similarly, the k2 nodes before swapping are either \visible" or \hidden,"depending on whether they are independent sour
e fun
tions or a

essible onlyfrom k1 nodes; all four of the k2 nodes at the left of Fig. 26 are hidden.After swapping, the solitary k1 nodes simply move down one level, butthe tangled nodes are transmogri�ed a

ording to a pro
ess that we shall explainshortly. The hidden k2 nodes disappear, and the visible ones simply move upto the top level. Additional nodes might also arise during the transmogri�
ationpro
ess; su
h nodes, labeled k1 , are 
alled \newbies." For example, two newbiesappear at the right of Fig. 26. This pro
ess de
reases the total number of nodesif and only if the hidden nodes outnumber the newbies.



7.1.4 BINARY DECISION DIAGRAMS 39 sinksextended truth tableRudells1 s2 s3 s41 1 1 12 2 2 2t1 t2 t3 t4
s1 s2 s3 s42 2 21 1 1t1 t2 t3 t4Fig. 26. Inter
hanging the top two levels of a BDD base. Here (s1; s2; s3; s4) are sour
efun
tions; (t1; t2; t3; t4) are target nodes, representing subfun
tions at lower levels.The reverse of a swap is, of 
ourse, the same as a swap, but with the roles ofk1 and k2 inter
hanged. If we begin with the diagram at the right of Fig. 26,we see that it has three tangled nodes (labeled k2 ) and one that's visible (la-beled k1 ); two of its nodes are hidden, none are solitary. The swapping pro
essin general sends (tangled, solitary, visible, hidden) nodes into (tangled, visible,solitary, newbie) nodes, respe
tively|after whi
h newbies would be
ome hiddenin a reverse swap, and the originally hidden nodes would reappear as newbies.Transmogri�
ation is easiest to understand if we treat all nodes below thetop two levels as if they were sinks, having 
onstant values. Then every sour
efun
tion f(x1; x2) depends only on x1 and x2; hen
e it takes on four valuesa = f(0; 0), b = f(0; 1), 
 = f(1; 0), and d = f(1; 1), where a, b, 
, and drepresent sinks. We may suppose that there are q sinks, 1 , 2 , : : : , q , andthat 1 � a; b; 
; d � q. Then f(x1; x2) is fully des
ribed by its extended truthtable, f(0; 0)f(0; 1)f(1; 0)f(1; 1) = ab
d. And after swapping, we're left withf(x2; x1), whi
h has the extended truth table a
bd. For example, Fig. 26 
an beredrawn as follows, using extended truth tables to label its nodes:1224 2324 1324 33441224 2324 1324 334412 13 24 231 2 3 4

1224 2234 1234 34341224 2234 123412 24 341 2 3 4Fig. 27. Another way to represent the transformations in Fig. 26.In these terms, the sour
e fun
tion ab
d points to a solitary node when a = b 6=
 = d, and to a visible node when a = 
 6= b = d; otherwise it points to a tanglednode (unless a = b = 
 = d, when it points dire
tly to a sink). The tangled nodeab
d usually has LO = ab and HI = 
d, unless a = b or 
 = d; in the ex
eptional
ases, LO or HI is a sink. After transmogri�
ation it will have LO = a
 andHI = bd in a similar way, where latter nodes will be either newbies or visiblesor sinks (but not both sinks). One interesting 
ase is 1224, whose 
hildren 12and 24 on the left are hidden nodes, while the 12 and 24 on the right are newbies.Exer
ise 147 dis
usses an eÆ
ient implementation of this transformation,whi
h was introdu
ed by Ri
hard Rudell in IEEE/ACM International Conf.Computer-Aided Design CAD-93 (1993), 42{47. It has the important propertythat no pointers need to 
hange, ex
ept within the nodes on the top two levels:
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hangesjump-upexponentiallysheep-and-goatsjump-downzipper fun
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All sour
e nodes sj still point to the same pla
e in 
omputer memory, and allsinks retain their previous identity. We have des
ribed it as a swap between k1 sand k2 s, but in fa
t the same transformation will swap kj s and kk s wheneverthe variables xj and xk 
orrespond to bran
hing on adja
ent levels. The reasonis that the upper levels of any BDD base essentially de�ne sour
e fun
tions forthe lower levels, whi
h 
onstitute a BDD base in their own right.We know from our study of sorting that any reordering of the variables ofa BDD base 
an be produ
ed by a sequen
e of swaps between adja
ent levels.In parti
ular, we 
an use adja
ent swaps to do a \jump-up" transformation,whi
h brings a given variable xk to the top level without disturbing the relativeorder of the other variables. It's easy, for instan
e, to jump x4 up to the top:We simply swap k4 $ k3 , then k4 $ k2 , then k4 $ k1 , be
ause x4 will beadja
ent to x1 after it has jumped past x2.Sin
e repeated swaps 
an produ
e any ordering, they are sometimes ableto make a BDD base grow until it is too big to handle. How bad 
an a singleswap be? If exa
tly (s; t; v; h; �) nodes are solitary, tangled, visible, hidden, andnewbie, the top two levels end up with s + t + v + � nodes; and this is at mostm+ � � m+2t when there are m sour
e fun
tions, be
ause m � s+ t+ v. Thusthe new size 
an't ex
eed twi
e the original, plus the number of sour
es.If a single swap 
an double the size, a jump-up for xk threatens to in
reasethe size exponentially, be
ause it does k� 1 swaps. Fortunately, however, jump-ups are no worse than single swaps in this regard:Theorem J+. B(f�1 ; : : : ; f�m) < m+2B(f1; : : : ; fm) after a jump-up operation.Proof. Let a1a2 : : : a2k�1a2k be the extended truth table for a sour
e fun
tionf(x1; : : : ; xk), with lower-level nodes regarded as sinks. After the jump-up, theextended truth table for f�(x1; : : : ; xk) = f(x1�; : : : ; xk�) = f(x2; : : : ; xk; x1) isa1a3 : : : a2k�1a2a4 : : : a2k , whi
h in
identally 
an be written a1 : : : a2k � �k;0 inthe \sheep-and-goats" notation of 7.1.3{(81). Thus we 
an see that ea
h beadon level j of f� is derived from some bead on level j � 1 of f , for 1 � j < k;but every su
h bead spawns at most two beads of half the size in f�. Therefore,if the respe
tive pro�les of ff1; : : : ; fmg and ff�1 ; : : : ; f�mg are (b0; : : : ; bn) and(b00; : : : ; b0n), we must have b00 � m, b01 � 2b0, : : : , b0k�1 � 2bk�2, b0k = bk, : : : ,b0n = bn. The total is therefore � m+B(f1; : : : ; fm)+ b0+ � � �+ bk�2� bk�1.The opposite of a jump-up is a \jump-down," whi
h demotes the topmostvariable by k�1 levels. As before, this operation 
an be implemented with k�1swaps. But we have to settle for a mu
h weaker upper bound on the resulting size:Theorem J�. B(f�1 ; : : : ; f�m) < B(f1; : : : ; fm)2 after a jump-down operation.Proof. Now the extended truth table in the previous proof 
hanges from a1 : : : a2kto a1 : : : a2k�1 z a2k�1+1 : : : a2k = a1a2k�1+1 : : : a2k�1a2k , the \zipper fun
tion"7.1.3{(76). In this 
ase we 
an identify every bead after the jump with anordered pair of original subfun
tions, as in the melding operation (37) and (38).For example, when k = 3 the truth table 12345678 be
omes 15263748, whosebead 1526 
an be regarded as the meld 12 � 56.
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This proof indi
ates why quadrati
 growth might o

ur. If, for example,f(x1; : : : ; xn) = x1? Mm(x2; : : : ; xm+1;x2m+2; : : : ; xn):Mm(xm+2; : : : ; x2m+1; �x2m+2; : : : ; �xn); (103)where n = 1+ 2m+2m, a jump-down of 2m levels 
hanges B(f) = 4n� 8m� 3to B(f�) = 2n2 � 8m(n�m)� 2(n� 2m) + 1 � 12B(f)2.Sin
e jump-up and jump-down are inverse operations, we 
an also use Theo-rems J+ and J� in reverse: A jump-up operation might 
on
eivably de
rease theBDD size to something like its square root, but a jump-down 
annot redu
e thesize to less than about half. That's bad news for fans of jump-down, althoughthey 
an take 
omfort from the knowledge that jump-downs are sometimes theonly de
ent way to get from a given ordering to an optimum one.Theorems J+ and J� are due to B. Bollig, M. L�obbing, and I. Wegener, Inf.Pro
essing Letters 59 (1996), 233{239. (See also exer
ise 149.)*Dynami
 reordering. In pra
ti
e, a natural way to order the variables oftensuggests itself, based on the modules-in-a-row perspe
tive of Fig. 23 and Theo-rem M. But sometimes no suitable ordering is apparent, and we 
an only hopeto be lu
ky; perhaps the 
omputer will 
ome to our res
ue and �nd one. Fur-thermore, even if we do know a good way to begin a 
omputation, the orderingof variables that works best in the �rst stages of the work might turn out to beunsatisfa
tory in later stages. Therefore we 
an get better results if we don'tinsist on a �xed ordering. Instead, we 
an try to tune up the 
urrent order ofbran
hing whenever a BDD base be
omes unwieldy.For example, we might try to swap xj�1 $ xj in the order, for 1 < j � n,undoing the swap if it in
reases the total number of nodes but letting it rideotherwise; we 
ould keep this up until no su
h swap makes an improvement.That method is easy to implement, but unfortunately it's too weak; it doesn'tgive mu
h of a redu
tion. A mu
h better reordering te
hnique was proposed byRi
hard Rudell at the same time as he introdu
ed the swap-in-pla
e algorithm ofexer
ise 147. His method, 
alled \sifting," has proved to be quite su

essful. Theidea is simply to take a variable xk and to try jumping it up or down to all otherlevels| that is, essentially to remove xk from the ordering and then to insert itagain, 
hoosing a pla
e for insertion that keeps the BDD size as small as possible.All of the ne
essary work 
an be done with a sequen
e of elementary swaps:Algorithm J (Sifting a variable). This algorithm moves variable xk into anoptimum position with respe
t to the 
urrent ordering of the other variablesfx1; : : : ; xk�1; xk+1; : : : ; xng in a given BDD base. It works by repeatedly 
allingthe pro
edure of exer
ise 147 to swap adja
ent variables xj�1$ xj . Throughoutthis algorithm, S denotes the 
urrent size of the BDD base (the total number ofnodes); the swapping operation usually 
hanges S.J1. [Initialize.℄ Set p 0, j  k, and s S. If k > n=2, go to J5.J2. [Sift up.℄ While j > 1, swap xj�1$ xj and set j  j � 1, s min(S; s).
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ontiguous USA++J3. [End the pass.℄ If p = 1, go to J4. Otherwise, while j 6= k, set j  j+1 andswap xj�1$ xj ; then set p 1 and go to J5.J4. [Finish downward.℄ While s 6= S, set j  j + 1 and swap xj�1$ xj . Stop.J5. [Sift down.℄ While j<n, set j j+1, swap xj�1$xj , and set s min(S; s).J6. [End the pass.℄ If p = 1, go to J7. Otherwise, while j 6= k, swap xj�1$ xjand set j  j � 1; then set p 1 and go to J2.J7. [Finish upward.℄ While s 6= S, swap xj�1$ xj and set j  j � 1. Stop.Whenever Algorithm J swaps xj�1$ xj , the variable that is 
urrently 
alled xjis the original variable xk. The total number of swaps varies from about n toabout 2:5n, depending on k and the optimum �nal position of xk. But we 
animprove the running time substantially, without seriously a�e
ting the out
ome,if steps J2 and J5 are modi�ed to pro
eed immediately to J3 and J6, respe
tively,whenever S be
omes larger than, say, 1:2s or even 1:1s or even 1:05s. In su
h
ases, further sifting in the same dire
tion is unlikely to de
rease s.Rudell's sifting pro
edure 
onsists of applying Algorithm J exa
tly n times,on
e for ea
h variable that is present; see exer
ise 151. We 
ould 
ontinue siftingagain and again until there is no more improvement; but the additional gain isusually not worth the extra e�ort.Let's look at a detailed example, in order to make these ideas 
on
rete.We've observed that when the 
ontiguous United States are arranged in the orderME NH VT MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL TN KY WV OH MI INIL WI MN IA MO AR MS LA TX OK KS NE SD ND MT WY CO NM AZ UT ID WA OR NV CA (104)as in (17), they lead to a BDD of size 428 for the independent-set fun
tion:�(xAL ^ xFL)_ (xAL ^ xGA)_ (xAL ^ xMS)_ � � � _ (xUT ^ xWY)_ (xVA ^ xWV)�: (105)The author 
hose the ordering (104) by hand, starting with the histori
al/geo-graphi
al listing of states that he had been taught as a 
hild, then trying tominimize the size of the boundary between states-already-listed and states-to-
ome, so that the BDD for (105) would not need to \remember" too many partialresults at any level. The resulting size, 428, is pretty good for a fun
tion of 49variables; but sifting is able to make it even better. For example, 
onsider WV:Some of the possibilities for altering its position, with varying sizes S, are424RI422CT417NY415NJ414PA412DE411MD410DC412VA412NC415SC420GA421FL426AL425TN427KY428OH428MI436IN442IL453so we 
an save 428� 410 = 18 nodes by jumping WV up to a position between MDand DC. By using Algorithm J to sift on all the variables|�rst on ME, then onNH, then : : : , then on CA|we end up with the orderingVT MA ME NH CT RI NY NJ DE PA MD WV VA DC KY OH NC GA SC AL FL MS TN INIL MI AR TX LA OK MO IA WI MN CO NE KS MT ND WY SD UT AZ NM ID CA OR WA NV (106)and the BDD size has been redu
ed to 345(!). That sifting pro
ess involves atotal of 4663 swaps, requiring less than 4 megamems of 
omputation altogether.
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allyautosiftingmaster pro�le 
hartswindow
Instead of 
hoosing an ordering 
arefully, let's 
onsider a lazier alternative:We might begin with the states in alphabeti
 orderAL AR AZ CA CO CT DC DE FL GA IA ID IL IN KS KY LA MA MD ME MI MN MO MSMT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY (107)and pro
eed from there. Then the BDD for (105) turns out to have 306,214nodes; it 
an be 
omputed either via Algorithm S (with about 380 megamems ofma
hine time) or via (55) and Algorithm U (with about 565 megamems). In this
ase sifting makes a dramati
 di�eren
e: Those 306,214 nodes be
ome only 2871,at a 
ost of 430 additional megamems. Furthermore, the sifting 
ost goes downfrom 430 M� to 210 M� if the loops of Algorithm J are aborted when S > 1:1s.(The more radi
al 
hoi
e of aborting when S > 1:05s would redu
e the 
ost ofsifting to 155 M�; but the BDD size would be redu
ed only to 2946 in that 
ase.)And we 
an a
tually do mu
h, mu
h better, if we sift the variables whileevaluating (105), instead of waiting until that whole long sequen
e of disjun
tionsbeen entirely 
omputed. For example, suppose we invoke sifting automati
allywhenever the BDD size surpasses twi
e the number of nodes that were presentafter the previous sift. Then the evaluation of (105), starting from the alphabeti
ordering (107), runs like a breeze: It automati
ally 
hurns out a BDD that hasonly 419 nodes, after only about 60 megamems of 
al
ulation! Neither humaningenuity nor \geometri
 understanding" are needed to dis
over the orderingNV OR ID WA AZ CA UT NM WY CO MT OK TX NE MO KS LA AR MS TN IA ND MN SDGA FL AL NC SC KY WI MI IL OH IN WV MD VA DC PA NJ DE NY CT RI NH ME VT MA (108)whi
h beats the author's (104). For this one, the 
omputer just de
ided to invokeautosifting 39 times, on smaller BDDs.What is the best ordering of states for the fun
tion (105)? The answer tothat question will probably never be known for sure, but we 
an make a prettygood guess. First of all, a few more sifts of (108) will yield a still-better orderingOR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS TNGA FL AL NC SC KY WI MI IL OH IN WV MD DC VA PA NJ DE NY CT RI NH ME VT MA (109)with BDD size 354. Sifting will not improve (109) further; but sifting has onlylimited power, be
ause it explores only (n � 1)2 alternative orderings, out ofn! possibilities. (Indeed, exer
ise 134 exhibits a fun
tion of only four variableswhose BDD 
annot be improved by sifting, even though the ordering of itsvariables is not optimum.) There is, however, another arrow in our quiver: We
an use master pro�le 
harts to optimize every window of, say, 16 
onse
utivelevels in the BDD. There are 34 su
h windows; and the algorithm of exer
ise 139optimizes ea
h of them rather qui
kly. After about 9.6 gigamems of 
omputation,that algorithm dis
overs a new 
hampionOR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS WIKY MI IN IL AL TN FL NC SC GA WV OH MD DC VA PA NJ DE NY CT RI NH ME VT MA (110)by 
leverly rearranging 16 states within (109). This ordering, for whi
h the BDDsize is only 339, might well be optimum, be
ause it 
annot be improved eitherby sifting or by optimizing any window of width 25. However, su
h a 
onje
ture
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oloring4-
oloringread-on
e fun
s++Fibona

i numbersSauerho�WegenerWer
hner
rests on shaky ground: The orderingAL GA FL TN NC SC VA MS AR TX LA OK KY MO NM WV MD DC PA NJ DE OH IL MIIN IA NE KS WI SD WY ND MN MT UT CO ID CA AZ OR WA NV NY CT RI NH ME VT MA (111)also happens to be unimprovable by sifting and by width-25 window optimiza-tion, yet its BDD has 606 nodes and is far from optimum.With the improved ordering (110), the 98-variable COLOR fun
tion of (73)needs only 22037 BDD nodes, instead of 25579. Sifting redu
es it to 16098.*Read-on
e fun
tions. Boolean fun
tions su
h as (x1 � x2)� ((x3�x4)^x5),whi
h 
an be expressed as formulas in whi
h ea
h variable o

urs exa
tly on
e,form an important 
lass for whi
h optimum orderings of variables 
an easily be
omputed. Formally, let us say that f(x1; : : : ; xn) is a read-on
e fun
tion if either(i) n = 1 and f(x1) = x1; or (ii) f(x1; : : : ; xn) = g(x1; : : : ; xk) Æ h(xk+1; : : : ; xn),where Æ is one of the binary operators f^;_;^;_;�;�;�;�;�;�g and whereboth g and h are read-on
e fun
tions. In 
ase (i) we obviously have B(f) = 3.And in 
ase (ii), exer
ise 163 proves thatB(f) = �B(g) +B(h)� 2; if Æ 2 f^;_;^;_;�;�;�;�g;B(g) +B(h; �h)� 2; if Æ 2 f�;�g. (112)In order to get a re
urren
e, we also need the similar formulas

B(f; �f) = 8<: 4; if n = 1;2B(g) +B(h; �h)� 4; if Æ 2 f^;_;^;_;�;�;�;�g;B(g; �g) +B(h; �h)� 2; if Æ 2 f�;�g. (113)
A parti
ularly interesting family of read-on
e fun
tions arises when we de�neum+1(x1; : : : ; x2m+1) = vm(x1; : : : ; x2m) ^ vm(x2m+1; : : : ; x2m+1);vm+1(x1; : : : ; x2m+1) = um(x1; : : : ; x2m)� um(x2m+1; : : : ; x2m+1); (114)and u0(x1) = v0(x1) = x1; for example, u3(x1; : : : ; x8) = �(x1^x2)�(x3^x4)�^�(x5^x6)�(x7^x8)�. Exer
ise 165 shows that the BDD sizes for these fun
tions,
al
ulated via (112) and (113), involve Fibona

i numbers:B(u2m) = 2mF2m+2 + 2;B(v2m) = 2mF2m+2 + 2; B(u2m+1) = 2m+1F2m+2 + 2;B(v2m+1) = 2mF2m+4 + 2: (115)Thus um and vm are fun
tions of n = 2m variables whose BDD sizes grow as�(2m=2�m) = �(n�); where � = 1=2 + lg� � 1:19424. (116)In fa
t, the BDD sizes in (115) are optimum for the u and v fun
tions,under all permutations of the variables, be
ause of a fundamental result due toM. Sauerho�, I. Wegener, and R. Wer
hner:Theorem W. If f(x1; : : : ; xn) = g(x1; : : : ; xk) Æ h(xk+1; : : : ; xn) is a read-on
e fun
tion, there is a permutation � that minimizes B(f�) and B(f�; �f�)simultaneously, and in whi
h the variables fx1; : : : ; xkg o

ur either �rst or last.
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e of "random" datamultipli
ation++middle bit++leading bitZn(x; y)Zn;aWoelfel
Proof. Any permutation (1�; : : : ; n�) leads naturally to an \unshu�ed" per-mutation (1�; : : : ; n�) in whi
h the �rst k elements are f1; : : : ; kg and the lastn� k elements are fk + 1; : : : ; ng, retaining the � order within ea
h group. Forexample, if k = 7, n = 9, and (1�; : : : ; 9�) = (3; 1; 4; 5; 9; 2; 6; 8; 7), we have(1�; : : : ; 9�) = (3; 1; 4; 5; 2; 6; 7; 9; 8). Exer
ise 166 proves that, in appropriate
ir
umstan
es, we have B(f�) � B(f�) and B(f�; �f�) � B(f�; �f�).Using this theorem together with (112) and (113), we 
an readily optimizethe ordering of variables for the BDD of any given read-on
e fun
tion. Consider,for example, (x1_x2)�(x3^x4^x5) = g(x1; x2)�h(x3; x4; x5). We have B(g) = 4and B(g; �g) = 6; B(h) = 5 and B(h; �h) = 8. For the overall formula f = g � h,Theorem W says that there are two 
andidates for a best ordering (1�; : : : ; 5�),namely (1; 2; 3; 4; 5) and (4; 5; 1; 2; 3). The �rst of these gives B(f�) = B(g) +B(h; �h)� 2 = 10; the other one ex
els, with B(f�) = B(h) +B(g; �g)� 2 = 9.The algorithm in exer
ise 167 �nds an optimum � for any read-on
e fun
tionf(x1; : : : ; xn) in O(n) steps. Moreover, a 
areful analysis proves that B(f�) =O(n�) in the best ordering, where � is the 
onstant in (116). (See exer
ise 168.)*Multipli
ation. Some of the most interesting Boolean fun
tions, from a math-emati
al standpoint, are the m + n bits that arise when an m-bit number ismultiplied by an n-bit number:(xm : : : x2x1)2 � (yn : : : y2y1)2 = (zm+n : : : z2z1)2: (117)In parti
ular, the \leading bit" zm+n, and the \middle bit" zn when m = n, areespe
ially noteworthy. To remove the dependen
e of this notation on m and n,we 
an imagine that m = n =1 by letting xi = yj = 0 for all i > m and j > n;then ea
h zk is a fun
tion of 2k variables, zk = Zk(x1; : : : ; xk; y1; : : : ; yk), namelythe middle bit of the produ
t (xk : : : x1)2 � (yk : : : y1)2.The middle bit turns out to be diÆ
ult, BDDwise, even when y is 
onstant.Let Zn;a(x1; : : : ; xn) = Zn(x1; : : : ; xn; a1; : : : ; an), where a = (an : : : a1)2.Theorem X. There is a 
onstant a su
h that Bmin(Zn;a) > 5288 � 2bn=2
 � 2.Proof. [P. Woelfel, J. Computer and System S
i. 71 (2005), 520{534.℄ We mayassume that n = 2t is even, sin
e Z2t+1;2a = Z2t;a. Let x = (xn : : : x1)2 andm = ([n�� t℄ : : : [1�� t℄)2. Then x = p + q, where q = x & m represents the\known" bits of x after t bran
hes have been taken in a BDD for Zn;y with theordering �, and p = x&m represents the bits yet unknown. LetP = fx&m j 0 � x < 2ng and Q = fx&m j 0 � x < 2ng: (118)For any �xed a, the fun
tion Zn;a has 2t subfun
tionsfq(p) = �(pa+ qa)� (n� 1)�& 1; q 2 Q: (119)We want to show that some n-bit number a will make many of these subfun
tionsdi�er; in other words we want to �nd a large subset Q� � Q su
h thatq 2 Q� and q0 2 Q� and q 6= q0 implies fq(p) 6= fq0(p) for some p 2 P . (120)Exer
ise 176 shows in detail how this 
an be done.



46 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 AmanoMaruokaTable 1BEST AND WORST ORDERINGS FOR THE MIDDLE BIT zn OF MULTIPLICATIONx11x10x9x7x8x6x13x15� x16x14x12x5x4x3x2x1Bmin(Z8) = 756x24x20x18x16x9x8x10x11x7x12x14x21� x22x19x17x15x6x5x4x3x2x1x13x23Bmin(Z12) = 21931
x10x11x9x8x7x16x6x15� x5x4x3x12x13x2x1x14Bmax(Z8) = 6791x16x17x15x14x24x13x12x11x20x10x9x23� x8x7x6x5x18x4x22x3x2x19x1x21Bmax(Z12) = 866283Table 2BEST AND WORST ORDERINGS FOR ALL BITS fz1; : : : ; zm+ng OF MULTIPLICATIONx11x16x15x14x13x12x10x9� x8x7x6x5x4x3x2x1Bmin(Z(1)8;8 ; : : : ; Z(16)8;8 ) = 9700x15x17x24x23x22x21x20x19x18x16x14x13� x1x2x3x4x5x6x7x8x9x10x11x12Bmin(Z(1)12;12; : : : ; Z(24)12;12) = 648957x17x16x10x9x11x12 : : : x15x18x19x24x23 : : : x20� x1x2x3x4x5x6x7x8Bmin(Z(1)16;8; : : : ; Z(24)16;8) = 157061

x10x8x9x13x2x1x11x7� x16x5x15x6x4x14x3x12Bmax(Z(1)8;8 ; : : : ; Z(16)8;8 ) = 28678x17x22x14x13x16x10x20x3x2x1x19x12� x24x15x9x8x21x7x6x11x23x5x4x18Bmax(Z(1)12;12; : : : ; Z(24)12;12) = 4224195x13x14x12x15x16x17x22x10x8x7x18x9x2x1x19x6� x24x11x21x5x4x23x3x20Bmax(Z(1)16;8; : : : ; Z(24)16;8) = 1236251A good upper bound for the BDD size of the middle bit fun
tion whenneither operand is 
onstant has been found by K. Amano and A. Maruoka,Dis
rete Applied Math. 155 (2007), 1224{1232:Theorem A. Let f(x1; : : : ; x2n) = Zn(x1; x3; : : : ; x2n�1;x2; x4; : : : ; x2n). ThenB(f) � Q(f) < 197 2d6n=5e: (121)Proof. Consider two n-bit numbers x = 2kxh+xl and y = 2kyh+ yl, with n� kunknown bits in ea
h of their high parts (xh; yh), while their k-bit low parts(xl; yl) are both known. Then the middle bit of xy is determined by addingtogether three (n � k)-bit quantities when k � n=2, namely xhyl mod 2n�k,xlyh mod 2n�k, and (xlyl � k) mod 2n�k. Hen
e level 2k of the QDD needs to\remember" only the least signi�
ant n � k bits of ea
h of the prior quantitiesxl, yl, and xlyl � k, a total of 3n � 3k bits, and we have q2k � 23n�3k in f 'squasi-pro�le. Exer
ise 177 
ompletes the proof.Amano and Maruoka also dis
overed another important upper bound. LetZ(p)m;n(x1; : : : ; xm; y1; : : : ; yn) denote the pth bit zp of the produ
t (117).Theorem Y. For all 
onstants (am : : : a1)2 and for all p, the BDD and QDDfor the fun
tion Z(p)m;n(a1; : : : ; am;x1; : : : ; xn) have fewer than 3 � 2n=2 nodes.Proof. Exer
ise 180 proves that qk � 2n+1�k for this fun
tion. The theoremfollows when we 
ombine that result with the obvious upper bound qk � 2k.
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Theorem Y shows that the lower bound of Theorem X is best possible, ex
eptfor a 
onstant fa
tor. It also shows that the BDD base for all m + n produ
tfun
tions Z(p)m;n(x1; : : : ; xm;xm+1; : : : ; xm+n) is not nearly as large as �(2m+n),whi
h we get for almost all instan
es of m+ n fun
tions of m+ n variables:Corollary Y. If m � n, B(Z(1)m;n; : : : ; Z(m+n)m;n ) < 3(m+ n)2m+(n+1)=2.The best orderings of variables for the middle-bit fun
tion Zn and for the
omplete BDD base remain mysterious, but empiri
al results for small m and ngive reason to 
onje
ture that the upper bounds of Theorem A and Corollary Yare not far from the truth; see Tables 1 and 2. Here, for example, are theoptimum results of Zn when n � 12:n = 1 2 3 4 5 6 7 8 9 10 11 12Bmin(Zn) = 4 8 14 31 63 136 315 756 1717 4026 9654 2193126n=5 � 2 5 12 28 64 147 338 776 1783 4096 9410 21619The ratiosBmax=Bmin with respe
t to the full BDD base fZ(1)m;n; : : : ; Z(m+n)m;n gare surprisingly small in Table 2. Therefore all orderings for that problem mightturn out to be roughly equivalent.Zero-suppressed BDDs: A 
ombinatorial alternative. When BDDs areapplied to 
ombinatorial problems, a glan
e at the data in memory often revealsthat most of the HI �elds simply point to ? . In su
h 
ases, we're bettero� using a variant data stru
ture 
alled a zero-suppressed binary de
ision dia-gram, or \ZDD" for short, introdu
ed by Shin-i
hi Minato [ACM/IEEE DesignAutomation Conf. 30 (1993), 272{277℄. A ZDD has nodes like a BDD, but itsnodes are interpreted di�erently: When an ki node bran
hes to a kj node forj > i+1, it means that the Boolean fun
tion is false unless xi+1 = � � � = xj�1 = 0.For example, the BDDs for independent sets and kernels in (12) have manynodes with HI = ? . Those nodes go away in the 
orresponding ZDDs, althougha few new nodes must also be added:123 34 45 56 >Independent sets

1 23456The 
y
le C6

123 34 456
? ? >? >? >Kernels

(122)
Noti
e that we might have LO = HI in a ZDD, be
ause of the new 
onventions.Furthermore, the example on the left shows that a ZDD need not 
ontain ? atall! About 40% of the nodes in (12) have been eliminated from ea
h diagram.
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ombinations, see family of setsempty 
asetruth tablebeadszeadsz-pro�lequasi-pro�lesindependent setskernels
ontiguous USASifting

One good way to understand a ZDD is to regard it as a 
ondensed repre-sentation of a family of sets. Indeed, the ZDDs in (122) represent respe
tivelythe families of all independent sets and all kernels of C6. The root node of aZDD names the smallest element that appears in at least one of the sets; its HIand LO bran
hes represent the residual subfamilies that do and don't 
ontain thatelement; and so on. At the bottom, ? represents the empty family `;', and >represents `f;g'. For example, the rightmost ZDD in (122) represents the fam-ily �f1; 3; 5g; f1; 4g; f2; 4; 6g; f2; 5g; f3; 6g	, be
ause the HI bran
h of the rootrepresents ff3; 5g; f4gg and the LO bran
h represents ff2; 4; 6g; f2; 5g; f3; 6gg.Every Boolean fun
tion f(x1; : : : ; xn) is, of 
ourse, equivalent to a fam-ily of subsets of f1; : : : ; ng, and vi
e versa. But the family 
on
ept gives usa di�erent perspe
tive from the fun
tion 
on
ept. For example, the familyff1; 3g; f2g; f2; 5gg has the same ZDD for all n � 5; but if, say, n = 7, theBDD for the fun
tion f(x1; : : : ; x7) that de�nes this family needs additionalnodes to ensure that x4 = x6 = x7 = 0 when f(x) = 1.Almost every notion that we've dis
ussed for BDDs has a 
ounterpart in thetheory of ZDDs, although the a
tual data stru
tures are often strikingly di�erent.We 
an, for example, take the truth table for any given fun
tion f(x1; : : : ; xn) and
onstru
t its unique ZDD in a straightforward way, analogous to the 
onstru
tionof its BDD as illustrated in (5). We know that the BDD nodes for f 
orrespondto the \beads" of f 's truth table; the ZDD nodes, similarly, 
orrespond to zeads,whi
h are binary strings of the form �� with j�j = j�j and � 6= 0 : : : 0, or withj�j = j�j � 1. Any binary string 
orresponds to a unique zead, obtained bylopping o� the right half repeatedly, if ne
essary, until the string either has oddlength or its right half is nonzero.Dear reader, please take a moment now to work exer
ise 187. (Really.)The z-pro�le of f(x1; : : : ; xn) is (z0; : : : ; zn), where zk is the number of zeadsof order n�k in f 's truth table, for 0 � k < n, namely the number of � �� �k+1 nodesin the ZDD; also zn is the number of sinks. We write Z(f) = z0 + � � � + zn forthe total number of nodes. For example, the fun
tions in (122) have z-pro�les(1; 1; 2; 2; 2; 1; 1) and (1; 1; 2; 2; 1; 1; 2), respe
tively, so Z(f) = 10 in ea
h 
ase.The basi
 relations (83){(85) between pro�les and quasi-pro�les hold truealso for z-pro�les: qk � zk; for 0 � k � n; (123)qk � 1 + z0 + � � �+ zk�1 and qk � zk + � � �+ zn; for 0 � k � n; (124)Z(f) � 2qk � 1; for 0 � k � n. (125)Consequently the BDD size and the ZDD size 
an never be wildly di�erent:Z(f) � n+ 12 �B(f) + 1� and B(f) � n+ 12 �Z(f) + 1�: (126)On the other hand, a fa
tor of 50 when n = 100 is nothing to sneeze at.When ZDDs are used to �nd independent sets and kernels of the 
ontiguousUSA, using the original order of (17), the BDD sizes of 428 and 780 go down to177 and 385, respe
tively. Sifting redu
es these ZDD sizes to 160 and 335. Is any-body sneezing? That's amazingly good, for 
ompli
ated fun
tions of 49 variables.
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When we know the ZDDs for f and g, we 
an synthesize them to obtainthe ZDDs for f ^ g, f _ g, f � g, et
., using algorithms that are very mu
h likethe methods we've used for BDDs. Furthermore we 
an 
ount and/or optimizethe solutions of f , with analogs of Algorithms C and B; in fa
t, ZDD-basedte
hniques for 
ounting and optimization turn out to be a bit easier than the
orresponding BDD-based algorithms are. With slight modi�
ations of BDDmethods, we 
an also do dynami
 variable reordering via sifting. Exer
ises 197{209 dis
uss the nuts and bolts of all the basi
 ZDD pro
edures.In general, a ZDD tends to be better than a BDD when we're dealing withfun
tions whose solutions are sparse, in the sense that �x tends to be smallwhen f(x) = 1. And if f(x) itself happens to be sparse, in the sense that it has
omparatively few solutions, so mu
h the better.For example, ZDDs are well suited to exa
t 
over problems, de�ned by anm�n matrix of 0s and 1s: We want to �nd all ways to 
hoose rows that sum to(1; 1; : : : ; 1). Our goal might be, say, to 
over a 
hessboard with 32 dominoes, like
; ; or : (127)

This is an exa
t 
over problem whose matrix has 8 � 8 = 64 
olumns, one forea
h 
ell; there are 2� 7� 8 = 112 rows, one for ea
h pair of adja
ent 
ells:0BBBBBBBBBB�
1 1 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 1 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 00 1 1 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 1 0 0 : : : 0 0 0 0 0 0 0 0 0 0 0... ...0 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 : : : 0 0 0 0 0 0 0 0 0 1 1

1CCCCCCCCCCA : (128)
Let variable xj represent the 
hoi
e (or not) of row j. Thus the three so-lutions in (127) have (x1; x2; x3; x4; : : : ; x110; x111; x112) = (1; 0; 0; 0; : : : ; 1; 0; 1),(1; 0; 0; 0; : : : ; 1; 0; 1), and (0; 1; 0; 1; : : : ; 1; 0; 0), respe
tively. In general, the so-lutions to an exa
t 
over problem are represented by the fun
tionf(x1; : : : ; xm) = n̂j=1S1(Xj) = n̂j=1[�Xj =1℄; (129)where Xj = fxi j aij = 1g and (aij) is the given matrix.The dominoes-on-a-
hessboard ZDD turns out to have only Z(f) = 2300nodes, even though f has m = 112 variables in this 
ase. We 
an use it to provethat there are exa
tly 12,988,816 
overings su
h as (127).
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Similarly, we 
an investigate more exoti
 kinds of 
overing. In
; (130)

for instan
e, a 
hessboard has been 
overed with monominoes, dominoes, and/ortrominoes| that is, with rookwise-
onne
ted pie
es that ea
h have either one,two, or three 
ells. There are exa
tly 92,109,458,286,284,989,468,604 ways todo this(!); and we 
an 
ompute that number almost instantly, doing only about75 megamems of 
al
ulation, by forming a ZDD of size 512,227 on 468 variables.A spe
ial algorithm 
ould be devised to �nd the ZDD for any given exa
t
over problem; or we 
an synthesize the result using (129). See exer
ise 212.In
identally, the problem of domino 
overing as in (127) is equivalent to�nding the perfe
t mat
hings of the grid graph P8 P8, whi
h is bipartite. Wewill see in Se
tion 7.5.1 that eÆ
ient algorithms are available by whi
h perfe
tmat
hings 
an be studied on graphs that are far too large to be treated withBDD/ZDD te
hniques. In fa
t, there's even an expli
it formula for the numberof domino 
overings of an m � n grid. By 
ontrast, general 
overings su
h as(130) fall into a wider 
ategory of hypergraph problems for whi
h polynomial-time methods are unlikely to exist as m;n!1.An amusing variant of domino 
overing 
alled the \mutilated
hessboard" was 
onsidered by Max Bla
k in his book Criti
alThinking (1946), pages 142 and 394: Suppose we remove opposite
orners of the 
hessboard, and try to 
over the remaining 
ellswith 31 dominoes. It's easy to pla
e 30 of them, for exampleas shown here; but then we're stu
k. Indeed, if we 
onsider the
orresponding 108�62 exa
t 
over problem, but leave out the lasttwo 
onstraints of (129), we obtain a ZDD with 1224 nodes from whi
h we 
andedu
e that there are 324,480 ways to 
hoose rows that sum to (1; 1; : : : ; 1; 1; �; �).But ea
h of those solutions has at least two 1s in 
olumn 61; therefore the ZDDredu
es to ? after we AND in the 
onstraint [�X61=1℄. (\Criti
al thinking"explains why; see exer
ise 213.) This example reminds us that (i) the size of the�nal ZDD or BDD in a 
al
ulation 
an be mu
h smaller than the time neededto 
ompute it; and (ii) using our brains 
an save oodles of 
omputer 
y
les.ZDDs as di
tionaries. Let's swit
h gears now, to note that ZDDs are advanta-geous also in appli
ations that have an entirely di�erent 
avor. We 
an use them,for instan
e, to represent the �ve-letter words of English, the set WORDS(5757)from the Stanford GraphBase that is dis
ussed near the beginning of this 
hapter.One way to do this is to 
onsider the fun
tion f(x1; : : : ; x25) that is de�ned tobe 1 if and only if the �ve numbers (x1 : : : x5)2, (x6 : : : x10)2, : : : , (x21 : : : x25)2en
ode the letters of an English word, where a = (00001)2, : : : , z = (11010)2.
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For example, f(0; 0; 1; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1; 1; 1; 0; 0; 1; 1; 0; 1; 1; 0; 0; x25) = x25.This fun
tion of 25 variables has Z(f) = 6233 nodes|whi
h isn't bad, sin
e itrepresents 5757 words.Of 
ourse we've studied many other ways to represent 5757 words, in Chap-ter 6. The ZDD approa
h is no mat
h for binary trees or tries or hash tables,when we merely want to do simple sear
hes. But with ZDDs we 
an also retrievedata that is only partially spe
i�ed, or data that is only supposed to mat
h akey approximately; many 
omplex queries 
an be handled with ease.Furthermore, we don't need to worry very mu
h about having lots of vari-ables when ZDDs are being used. Instead of working with the 25 variables xj
onsidered above, we 
an also represent those �ve-letter words as a sparse fun
-tion F (a1; : : : ; z1; a2; : : : ; z2; : : : ; a5; : : : ; z5) that has 26�5 = 130 variables, wherevariable a2 (for example) 
ontrols whether the se
ond letter is `a'. To indi
atethat 
razy is a word, we make F true when 
1 = r2 = a3 = z4 = y5 = 1 andall other variables are 0. Equivalently, we 
onsider F to be a family 
onsistingof the 5757 subsets fw1; h2; i3; 
4; h5g, ft1; h2; e3; r4; e5g, et
. With these 130variables the ZDD size Z(F ) turns out to be only 5020 instead of 6233.In
identally, B(F ) is 46,189|more than nine times as large as Z(F ). ButB(f)=Z(f) is only 8870=6233 � 1:4 in the 25-variable 
ase. The ZDD world isdi�erent from the BDD world in many ways, in spite of having similar algorithmsand a similar theory.One 
onsequen
e of this di�eren
e is a need for new primitive operations bywhi
h 
omplex families of subsets 
an readily be 
onstru
ted from elementaryfamilies. Noti
e that the simple subset ff1; u2; n3; n4; y5g is a
tually an extremelylong-winded Boolean fun
tion:�a1 ^ � � � ^ �e1 ^ f1 ^ �g1 ^ � � � ^ �t2 ^ u2 ^ �v2 ^ � � � ^ �x5 ^ y5 ^ �z5; (131):a minterm of 130 Boolean variables. Exer
ise 203 dis
usses an important familyalgebra, by whi
h that subset is expressed more naturally as `f1tu2tn3tn4ty5'.With family algebra we 
an readily des
ribe and 
ompute many interesting
olle
tions of words and word fragments (see exer
ise 222).ZDDs to represent simple paths. An important 
onne
tion between arbi-trary dire
ted, a
y
li
 graphs (dags) and a spe
ial 
lass of ZDDs is illustrated inFig. 28. When every sour
e vertex of the dag has out-degree 1 and every sinkvertex has in-degree 1, the ZDD for all oriented paths from a sour
e to a sinkhas essentially the same \shape" as the original dag. The variables in this ZDDare the ar
s of the dag, in a suitable topologi
al order. (See exer
ise 224.)1 23 4 56 7 89 10
1 23 4 56 7 89 10> >

Fig. 28. A dag, and the ZDD for itssour
e-to-sink paths. Ar
s of the dag
orrespond to verti
es of the ZDD. Allbran
hes to ? have been omitted fromthe ZDD in order to show the stru
turalsimilarities more 
learly.
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1 2 43 5 76 8 9
We 
an also use ZDDs to represent simple paths in an undire
ted graph.For example, there are 12 ways to go from the upper left 
orner of a 3� 3grid to the lower right 
orner, without visiting any point twi
e: (132)These paths 
an be represented by the ZDD shown at the right, whi
h 
hara
-terizes all sets of suitable edges. For example, we get the �rst path by takingthe HI bran
hes at 13 , 36 , 68 , and 89 of the ZDD. (As in Fig. 28,this diagram has been simpli�ed by omitting all of the uninterestingLO bran
hes that merely go to ? .) Of 
ourse this ZDD isn't a trulygreat way to represent (132), be
ause that family of paths has only 12members. But on the larger grid P8 P8, the number of simple pathsfrom 
orner to 
orner turns out to be 789,360,053,252; and they 
an allbe represented by a ZDD that has at most 33580 nodes. Exer
ise 225explains how to 
onstru
t su
h a ZDD qui
kly.

1213 2424 2525 474757 575735 3535 3636 6868 5858 7989 >A similar algorithm, dis
ussed in exer
ise 226, 
onstru
ts a ZDDthat represents all 
y
les of a given graph. With a ZDD of size 22275,we 
an dedu
e that P8 P8 has exa
tly 603,841,648,931 simple 
y
les.This ZDD may well provide the best way to represent all of those 
y
les withina 
omputer, and the best way to generate them systemati
ally if desired.The same ideas work well with graphs from the \real world" that don'thave a neat mathemati
al stru
ture. For example, we 
an use them to answera question posed to the author in 2008 by Randal Bryant: \Suppose I wantedto take a driving tour of the Continental U.S., visiting all of the state 
apitols,and passing through ea
h state only on
e. What route should I take to minimizethe total distan
e?" The following diagram shows the shortest distan
es betweenneighboring 
apital 
ities, when restri
ted to lo
al itineraries that ea
h 
ross onlyone state boundary:
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252 434212255

291244255187490 279438541441 338619 727 190415192 249 145244 175204165293 562 186203 532197
150430

68165 45236
103129397

139
237614435404 258

343416 453 392

624742675

200530 156

215392444
106

193127
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663 534
268 153

425160
388

160 354455
597

435 302 (133)

The problem is to 
hoose a subset of these edges that form a Hamiltonian pathof smallest total length.
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Every Hamiltonian path in this graph must 
learly either start or endat Augusta, Maine (ME). Suppose we start in Sa
ramento, California (CA).Pro
eeding as above, we 
an �nd a ZDD that 
hara
terizes all paths from CAto ME; this ZDD turns out to have only 7850 nodes, and it qui
kly tells us thatexa
tly 437,525,772,584 simple paths from CA to ME are possible. In fa
t, thegenerating fun
tion by number of edges turns out to be4z11 + 124z12 + 1539z13 + � � �+ 33385461z46 + 2707075z47; (134)so the longest su
h paths are Hamiltonian, and there are exa
tly 2,707,075 ofthem. Furthermore, exer
ise 227 shows how to 
onstru
t a smaller ZDD, of size4726, whi
h des
ribes just the Hamiltonian paths from CA to ME.We 
ould repeat this experiment for ea
h of the states in pla
e of California.(Well, the starting point had better be outside of New England, if we are goingto get past New York, whi
h is an arti
ulation point of this graph.) For example,there are 483,194 Hamiltonian paths from NJ to ME. But exer
ise 228 shows howto 
onstru
t a single ZDD of size 28808 for the family of all Hamiltonian pathsfrom ME to any other �nal state|of whi
h there are 68,656,026. The answer toBryant's problem now pops out immediately, via Algorithm B. (The reader maylike to try �nding a minimum route by hand, before turning to exer
ise 230 anddis
overing the absolutely optimum answer.)*ZDDs and prime impli
ants. Finally, let's look at an instru
tive appli
ationin whi
h BDDs and ZDDs are both used simultaneously.A

ording to Theorem 7.1.1Q, every monotone Boolean fun
tion f has aunique shortest two-level representation as an OR of ANDs, 
alled its \disjun
tiveprime form"|the disjun
tion of all of its prime impli
ants. The prime impli-
ants 
orrespond to the minimal points where f(x) = 1, namely the binaryve
tors x for whi
h we have f(x0) = 1 and x0 � x if and only if x0 = x. Iff(x1; x2; x3) = x1 _ (x2 ^ x3); (135)for example, the prime impli
ants of f are x1 and x2 ^ x3, while the minimalsolutions are x1x2x3 = 100 and 011. These minimal solutions 
an also beexpressed 
onveniently as e1 and e2 t e3, using family algebra (see exer
ise 203).In general, xi1 ^ � � � ^ xis is a prime impli
ant of a monotone fun
tion f ifand only if ei1 t � � � t eis is a minimal solution of f . Thus we 
an 
onsider f 'sprime impli
ants PI(f) to be its family of minimal solutions. Noti
e, however,that xi1 ^ � � �^xis � xj1 ^ � � �^xjt if and only if ei1 t � � �t eis � ej1 t � � �t ejt ; soit's 
onfusing to say that one prime impli
ant \
ontains" another. Instead, wesay that the shorter one \absorbs" the longer one.A 
urious phenomenon shows up in example (135): The diagram 12 3? ? >>is not only the BDD for f, it's also the ZDD for PI(f)! Similarly, Fig. 21 at thebeginning of this se
tion illustrates not only the BDD for hx1x2x3i but also theZDD for PI(hx1x2x3i). On the other hand, let g = (x1^x3)_x2. Then the BDDfor g is 12 23? ?> > > but the ZDD for PI(g) is 12 3? ?> > . What's going on here?
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The key to resolving this mystery lies in the re
ursive stru
ture on whi
hBDDs and ZDDs are based. Every Boolean fun
tion 
an be represented asf(x1; : : : ; xn) = (�x1? f0: f1) = (�x1 ^ f0) _ (x1 ^ f1); (136)where f
 is the value of f when x1 is repla
ed by 
. When f is monotone we alsohave f = f0 _ (x1 ^ f1), be
ause f0 � f1. If f0 6= f1, the BDD for f is obtainedby 
reating a node k1 whose LO and HI bran
hes point to the BDDs for f0and f1. Similarly, it's not diÆ
ult to see that the prime impli
ants of f arePI(f) = PI(f0) [ �e1 t (PI(f1) n PI(f0))�: (137)(See exer
ise 253.) This is the re
ursion that de�nes the ZDD for PI(f), whenwe add the termination 
onditions for 
onstant fun
tions: The ZDDs for PI(0)and PI(1) are ? and > .Let's say that a Boolean fun
tion is sweet if it is monotone and if the ZDDfor PI(f) is exa
tly the same as the BDD for f . Constant fun
tions are 
learlysweet. And non
onstant sweetness is easily 
hara
terized:Theorem S. A Boolean fun
tion that depends on x1 is sweet if and only if itsprime impli
ants are P [ (x1 t Q), where P and Q are sweet and independentof x1, and every member of P is absorbed by some member of Q.Proof. See exer
ise 246. (To say that \P and Q are sweet" means that theyea
h are families of prime impli
ants that de�ne a sweet Boolean fun
tion.)Corollary S. The 
onne
tedness fun
tion of any graph is sweet.Proof. The prime impli
ants of the 
onne
tedness fun
tion f are the spanningtrees of the graph. Every spanning tree that does not in
lude ar
 x1 has at leastone subtree that will be spanning when ar
 x1 is added to it. Furthermore, allsubfun
tions of f are the 
onne
tedness fun
tions of smaller graphs.Thus, for example, the BDD in Fig. 22, whi
h de�nes all 431 of the 
onne
tedsubgraphs of P3 P3, also is the ZDD that de�nes all 192 of its spanning trees.Whether f is sweet or not, we 
an use (137) to 
ompute the ZDD for PI(f)whenever f is monotone. When we do this we 
an a
tually let the BDD nodes andthe ZDD nodes 
oexist in the same big base of data: Two nodes with identi
al(V, LO, HI) �elds might as well appear only on
e in memory, even though theymight have 
omplete di�erent meanings in di�erent 
ontexts. We use one routineto synthesize f ^ �g when f and g point to BDDs, and another routine to formf n g when f and g point to ZDDs; no trouble will arise if these routines happento share nodes, as long as the variables aren't being reordered. (Of 
ourse the
a
he memos must distinguish BDD fa
ts from ZDD fa
ts when we do this.)For example, exer
ise 7.1.1{67 de�nes an interesting 
lass of self-dual fun
-tions 
alled the Y fun
tions, and the BDD for Y12 (whi
h is a fun
tion of 91variables) has 748,416 nodes. This fun
tion has 2,178,889,774 prime impli
ants;yet Z(PI(Y12)) is only 217,388. (We 
an �nd this ZDD with a 
omputational
ost of about 13 gigamems and 660 megabytes.)
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A brief history. The seeds of binary de
ision diagrams were impli
itly plantedby Claude Shannon [Trans. Amer. Inst. Ele
tri
al Engineers 57 (1938), 713{723℄,in his illustrations of relay-
onta
t networks. Se
tion 4 of that paper showed thatany symmetri
 Boolean fun
tion of n variables has a BDD with at most �n+12 �bran
h nodes. Shannon preferred to work with Boolean algebra; but C. Y. Lee, inBell System Te
h. J. 38 (1959), 985{999, pointed out several advantages of whathe 
alled \binary-de
ision programs," be
ause any n-variable fun
tion 
ould beevaluated by exe
uting at most n bran
h instru
tions in su
h a program.S. Akers 
oined the name \binary de
ision diagrams" and pursued the ideasfurther in IEEE Trans. C-27 (1978), 509{516. He showed how to obtain aBDD from a truth table by working bottom-up, or from algebrai
 subfun
tionsby working top-down. He explained how to 
ount the paths from a root to >or ? , and observed that these paths partition the n-
ube into disjoint sub
ubes.Meanwhile a very similar model of Boolean 
omputation arose in theoret-i
al studies of automata. For example, A. Cobham [FOCS 7 (1966), 78{87℄related the minimum sizes of bran
hing programs for a sequen
e of fun
tionsfn(x1; : : : ; xn) to the spa
e 
omplexity of nonuniform Turing ma
hines that
ompute this sequen
e. More signi�
antly, S. Fortune, J. Hop
roft, and E. M.S
hmidt [Le
ture Notes in Comp. S
i. 62 (1978), 227{240℄ 
onsidered \free B-s
hemes," now known as FBDDs, in whi
h no Boolean variable is tested twi
eon any path (see exer
ise 35). Among other results, they gave a polynomial-timealgorithm to test whether f = g, given FBDDs for f and g, provided that atleast one of those FBDDs is ordered 
onsistently as in a BDD. The theory of�nite-state automata, whi
h has intimate 
onne
tions to BDD stru
ture, was alsobeing developed; thus several resear
hers worked on problems that are equivalentto analyzing the size, B(f), for various fun
tions f . (See exer
ise 261.)All of this work was 
on
eptual, not implemented in 
omputer programs,although programmers had found good uses for binary tries and Patri
ian trees|whi
h are similar to BDDs ex
ept that they are trees instead of dags (see Se
-tion 6.3). But then Randal E. Bryant dis
overed that binary de
ision diagramsare signi�
antly important in pra
ti
e when they are required to be both redu
edand ordered. His introdu
tion to the subje
t [IEEE Trans. C-35 (1986), 677{691℄be
ame for many years the most 
ited paper in all of 
omputer s
ien
e, be
auseit revolutionized the data stru
tures used to represent Boolean fun
tions.In his paper, Bryant pointed out that the BDD for any fun
tion is essentiallyunique under his 
onventions, and that most of the fun
tions en
ountered inpra
ti
e had BDDs of reasonable size. He presented eÆ
ient algorithms tosynthesize the BDDs for f^g and f�g, et
., from the BDDs for f and g. He alsoshowed how to 
ompute the lexi
ographi
ally least x su
h that f(x) = 1, et
.Lee, Akers, and Bryant all noted that many fun
tions 
an pro�tably 
o-exist in a BDD base, sharing their 
ommon subfun
tions. A high-performan
e\pa
kage" for BDD base operations, developed by K. S. Bra
e, R. L. Rudell,and R. E. Bryant [ACM/IEEE Design Automation Conf. 27 (1990), 40{45℄, hasstrongly in
uen
ed all subsequent implementations of BDD toolkits. Bryantsummarized the early uses of BDDs in Computing Surveys 24 (1992), 293{318.



56 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 MinatoZDDsgraph theoryMaghoutmaximal independent setsminimal dominating setskernelsprime impli
antsmonotone fun
tionFortet4-
oloringCamioninteger programming problemsHammerRudeanuBoolean programming problemLinSomenziMinatolinear inequalitiesinteger variablesDNFCoudertWegener

Shin-i
hi Minato introdu
ed ZDDs in 1993, as noted above, to improveperforman
e in 
ombinatorial work. He gave a retrospe
tive a

ount of earlyZDD appli
ations in Software Tools for Te
hnology Transfer 3 (2001), 156{170.The use of Boolean methods in graph theory was pioneered by K. Maghout[Comptes Rendus A
ad. S
i. 248 (Paris, 1959), 3522{3523℄, who showed howto express the maximal independent sets and the minimal dominating sets ofany graph or digraph as the prime impli
ants of a monotone fun
tion. ThenR. Fortet [Cahiers du Centre d'Etudes Re
her
he Operationelle 1, 4 (1959), 5{44℄
onsidered Boolean approa
hes to a variety of other problems; for example, heintrodu
ed the idea of 4-
oloring a graph by assigning two Boolean variables toea
h vertex, as we have done in (73). P. Camion, in that same journal [2 (1960),234{289℄, transformed integer programming problems into equivalent problems inBoolean algebra, hoping to resolve them via te
hniques of symboli
 logi
. Thiswork was extended by others, notably P. L. Hammer and S. Rudeanu, whosebook Boolean Methods in Operations Resear
h (Springer, 1968) summarizedthe ideas. Unfortunately, however, their approa
h foundered, be
ause no goodte
hniques for Boolean 
al
ulation were available at the time. The proponentsof Boolean methods had to wait until the advent of BDDs before the generalBoolean programming problem (7) 
ould be resolved, thanks to Algorithm B.The spe
ial 
ase of Algorithm B in whi
h all weights satisfying wi � 0 was in-trodu
ed by B. Lin and F. Somenzi [IEEE/ACM International Conf. Computer-Aided Design CAD-90 (1990), 88{91℄. S. Minato [Formal Methods in SystemDesign 10 (1999), 221{242℄ developed software that automati
ally 
onverts linearinequalities between integer variables into BDDs that 
an be manipulated 
on-veniently, somewhat as the resear
her of the 1960s had hoped would be possible.The 
lassi
 problem of �nding a minimum size DNF for a given fun
tion alsobe
ame spe
ta
ularly simpler when BDD methods be
ame understood. Thelatest te
hniques for that problem are beyond the s
ope of this book, but OlivierCoudert has given an ex
ellent overview in Integration 17 (1994), 97{140.A �ne book by Ingo Wegener, Bran
hing Programs and Binary De
isionDiagrams (SIAM, 2000), surveys the vast literature of the subje
t, develops themathemati
al foundations 
arefully, and dis
usses many ways in whi
h the basi
ideas have been generalized and extended.Caveat. We've seen dozens of examples in whi
h the use of BDDs and/orZDDs has made it possible to solve a wide variety of 
ombinatorial problemswith amazing eÆ
ien
y, and the exer
ises below 
ontain dozens of additionalexamples where su
h methods shine. But BDD and ZDD stru
tures are by nomeans a pana
ea; they're only two of the weapons in our arsenal. They apply
hie
y to problems that have more solutions than 
an readily be examined one byone, problems whose solutions have a lo
al stru
ture that allows our algorithmsto deal with only relatively few subproblems at a time. In later se
tions of TheArt of Computer Programming we shall be studying additional te
hniques bywhi
h other kinds of 
ombinatorial problems 
an be tamed.
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tionsBDD basebitwise instru
tionsbroadword 
hainstruth tablebeadssubstituting an expression for a variablelexi
ographi
ally largestsequential representation of BDDsisomorphism of BDDsequality testing of Boolean fun
tions
ounting solutionssatis�ability 
ountingorderedredu
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y
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over
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y
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y
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EXERCISESx 1. [20 ℄ Draw the BDDs for all 16 Boolean fun
tions f(x1; x2). What are their sizes?x 2. [21 ℄ Draw a planar dag with sixteen verti
es, ea
h of whi
h is the root of one ofthe 16 BDDs in exer
ise 1.3. [16 ℄ How many Boolean fun
tions f(x1; : : : ; xn) have BDD size 3 or less?4. [21 ℄ Suppose three �elds V LO HI have been pa
ked into a 64-bit word x,where V o

upies 8 bits and the other two �elds o

upy 28 bits ea
h. Show that �vebitwise instru
tions will transform x 7! x0, where x0 is equal to x ex
ept that a LO orHI value of 0 is 
hanged to 1 and vi
e versa. (Repeating this operation on every bran
hnode x of a BDD for f will produ
e the BDD for the 
omplementary fun
tion, �f .)5. [20 ℄ If you take the BDD for f(x1; : : : ; xn) and inter
hange the LO and HI pointersof every node, and if you also swap the two sinks ? $ > , what do you get?6. [10 ℄ Let g(x1; x2; x3; x4) = f(x4; x3; x2; x1), where f has the BDD in (6). Whatis the truth table of g, and what are its beads?7. [21 ℄ Given a Boolean fun
tion f(x1; : : : ; xn), letgk(x0; x1; : : : ; xn) = f(x0; : : : ; xk�2; xk�1_ xk; xk+1; : : : ; xn) for 1 � k � n.Find a simple relation between (a) the truth tables and (b) the BDDs of f and gk.8. [22 ℄ Solve exer
ise 7 with xk�1� xk in pla
e of xk�1_ xk.9. [16 ℄ Given the BDD for a fun
tion f(x) = f(x1; : : : ; xn), represented sequentiallyas in (8), explain how to determine the lexi
ographi
ally largest x su
h that f(x) = 0.x 10. [21 ℄ Given two BDDs that de�ne Boolean fun
tions f and f 0, represented sequen-tially as in (8) and (10), design an algorithm that tests f = f 0.11. [20 ℄ Does Algorithm C give the 
orre
t answer if it is applied to a binary de
isiondiagram that is (a) ordered but not redu
ed? (b) redu
ed but not ordered?x 12. [M21 ℄ A kernel of a digraph is a set of verti
es K su
h thatv 2 K implies v 6��!u for all u 2 K;v =2 K implies v��!u for some u 2 K:a) Show that when the digraph is an ordinary graph (that is, when u��!v if and onlyif v��!u), a kernel is the same as a maximal independent set.b) Des
ribe the kernels of the oriented 
y
le C~n.
) Prove that an a
y
li
 digraph has a unique kernel.13. [M15 ℄ How is the 
on
ept of a graph kernel related to the 
on
ept of (a) a maximal
lique? (b) a minimal vertex 
over?14. [M24 ℄ How big, exa
tly, are the BDDs for (a) all independent sets of the 
y
legraph Cn, and (b) all kernels of Cn, when n � 3? (Number the verti
es as in (12).)15. [M23 ℄ How many (a) independent sets and (b) kernels does Cn have, when n � 3?x 16. [22 ℄ Design an algorithm that su

essively generates all ve
tors x1 : : : xn for whi
hf(x1; : : : ; xn) = 1, when a BDD for f is given.17. [32 ℄ If possible, improve the algorithm of exer
ise 16 so that its running time isO(B(f)) +O(N) when there are N solutions.18. [13 ℄ Play through Algorithm B with the BDD (8) and (w1; : : : ; w4) = (1;�2;�3; 4).
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19. [20 ℄ What are the largest and smallest possible values of variable mk in Algo-rithm B, based only on the weights (w1; : : : ; wn), not on any details of the fun
tion f?20. [15 ℄ Devise a fast way to 
ompute the Thue{Morse weights (15) for 1 � j � n.21. [05 ℄ Can Algorithm B minimize w1x1 + � � �+ wnxn, instead of maximizing it?x 22. [M21 ℄ Suppose step B3 has been simpli�ed so that `Wv+1�Wvl ' and `Wv+1�Wvh 'are eliminated from the formulas. Prove that the algorithm will still work, when appliedto BDDs that represent kernels of graphs.x 23. [M20 ℄ All paths from the root of the BDD in Fig. 22 to > have exa
tly eightsolid ar
s. Why is this not a 
oin
iden
e?24. [M22 ℄ Suppose twelve weights (w12; w13; : : : ; w89) have been assigned to the edgesof the grid in Fig. 22. Explain how to �nd a minimum spanning tree in that graph(namely, a spanning tree whose edges have minimum total weight), by applying Algo-rithm B to the BDD shown there.25. [M20 ℄ Modify Algorithm C so that it 
omputes the generating fun
tion for the so-lutions to f(x1; : : : ; xn) = 1, namely G(z) =P1x1=0 � � �P1xn=0 zx1+���+xnf(x1; : : : ; xn).26. [M20 ℄ Modify Algorithm C so that it 
omputes the reliability polynomial for givenprobabilities, namelyF (p1; : : : ; pn) = 1Xx1=0 � � � 1Xxn=0(1� p1)1�x1px11 : : : (1� pn)1�xnpxnn f(x1; : : : ; xn):x 27. [M26 ℄ Suppose F (p1; : : : ; pn) and G(p1; : : : ; pn) are the reliability polynomialsfor Boolean fun
tions f(x1; : : : ; xn) and g(x1; : : : ; xn), where f 6= g. Let q be a primenumber, and 
hoose independent random integers q1, : : : , qn, uniformly distributedin the range 0 � qk < q. Prove that F (q1; : : : ; qn) mod q 6= G(q1; : : : ; qn) mod q withprobability � (1�1=q)n. (In parti
ular, if n = 1000 and q = 231�1, di�erent fun
tionslead to di�erent \hash values" under this s
heme with probability at least 0.9999995.)28. [M16 ℄ Let F (p) be the value of the reliability polynomial F (p1; : : : ; pn) when p1 =� � � = pn = p. Show that it's easy to 
ompute F (p) from the generating fun
tion G(z).29. [HM20 ℄ Modify Algorithm C so that it 
omputes the reliability polynomial F (p)of exer
ise 28 and also its derivative F 0(p), given p and the BDD for f.x 30. [M21 ℄ The reliability polynomial is the sum, over all solutions to f(x1; : : : ; xn)=1,of 
ontributions from all \minterms" (1� p1)1�x1px11 : : : (1� pn)1�xnpxnn . Explain howto �nd a solution x1 : : : xn whose 
ontribution to the total reliability is maximum, givena BDD for f and a sequen
e of probabilities (p1; : : : ; pn).31. [M21 ℄ Modify Algorithm C so that it 
omputes the fully elaborated truth tableof f , formalizing the pro
edure by whi
h (24) was obtained from Fig. 21.x 32. [M20 ℄ What interpretations of `Æ', `�', `?', `>', `�xj ', and `xj ' will make the generalalgorithm of exer
ise 31 spe
ialize to the algorithms of exer
ises 25, 26, 29, and 30?x 33. [M22 ℄ Spe
ialize exer
ise 31 so that we 
an eÆ
iently 
omputeXf(x)=1(w1x1 + � � �+ wnxn) and Xf(x)=1(w1x1 + � � �+ wnxn)2from the BDD of a Boolean fun
tion f(x) = f(x1; : : : ; xn).
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34. [M25 ℄ Spe
ialize exer
ise 31 so that we 
an eÆ
iently 
omputemaxf max1�k�n(w1x1+ � � �+wk�1xk�1+w0kxk+wk+1xk+1+ � � �+wnxn+w00k ) j f(x) = 1gfrom the BDD of f , given 3n arbitrary weights (w1; : : : ; wn; w01; : : : ; w0n; w001 ; : : : ; w00n).x 35. [22 ℄ A free binary de
ision diagram (FBDD) is a binary de
ision diagram su
h as23 44 1 3? > ? >where the bran
h variables needn't appear in any parti
ular order, but no variable isallowed to o

ur more than on
e on any downward path from the root. (An FBDD is\free" in the sense that every path in the dag is possible: No bran
h 
onstrains another.)a) Design an algorithm to verify that a supposed FBDD is really free.b) Show that it's easy to 
ompute the reliability polynomial F (p1; : : : ; pn) of a Bool-ean fun
tion f(x1; : : : ; xn), given (p1; : : : ; pn) and an FBDD that de�nes f , andto 
ompute the number of solutions to f(x1; : : : ; xn) = 1.36. [25 ℄ By extending exer
ise 31, explain how to 
ompute the elaborated truth tablefor any given FBDD, if the abstra
t operators Æ and � are 
ommutative as well asdistributive and asso
iative. (Thus we 
an �nd optimum solutions as in Algorithm B, orsolve problems su
h as those in exer
ises 30 and 33, with FBDDs as well as with BDDs.)37. [M20 ℄ (R. L. Rivest and J. Vuillemin.) A Boolean fun
tion f(x1; : : : ; xn) is 
alledevasive if every FBDD for f 
ontains a downward path of length n. Let G(z) be thegenerating fun
tion for f, as in exer
ise 25. Prove that f is evasive if G(�1) 6= 0.x 38. [27 ℄ Let Is�1, : : : , I0 be bran
h instru
tions that de�ne a non
onstant Booleanfun
tion f(x1; : : : ; xn) as in (8) and (10). Design an algorithm that 
omputes the statusvariables t1 : : : tn, wheretj = 8<:+1; if f(x1; : : : ; xn) = 1 whenever xj = 1;�1; if f(x1; : : : ; xn) = 1 whenever xj = 0;0; otherwise.(If t1 : : : tn 6= 0 : : : 0, the fun
tion f is therefore 
analizing as de�ned in Se
tion 7.1.1.)The running time of your algorithm should be O(n+ s).39. [M20 ℄ What is the size of the BDD for the threshold fun
tion [x1 + � � �+ xn� k ℄?x 40. [22 ℄ Let g be the \
ondensation" of f obtained by setting xk+1  xk as in (27).a) Prove that B(g) � B(f). [Hint: Consider subtables and beads.℄b) Suppose h is obtained from f by setting xk+2  xk. Is B(h) � B(f)?41. [M25 ℄ Assuming that n � 4, �nd the BDD size of the Fibona

i threshold fun
-tions (a) hxF11 xF22 : : : xFn�2n�2 xFn�1n�1 xFn�2n i and (b) hxF1n xF2n�1 : : : xFn�23 xFn�12 xFn�21 i.42. [22 ℄ Draw the BDD base for all symmetri
 Boolean fun
tions of 3 variables.x 43. [22 ℄ What is B(f) when (a) f(x1; : : : ; x2n) = [x1 + � � �+ xn=xn+1 + � � �+ x2n ℄?(b) f(x1; : : : ; x2n) = [x1 + x3 + � � �+ x2n�1=x2 + x4 + � � �+ x2n ℄?x 44. [M32 ℄ Determine the maximum possible size, Sn, of B(f) when f is a symmetri
Boolean fun
tion of n variables.
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45. [22 ℄ Give pre
ise spe
i�
ations for the Boolean modules that 
ompute the three-in-a-row fun
tion as in (33) and (34), and show that the network is well de�ned.46. [M23 ℄ What is the true BDD size of the three-in-a-row fun
tion?47. [M21 ℄ Devise and prove a 
onverse of Theorem M: Every Boolean fun
tion f witha small BDD 
an be implemented by an eÆ
ient network of modules.48. [M22 ℄ Implement the hidden weighted bit fun
tion with a network of moduleslike Fig. 23, using ak = 2 + �k and bk = 1 + �(n� k) 
onne
ting wires for 1 � k < n.Con
lude from Theorem B that the upper bound in Theorem M 
annot be improvedto Pnk=0 2p(ak;bk) for any polynomial p.49. [20 ℄ Draw the BDD base for the following sets of symmetri
 Boolean fun
tions:(a) fS�k(x1; x2; x3; x4) j 1 � k � 4g; (b) fSk(x1; x2; x3; x4) j 0 � k � 4g.50. [22 ℄ Draw the BDD base for the fun
tions of the -segment display (7.1.2{(42)).51. [22 ℄ Des
ribe the BDD base for binary addition when the input bits are numberedfrom right to left, namely (fn+1fnfn�1 : : : f1)2 = (x2n�1 : : : x3x1)2 + (x2n : : : x4x2)2,instead of from left to right as in (35) and (36).52. [20 ℄ There's a sense in whi
h the BDD base for m fun
tions ff1; : : : ; fmg isn'treally very di�erent from a BDD with just one root: Consider the jun
tion fun
tionJ(u1; : : : ; un; v1; : : : ; vn) = (u1? v1: u2? v2: � � �un? vn: 0), and letf(t1; : : : ; tm+1; x1; : : : ; xn) = J(t1; : : : ; tm+1; f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn); 1);where (t1; : : : ; tm+1) are new \dummy" variables, pla
ed ahead of (x1; : : : ; xn) in the or-dering. Show that B(f) is almost the same as the size of the BDD base for ff1; : : : ; fmg.x 53. [23 ℄ Play through Algorithm R, when it is applied to the binary de
ision diagramwith seven bran
h nodes in (2).54. [17 ℄ Constru
t the BDD of f(x1; : : : ; xn) from f 's truth table, in O(2n) steps.55. [M30 ℄ Explain how to 
onstru
t the \
onne
tedness BDD" of a graph (like Fig. 22).56. [20 ℄ Modify Algorithm R so that, instead of pushing any unne
essary nodes ontoan AVAIL sta
k, it 
reates a brand new BDD, 
onsisting of 
onse
utive instru
tionsIs�1, : : : , I1, I0 that have the 
ompa
t form (�vk? lk: hk) assumed in Algorithms Band C. (The original nodes input to the algorithm 
an then all be re
y
led en masse.)57. [25 ℄ Spe
ify additional a
tions to be taken between steps R1 and R2 when Algo-rithm R is extended to 
ompute the restri
tion of a fun
tion. Assume that FIX[v℄ =t 2 f0; 1g if variable v is to be given the �xed value t; otherwise FIX[v℄ < 0.58. [20 ℄ Prove that the \melded" diagram de�ned by re
ursive use of (37) is redu
ed.x 59. [M28 ℄ Let h(x1; : : : ; xn) be a Boolean fun
tion. Des
ribe the melded BDD f �g interms of the BDD for h, when (a) f(x1; : : : ; x2n) = h(x1; : : : ; xn) and g(x1; : : : ; x2n) =h(xn+1; : : : ; x2n); (b) f(x1; x2; : : : ; x2n) = h(x1; x3; : : : ; x2n�1) and g(x1; x2; : : : ; x2n) =h(x2; x4; : : : ; x2n). [In both 
ases we obviously have B(f) = B(g) = B(h).℄60. [M22 ℄ Suppose f(x1; : : : ; xn) and g(x1; : : : ; xn) have the pro�les (b0; : : : ; bn) and(b00; : : : ; b0n), respe
tively, and let their respe
tive quasi-pro�les be (q0; : : : ; qn) and(q00; : : : ; q0n). Show that their meld f � g has B(f � g) �Pnj=0(qjb0j + bjq0j � bjb0j) nodes.x 61. [M27 ℄ If � and � are nodes of the respe
tive BDDs for f and g, prove thatin-degree(� � �) � in-degree(�) � in-degree(�)in the melded BDD f � g. (Imagine that the root of a BDD has in-degree 1.)
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onse
utive 1s forbiddentwo-in-a-row fun
tion2m-way multiplexermedianrepla
ement of variables by fun
tionssubstitution of fun
tions for variables
omposition of Boolean fun
tionsternary operatorshashingvirtual addressespageslotself-dualtruth tableregularmonotone Boolean fun
tions
lutteranti
hain of subsets, see 
luttermutually in
omparable setsfamily of setsmonotone-fun
tion fun
tionpro�le

x 62. [M21 ℄ If f(x) = Wbn=2
j=1 (x2j�1^x2j) and g(x) = (x1^xn)_Wdn=2e�1j=1 (x2j^x2j+1),what are the asymptoti
 values of B(f), B(g), B(f � g), and B(f _ g) as n!1?63. [M27 ℄ Let f(x1; : : : ; xn) =Mm(x1�x2; x3�x4; : : : ; x2m�1�x2m;x2m+1; : : : ; xn)and g(x1; : : : ; xn) = Mm(x2 � x3; : : : ; x2m�2 � x2m�1; x2m; �x2m+1; : : : ; �xn), where n =2m+ 2m. What are B(f), B(g), and B(f ^ g)?64. [M21 ℄ We 
an 
ompute the median hf1f2f3i of three Boolean fun
tions by formingf4 = f1 _ f2; f5 = f1 ^ f2; f6 = f3 ^ f4; f7 = f5 _ f6:Then B(f4) = O(B(f1)B(f2)), B(f5) = O(B(f1)B(f2)), B(f6) = O(B(f3)B(f4)) =O(B(f1)B(f2)B(f3)); therefore B(f7) = O(B(f5)B(f6)) = O(B(f1)2B(f2)2B(f3)).Prove, however, that B(f7) is a
tually only O(B(f1)B(f2)B(f3)), and the runningtime to 
ompute it from f5 and f6 is also O(B(f1)B(f2)B(f3)).x 65. [M25 ℄ If h(x1; : : : ; xn) = f(x1; : : : ; xj�1; g(x1; : : : ; xn); xj+1; : : : ; xn), prove thatB(h) = O(B(f)2B(g)). Can this upper bound be improved to O(B(f)B(g)) in general?66. [20 ℄ Complete Algorithm S by explaining what to do in step S1 if f Æ g turns outto be trivially 
onstant.67. [24 ℄ Sket
h the a
tions of Algorithm S when (41) de�nes f and g, and op = 1.68. [20 ℄ Speed up step S10 by streamlining the 
ommon 
ase when LEFT(t) < 0.69. [21 ℄ Algorithm S ought to have one or more pre
autionary instru
tions su
h as\if NTOP > TBOT, terminate the algorithm unsu

essfully," in 
ase it runs out of room.Where are the best pla
es to insert them?70. [21 ℄ Dis
uss setting b to blg LCOUNT[l℄
 instead of dlg LCOUNT[l℄e in step S4.71. [20 ℄ Dis
uss how to extend Algorithm S to ternary operators.72. [25 ℄ Explain how to eliminate hashing from Algorithm S.x 73. [25 ℄ Dis
uss the use of \virtual addresses" instead of a
tual addresses as the linksof a BDD: Ea
h pointer p has the form �(p)2e+�(p), where �(p) = p� e is p's \page"and �(p) = pmod 2e is p's \slot"; the parameter e 
an be 
hosen for 
onvenien
e. Showthat, with this approa
h, only two �elds (LO; HI) are needed in BDD nodes, be
ausethe variable identi�er V (p) 
an be dedu
ed from the virtual address p itself.x 74. [M23 ℄ Explain how to 
ount the number of self-dual monotone Boolean fun
tionsof n variables, by modifying (49).75. [M20 ℄ Let �n(x1; : : : ; x2n) be the Boolean fun
tion that is true if and only ifx1 : : : x2n is the truth table of a regular fun
tion (see exer
ise 7.1.1{110). Show thatthe BDD for �n 
an be 
omputed by a pro
edure similar to that of �n in (49).x 76. [M22 ℄ A \
lutter" is a family S of mutually in
omparable sets; in other words,S 6� S0 whenever S and S0 are distin
t members of S. Every set S � f0; 1; : : : ; n� 1g
an be represented as an n-bit integer s =Pf2e j e 2 Sg; so every family of su
h sets
orresponds to a binary ve
tor x0x1 : : : x2n�1, with xs = 1 if and only if s represents aset of the family.Show that the BDD for the fun
tion `[x0x1 : : : x2n�1 
orresponds to a 
lutter℄' hasa simple relation to the BDD for the monotone-fun
tion fun
tion �n(x1; : : : ; x2n).x 77. [M30 ℄ Show that there's an in�nite sequen
e (b0; b1; b2; : : : ) = (1; 2; 3; 5; 6; : : : )su
h that the pro�le of the BDD for �n is (b0; b1; : : : ; b2n�1�1; b2n�1�1; : : : ; b1; b0; 2).(See Fig. 25.) How many bran
h nodes of that BDD have LO = ? ?
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a
heunique tablesgarbage 
olle
tionsbinary multipli
ationmedian operatorternaryquanti�ed formulasMORMXORmatrix multipli
ation mod 2
are setdon't 
are

x 78. [25 ℄ Use BDDs to determine the number of graphs on 12 labeled verti
es for whi
hthe maximum vertex degree is d, for 0 � d � 11.79. [20 ℄ For 0 � d � 11, 
ompute the probability that a graph on verti
es f1; : : : ; 12ghas maximum degree d, if ea
h edge is present with probability 1=3.80. [23 ℄ The re
ursive algorithm (55) 
omputes f ^ g in a depth-�rst manner, whileAlgorithm S does its 
omputation breadth-�rst. Do both algorithms en
ounter the samesubproblems f 0 ^ g0 as they pro
eed (but in a di�erent order), or does one algorithm
onsider fewer 
ases than the other?x 81. [20 ℄ By modifying (55), explain how to 
ompute f � g in a BDD base.x 82. [25 ℄ When the nodes of a BDD base have been endowed with REF �elds, explainhow those �elds should be adjusted within (55) and within Algorithm U.83. [M20 ℄ Prove that if f and g both have referen
e 
ount 1, we needn't 
onsult thememo 
a
he when 
omputing AND(f; g) by (55).84. [24 ℄ Suggest strategies for 
hoosing the size of the memo 
a
he and the sizes ofthe unique tables, when implementing algorithms for BDD bases. What is a good wayto s
hedule periodi
 garbage 
olle
tions?85. [16 ℄ Compare the size of a BDD base for the 32 fun
tions of 16�16-bit binary mul-tipli
ation with the alternative of just storing a 
omplete table of all possible produ
ts.x 86. [21 ℄ The routine MUX in (62) refers to \obvious" values. What are they?87. [20 ℄ If the median operator hfghi is implemented with a re
ursive subroutineanalogous to (62), what are its \obvious" values?x 88. [M25 ℄ Find fun
tions f , g, and h for whi
h the re
ursive ternary 
omputation off ^g^h outperforms any of the binary 
omputations (f ^g)^h, (g^h)^f , (h^f)^g.89. [15 ℄ Are the following quanti�ed formulas true or false? (a) 9x19x2f = 9x29x1f .(b) 8x18x2f = 8x28x1f . (
) 8x19x2f � 9x28x1f . (d) 8x19x2f � 9x28x1f .90. [M20 ℄ When l = m = n = 3, Eq. (64) 
orresponds to the MOR operation of MMIX.Is there an analogous formula that 
orresponds to MXOR (matrix multipli
ation mod 2)?x 91. [26 ℄ In pra
ti
e we often want to simplify a Boolean fun
tion f with respe
t to a\
are set" g, by �nding a fun
tion f̂ with small B(f̂) su
h thatf(x) ^ g(x) � f̂(x) � f(x) _ �g(x) for all x:In other words, f̂(x) must agree with f(x) whenever x satis�es g(x) = 1, but wedon't 
are what value f̂(x) assumes when g(x) = 0. An appealing 
andidate for su
han f̂ is provided by the fun
tion f #g, \f 
onstrained by g," de�ned as follows: If g(x) isidenti
ally 0, f # g = 0. Otherwise (f # g)(x) = f(y), where y is the �rst element ofthe sequen
e x, x � 1, x � 2, : : : , su
h that g(y) = 1. (Here we think of x and y asn-bit numbers (x1 : : : xn)2 and (y1 : : : yn)2. Thus x� 1 = x � 0 : : : 01 = x1 : : : xn�1�xn;x� 2 = x� 0 : : : 010 = x1 : : : xn�2�xn�1xn; et
.)a) What are f # 1, f # xj , and f # �xj?b) Prove that (f ^ f 0) # g = (f # g) ^ (f 0 # g).
) True or false: �f # g = f # g.d) Simplify the formula f(x1; : : : ; xn) # (x2 ^ �x3 ^ �x5 ^ x6).e) Simplify the formula f(x1; : : : ; xn) # (x1 � x2 � � � � � xn).f) Simplify the formula f(x1; : : : ; xn) # ((x1 ^ � � � ^ xn) _ (�x1 ^ � � � ^ �xn)).g) Simplify the formula f(x1; : : : ; xn) # (x1 ^ g(x2; : : : ; xn)).



7.1.4 BINARY DECISION DIAGRAMS 63 sub
ubeapproximating fun
tion3-
oloredNP-
ompleteexistential quanti�
ationuniversal quanti�
ationdi�erential quanti�
ation
omponentsBryantsymmetry breaking4-
olor
ontiguous USA
a
hefun
tional 
ompositionproje
tion fun
tionrepla
ement fun
tionsDullQui
knotation: f k gunatemonotoneyes/no quanti�ersre
ursive algorithm

h) Find fun
tions f(x1; x2) and g(x1; x2) su
h that B(f # g) > B(f).i) Devise a re
ursive way to 
ompute f # g, analogous to (55).92. [M27 ℄ The operation f #g in exer
ise 91 sometimes depends on the ordering of thevariables. Given g = g(x1; : : : ; xn), prove that (f� # g�) = (f # g)� for all permutations� of f1; : : : ; ng and for all fun
tions f = f(x1; : : : ; xn) if and only if g = 0 or g is asub
ube (a 
onjun
tion of literals).93. [36 ℄ Given a graph G on the verti
es f1; : : : ; ng, 
onstru
t Boolean fun
tions fand g with the property that an approximating fun
tion f̂ exists as in exer
ise 91 withsmall B(f̂) if and only if G 
an be 3-
olored. (Hen
e the task of minimizing B(f̂) isNP-
omplete.)94. [21 ℄ Explain why (65) performs existential quanti�
ation 
orre
tly.x 95. [20 ℄ Improve on (65) by testing if rl = 1 before 
omputing rh.96. [20 ℄ Show how to a
hieve (a) universal quanti�
ation 8xj1 : : :8xjm f = fAg, and(b) di�erential quanti�
ation xj1 : : : xjm f = f D g, by modifying (65).97. [M20 ℄ Prove that it's possible to 
ompute arbitrary bottom-of-the-BDD quanti�-
ations su
h as 9xn�58xn�4 xn�39xn�2 xn�18xnf(x1; : : : ; xn) in O(B(f)) steps.x 98. [22 ℄ In addition to (70), explain how to de�ne the verti
es ENDPT(x) of G thathave degree � 1. Also 
hara
terize PAIR(x; y), the 
omponents of size 2.99. [20 ℄ (R. E. Bryant, 1984.) Every 4-
oloring of the US map 
onsidered in the text
orresponds to 24 solutions of the COLOR fun
tion (73), under permutation of 
olors.What's a good way to remove this redundan
y?x 100. [24 ℄ In how many ways is it possible to 4-
olor the 
ontiguous USA with exa
tly12 states of ea
h 
olor? (Eliminate DC from the graph.)101. [20 ℄ Continuing exer
ise 100, with 
olors f1; 2; 3; 4g, �nd su
h a 
oloring thatmaximizes P (state weight)� (state 
olor), where states are weighted as in (18).102. [23 ℄ Design a method to 
a
he the results of fun
tional 
omposition using the fol-lowing 
onventions: The system maintains at all times an array of fun
tions [g1; : : : ; gn℄,one for ea
h variable xj . Initially gj is simply the proje
tion fun
tion xj , for 1 � j � n.This array 
an be 
hanged only by the subroutine NEWG(j; g), whi
h repla
es gj by g.The subroutine COMPOSE(f) always performs fun
tional 
omposition with respe
t tothe 
urrent array of repla
ement fun
tions.x 103. [20 ℄ Mr. B. C. Dull wanted to evaluate the formula9y1 : : :9ym((y1 = f1(x1; : : : ; xn)) ^ � � � ^ (ym = fm(x1; : : : ; xn)) ^ g(y1; : : : ; ym));for 
ertain fun
tions f1, : : : , fm, and g. But his fellow student, J. H. Qui
k, found amu
h simpler formula for the same problem. What was Qui
k's idea?x 104. [21 ℄ Devise an eÆ
ient way to de
ide whether f � g or f � g or f k g, wheref k g means that f and g are in
omparable, given the BDDs for f and g.105. [25 ℄ A Boolean fun
tion f(x1; : : : ; xn) is 
alled unate with polarities (y1; : : : ; yn)if the fun
tion h(x1; : : : ; xn) = f(x1 � y1; : : : ; xn � yn) is monotone.a) Show that f 
an be tested for unateness by using the and quanti�ers.b) Design a re
ursive algorithm to test unateness in at most O(B(f)2) steps, giventhe BDD forf. If f is unate, your algorithm should also �nd appropriate polarities.



64 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 Horn fun
tionsinks, more than two2m-way multiplexerhidden weighted bit fun
tion
ostC(f), see 
ost of a Boolean fun
tionsymmetri
 Boolean fun
tiondualre
e
tionre
urren
ere
ursiveinvolutionFBDDpro�lequasi-pro�leslatebead

106. [25 ℄ Let f $g$h denote the relation \f(x) = g(y) = 1 implies h(x ^ y) = 1, forall x and y." Show that this relation 
an be evaluated in at most O(B(f)B(g)B(h))steps. [Motivation: Theorem 7.1.1H states that f is a Horn fun
tion if and only iff $f $f ; thus we 
an test Horn-ness in O(B(f)3) steps.℄107. [26 ℄ Continuing exer
ise 106, show that it's possible to determine whether or notf is a Krom fun
tion in O(B(f)4) steps. [Hint: See Theorem 7.1.1S.℄108. [HM24 ℄ Let b(n; s) be the number of n-variable Boolean fun
tions with B(f) � s.Prove that (s � 3)! b(n; s) � (n(s� 1)2)s�2 when s � 3, and explore the rami�
ationsof this inequality when s = b2n=(n+ 1=ln 2)
. Hint: See the proof of Theorem 7.1.2S.x 109. [HM17 ℄ Continuing exer
ise 108, show that almost all Boolean fun
tions of n var-iables have B(f�) > 2n=(n+ 1=ln 2), for all permutations � of f1; : : : ; ng, as n!1.110. [25 ℄ Constru
t expli
it worst-
ase fun
tions fn for whi
h fn = Un in Theorem U.111. [M21 ℄ Verify the summation formula (79) in Theorem U.112. [HM23 ℄ Prove that min(2k; 22n�k� 22n�k�1) � b̂k is very small, where b̂k is thenumber de�ned in (80), ex
ept when n� lgn� 1 < k < n� lgn+ 1.113. [20 ℄ Instead of having sink nodes, one for ea
h Boolean 
onstant, we 
ould have216 sinks, one for ea
h Boolean fun
tion of four variables. Then a BDD 
ould stop fourlevels earlier, after bran
hing on xn�4. Would this be a good idea?114. [20 ℄ Is there a fun
tion with pro�le (1;1;1;1;1;2) and quasi-pro�le (1;2;3;4;3;2)?x 115. [M22 ℄ Prove the quasi-pro�le inequalities (84) and (124).116. [M21 ℄ What is the (a) worst 
ase (b) average 
ase of a random quasi-pro�le?117. [M20 ℄ Compare Q(f) to B(f) when f =Mm(x1; : : : ; xm;xm+1; : : : ; xm+2m).118. [M23 ℄ Show that, from the perspe
tive of Se
tion 7.1.2, the hidden weighted bitfun
tion has 
ost C(hn) = O(n). What is the exa
t value of C(h4)?119. [20 ℄ True or false: Every symmetri
 Boolean fun
tion of n variables is a spe
ial
ase of h2n+1. (For example, x1 � x2 = h5(0; 1; 0; x1; x2).)120. [18 ℄ Explain the hidden-permuted-weighted-bit formula (94).x 121. [M22 ℄ If f(x1; : : : ; xn) is any Boolean fun
tion, its dual fD is �f(�x1; : : : ; �xn), andits re
e
tion fR is f(xn : : : ; x1). Noti
e that fDD = fRR = f and fDR = fRD.a) Show that hDRn (x1; : : : ; xn) = hn(x2; : : : ; xn; x1).b) Furthermore, the hidden weighted bit fun
tion satis�es the re
urren
eh1(x1) = x1; hn+1(x1; : : : ; xn+1) = (xn+1? hn(x2; : : : ; xn; x1): hn(x1; : : : ; xn)):
) De�ne x , a permutation on the set of all binary strings x, by the re
ursive rules� = �; (x1 : : : xn0) = (x1 : : : xn )0; (x1 : : : xn1) = (x2 : : : xnx1) 1:For example, 1101 = (101 )1 = (01 )11 = (0 )111 = ( )0111 = 0111; and wealso have 0111 = 1101. Is  an involution?d) Show that hn(x) = ĥn(x ), where the fun
tion ĥn has a very small BDD.122. [27 ℄ Constru
t an FBDD for hn that has fewer than n2 nodes, when n > 1.123. [M20 ℄ Prove formula (97), whi
h enumerates all slates of o�set s.x 124. [27 ℄ Design an eÆ
ient algorithm to 
ompute the pro�le and quasi-pro�le of h�n,given a permutation �. Hint: When does the slate [r0; : : : ; rn�k℄ 
orrespond to a bead?



7.1.4 BINARY DECISION DIAGRAMS 65 Analyzeorgan-pipe permutationpermuted 2m-way multiplexer0{1 matrixall-zero rowadja
en
y matrix
lique
overing fun
tion2-level redundan
ies fun
tion, see 
overing fun
tionreliability polynomialfault-tolerant systems�ve-variable fun
tionsmaster pro�le 
hartuniquely thin

x 125. [HM34 ℄ Prove that B(hn) 
an be expressed exa
tly in terms of the sequen
esAn = nXk=0�n� k2k �; Bn = nXk=0� n� k2k + 1�:126. [HM42 ℄ Analyze B(h�n) for the organ-pipe permutation � = (2; 4; : : : ; n; : : : ; 3; 1).127. [46 ℄ Find a permutation � that minimizes B(h�100).x 128. [25 ℄ Given a permutation � of f1; : : : ;m + 2mg, explain how to 
ompute thepro�le and quasi-pro�le of the permuted 2m-way multiplexerM�m(x1; : : : ; xm;xm+1; : : : ; xm+2m) =Mm(x1�; : : : ; xm� ;x(m+1)�; : : : ; x(m+2m)�):129. [M25 ℄ De�ne Qm(x1; : : : ; xm2) to be 1 if and only if the 0{1 matrix (x(i�1)m+j)has no all-zero row and no all-zero 
olumn. Prove that B(Q�m) = 
(2m=m2) for all �.130. [HM31 ℄ The adja
en
y matrix of an undire
ted graph G on verti
es f1; : : : ;mg
onsists of �m2 � variable entries xuv = [u��� v in G℄, for 1 � u < v � m. Let Cm;kbe the Boolean fun
tion [G has a k-
lique℄, for some ordering of those �m2 � variables.a) If 1 < k � pm, prove that B(Cm;k) � �s+ts �, where s = �k2��1 and t = m+2�k2.b) Consequently B(Cm;dm=2e) = 
(2m=3=pm ), regardless of the variable ordering.131. [M28 ℄ (The 
overing fun
tion.) The Boolean fun
tionC(x1; x2; : : : ; xp; y11; y12; : : : ; y1q; y21; : : : ; y2q; : : : ; yp1; yp2; : : : ; ypq)= ((x1^y11)_(x2^y21)_ � � � _(xp^yp1)) ^ � � � ^ ((x1^y1q)_(x2^y2q)_ � � � _(xp^ypq))is true if and only if all 
olumns of the matrix produ
t
x � Y = (x1x2 : : : xp)0BBB� y11 y12 : : : y1qy21 y22 : : : y2q... ... . . . ...yp1 yp2 : : : ypq

1CCCA
are positive, i.e., when the rows of Y sele
ted by x \
over" every 
olumn of that matrix.The reliability polynomial of C is important in the analysis of fault-tolerant systems.a) When a BDD for C tests the variables in the orderx1; y11; y12; : : : ; y1q; x2; y21; y22; : : : ; y2q; : : : ; xp; yp1; yp2; : : : ; ypq;show that the number of nodes is asymptoti
ally pq2q�1 for �xed q as p!1.b) Find an ordering for whi
h the size is asymptoti
ally pq2p�1 for �xed p as q !1.
) Prove, however, that Bmin(C) = 
(2min(p;q)=2) in general.132. [32 ℄ What Boolean fun
tions f(x1; x2; x3; x4; x5) have the largest Bmin(f)?133. [20 ℄ Explain how to 
ompute Bmin(f) and Bmax(f) from f 's master pro�le 
hart.134. [24 ℄ Constru
t the master pro�le 
hart, analogous to (102), for the Booleanfun
tion x1 � ((x2 � (x1 _ (�x2 ^ x3))) ^ (x3 � x4)). What are Bmin(f) and Bmax(f)?Hint: The identity f(x1; x2; x3; x4) = f(x1; x2; �x4; �x3) saves about half the work.135. [M27 ℄ For all n � 4, �nd a Boolean fun
tion �n(x1; : : : ; xn) that is uniquely thin,in the sense that B(��n) = n+ 2 for exa
tly one permutation �. (See (93) and (102).)



66 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 median-of-medians fun
tionoptimum linear arrangement problemQDDruler fun
tion �� fun
tionAnalyzedisjoint de
ompositionde
omposition of fun
tionsthreshold fun
tionsself-dualexponentiallyquasi-pro�leRudellswap-in-pla
ereferen
e 
ounters

x 136. [M34 ℄ What is the master pro�le 
hart of the median-of-medians fun
tionhhx11x12 : : : x1nihx21x22 : : : x2ni : : : hxm1xm2 : : : xmnii;when m and n are odd integers? What is the best ordering? (There are mn variables.)137. [M38 ℄ Given a graph, the optimum linear arrangement problem asks for a permu-tation � of the verti
es that minimizesPu��v ju��v�j. Constru
t a Boolean fun
tion ffor whi
h this minimum value is 
hara
terized by the optimum BDD size Bmin(f).x 138. [M36 ℄ The purpose of this exer
ise is to develop an attra
tive algorithm that
omputes the master pro�le 
hart for a fun
tion f, given f 's QDD (not its BDD).a) Explain how to �nd �n+12 � weights of the master pro�le 
hart from a single QDD.b) Show that the jump-up operation 
an be performed easily in a QDD, withoutgarbage 
olle
tion or hashing. Hint: See the \bu
ket sort" in Algorithm R.
) Consider the 2n�1 orderings of variables in whi
h the (i + 1)st is obtained fromthe ith by a jump-up from depth �i+ �i to depth �i� 1. For example, we get12345 21345 32145 31245 43125 41325 42135 42315 54231 52431 53241 53421 51342 51432 51243 51234when n = 5. Show that every k-element subset of f1; : : : ; ng o

urs at the top klevels of one of these orderings.d) Combine these ideas to design the desired 
hart-
onstru
tion algorithm.e) Analyze the spa
e and time requirements of your algorithm.139. [22 ℄ Generalize the algorithm of exer
ise 138 so that (i) it 
omputes a 
ommonpro�le 
hart for all fun
tions of a BDD base, instead of a single fun
tion; and (ii) itrestri
ts the 
hart to variables fxa; xa+1; : : : ; xbg, preserving fx1; : : : ; xa�1g at the topand fxb+1; : : : ; xng at the bottom.140. [27 ℄ Explain how to �nd Bmin(f) without knowing all of f 's master pro�le 
hart.141. [30 ℄ True or false: If X1, X2, : : : , Xm are disjoint sets of variables, then an opti-mum BDD ordering for the variables of g(h1(X1); h2(X2); : : : ; hm(Xm)) 
an be foundby restri
ting 
onsideration to 
ases where the variables of ea
h Xj are 
onse
utive.x 142. [HM32 ℄ The representation of threshold fun
tions by BDDs is surprisingly myste-rious. Consider the self-dual fun
tion f(x) = hxw11 : : : xwnn i, where ea
h wj is a positiveinteger and w1+� � �+wn is odd. We observed in (28) that B(f) = O(w1+� � �+wn)2; andB(f) is often O(n) even when the weights grow exponentially, as in (29) or exer
ise 41.a) Prove that when w1 = 1, wk = 2k�2 for 1 < k � m, and wk = 2m � 2n�k form < k � 2m = n, B(f) grows exponentially as n!1, but Bmin(f) = O(n2).b) Find weights fw1; : : : ; wng for whi
h Bmin(f) = 
(2pn=2).143. [24 ℄ Continuing exer
ise 142(a), �nd an optimum ordering of variables for thefun
tion hx1x2x23x44x85x166 x327 x648 x1289 x25610 x51211 x76812 x89613 x96014 x99215 x100816 x101617 x102018 x102219 x102320 i.144. [16 ℄ What is the quasi-pro�le of the addition fun
tions ff1; f2; f3; f4; f5g in (36)?145. [24 ℄ Find Bmin(f1; f2; f3; f4; f5) and Bmax(f1; f2; f3; f4; f5) of those fun
tions.x 146. [M22 ℄ Let (b0; : : : ; bn) and (q0; : : : ; qn) be a BDD base pro�le and quasi-pro�le.a) Prove that b0 � min(q0; (b1 + q2)(b1+ q2� 1)), b1 � min(b0+ q0; q2(q2� 1)), andb0 + b1 � q0 � q2.b) Conversely, if b0, b1, q0, and q2 are nonnegative integers that satisfy those in-equalities, there is a BDD base with su
h a pro�le and quasi-pro�le.x 147. [27 ℄ Flesh out the details of Rudell's swap-in-pla
e algorithm, using the 
onven-tions of Algorithm U and the referen
e 
ounters of exer
ise 82.
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-ta
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tion
ontiguous USAkernel fun
tionjumping upjump down2m-way multiplexerpartially symmetri
 fun
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 fun
tions, partialreorderingsConwayLife0{1 matri
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148. [M21 ℄ True or false: B(f�1 ; : : : ; f�m) � 2B(f1; : : : ; fm), after swapping j1 $ j2 .149. [M20 ℄ (Bollig, L�obbing, and Wegener.) Show that, in addition to Theorem J�,we also have B(f�1 ; : : : ; f�m) � (2k � 2)b0 +B(f1; : : : ; fm) after a jump-down operationof k � 1 levels, when (b0; : : : ; bn) is the pro�le of ff1; : : : ; fmg.150. [30 ℄ When repeated swaps are used to implement jump-up or jump-down, theintermediate results might be mu
h larger than the initial or �nal BDD. Show thatvariable jumps 
an a
tually be done more dire
tly, with a method whose worst-
aserunning time is O(B(f1; : : : ; fm) + B(f�1 ; : : : ; f�m)).151. [20 ℄ Suggest a way to invoke Algorithm J so that ea
h variable is sifted just on
e.152. [25 ℄ The hidden weighted bit fun
tion h100 has more than 17.5 trillion nodesin its BDD. By how mu
h does sifting redu
e this number? Hint: Use exer
ise 124,instead of a
tually 
onstru
ting the diagrams.153. [30 ℄ Put the ti
-ta
-toe fun
tions fy1; : : : ; y9g of exer
ise 7.1.2{65 into a BDDbase. How many nodes are present when variables are tested in the order x1, x2, : : : , x9,o1, o2, : : : , o9, from top to bottom? What is Bmin(y1; : : : ; y9)?154. [20 ℄ By 
omparing (104) to (106), 
an you tell how far ea
h state was movedwhen it was sifted?x 155. [25 ℄ Let f1 be the independent-set fun
tion (105) of the 
ontiguous USA, andlet f2 be the 
orresponding kernel fun
tion (see (67)). Find orderings � of the statesso that (a) B(f�2 ) and (b) B(f�1 ; f�2 ) are as small as you 
an make them. (Note thatthe ordering (110) gives B(f�1 ) = 339, B(f�2 ) = 795, and B(f�1 ; f�2 ) = 1129.)156. [30 ℄ Theorems J+ and J� suggest that we 
ould save reordering time by onlyjumping up when sifting, not bothering to jump down. Then we 
ould eliminate stepsJ3, J5, J6, and J7 of Algorithm J. Would that be wise?157. [M24 ℄ Show that if the m+ 2m variables of the 2m-way multiplexer Mm are ar-ranged in any order su
h that B(M�m) > 2m+1+1, then sifting will redu
e the BDD size.158. [M24 ℄ When a Boolean fun
tion f(x1; : : : ; xn) is symmetri
al in the variablesfx1; : : : ; xpg, it's natural to expe
t that those variables will appear 
onse
utively in atleast one of the reorderings f�(x1; : : : ; xn) that minimize B(f�). Show, however, that iff(x1; : : : ; xn) = [x1 + � � �+ xp= bp=3
℄ + [x1 + � � �+ xp= d2p=3e℄ g(xp+1; : : : ; xp+m);where p = n�m and g(y1; : : : ; ym) is any non
onstant Boolean fun
tion, then B(f�) =13n2+O(n) as n!1 when fx1; : : : ; xpg are 
onse
utive in �, but B(f�) = 14n2+O(n)when � pla
es about half of those variables at the beginning and half at the end.159. [20 ℄ John Conway's basi
 rule for Life, exer
ise 7.1.3{167, is a Boolean fun
tionL(xNW; xN; xNE; xW; x; xE; xSW; xS; xSE). What ordering of those nine variables willmake the BDD as small as possible?x 160. [24 ℄ (Chess Life.) Consider an 8� 8 matrix X = (xij) of 0s and 1s, bordered byin�nitely many 0s on all sides. Let Lij(X) = L(x(i�1)(j�1); : : : ; xij ; : : : ; x(i+1)(j+1)) beConway's basi
 rule at position (i; j). Call X \tame" if Lij(X) = 0 whenever i =2 [1 : : 8℄or j =2 [1 : : 8℄; otherwise X is \wild," be
ause it a
tivates 
ells outside the matrix.a) How many tame 
on�gurations X vanish in one Life step, making all Lij = 0?b) What is the maximum weight P8i=1P8j=1 xij among all su
h solutions?
) How many wild 
on�gurations vanish within the matrix after one Life step?d) What are the minimum and maximum weight, among all su
h solutions?e) How many 
on�gurations X make Lij(X) = 1 for 1 � i; j � 8?



68 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 still Life
ip-
opCaged Lifees
apesread-on
e fun
tionsasso
iative
ommutativeread-on
e fun
tionskinnypositive Boolean fun
tion, see monotone
f) Investigate the tame 8� 8 prede
essors of the following patterns:(1) (2) (3) (4) (5)(Here, as in Se
tion 7.1.3, bla
k 
ells denote 1s in the matrix.)161. [28 ℄ Continuing exer
ise 160, write L(X) = Y = (yij) if X is a tame matrix su
hthat Lij(X) = yij for 1 � i; j � 8.a) How many X's satisfy L(X) = X (\still Life")?b) Find an 8� 8 still Life with weight 35.
) A \
ip-
op" is a pair of distin
t matri
es with L(X)=Y, L(Y )=X. Count them.d) Find a 
ip-
op for whi
h X and Y both have weight 28.x 162. [30 ℄ (Caged Life.) If X and L(X) are tame but L(L(X)) is wild, we say that X\es
apes" its 
age after three steps. How many 6� 6 matri
es es
ape their 6� 6 
ageafter exa
tly k steps, for k = 1, 2, : : : ?163. [23 ℄ Prove formulas (112) and (113) for the BDD sizes of read-on
e fun
tions.x 164. [M27 ℄ What is the maximum of B(f), over all read-on
e fun
tions f(x1; : : : ; xn)?165. [M21 ℄ Verify the Fibona

i-based formulas (115) for B(um) and B(vm).166. [M29 ℄ Complete the proof of Theorem W.167. [21 ℄ Design an eÆ
ient algorithm that 
omputes a permutation � for whi
h bothB(f�) and B(f� ; �f�) are minimized, given any read-on
e fun
tion f(x1; : : : ; xn).x 168. [HM40 ℄ Consider the following binary operations on ordered pairs z = (x; y):z Æ z0 = (x; y) Æ (x0; y0) = (x+ x0;min(x+ y0; x0 + y));z � z0 = (x; y) � (x0; y0) = (x+ x0 +min(y; y0);max(y; y0)):(These operations are asso
iative and 
ommutative.) Let S1 = f(1; 0)g, andSn = n�1[k=1fz Æ z0 j z 2 Sk; z0 2 Sn�kg [ n�1[k=1fz � z0 j z 2 Sk; z0 2 Sn�kg for n > 1.Thus S2 = f(2; 0); (2; 1)g; S3 = f(3; 0); (3; 1); (3; 2)g; S4 = f(4; 0); : : : ; (4; 3); (5; 1)g; et
.a) Prove that there exists a read-on
e fun
tion f(x1; : : : ; xn) for whi
h we havemin� B(f�) = 
 and min� B(f�; �f�) = 
0 if and only if ( 12
0�1; 
� 12 
0�1) 2 Sn.b) True or false: 0 � y < x for all (x; y) 2 Sn.
) If zT = (x+ y; x� y)=p2, show that zT Æ z0T = (z � z0)T and zT � z0T = (z Æ z0)T .d) Prove that x2 + y2 � n2� for all (x; y) 2 Sn, if � is the 
onstant in (116). Hints:Let jzj2 = x2+y2; it suÆ
es to prove that jz�z0j � 2� = p2� whenever 0 � y � x,0 � y0 � x0, jzj = r = (1�Æ)�, jz0j = r0 = (1+Æ)� , and 0 � Æ � 1. If also y = y0,z �z0 lies inside the ellipse (a 
os �+b sin �; b sin �), where a = r+r0 and b = prr0.169. [M46 ℄ Is min�B(f�)�B(v2m+1) for every read-on
e fun
tionf of 22m+1variables?x 170. [M25 ℄ Let's say that a Boolean fun
tion is \skinny" if its BDD involves all thevariables in the simplest possible way: A skinny BDD has exa
tly one bran
h node jjfor ea
h variable xj , and either LO or HI is a sink node at every bran
h.a) How many Boolean fun
tions f(x1; : : : ; xn) are skinny in this sense?b) How many of them are monotone?
) Show that ft(x1; : : : ; xn) = [(x1 : : : xn)2� t℄ is skinny when 0< t < 2n and t is odd.
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eregularHorn fun
tionsreorderingthinDella
 permutationspermutationsGeno

hi derangementsDumont pistolspro�leuniversal hashingmultipli
ationquasi-pro�leAmanoMaruoka

d) What is the dual of the fun
tion ft in part (
)?e) Explain how to �nd the shortest CNF and DNF formulas for ft, given t.171. [M26 ℄ Continuing exer
ise 170, show that a fun
tion is read-on
e and regular ifand only if it is skinny and monotone.172. [M27 ℄ How many skinny fun
tions f(x1; : : : ; xn) are also Horn fun
tions? Howmany of them have the property that f and �f both satisfy Horn's 
ondition?x 173. [HM28 ℄ Exa
tly how many Boolean fun
tions f(x1; : : : ; xn) are skinny after somereordering of the variables, f(x1�; : : : ; xn�)?x 174. [M39 ℄ Let Sn be the number of Boolean fun
tions f(x1; : : : ; xn) whose BDD is\thin" in the sense that it has exa
tly one node labeled jj for 1 � j � n. Showthat Sn is also the number of 
ombinatorial obje
ts of the following types:a) Della
 permutations of order 2n (namely, permutations p1p2 : : : p2n su
h thatdk=2e � pk � n+ dk=2e for 1 � k � 2n).b) Geno

hi derangements of order 2n + 2 (namely, permutations q1q2 : : : q2n+2su
h that qk > k if and only if k is odd, for 1 � k � 2n+2; also qk 6= kin a derangement).
) Irredu
ible Dumont pistols of order 2n+2 (namely, sequen
es r1r2 : : : r2n+2 su
hthat k � rk � 2n + 2 for 1 � k � 2n+2 and fr1; r2; : : : ; r2n+2g = f2; 4; 6; : : : ;2n; 2n+ 2g, with the spe
ial property that 2k 2 fr1; : : : ; r2k�1g for 1 � k � n).d) Paths from (1; 0) to (2n+ 2; 0) in the dire
ted graph
(1,0) (2,0) (3,0)(3,1) (4,0)(4,1) (5,0)(5,1)(5,2)

(6,0)(6,1)(6,2)
(7,0)(7,1)(7,2)(7,3)

(8,0)(8,1)(8,2)(8,3)
� � �� � �� � �� � �

:(Noti
e that obje
ts of type (d) are very easy to 
ount.)175. [M30 ℄ Continuing exer
ise 174, �nd a way to enumerate the Boolean fun
tionswhose BDD 
ontains exa
tly bj�1 nodes labeled jj , given a pro�le (b0; : : : ; bn�1; bn).176. [M35 ℄ To 
omplete the proof of Theorem X, we will use exer
ise 6.4{78, whi
hstates that fha;b j a 2 A and b 2 Bg is a universal family of hash fun
tions from n bitsto l bits, when ha;b(x) = ((ax+ b)� (n� l)) mod 2l, A = fa j 0 < a < 2n, a oddg, B =fb j 0 � b < 2n�lg, and 0 � l � n. Let I = fha;b(p) j p 2 Pg and J = fha;b(q) j q 2 Qg.a) Show that if 2l � 1 � 2t�1�=(1 � �), there are 
onstants a 2 A and b 2 B forwhi
h jIj � (1� �)2l and jJ j � (1� �)2l.b) Given su
h an a, let J = fj1; : : : ; jjJjg where 0 = j1 < � � � < jjJj, and 
hooseQ0 = fq1; : : : ; qjJjg � Q so that ha;b(qk) = jk for 1 � k � jJ j. Let g(q) denote themiddle l�1 bits of aq, namely (aq�(n�l+1)) mod 2l�1. Prove that g(q) 6= g(q0)whenever q and q0 are distin
t elements of the set Q00 = fq1; q3; : : : ; q2djJj=2e�1g.
) Prove that the following set Q� satis�es 
ondition (120), when l � 3 and y = a:Q� = fq j q 2 Q00, g(q) is even, and g(p) + g(q) = 2l�1 for some p 2 Pg:d) Finally, show that jQ�j is large enough to prove Theorem X.177. [M22 ℄ Complete the proof of Theorem A by bounding the entire quasi-pro�le.178. [M24 ℄ (Amano and Maruoka.) Improve the 
onstant in (121) by using a bettervariable ordering: Zn(x2n�1; x1; x3; : : : ; x2n�3;x2n; x2; x4; : : : ; x2n�2).



70 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 leading bit fun
tionWegenerZDD pro�lepermutation fun
tion Pmsymmetri
 Boolean fun
tionZDDBinary Boolean operationsTwo-variable fun
tionsfamilies of subsets?Z-transformpi, as sour
efZ(x1; : : : ; xn)z-pro�leaverage nodes on level kmultiplexer
omplementationmaster z-pro�le 
hartternary operationMUXproje
tion fun
tionsZDD versus BDDZDD toolkit

179. [M47 ℄ Does the middle bit of multipli
ation satisfy Bmin(Zn) = �(26n=5)?180. [M27 ℄ Prove Theorem Y, using the hint given in the text.181. [M21 ℄ Let Lm;n be the leading bit fun
tion Z(m+n)m;n (x1; : : : ; xm; y1; : : : ; yn). Provethat Bmin(Lm;n) = O(2mn) when m � n.182. [M38 ℄ (I. Wegener.) Does Bmin(Ln;n) grow exponentially as n!1?x 183. [M25 ℄ Draw the �rst few levels of the BDD for the \limiting leading bit fun
tion"[(:x1x3x5 : : : )2 � (:x2x4x6 : : : )2 � 12 ℄;whi
h has in�nitely many Boolean variables. How many nodes bk are there on level k?(We don't allow (:x1x3x5 : : : )2 or (:x2x4x6 : : : )2 to end with in�nitely many 1s.)184. [M23 ℄ What are the BDD and ZDD pro�les of the permutation fun
tion Pm?185. [M25 ℄ How large 
an Z(f) be, when f is a symmetri
 Boolean fun
tion ofn variables? (See exer
ise 44.)186. [10 ℄ What Boolean fun
tion of fx1; x2; x3; x4; x5; x6g has the ZDD `? >3 '?x 187. [20 ℄ Draw the ZDDs for all 16 Boolean fun
tions f(x1; x2) of two variables.188. [16 ℄ Express the 16 Boolean fun
tions f(x1; x2) as families of subsets of f1; 2g.189. [18 ℄ What fun
tions f(x1; : : : ; xn) have a ZDD equal to their BDD?190. [20 ℄ Des
ribe all fun
tions f for whi
h (a) Q(f) = B(f); (b) Q(f) = Z(f).x 191. [HM25 ℄ How many fun
tions f(x1; : : : ; xn) have no ? in their ZDD?192. [M20 ℄ De�ne the Z-transform of binary strings as follows: �Z = �, 0Z = 0,1Z = 1, and(��)Z = 8<:�Z�Z ; if j�j = n and � = 0n;�Z0n; if j�j = n and � = �;�Z�Z ; if j�j = j�j � 1, or if j�j = j�j = n and � 6= � 6= 0n.a) What is 11001001000011111Z?b) True or false: (�Z)Z = � for all binary strings � .
) If f(x1; : : : ; xn) is a Boolean fun
tion with truth table � , let fZ(x1; : : : ; xn) bethe Boolean fun
tion whose truth table is �Z . Show that the pro�le of f is almostidenti
al to the z-pro�le of fZ , and vi
e versa. (Therefore Theorem U holds forZDDs as well as for BDDs, and statisti
s su
h as (80) are valid also for z-pro�les.)193. [M21 ℄ Continuing exer
ise 192, what is SZk (x1; : : : ; xn) when 0 � k � n?194. [M25 ℄ How many f(x1; : : : ; xn) have the z-pro�le (1; : : : ; 1)? (See exer
ise 174.)195. [24 ℄ Find Z(M2), Zmin(M2), and Zmax(M2), where M2 is the 4-way multiplexer.196. [M21 ℄ Find a fun
tion f(x1; : : : ; xn) for whi
h Z(f) = O(n) and Z( �f) = 
(n2).197. [25 ℄ Modify the algorithm of exer
ise 138 so that it 
omputes the \master z-pro�le 
hart" of f . (Then Zmin(f) and Zmax(f) 
an be found as in exer
ise 133.)x 198. [23 ℄ Explain how to 
ompute AND(f; g) with ZDDs instead of BDDs (see (55)).199. [21 ℄ Similarly, implement (a) OR(f; g), (b) XOR(f; g), (
) BUTNOT(f; g).200. [21 ℄ And similarly, implement MUX(f; g; h) for ZDDs (see (62)).201. [22 ℄ The proje
tion fun
tions xj ea
h have a simple 3-node BDD, but their ZDDrepresentations are more 
ompli
ated. What's a good way to implement these fun
tionsin a general-purpose ZDD toolkit?



7.1.4 BINARY DECISION DIAGRAMS 71 swap-in-pla
eFamily algebraunate 
ube set algebra, see family algebraempty familyunit family�elementary familiesejunioninterse
tiondi�eren
esymmetri
 di�eren
enotation f t gjoinnotation f u gmeetnotation f gdelta
ommutativeasso
iativeBoolean fun
tions versus familiesdistributive laworthogonalquotientnotation f=gremaindernotation f mod g
ofa
tor

202. [24 ℄ What 
hanges are needed to the swap-in-pla
e algorithm of exer
ise 147,when levels ju $ jv are being inter
hanged in a ZDD base instead of a BDD base?x 203. [M24 ℄ (Family algebra.) The following algebrai
 
onventions are useful for deal-ing with �nite families of �nite subsets of positive integers, and with their representationas ZDDs. The simplest su
h families are the empty family, denoted by ; and representedby ? ; the unit family f;g, denoted by � and represented by > ; and the elementaryfamilies ffjgg for j � 1, denoted by ej and represented by a bran
h node jj withLO = ? and HI = > . (Exer
ise 186 illustrates the ZDD for e3.)Two families f and g 
an be 
ombined with the usual set operations:� The union f [ g = f� j � 2 f or � 2 gg is implemented by OR(f; g);� The interse
tion f \ g = f� j � 2 f and � 2 gg is implemented by AND(f; g);� The di�eren
e f n g = f� j � 2 f and � =2 gg is implemented by BUTNOT(f; g);� The symmetri
 di�eren
e f � g = (f n g) [ (g n f) is implemented by XOR(f; g).And we also de�ne three new ways to 
onstru
t families of subsets:� The join f t g = f� [ � j � 2 f and � 2 gg, sometimes written just fg;� The meet f u g = f� \ � j � 2 f and � 2 gg;� The delta f g = f�� � j � 2 f and � 2 gg.All three are 
ommutative and asso
iative: f t g = g t f , f t (g t h) = (f t g)t h, et
.a) Suppose f = f;; f1; 2g; f1; 3gg = � [ (e1 t (e2 [ e3)) and g = ff1; 2g; f3gg =(e1 t e2) [ e3. What are f t g and (f u g) n (f e1)?b) Any family f 
an also be regarded as a Boolean fun
tion f(x1; x2; : : : ), where� 2 f () f([12�℄; [22�℄; : : : ) = 1. Des
ribe the operations t, u, and interms of Boolean logi
al formulas.
) Whi
h of the following formulas hold for all families f , g, and h? (i) f t (g[h) =(ftg)[(f th); (ii) fu(g[h) = (fug)[(f uh); (iii) ft(guh) = (ftg)u(f th);(iv) f [ (g t h) = (f [ g) t (f [ h); (v) f ; = ; u g = h t ;; (vi) f u � = �.d) We say that f and g are orthogonal, written f ? g, if � \ � = ; for all � 2 fand all � 2 g. Whi
h of the following statements is true for all families f and g?(i) f ? g () f u g = �; (ii) f ? g =) jf t gj = jf jjgj; (iii) jf t gj = jf jjgj =)f ? g; (iv) f ? g () f t g = f g.e) Des
ribe all families f for whi
h the following statements hold: (i) f [ g = g forall g; (ii) f t g = g for all g; (iii) f u g = g for all g; (iv) f t (e1 t e2) = f ;(v) f t (e1 [ e2) = f ; (vi) f ((e1t e2)[ e3) = f ; (vii) f f = �; (viii) f u f = f .x 204. [M25 ℄ Continuing exer
ise 203, two further operations are also important:� the quotient f=g = f� j � [ � 2 f and � \ � = ;, for all � 2 gg.� the remainder f mod g = f n (g t (f=g)).The quotient is sometimes also 
alled the \
ofa
tor" of f with respe
t to g.a) Prove that f=(g [ h) = (f=g) \ (f=h).b) Suppose f = ff1; 2g; f1; 3g; f2g; f3g; f4gg. What are f=e2 and f=(f=e2)?
) Simplify the expressions f=;, f=�, f=f , and (f mod g)=g, for arbitrary f and g.d) Show that f=g = f=(f=(f=g)). Hint: Start with the relation g � f=(f=g).e) Prove that f=g 
an also be de�ned as S fh j g t h � f and g ? hg.f) Given f and j, show that f has a unique representation (ejtg)[h with ej?(g[h).g) True or false: (ftg) mod ej=(f mod ej)t(g mod ej); (fug)=ej=(f=ej)u(g=ej).205. [M25 ℄ Implement the �ve basi
 operations of family algebra, namely (a) f t g,(b) f u g, (
) f g, (d) f=g, and (e) f mod g, using the 
onventions of exer
ise 198.
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tion fun
tionssymmetrizingsymmetri
 fun
tionsfully elaborated truth tableZDDexa
t 
over problemmutilated 
hessboarddominoesfaultfreeYoshidatatami tilings3-
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206. [M46 ℄ What are the worst-
ase running times of the algorithms in exer
ise 205?x 207. [M25 ℄ When one or more proje
tion fun
tions xj are needed in appli
ations, asin exer
ise 201, the following \symmetrizing" operation turns out to be very handy:(ei1 [ ei2 [ � � � [ eil) x k = Sk(xi1 ; xi2 ; : : : ; xil); integer k � 0.For example, ej x 1 = xj ; ej x 0 = �xj ; (ei [ ej) x 1 = xi � xj ; (e2 [ e3 [ e5) x 2 =(x2 ^ x3 ^ �x5) _ (x2 ^ �x3 ^ x5) _ (�x2 ^ x3 ^ x5). Show that it's easy to implement thisoperation. (Noti
e that ei1 [ � � � [ eil has a very simple ZDD of size l+2, when l > 0.)x 208. [16 ℄ By modifying Algorithm C, show that all solutions of a Boolean fun
tion
an readily be 
ounted when its ZDD is given instead of its BDD.209. [M21 ℄ Explain how to 
ompute the fully elaborated truth table of a Booleanfun
tion from its ZDD representation. (See exer
ise 31.)x 210. [23 ℄ Given the ZDD for f , show how to 
onstru
t the ZDD for the fun
tiong(x) = [f(x)= 1 and �x=maxf�y j f(y)= 1g℄:211. [M20 ℄ When f des
ribes the solutions to an exa
t 
over problem, is Z(f)�B(f)?x 212. [25 ℄ What's a good way to 
ompute the ZDD for an exa
t 
over problem?213. [16 ℄ Why 
an't the mutilated 
hessboard be perfe
tly 
overed with dominoes?x 214. [21 ℄ When some shape is 
overed by dominoes, we say that the 
overing isfaultfree if every straight line that passes through the interior of the shape also passesthrough the interior of some domino. For example, the right-hand 
overing in (127)is faultfree, but the middle one isn't; and the left-hand one has faults galore.How many domino 
overings of a 
hessboard are faultfree?215. [21 ℄ Japanese tatami mats are 1�2 re
tangles that are traditionally used to 
overre
tangular 
oors in su
h a way that no four mats meet at any 
orner. For example,Fig. 29(a) shows a 6�5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jink�oki,a book �rst published in 1627.Find all domino 
overings of a 
hessboard that are also tatami tilings.
Fig. 29. Two ni
e examples:(a) A 17th-
entury tatami tiling;(b) a tri
olored domino 
overing. (a) (b)

x 216. [30 ℄ Figure 29(b) shows a 
hessboard 
overed with red, white, and blue domi-noes, in su
h a way that no two dominoes of the same 
olor are next to ea
h other.a) In how many ways 
an this be done?b) How many of the 12,988,816 domino 
overings are 3-
olorable?217. [29 ℄ The monomino/domino/tromino 
overing illustrated in (130) happens tosatisfy an additional 
onstraint: No two 
ongruent pie
es are adja
ent. How many ofthe 92 sextillion 
overings mentioned in the text are \separated," in this sense?x 218. [24 ℄ Apply BDD and ZDD te
hniques to the problem of Langford pairs, dis
ussedat the beginning of this 
hapter.
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219. [20 ℄ What is Z(F ) when F is the family (a) WORDS(1000); : : : ; (e) WORDS(5000)?x 220. [21 ℄ The z-pro�le of the 5757 SGB words, represented with 130 variables a1 : : z5as dis
ussed in (131), is (1, 1, 1, : : : , 1, 1, 1, 23, 3, : : : , 6, 2, 0, 3, 2, 1, 1, 2).a) Explain the entries 23 and 3, whi
h 
orrespond to the variables a2 and b2.b) Explain the �nal entries 0, 3, 2, 1, 1, 2, whi
h 
orrespond to v5, w5, x5, et
.x 221. [M27 ℄ Only 5020 nodes are needed to represent the 5757 most 
ommon �ve-letterwords of English, using the 130-variable representation, be
ause of spe
ial linguisti
properties. But there are 265 = 11;881;376 possible �ve-letter words. Suppose we
hoose 5757 of them at random; how big will the ZDD be then, on average?x 222. [27 ℄ When family algebra is applied to �ve-letter words as in (131), the 130variables are 
alled a1, b1, : : : , z5 instead of x1, x2, : : : , x130; and the 
orrespondingelementary families are denoted by the symbols a1, b1, : : : , z5 instead of e1, e2, : : : , e130.Thus the family F = WORDS(5757) 
an be 
onstru
ted by synthesizing the formulaF = (w1t h2t i3t 
4t h5)[ � � � [ (f1t u2t n3t n4t y5)[ � � � [ (p1t u2t p3t a4t l5):a) Let } denote the universal family of all subsets of fa1; : : : ; z5g, also 
alled the\power set." What does the formula F u } signify?b) Let X = X1t� � �tX5, where Xj = faj ; bj ; : : : ; zjg. Interpret the formula F uX.
) Find a simple formula for all words of F that mat
h the pattern t*u*h.d) Find a formula for all SGB words that 
ontain exa
tly k vowels, for 0 � k � 5(
onsidering only a, e, i, o, and u to be vowels). Let Vj = aj [ ej [ ij [ oj [ uj .e) How many patterns in whi
h exa
tly three letters are spe
i�ed are mat
hed byat least one SGB word? (For example, m*t
* is su
h a pattern.) Give a formula.f) How many of those patterns are mat
hed at least twi
e (e.g., *at
*)?g) Express all words that remain words when a `b' is 
hanged to `o'.h) What's the signi�
an
e of the formula F=V2?i) Contrast (X1 t V2 t V3 t V4 tX5) \ F with (X1 tX5) n ((} nF )=(V2 t V3 t V4)).223. [28 ℄ A \median word" is a �ve-letter word � = �1 : : : �5 that 
an be obtainedfrom three words � = �1 : : : �5, � = �1 : : : �5, 
 = 
1 : : : 
5 by the rule [�i=�i ℄ +[�i=�i ℄ + [
i=�i ℄ = 2 for 1 � i � 5. For example, mixed is a median of the wordsffixed; mixer; moundg, and also of fmated; mixup; nixedg. But noted is not a medianof fnotes; voted; nakedg, be
ause ea
h of those words has e in position 4.a) Show that fd(�; �); d(�; �); d(
; �)g is either f1; 1; 3g or f1; 2; 2g whenever � is amedian of f�; �; 
g. (Here d denotes Hamming distan
e.)b) How many medians 
an be obtained from WORDS(n), when n = 100? 1000? 5757?
) How many of those medians belong to WORDS(m), when m = 100? 1000? 5757?x 224. [20 ℄ Suppose we form the ZDD for all sour
e-to-sink paths in a dag, as in Fig. 28,when the dag happens to be a forest; that is, assume that every non-sour
e vertex ofthe dag has in-degree 1. Show that the 
orresponding ZDD is essentially the same asthe binary tree that represents the forest under the \natural 
orresponden
e betweenforests and binary trees," Eqs. 2.3.2{(1) through 2.3.2{(3).x 225. [30 ℄ Design an algorithm that will produ
e a ZDD for all sets of edges that forma simple path from s to t, given a graph and two distin
t verti
es fs; tg of the graph.x 226. [20 ℄ Modify the algorithm of exer
ise 225 so that it yields a ZDD for all of thesimple 
y
les in a given graph.227. [20 ℄ Similarly, modify it so that it 
onsiders only Hamiltonian paths from s to t.



74 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 average solutionking
hessboardstrong produ
t of graphsking's tourHamiltonian 
y
leoriented 
y
lespostal 
odes�ve-letter words of Englishfamily algebranotation f"maximal elementsnotation f#minimal elementsnotation f % gnonsubsetsnotation f & gnonsupersetsnotation f ℄
ross elementsUuniversal setduality laws

228. [21 ℄ And mutate it on
e more, for Hamiltonian paths from s to any other vertex.229. [15 ℄ There are 587,218,421,488 paths from CA to ME in the graphs (18), but only437,525,772,584 su
h paths in (133). Explain the dis
repan
y.230. [25 ℄ Find the Hamiltonian paths of (133) that have minimum and maximumtotal length. What is the average length, if all Hamiltonian paths are equally likely?231. [23 ℄ In how many ways 
an a king travel from one 
orner of a 
hessboard tothe opposite 
orner, never o

upying the same 
ell twi
e? (These are the simple pathsfrom 
orner to 
orner of the graph P8�P8.)x 232. [23 ℄ Continuing exer
ise 231, a king's tour of the 
hessboard is an orientedHamiltonian 
y
le of P8�P8. Determine the exa
t number of king's tours. What is thelongest possible king's tour, in terms of Eu
lidean distan
e traveled?x 233. [25 ℄ Design an algorithm that builds a ZDD for the family of all oriented 
y
lesof a given digraph. (See exer
ise 226.)234. [22 ℄ Apply the algorithm of exer
ise 233 to the dire
ted graph on the 49 postal
odes AL, AR, : : : , WY of (18), with XY��! YZ as in exer
ise 7{54(b). For example, onesu
h oriented 
y
le is NC��! CT��! TN��! NC. How many oriented 
y
les are possible?What are the minimum and maximum 
y
le lengths?235. [22 ℄ Form a digraph on the �ve-letter words of English by saying that x��! ywhen the last three letters of x mat
h the �rst three letters of y (e.g., 
rown��!owner).How many oriented 
y
les does this digraph have? What are the longest and shortest?x 236. [M25 ℄ Many extensions to the family algebra of exer
ise 203 suggest themselveswhen ZDDs are applied to 
ombinatorial problems, in
luding the following �ve opera-tions on families of sets:� The maximal elements f" = f� 2 f j � 2 f and � � � implies � = �g;� The minimal elements f# = f� 2 f j � 2 f and � � � implies � = �g;� The nonsubsets f% g = f� 2 f j � 2 g implies � 6� �g;� The nonsupersets f & g = f� 2 f j � 2 g implies � 6� �g;� The 
ross elements f ℄ = f� j � 2 f implies � \ � 6= ;g#.For example, when f and g are the families of exer
ise 203(a) we have f" = e1t(e2[e3),f# = �, f ℄ = ;, g" = g# = g, g℄ = (e1[e2)te3, f%g = e1te3, f&g = �, g%f = g&f = ;.a) Prove that f % g = f n (f u g), and give a similar formula for f & g.b) Let fC = f� j � 2 fg = f U , where U = e1 t e2 t � � � is the \universal set."Clearly fCC = f , (f[g)C = fC[gC , (f\g)C = fC\gC , (fng)C = fCngC . Showthat we also have the duality laws f"C = fC#, f#C = fC"; (f t g)C = fC u gC ,(f u g)C = fC t gC ; (f% g)C = fC & gC , (f & g)C = fC% gC ; f ℄ = (}% fC)#.
) True or false? (i) x#1 = e1; (ii) x"1 = e1; (iii) x℄1 = e1; (iv) (x1 _ x2)# = e1 [ e2;(v) (x1 ^ x2)# = e1 t e2.d) Whi
h of the following formulas hold for all families f , g, and h? (i) f"" = f";(ii) f"# = f#; (iii) f"# = f"; (iv) f#" = f#; (v) f ℄# = f ℄; (vi) f ℄" = f ℄;(vii) f#℄ = f ℄; (viii) f"℄ = f ℄; (ix) f ℄℄ = f ℄; (x) f % (g [ h) = (f % g) \ (f % h);(xi) f&(g[h) = (f&g)\(f&h); (xii) f&(g[h) = (f&g)&h; (xiii) f%g" = f%g;(xiv) f & g" = f & g; (xv) (f t g)℄ = (f ℄ [ g℄)#; (xvi) (f [ g)℄ = (f ℄ t g℄)#.e) Suppose g = Su��v(eu t ev) is the family of all edges in a graph, and let f bethe family of all the independent sets. Using the operations of extended familyalgebra, �nd simple formulas that express (i) f in terms of g; (ii) g in terms of f .
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ed bipartite subgraphsbipartite subgraphstripartite3-
olorablemaximal 
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lique 
overingdominating setabsorbent sets, see dominating setsminimal dominating setUSA graphqueen graph
hessboardkernelsmaximal 
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237. [25 ℄ Implement the �ve operations of exer
ise 236, in the style of exer
ise 205.x 238. [22 ℄ Use ZDDs to 
ompute the maximal indu
ed bipartite subgraphs of the 
on-tiguous-USA graph G in (18), namely the maximal subsets U su
h that G j U has no
y
les of odd length. How many su
h sets U exist? Give examples of the smallest andlargest. Consider also the maximal indu
ed tripartite (3-
olorable) subgraphs.x 239. [21 ℄ Explain how to 
ompute the maximal 
liques of a graph G using familyalgebra, when G is spe
i�ed by its edges g as in exer
ise 236(e). Find the maximal setsof verti
es that 
an be 
overed by k 
liques, for k = 1, 2, : : : , when G is the graph (18).x 240. [22 ℄ A set of verti
es U is 
alled a dominating set of a graph if every vertex isat most one step away from U .a) Prove that every kernel of a graph is a minimal dominating set.b) How many minimal dominating sets does the USA graph (18) have?
) Find seven verti
es of (18) that dominate 36 of the others.x 241. [28 ℄ The queen graph Q8 
onsists of the 64 squares of a 
hessboard, with u���vwhen squares u and v lie in the same row, 
olumn, or diagonal. How large are the ZDDsfor its (a) kernels? (b) maximal 
liques? (
) minimal dominating sets? (d) minimaldominating sets that are also 
liques? (e) maximal indu
ed bipartite subgraphs?Illustrate ea
h of these �ve 
ategories by exhibiting smallest and largest examples.242. [24 ℄ Find all of the maximal ways to 
hoose points on an 8 � 8 grid so that nothree points lie on a straight line of any slope.243. [M23 ℄ The 
losure f\ of a family f of sets is the family of all sets that 
an beobtained by interse
ting one or more members of f .a) Prove that f\ = f� j �=Tf� j � 2 f and � � �gg.b) What's a good way to 
ompute the ZDD for f\, given the ZDD for f?
) Find the generating fun
tion for F \ when F = WORDS(5757) as in exer
ise 222.244. [25 ℄ What is the ZDD for the 
onne
tedness fun
tion of P3 P3 (Fig. 22)? Whatis the BDD for the spanning tree fun
tion of the same graph? (See Corollary S.)x 245. [M22 ℄ Show that the prime 
lauses of a monotone fun
tion f are PI(f)℄.246. [M21 ℄ Prove Theorem S, assuming that (137) is true.x 247. [M27 ℄ Determine the number of sweet Boolean fun
tions of n variables for n � 7.248. [M22 ℄ True or false: If f and g are sweet, so is f(x1; : : : ; xn) ^ g(x1; : : : ; xn).249. [HM31 ℄ The 
onne
tedness fun
tion of a graph is \ultrasweet," in the sense thatit is sweet under all permutations of its variables. Is there a ni
e way to 
hara
terizeultrasweet Boolean fun
tions?250. [28 ℄ There are 7581 monotone Boolean fun
tions f(x1; x2; x3; x4; x5). What arethe average values of B(f) and Z(PI(f)) when one of them is 
hosen at random? Whatis the probability that Z(PI(f)) > B(f)? What is the maximum of Z(PI(f))=B(f)?251. [M46 ℄ Is Z(PI(f)) = O(B(f)) for all monotone Boolean fun
tions f?252. [M30 ℄ When a Boolean fun
tion isn't monotone, its prime impli
ants involvenegative literals; for example, the prime impli
ants of (x1? x2: x3) are x1^x2, �x1^x3,and x2^x3. In su
h 
ases we 
an 
onveniently represent them with ZDDs if we 
onsiderthem to be words in the 2n-letter alphabet fe1; e01; : : : ; en; e0ng. A \sub
ube" su
has 01�0� is then e01 t e2 t e04 in family algebra (see 7.1.1{29); and PI(x1? x2: x3) =(e1 t e2) [ (e01 t e3) [ (e2 t e3).



76 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 symmetri
 fun
tionsmonotonemultifamilytransa
tion database, see multifamily of setsmultiset unionMathews, Edwin Lee (= 41)truth tableZ(x)sparsesumsaturating subtra
tionmonusMinatopolynomialsfamily of subsetssolutionsparenthesesforestnestedCatalan number

Exer
ise 7.1.1{116 shows that symmetri
 fun
tions of n variables might have
(3n=n) prime impli
ants. How large 
an Z(PI(f)) be when f is symmetri
?x 253. [M26 ℄ Continuing exer
ise 252, prove that if f = (�x1^f0) _ (x1^f1) we havePI(f) = A [ (e01tB) [ (e1tC), where A = PI(f0 ^ f1), B = PI(f0) n A, and C =PI(f2) nA. (Equation (137) is the spe
ial 
ase when f is monotone.)x 254. [M23 ℄ Let the fun
tions f and g of (52) be monotone, with f � g. Prove thatPI(g) n PI(f) = (PI(gl) nPI(fl)) [ (PI(gh) nPI(fh [ gl)):x 255. [25 ℄ A multifamily of sets, in whi
h members of f are allowed to o

ur morethan on
e, 
an be represented as a sequen
e of ZDDs (f0; f1; f2; : : : ) in whi
h fk is thefamily of sets that o

ur ( : : : a2a1a0)2 times in f where ak = 1. For example, if �appears exa
tly 9 = (1001)2 times in the multifamily, � would be in f3 and f0.a) Explain how to insert and delete items from this representation of a multifamily.b) Implement the multiset union h = f ℄ g for multifamilies.256. [M32 ℄ Any nonnegative integer x 
an be represented as family of subsets ofthe binary powers U = f22k j k � 0g = f21; 22; 24; 28; : : : g, in the following way: Ifx = 2e1 + � � � + 2et , where e1 > � � � > et � 0 and t � 0, the 
orresponding family hast sets Ej � U , where 2ej = Qfu j u 2 Ejg. Conversely, every �nite family of �nitesubsets of U 
orresponds in this way to a nonnegative integer x. For example, thenumber 41 = 25 + 23 + 1 
orresponds to the family ff21; 24g; f21; 22g; ;g.a) Find a simple 
onne
tion between the binary representation of x and the truthtable of the Boolean fun
tion that 
orresponds to the family for x.b) Let Z(x) be the size of the ZDD for the family that represents x, when the ele-ments of U are tested in reverse order : : : , 24, 22, 21 (with highest exponents near-est to the root); for example, Z(41) = 5. Show that Z(x) = O(log x=log log x).
) The integer x is 
alled \sparse" if Z(x) is substantially smaller than the upperbound in (b). Prove that the sum of sparse integers is sparse, in the sense thatZ(x+ y) = O(Z(x)Z(y)).d) Is the saturating di�eren
e of sparse integers, x .� y, always sparse?e) Is the produ
t of sparse integers always sparse?257. [40 ℄ (S. Minato.) Explore the use of ZDDs to represent polynomials with nonneg-ative integer 
oeÆ
ients. Hint: Any su
h polynomial in x, y, and z 
an be regarded asa family of subsets of f2; 22; 24; : : : ; x; x2; x4; : : : ; y; y2; y4; : : : ; z; z2; z4; : : : g; for exam-ple, x3+3xy+2z 
orresponds naturally to the family ffx; x2g; fx; yg; f2; x; yg; f2; zgg.x 258. [25 ℄ Given a positive integer n, what is the minimum size of a BDD that hasexa
tly n solutions? Answer this question also for a ZDD of minimum size.x 259. [25 ℄ A sequen
e of parentheses 
an be 
an be en
oded as a binary string byletting 0 represent `(' and 1 represent `)'. For example, ())(() is en
oded as 011001.Every forest of n nodes 
orresponds to a sequen
e of 2n parentheses that areproperly nested, in the sense that left and right parentheses mat
h in the normal way.(See, for example, 2.3.3{(1) or 7.2.1.6{(1).) LetNn(x1; : : : ; x2n) = [x1 : : : x2n represents properly nested parentheses℄:For example, N3(0; 1; 1; 0; 0; 1) = 0 and N3(0; 0; 1; 0; 1; 1) = 1; in general, Nn has Cn �4n=(p� n3=2) solutions, where Cn is a Catalan number. What are B(Nn) and Z(Nn)?



7.1.4 BINARY DECISION DIAGRAMS 77 set partitionsrestri
ted growth sequen
eorderingBDD base�nite-state automatonregular languageautomata theoryBoolean 
hainsnormal
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k 
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he
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odeerror-
orre
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k 
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x 260. [M27 ℄ We will see in Se
tion 7.2.1.5 that every partition of f1; : : : ; ng into disjointsubsets 
orresponds to a \restri
ted growth sequen
e" a1 : : : an, whi
h is a sequen
e ofnonnegative integers witha1 = 0 and aj+1 � 1 + max(a1; : : : ; aj) for 1 � j < n.Elements j and k belong to the same subset of the partition if and only if aj = ak.a) Let xj;k = [aj = k ℄ for 0 � k < j � n, and let Rn be the fun
tion of these �n+12 �variables that is true if and only if a1 : : : an is a restri
ted growth sequen
e. (Bystudying this Boolean fun
tion we 
an study the family of all set partitions, andby pla
ing further restri
tions on Rn we 
an study set partitions with spe
ialproperties. There are $100 � 5� 10115 set partitions when n = 100.) Cal
ulateB(R100) and Z(R100). Approximately how large are B(Rn) and Z(Rn) as n !1?b) Show that, with a proper ordering of the variables xj;k, the BDD base forfR1; : : : ; Rng has the same number of nodes as the BDD for Rn alone.
) We 
an also use fewer variables, approximately n lgn instead of �n+12 �, if werepresent ea
h ak as a binary integer with dlg ke bits. How large are the BDDand ZDD bases in this representation of set partitions?261. [HM21 ℄ \The deterministi
 �nite-state automaton with fewest states that a
-
epts any given regular language is unique." What is the 
onne
tion between thisfamous theorem of automata theory and the theory of binary de
ision diagrams?262. [M26 ℄ The determination of optimum Boolean 
hains in Se
tion 7.1.2 was greatlya

elerated by restri
ting 
onsideration to Boolean fun
tions that are normal, in thesense that f(0; : : : ; 0) = 0. (See Eq. 7.1.2{(10).) Similarly, we 
ould restri
t BDDs sothat ea
h of their nodes denotes a normal fun
tion.a) Explain how to do this by introdu
ing \
omplement links," whi
h point to the
omplement of a subfun
tion instead of to the subfun
tion itself.b) Show that every Boolean fun
tion has a unique normalized BDD.
) Draw the normalized BDDs for the 16 fun
tions in exer
ise 1.d) Let B0(f) be the size of the normalized BDD for f . Find the average and worst
ase of B0(f), and 
ompare B0(f) to B(f). (See (80) and Theorem U.)e) The BDD base for 3 � 3 multipli
ation in (58) has B(F1; : : : ; F6) = 52 nodes.What is B0(F1; : : : ; F6)?f) How do (54) and (55) 
hange, when AND is implemented with 
omplement links?263. [HM25 ℄ A linear blo
k 
ode is the set of binary 
olumn ve
tors x = (x1; : : : ; xn)Tsu
h that Hx = 0, where H is a given m� n \parity 
he
k matrix."a) The linear blo
k 
ode with n = 2m � 1, whose 
olumns are the nonzero binarym-tuples from (0; : : : ; 0; 1)T to (1; : : : ; 1; 1)T, is 
alled the Hamming 
ode. Provethat the Hamming 
ode is 1-error 
orre
ting in the sense of exer
ise 7{23.b) Let f(x) = [Hx=0℄, where H is an m�n matrix with no all-zero 
olumns. Showthat the BDD pro�le of f has a simple relation to the ranks of submatri
es of Hmod 2, and 
ompute B(f) for the Hamming 
ode.
) In general we 
an let f(x) = [x is a 
odeword℄ de�ne any blo
k 
ode. Supposesome 
odeword x = x1 : : : xn has been transmitted through a possibly noisy
hannel, and that we've re
eived the bits y = y1 : : : yn, where the 
hannel deliversyk = xk with probability pk for ea
h k independently. Explain how to determinethe most likely 
odeword x, given y, p1, : : : , pn, and the BDD for f .



78 COMBINATORIAL ALGORITHMS (F1B) 7.1.4 generalization, sweepingoptimizationBoolean programming, generalized�LFRICTHOREAU
264. [M46 ℄ The text's \sweeping generalization" of Algorithms B and C, based on (22),embra
es many important appli
ations; but it does not appear to in
lude quantitiessu
h asmaxf(x)=1� nXk=1wkxk + n�1Xk=1w0kxkxk+1� or maxf(x)=1 n�1Xj=0�wj n�jXk=1 xk : : : xk+j�;whi
h also 
an be 
omputed eÆ
iently from the BDD or ZDD for f .Develop a generalization that is even more sweeping.

We dare not lengthen this book mu
h more,lest it be out of due proportion,and repel men by its size.| �LFRIC, Catholi
 Homilies II (
. 1000)There are a thousand ha
king at the bran
hes of evilto one who is striking at the root.| HENRY D. THOREAU, Walden; or, Life in the Woods (1854)



7.1.4 ANSWERS TO EXERCISES 79 dualDubrovaMa

hiaruloSECTION 7.1.41. Here are the BDDs for truth tables 0000, 0001, : : : , 1111, showing the sizes below:
?1 ? >2

1
4 ? >2

1
4 ? >

1
3 ? >2

1
4 ? >23 ? >2 21

5 ? >2
1
4 ? >2

1
4 ? >2 21

5 ? >23 ? >2
1
4 ? >

1
3 ? >2

1
4 ? >2

1
4 >12. (The ordering property determines the dire
tion of ea
h ar
.)

?

>

1 11 12 1
1

1
1 21 11 1

3. There are two with size 1 (namely the two 
onstant fun
tions); none with size 2(be
ause two sinks 
annot both be rea
hable unless there's also a bran
h node); and2n with size 3 (namely xj and �xj for 1 � j � n).4. Set y  #0ffffffeffffffe&�x+#20000002, y  (y�28)&#10000001, x0  x�y.(See 7.1.3{(93).)5. You get f(�x1; : : : ; �xn) = fD(x1; : : : ; xn), the dual of f (see exer
ise 7.1.1{2).6. The largest subtables of 1011000110010011, namely 10110001, 10010011, 1011,0001, 1001, 0011, are all distin
t beads; squares and dupli
ates don't appear until welook at the subtables f10; 11; 00; 01g of length 2. So g has size 11.7. (a) If the truth table of f is �0�1 : : : �2k�1, where ea
h �j is a binary string oflength 2n�k, the truth table of gk is �0�2 : : : �2k�2, where �2j = �2j�2j+1�2j+1�2j+1.(b) Thus the beads of f and gk are 
losely related. We get the BDD for gk fromthe BDD for f by 
hanging jj to � �� �j�1 for 1 � j < k, and repla
ing k� �0 by k�1k� �0
.

8. (a) Now �2j = �2j�2j+1�2j+1�2j . (b) Again 
hange jj to � �� �j�1 for 1 � j < k. Ifk� �0 is present in f but not k��0 , repla
e k� �0 by k�1k k� �0
; otherwise repla
e k� �0 k��0 by

k�1k kk�1� �0 . [E. Dubrova and L. Ma

hiarulo, IEEE Trans. C-49 (2000), 1290{1292.℄
9. There is no solution if s = 1. Otherwise set k  s�1, j  1, and do the followingsteps repeatedly: (i) While j < vk, set xj  1 and j  j + 1; (ii) stop if k = 0; (iii) ifhk 6= 1, set xj  1 and k  hk, otherwise set xj  0 and k  lk; (iv) set j  j + 1.



80 ANSWERS TO EXERCISES 7.1.4 nim-likegamesvon NeumannMorgensternBergeLu
as numbersFibona

i numbersPerrin numbersre
urren
esPerrin
10. Let Ik = (�vk? lk:hk) for 0 � k < s and I 0k = (�v0k? l0k:h0k) for 0 � k < s0. We mayassume that s = s0; otherwise f 6= f 0. The following algorithm either �nds indi
es(t0; : : : ; ts�1) su
h that Ik 
orresponds to I 0tk , or 
on
ludes that f 6= f 0:I1. [Initialize and loop.℄ Set ts�1  s � 1, t1  1, t0  0, and tk  �1 for2 � k � s � 2. Do steps I2{I4 for k = s � 1, s � 2, : : : , 2 (in this order). Ifthose steps \quit" at any point, we have f 6= f 0; otherwise f = f 0.I2. [Test vk.℄ Set t  tk. (Now t � 0; otherwise Ik would have no prede
essor.)Quit if v0t 6= vk.I3. [Test lk.℄ Set l lk. If tl < 0, set tl  l0t; otherwise quit if l0t 6= tl.I4. [Test hk.℄ Set h hk. If th < 0, set th  h0t; otherwise quit if h0t 6= th.11. (a) Yes, sin
e 
k 
orre
tly 
ounts all paths from node k to node 1. (In fa
t, manyBDD algorithms will run 
orre
tly|but more slowly| in the presen
e of equivalentnodes or redundant bran
hes. But redu
tion is important when, say, we want to testqui
kly if f = f 0 as in exer
ise 10.)(b) No. For example, suppose I3 = (�1? 2: 1), I2 = (�1? 0: 1), I1 = (�2? 1: 1), I0 =(�2? 0: 0); then the algorithm sets 
2  1, 
3  32 . (But see exer
ise 35(b).)12. (a) The �rst 
ondition makes K independent; the se
ond makes it maximally so.(b) None when n is odd; otherwise there are two sets of alternate verti
es.(
) A vertex is in the kernel if and only if it is a sink vertex or in the kernel of thegraph obtained by deleting all sink verti
es and their immediate prede
essors.[Kernels represent winning positions in nim-like games, and they also arise inn-person games. See J. von Neumann and O. Morgenstern, Theory of Games and E
o-nomi
 Behavior (1944), x30.1; C. Berge, Graphs and Hypergraphs (1973), Chapter 14.℄13. (a) A maximal 
lique of G is a kernel of G, and vi
e versa. (b) A minimal vertex
over U is the 
omplement V nW of a kernel W , and vi
e versa (see 7{(61)).14. (a) The size is 4(n � 2) + 2[n=3℄. When n � 6 these BDDs form a pattern inwhi
h there are four bran
h nodes for variables 4, 5, : : : , n � 2, together with a �xedpattern at the top and bottom. The four bran
hes are essentially(x1xj�1 = 00) (x1xj�1 = 01) (x1xj�1 = 10) (x1xj�1 = 11)

(x1xj = 00) (x1xj = 01) (x1xj = 10) (x1xj = 11)j j j j? ? :
(b) Here the numbers for 3 � n � 10 are (7; 9; 14; 17; 22; 30; 37; 45); then a �xedpattern at the top and bottom develops as in (a), with nine bran
h nodes for ea
hvariable in the middle, and the total size 
omes to 9(n � 5). The nine nodes on ea
hmiddle level fall into three groups of three,(xj�2xj�1 = 00) (xj�2xj�1 = 10) (xj�1 = 1)

(xj�1xj = 00) (xj�1xj = 10) (xj = 1)j j j? ? ;
with one group for x1x2 = 00, one for x1x2 = 01, and one for x1 = 1.15. Both 
ases lead by indu
tion to well known sequen
es of numbers: (a) The Lu
asnumbers Ln = Fn+1 + Fn�1 [see E. Lu
as, Th�eorie des Nombres (1891), Chapter 18℄.(b) The Perrin numbers, de�ned by P3 = 3, P4 = 2, P5 = 5, Pn = Pn�2 + Pn�3. [SeeR. Perrin, L'Interm�ediaire des Math�emati
iens 6 (1899), 76{77.℄
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ursivevisitinglexi
ographi
 orderHadamard matrixDahlheimerThueMorseHamming distan
e
16. When the BDD isn't ? , all solutions are generated by 
alling List(1; root), whereList(j; p) is the following re
ursive pro
edure: If v(p) > j, set xj  0, 
all List(j+1; p),set xj  1, and 
all List(j + 1; p). Otherwise if p is the sink node > , visit thesolution x1 : : : xn. (The idea of \visiting" a 
ombinatorial obje
t while generatingthem all is dis
ussed at the beginning of Se
tion 7.2.1.) Otherwise set xj  0; 
allList(j+1;LO(p)) if LO(p) 6= ? ; set xj  1; and 
all List(j+1;HI(p)) if HI(p) 6= ? .The solutions are generated in lexi
ographi
 order. Suppose there are N of them.If the kth solution agrees with the (k�1)st solution in positions x1 : : : xj�1 but not in xj ,let 
(k) = n� j; and let 
(1) = n. Then the running time is proportional toPNk=1 
(k),whi
h is O(nN) in general. (This bound holds be
ause every bran
h node of a BDDleads to at least one solution. In fa
t, the running time is usually O(N) in pra
ti
e.)17. That mission is impossible, be
ause there's a fun
tion with N = 22k and B(f) =O(22k) for whi
h every two solutions di�er in more than 2k�1 bit positions. The runningtime for any algorithm that generates all solutions for su
h a fun
tion must be 
(23k),be
ause 
(2k) operations are needed between solutions. To 
onstru
t f , �rst letg(x1; : : : ; xk; y0; : : : ; y2k�1) = [y(t1:::tk)2 =x1t1 � � � � � xktk for 0� t1; : : : ; tk � 1℄:(In other words, g asserts that y0 : : : y2k�1 is row (x1 : : : xk)2 of an Hadamard matrix;see Eq. 4.6.4{(38).) Now we let f(x1; : : : ; xk; y0; : : : ; y2k�1; x01; : : : ; x0k; y00; : : : ; y02k�1) =g(x1; : : : ; xk; y0; : : : ; y2k�1) ^ g(x01; : : : ; x0k; y00; : : : ; y02k�1). Clearly B(f) = O(22k) whenthe variables are ordered in this way. Indeed, T. Dahlheimer observes that B(f) =2B(g)� 2, where B(g) = 2k + 1 +P2kj=1 2min(k;1+dlg je) = 5322k�1 + 2k + 53 .18. First, (W1; : : : ;W5) = (5; 4; 4; 4; 0). Then m2 = w4 = 4 and t2 = 1; m3 = t3 = 0;m4 = max(m3;m2+w3) = 1, t4 = 1; m5 = W4�W5 = 4, t5 = 0; m6 = w2+W3�W5 =2, t6 = 1; m7 = max(m5;m4 + w2) = 4, t7 = 0; m8 = max(m7;m6 + w1) = 4, t8 = 0.Solution x1x2x3x4 = 0001.19. Pnj=1min(wj ; 0) �Pnj=vk min(wj ; 0) � mk �Pnj=vk max(wj ; 0) =Wvk �W1.20. Set w1  �1, then w2j  wj and w2j+1  �wj for 1 � j � n=2. [This methodmay also 
ompute wn+1. The sequen
e is named for works of A. Thue, Skrifter udgivneaf Videnskabs-Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse (1912),No. 1, x7, and H. M. Morse, Trans. Amer. Math. So
. 22 (1921), 84{100, x14.℄21. Yes; we just have to 
hange the sign of ea
h weight wj . (Or we 
ould reverse theroles of LO and HI at ea
h vertex.)22. If f(x) = f(x0) = 1 when f represents a graph kernel, the Hamming distan
e�(x� x0) 
annot be 1. In su
h 
ases vl = v+1 when l 6= 0 and vh = v+1 when h 6= 0.23. The BDD for the 
onne
tedness fun
tion of any 
onne
ted graph will have exa
tlyn�1 solid ar
s on every root-to- > path, be
ause that many edges are needed to 
on-ne
t n verti
es, and be
ause a BDD has no redundant bran
hes. (See also Theorem S.)24. Apply Algorithm B with weights (w012; : : : ; w089) = (�w12�x; : : : ;�w89�x), wherex is large enough to make all of these new weights w0uv negative. The maximum ofPw0uvxuv will then o

ur with Pxuv = 8, and those edges will form a spanning treewith minimumPwuvxuv . (We've seen a better algorithm for minimum spanning treesin exer
ise 2.3.4.1{11, and other methods will be studied in Se
tion 7.5.4. However, thisexer
ise indi
ates that a BDD 
an 
ompa
tly represent the set of all spanning trees.)25. The answer in step C1 be
omes (1 + z)vs�1�1
s�1; the value of 
k in step C2be
omes (1 + z)vl�vk�1
l + (1 + z)vh�vk�1z
h.
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26. In this 
ase the answer in step C1 is simply 
s�1; and the value of 
k in step C2is simply (1� pvk )
l + pvk
h.27. The multilinear polynomial H(x1; : : : ; xn) = F (x1; : : : ; xn) � G(x1; : : : ; xn) isnonzero modulo q, be
ause it is �1 for some 
hoi
e of integers with ea
h xk 2 f0; 1g.If it has degree d (modulo q), we 
an prove that there are at least (q � 1)dqn�d sets ofvalues (q1; : : : ; qn) with 0 � qk < q su
h that H(q1; : : : ; qn) mod q 6= 0. This statementis 
lear when d = 0. And if xk is a variable that appears in a term of degree d > 0, the
oeÆ
ient of xk is a polynomial of degree d� 1, whi
h by indu
tion on d is nonzero forat least (q � 1)d�1qn�d 
hoi
es of (q1; : : : ; qk�1; qk+1; : : : ; qn); for ea
h of those 
hoi
esthere are q � 1 values of qk su
h that H(q1; : : : ; qn) mod q 6= 0.Hen
e the stated probability is � (1 � 1=q)d � (1 � 1=q)n. [See M. Blum, A. K.Chandra, and M. N. Wegman, Information Pro
essing Letters 10 (1980), 80{82.℄28. F (p) = (1� p)nG(p=(1� p)). Similarly, G(z) = (1 + z)nF (z=(1 + z)).29. In step C1, also set 
00  0, 
01  0; return 
s�1 and 
0s�1. In step C2, set
k  (1� p)
l + p
h and 
0k  (1� p)
0l � 
l + p
0h + 
h.30. The following analog of Algorithm B does the job (assuming exa
t arithmeti
):A1. [Initialize.℄ Set Pn+1  1 and Pj  Pj+1max(1� pj ; pj) for n � j � 1.A2. [Loop on k.℄ Set m1  1 and do step A3 for 2 � k < s. Then do step A4.A3. [Pro
ess Ik.℄ Set v  vk, l  lk, h  hk, tk  0. If l 6= 0, set mk  ml(1 � pv)Pv+1=Pvl . Then if h 6= 0, 
ompute m  mhpvPv+1=Pvh ; and ifl = 0 or m > mk, set mk  m and tk  1.A4. [Compute the x's.℄ Set j  0, k  s � 1, and do the following operationsuntil j = n: While j < vk � 1, set j  j + 1 and xj  [pj > 12 ℄; if k > 1, setj  j + 1 and xj  tk and k  (tk=0? lk: hk).31. C10. [Loop over k.℄ Set �0  ?, �1  >, and do step C20 for k = 2, 3, : : : , s� 1.Then go to C30.C20. [Compute �k.℄ Set v  vk, l lk, and h hk. Set �  �l and j  vl � 1;then while j > v set �  (�xj Æ xj) � � and j  j � 1. Set 
  �h andj  vh � 1; then while j > v set 
  (�xj Æ xj) � 
 and j  j � 1. Finally set�k  (�xv � �) Æ (xv � 
).C30. [Finish.℄ Set � �s�1 and j  vs�1�1; then while j > 0 set � (�xjÆxj)��and j  j � 1. Return the answer �.This algorithm performs Æ and � operations at most O(nB(f)) times. The upper bound
an often be lowered to O(n) + O(B(f)); but short
uts like the 
al
ulation of Wk instep B1 aren't always available. [See O. Coudert and J. C. Madre, Pro
. Reliability andMaint. Conf. (IEEE, 1993), 240{245, x4; O. Coudert, Integration 17 (1994), 126{127.℄32. For exer
ise 25, `Æ' is addition, `�' is multipli
ation, `?' is 0, `>' is 1, `�xj ' is 1, `xj 'is z. Exer
ise 26 is similar, but `�xj ' is 1� pj and `xj ' is pj .In exer
ise 29 the obje
ts of the algebra are pairs (
; 
0), and we have (a; a0) Æ(b; b0) = (a + b; a0 + b0), (a; a0) � (b; b0) = (ab; ab0 + a0b). Also `?' is (0; 0), `>' is (1; 0),`�xj ' is (1�p;�1), and `xj ' is (p; 1).In exer
ise 30, `Æ' is max, `�' is multipli
ation, `?' is �1, `>' is 1, `�xj ' is 1 � pj ,`xj ' is pj . Multipli
ation distributes over max in this 
ase be
ause the quantities areeither nonnegative or �1; we must de�ne 0 � (�1) = �1 in order to satisfy (22).(Additional possibilities abound, be
ause asso
iative and distributive operators areubiquitous in mathemati
s. The algebrai
 obje
ts need not be numbers or polynomials
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alSimonJeongSomenzi
or pairs; they 
an be strings, matri
es, fun
tions, sets of numbers, sets of strings, setsor multisets of matri
es of pairs of fun
tions of strings, et
., et
. We will see manyfurther examples in Se
tion 7.3. The min-plus algebra, with Æ = min and � = +, isparti
ularly important, and we 
ould have used it in exer
ise 21 or 24. It is often 
alledtropi
al, impli
itly honoring the Brazilian mathemati
ian Imre Simon.)33. Operate on triples (
; 
0; 
00), with (a; a0; a00) Æ (b; b0; b00) = (a + b; a0 + b0; a00 + b00)and (a; a0; a00) � (b; b0; b00) = (ab; a0b + b0a; a00b + 2a0b0 + ab00). Interpret `?' as (0; 0; 0),`>' as (1; 0; 0), `�xj ' as (1; 0; 0), and `xj ' as (1; wj ; w2j ).34. Let x_ y = max(x; y). Operate on pairs (
; 
0), with (a; a0)Æ (b; b0) = (a_ b; a0 _ b0)and (a; a0) � (b; b0) = (a + b; (a0 + b) _ (a + b0)). Interpret `?' as (�1;�1), `>' as(0;�1), `�xj ' as (0; w00j ), and `xj ' as (wj ; w0j + w00j ). The �rst 
omponent of the resultwill agree with Algorithm B; the se
ond 
omponent is the desired maximum.35. (a) The supposed FBDD 
an be represented by instru
tions Is�1, : : : , I0 as inAlgorithm C. Start with R0  R1  ;, then do the following for k = 2, : : : , s � 1:Report failure if vk 2 Rlk [ Rhk ; otherwise set Rk  fvkg [ Rlk [ Rhk . (The set Rkidenti�es all variables that are rea
hable from Ik.)(b) The reliability polynomial 
an be 
al
ulated just as in answer 26. To 
ountsolutions, we essentially set p1 = � � � = pn = 12 and multiply by 2n: Start with 
0  0and 
1  2n, then set 
k  (
lk + 
hk )=2 for 1 < k < s. The answer is 
s�1.36. Compute the sets Rk as in answer 35(a). Instead of looping on j as stated in stepC20 of answer 31, set �  �l and then �  (�xj Æ xj) � � for all j 2 Rk nRl n fvg; treat
 in the same manner. Similarly, in step C30 set � (�xj Æ xj) � � for all j =2 Rs�1.37. Given any FBDD for f, the fun
tion G(z) is the sum of (1+z)n�lengthPzsolid ar
s inPover all paths P from the root to > . [See Theoreti
al Comp. S
i. 3 (1976), 371{384.℄38. The key fa
t is that xj = 1 for
es f = 1 if and only if we have (i) hk = 1 whenevervk = j; (ii) vk = j in at least one step k; (iii) there are no steps with (vk < j < vlk andlk 6= 1) or (vk < j < vhk and hk 6= 1).K1. [Initialize.℄ Set tj  2 and pj  0 for 1 � j � n.K2. [Examine all bran
hes.℄ Do the following operations for 2 � k < s: Set j  vkand q  0. If lk = 1, set q  �1; otherwise set pj  max(pj ; vlk). If hk = 1,set q  +1; otherwise set pj  max(pj ; vhk ). If tj = 2, set tj  q; otherwiseif tj 6= q set tj  0.K3. [Finish up.℄ Set m vs�1, and do the following for j = 1, 2, : : : , n: If j < m,set tj  0; then if pj > m, set m pj .[See S.-W. Jeong and F. Somenzi, in Logi
 Synthesis and Optimization (1993), 154{156.℄39. k(n+ 1� k) + 2, for 1 � k � n. (See (26).)40. (a) Suppose the BDDs for f and g have respe
tively aj and bj bran
h nodes jj ,for 1 � j � n. Ea
h subtable of f of order n + 1 � k has the form ��
Æ, where �,�, 
, and Æ are subtables of order n � 1 � k. The 
orresponding subtables of g are��ÆÆ; hen
e they are beads if and only if � 6= Æ, in whi
h 
ase either ��
Æ is a bead or�� = 
Æ is a bead. Consequently bk � ak + ak+1, and bk+1 = 0. We also have bj � ajfor 1 � j < k, be
ause every bead of g of order > n+1�k is \
ondensed" from at leastone su
h bead of f . And bj � aj for j > k+1, be
ause the subtables on (xk+2; : : : ; xn)are identi
al although they might not appear in g.
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y
lesprimitive polynomial modulo 2WegenerHeap

(b) Not always. The simplest 
ounterexample is f(x1; x2; x3; x4) = x2 ^ (x3 _ x4),h(x1; x2; x1; x4) = x2 ^ (x1 _ x4), when B(f) = 5 and B(h) = 6. (We do, however,always have B(h) < 2B(f).)41. (a) 3n � 3; (b) 2n. (The general pat-terns are illustrated here for n = 6. One 
analso show that the \organ-pipe ordering"hxF1n xF21 xF3n�1xF42 : : : xFn�1bn=2
+[n even℄ xFn�2dn=2e iprodu
es the pro�le 1, 2, 4, : : : , 2dn=2e�2,2bn=2
 � 1, : : : , 5, 3, 1, 2, giving the totalBDD size �n2� + 3; this ordering appears tobe the worst for the Fibona

i weights.)

12 23 3 34 4 45 5 56? >? >

12 23 34 45 56
????? >>>

>>
The fun
tions [Fnx1 + � � �+ F1xn� t℄have been studied by J. T. Butler and T. Sasao, Fibona

i Quart. 34 (1996), 413{422.42. (Compare with exer
ise 2.) The sixteen roots are the j1 nodes and the two sinks:

? >1 1
1

1 1 11
11 1 1

1
1 1

2
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2
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3
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00001 0010
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0100 0101 01100111
10001001 1010 1011

1100
1101 11101
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011

100
101

110

01

10
43. (a) Sin
e f(x1; : : : ; x2n) is the symmetri
 fun
tion Sn(x1; : : : ; xn; �xn+1; : : : ; �x2n),we have B(f) = 1 + 2 + � � �+ (n+1) + � � �+ 3 + 2 + 2 = n2 + 2n+ 2.(b) By symmetry, the size is the same for [Pfxi j i 2 Ig =Pfxi j i =2 Ig℄, jIj = n.44. There are at most min(k; 2n+2�k � 2) nodes labeled jk , for 1 � k � n, be
ausethere are 2n+2�k � 2 symmetri
 fun
tions of (xk; : : : ; xn) that aren't 
onstant. ThusSn is at most 2 +Pnk=1min(k; 2n+2�k � 2), whi
h 
an be expressed in 
losed form as(n+2�bn)(n+1�bn)=2+2(2bn�bn), where bn = �(n+4��(n+4)) and �n = blg n
.A symmetri
 fun
tion that attains this worst-
ase bound 
an be 
onstru
ted inthe following way (related to the de Bruijn 
y
les 
onstru
ted in exer
ise 3.2.2{7):Let p(x) = xd + a1xd�1 + � � � + ad be a primitive polynomial modulo 2. Set tk  1for 0 � k < d; tk  (a1tk�1 + � � � + adtk�d) mod 2 for d � k < 2d + d � 2; tk  (1+a1tk�1+ � � �+adtk�d) mod 2 for 2d+d�2 � k < 2d+1+d�3; and t2d+1+d�3  1.For example, when p(x) = x3 + x+ 1 we get t0 : : : t16 = 11100101101000111.Then (i) the sequen
e t1 : : : t2d+d�3 
ontains all d-tuples ex
ept 0d and 1d assubstrings; (ii) the sequen
e t2d+d�2 : : : t2d+1+d�4 is a 
y
li
 shift of �t0 : : : �t2d�2; and(iii) tk = 1 for 2d�1 � k � 2d+d�3 and 2d+1�2 � k � 2d+1+d�3. Consequently thesequen
e t0 : : : t2d+1+d�3 
ontains all (d+1)-tuples ex
ept 0d+1 and 1d+1 as substrings.Set f(x) = t�x to maximize B(f) when 2d + d� 4 < n � 2d+1 + d� 3.Asymptoti
ally, Sn = 12n2 � n lgn + O(n). [See I. Wegener, Information andControl 62 (1984), 129{143; M. Heap, J. Ele
troni
 Testing 4 (1993), 191{195.℄45. ModuleM1 has only three inputs (x1; y1; z1), and only three outputs u2 = x1, v2 =y1x1, w2 = z1x1. Module Mn�1 is almost normal, but it has no input port for zn�1,
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and it doesn't output un; it sets zn�2 = xn�1yn�1. Module Mn has only three inputs(vn; wn; xn), and one output yn�1 = xn together with the main output, wn _ vnxn.With these de�nitions the dependen
ies between ports form an a
y
li
 digraph.(Modules 
ould be 
onstru
ted with all bk = 0 and ak � 5, or even with ak � 4 aswe'll see in exer
ise 47. But (33) and (34) are intended to illustrate ba
kward signalsin a simple example, not to demonstrate the tightest possible 
onstru
tion.)46. For 6 � k � n � 3 there are nine bran
hes on jk , 
orresponding to three 
ases(�x1; x1�x2; x1x2) times three 
ases (�xk�1; �xk�2xk�1; �xk�3xk�2xk�1). The total BDDsize turns out to be exa
tly 9n� 38, if n � 6.47. Suppose f has qk subtables of order n�k, so that its QDD has qk nodes that bran
hon xk+1. We 
an en
ode them in ak = dlg qke bits, and 
onstru
t a module Mk+1 withbk = bk+1 = 0 that mimi
s the behavior of those qk bran
h nodes. Thus by (86),nXk=0 2ak2bk = nXk=0 2dlg qke � nXk=0(2qk � 1) = 2Q(f)� (n+ 1) � (n+ 1)B(f):(The 2m-way multiplexer shows that the additional fa
tor of (n+1) is ne
essary; indeed,Theorem M a
tually gives an upper bound on Q(f).)48. The sums uk = x1+ � � �+xk and vk = xk+1+ � � �+xn 
an be represented on 1+�kand 1+ �(n� k) wires, respe
tively. Let tk = xk ^ [uk + vk = k℄ and wk = t1 _ � � � _ tk.We 
an 
onstru
t modules Mk having inputs uk�1 and wk�1 from Mk�1 together withinputs vk fromMk+1; moduleMk outputs uk = uk�1+xk and wk = wk�1_ tk toMk+1as well as vk�1 = vk + xk to Mk�1.If p is a polynomial,Pnk=0 2p(ak;bk) = 2(logn)O(1) is asymptoti
ally less than 2
(n).[See K. L. M
Millan, Symboli
 Model Che
king (1993), x3.5, where Theorem M wasintrodu
ed, with extensions to nonlinear layouts. The spe
ial 
ase b1 = � � � = bn = 0had been noted previously by C. L. Berman, IEEE Trans.CAD-10 (1991), 1059{1066.℄49.

(a) 1111 222 33 4
>>>>??

??
S�1S�2S�3S�4

; (b) 11111 2222 333 44
????>??

??
S0S1S2S3S4

.
[See I. Semba and S. Yajima, Trans. Inf. Pro
. So
. Japan 35 (1994), 1663{1665.℄50. 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 34 4> >> ?? > ? >

a b
d e fg
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ommon subfun
tionsfrontierpartitions of a setset partition51. In this 
ase B(fj) = 3j+2 for 1 � j � n, and B(fn+1) = 3n+1; so the individualBDDs are only about 1/3 as big as they are within (36). But almost no nodes areshared|only the sinks and one bran
h. So the total BDD size 
omes to (3n2+9n)=2.52. If the BDD base for ff1; : : : ; fmg has s nodes, then B(f) = s+m+ 1 + [s=1℄.53. Call the bran
h nodes a, b, 
, d, e, f , g, with ROOT = a. After step R1 wehave HEAD[1℄ = �a, AUX(a) = �0; HEAD[2℄ = �b, AUX(b) = �
, AUX(
) = �0;HEAD[3℄ = �d, AUX(d) = �e, AUX(e) = �f , AUX(f) = �g, AUX(g) = �0.After R3 with v = 3 we have s = �0, AUX(0) = �e, AUX(e) = f , AUX(f) = 0; alsoAVAIL = g, LO(g) = �1, HI(g) = d, LO(d) = �0, and HI(d) = �, where � was theinitial value of AVAIL. (Nodes g and d have been re
y
led in favor of 1 and 0.) Then R4sets s e and AUX(0) 0. (The remaining nodes with V = v start at s, linked via AUX.)Now R7, starting with p = q = e and s = 0, sets AUX(1)  �e, LO(f)  �e,HI(f) g, AVAIL f ; and R8 resets AUX(1) 0.Then step R3 with v = 2 sets LO(b)  0, LO(
)  e, and HI(
)  1. Nofurther 
hanges of importan
e take pla
e, although some AUX �elds temporarily be
omenegative. We end up with Fig. 21.54. Create nodes j for 1 < j � 2n�1 by setting V(j)  dlg je, LO(j)  2j � 1, andHI(j)  2j; also for 2n�1 < j � 2n by setting V(j)  n, LO(j)  f(x1; : : : ; xn�1; 0),and HI(j) f(x1; : : : ; xn�1; 1) when j = (1x1 : : : xn�1)2+1. Then apply Algorithm Rwith ROOT = 2. (We 
an bypass step R1 by �rst setting AUX(j)  �j for 4 � j � 2n,then HEAD[k℄ �(2k) and AUX(2k�1 + 1) �1 for 1 � k � n.)55. It suÆ
es to 
onstru
t an unredu
ed diagram, sin
e Algorithm R will then �nishthe job. Number the verti
es 1, : : : , n in su
h a way that no vertex ex
ept 1 appearsbefore all of its neighbors. Represent the edges by ar
s a1, : : : , ae, where ak is uk��!vkfor some uk < vk, and where the ar
s having uk = j are 
onse
utive, with sj � k < sj+1and 1 = s1 � � � � � sn = sn+1 = e + 1. De�ne the \frontier" Vk = f1; v1; : : : ; vkg \fuk; : : : ; ng for 1 � k � e, and let V0 = f1g. The unredu
ed de
ision diagram will havebran
hes on ar
 ak for all partitions of Vk�1 that 
orrespond to 
onne
tedness relationsthat have arisen be
ause of previous bran
hes.For example, 
onsider P3 P3, where (s1; : : : ; s10) = (1; 3; 5; 7; 8; 10; 11; 12; 13; 13)and V0 = f1g, V1 = f1; 2g, V2 = f1; 2; 3g, V3 = f2; 3; 4g, : : : , V12 = f8; 9g. The bran
hon a1 goes from the trivial partition 1 of V0 to the partition 1j2 of V1 if 1 /��� 2, or tothe partition 12 if 1��� 2. (The notation `1j2' stands for the set partition f1g [ f2g,as in Se
tion 7.2.1.5.) From 1j2, the bran
h on a2 goes to the partition 1j2j3 of V2 if1 /���3, otherwise to 13j2; from 12, the bran
hes go respe
tively to partitions 12j3 and123. Then from 1j2j3, both bran
hes on a3 go to ? , be
ause vertex 1 
an no longerbe 
onne
ted to the others. And so on. Eventually the partitions of Ve = V12 are allidenti�ed with ? , ex
ept for the trivial one-set partition, whi
h 
orresponds to > .56. Start with m 2 in step R1, and v0  v1  vmax+1, l0  h0  0, l1  h1  1as in (8). Assume that HI(0) = 0 and HI(1) = 1. Omit the assignments that involveAVAIL in steps R3 and R7. After setting AUX(HI(p))  0 in step R8, also set vm  v,lm  HI(LO(p)), hm  HI(HI(p)), HI(p)  m, and m  m + 1. At the end ofstep R9, set s m� [ROOT=0℄.57. Set LO(ROOT)  �LO(ROOT). (We brie
y 
omplement the LO �eld of nodes that arestill a

essible after restri
tion.) Then for v = V(ROOT), : : : , vmax, set p �HEAD[v℄,HEAD[v℄ �0, and do the following while p 6= 0: (i) Set p0  �AUX(p). (ii) If LO(p) �0, set HI(p) AVAIL, AUX(p) 0, and AVAIL p (node p 
an no longer be rea
hed).Otherwise set LO(p)  �LO(p); if FIX[v℄ = 0, set HI(p)  LO(p); if FIX[v℄ = 1, set
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tionrestri
tion
LO(p)  HI(p); if LO(LO(p)) � 0, set LO(LO(p))  �LO(LO(p)); if LO(HI(p)) � 0,set LO(HI(p))  �LO(HI(p)); and set AUX(p)  HEAD[v℄, HEAD[v℄  �p. (iii) Setp p0. Finally, after �nishing the loop on v, restore LO(0) 0, LO(1) 1.58. Sin
e l 6= h and l0 6= h0, we have l � l0 6= h � h0, l � �0 6= h � �0, and � � l0 6= � � h0.Suppose � � �0 = � � �0, where � = (v00; l00; h00) and �0 = (v000; l000; h000). If v00 = v000we have v = v00, l � l0 = l00 � l000, and h � h0 = h00 � h000. If v00 < v000 we have v = v00,l � �0 = l00 � �0, and h � �0 = h00 � �0. Otherwise we have v0 = v000, � � l0 = � � l000, and� � h0 = � � h000. By indu
tion, therefore, we have � = � and �0 = �0 in all 
ases.59. (a) If h isn't 
onstant we have B(f �g) = 3B(h)�2, essentially obtained by takinga 
opy of the BDD for h and repla
ing its sink nodes by two other 
opies.(b) Suppose the pro�le and quasi-pro�le of h are (b0; : : : ; bn) and (q0; : : : ; qn),where bn = qn = 2. Then there are bkqk bran
hes on x2k+1 in f � g, and qkbk�1bran
hes on x2k, 
orresponding to ordered pairs of beads and subtables of h. Whenthe BDD for h 
ontains a bran
h from � to � and from �0 to �0, where V(�) = j,V(�) = k, V(�0) = j0, and V(�0) = k0, the BDD for f � g 
ontains a 
orrespondingbran
h with V(� � �0) = 2j � 1 from � � �0 to � � �0 when j � j0 < k, and withV(� � �0) = 2j0 from � � �0 to � � �0 when j0 < j � k0.60. Every bead of order n�j of the ordered pair (f; g) is either one of the bjb0j orderedpairs of beads of f and g, or one of the bj(q0j � b0j)+ (qj � bj)b0j ordered pairs that havethe form (bead, nonbead) or (nonbead, bead). [This upper bound is a
hieved in theexamples of exer
ises 59(b) and 63.℄61. Assume that v = V (�) � V (�). Let �1, : : : , �k be the nodes that point to �,and let �1, : : : , �l be the nodes with V (�j) < v that point to �; an imaginary node isassumed to point to ea
h root. (Thus k = in-degree(�) and l � in-degree(�).) Thenthe melded nodes that point to ��� are of three types: (i) �i��j , where V (�i) = V (�j)and either (LO(�i) = � and LO(�j) = �) or (HI(�i) = � and HI(�j) = �); (ii) � � �j ,where V (�i) < V (�j) for some i; or (iii) �i � �, where V (�i) > V (�j) for some j.62. The BDD for f has one node on ea
h level, and the BDD for g has two, ex
ept atthe top and bottom. The BDD for f_g has four nodes on nearly every level, by exer
ise14(a). The BDD for f � g has seven nodes jj when 5 � j � n � 3, 
orrespondingto ordered pairs of subtables of (f; g) that depend on xj when (x1; : : : ; xj�1) have�xed values. Thus B(f) = n + O(1), B(g) = 2n + O(1), B(f � g) = 7n + O(1), andB(f _ g) = 4n+O(1). (Also B(f ^ g) = 7n+O(1), B(f � g) = 7n+O(1).)63. The pro�les of f and g are respe
tively (1; 2; 2; : : : ; 2m�1; 2m�1; 2m; 1; 1; : : : ; 1; 2)and (0; 1; 2; 2; : : : ; 2m�1; 2m�1; 1; 1; : : : ; 1; 2); so B(f) = 2m+2 � 1 � 4n and B(g) =2m+1+2m�1 � 3n. The pro�le of f ^g begins with (1; 2; 4; : : : ; 22m�2; 22m�1�2m�1),be
ause there's a unique solution x1 : : : x2m to the equations((x1 � x2)(x3 � x4) : : : (x2m�1 � x2m))2 = p; ((x2 � x3) : : : (x2m�2 � x2m�1)x2m)2 = qfor 0 � p; q < 2m, and p = q if and only if x1 = x3 = � � � = x2m�1 = 0. After that thepro�le 
ontinues (2m+1 � 2; 2m+1 � 2; 2m+1 � 4; 2m+1 � 6; : : : ; 4; 2; 2); the subfun
tionsare x2m+j ^ �x2m+k or �x2m+j ^ x2m+k for 1 � j < k � 2m, together with x2m+j and�x2m+j for 2 � j � 2m. All in all, we have B(f ^ g) = 22m+1 + 2m�1 � 1 � 2n2.64. The BDD for any Boolean 
ombination of f1, f2, and f3 is 
ontained in the meldf1 � f2 � f3, whose size is at most B(f1)B(f2)B(f3).65. h = g? f1: f0, where f
 is the restri
tion of f obtained by setting xj  
. The�rst upper bound follows as in answer 64, be
ause B(f
) � B(f). The se
ond bound
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fails when, for example, n = 2m + 3m and h = Mm(x; y)? Mm(x0; y): Mm(x00; y),where x = (x1; : : : ; xm), x0 = (x01; : : : ; x0m), x00 = (x001 ; : : : ; x00m), and y = (y0; : : : ; y2m�1);but su
h failures appear to be rare. [See R. E. Bryant, IEEE Trans. C-35 (1986), 685;J. Jain, K. Mohanram, D. Moundanos, I. Wegener, and Y. Lu, ACM/IEEE DesignAutomation Conf. 37 (2000), 681{686.℄66. Set NTOP f0 + 1� l and terminate the algorithm.67. Let tk denote template lo
ation POOLSIZE � 2k. Step S1 sets LEFT(t1)  5,RIGHT(t1)  7, l  1. Step S2 for l = 1 puts t1 into both LLIST[2℄ and HLIST[2℄.Step S5 for l = 2 sets LEFT(t2)  4, RIGHT(t2)  5, L(t1)  t2; LEFT(t3)  3, RIGHT(t3)  6, H(t1)  t3. Step S2 for l = 2 sets L(t2)  0 and puts t2 inHLIST[3℄; then it puts t3 into LLIST[3℄ and HLIST[3℄. And so on. Phase 1 ends with(LSTART[0℄; : : : ; LSTART[4℄) = (t0; t1; t3; t5; t8) andk LEFT(tk) RIGHT(tk) L(tk) H(tk)1 5 [�℄ 7 [!℄ t2 t32 4 [�℄ 5 [�℄ 0 t43 3 [
℄ 6 [ ℄ t4 t54 3 [
℄ 1 [>℄ t7 1

k LEFT(tk) RIGHT(tk) L(tk) H(tk)5 3 [
℄ 4 ['℄ t6 t86 2 [Æ℄ 2 [� ℄ 0 17 2 [Æ℄ 1 [>℄ 0 18 1 [>℄ 3 [�℄ 1 0representing the meld � � ! in Fig. 24 but with ? � x = x � ? = ? and > � > = >.Let fk = f0+ k. In phase 2, step S7 for l = 4 sets LEFT(t6) �0, LEFT(t7) t6,LEFT(t8) �1, and RIGHT(t6) RIGHT(t7) RIGHT(t8) �1. Step S8 undoes the
hanges made to LEFT(0) and LEFT(1). Step S11 with s = t8 sets LEFT(t8)  �2,RIGHT(t8)  t8, V(f2)  4, LO(f2)  1, HI(f2)  0. With s = t7 that step setsLEFT(t7)  �3, RIGHT(t7)  t7, V(f3)  4, LO(f3)  0, HI(f3)  1; meanwhilestep S10 has set RIGHT(t6) t7. Eventually the templates will be transformed tok LEFT(tk) RIGHT(tk) L(tk) H(tk)1 �8 t1 t2 t32 �7 t2 0 t43 �6 t3 t4 t54 �5 t4 t7 1
k LEFT(tk) RIGHT(tk) L(tk) H(tk)5 �4 t5 t7 t86 �0 t7 0 17 �3 t7 0 18 �2 t8 1 0(but they 
an then be dis
arded). The resulting BDD for f ^ g isk V(fk) LO(fk) HI(fk)2 4 1 03 4 0 14 3 3 25 3 3 1
k V(fk) LO(fk) HI(fk)6 2 5 47 2 0 58 1 7 6:68. If LEFT(t) < 0 at the beginning of step S10, set RIGHT(t) t, q  NTOP, NTOP q + 1, LEFT(t) �(q � f0), LO(q) �LEFT(L(t)), HI(q) �LEFT(H(t)), V(q) l,and return to S9.69. Make sure that NTOP � TBOT at the end of step S1 and when going from S11 toS9. (It's not ne
essary to make this test inside the loop of S11.) Also make sure thatNTOP � HBASE just after setting HBASE in step S4.70. This 
hoi
e would make the hash table a bit smaller; memory over
ow wouldtherefore be slightly less likely, at the expense of slightly more 
ollisions. But it alsowould slow down the a
tion, be
ause make template would have to 
he
k that NTOP �TBOT whenever TBOT de
reases.71. Add a new �eld, EXTRA(t) = �00, to ea
h template t (see (43)).
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a
hingAsharCheongregular fun
tions, enumeratedprime impli
ants
lutters
72. In pla
e of steps S4 and S5, use the approa
h of Algorithm R to bu
ket-sort theelements of the linked lists that begin at LLIST[l℄ and HLIST[l℄. This is possible if anextra one-bit hint is used within the pointers to distinguish links in the L �elds fromlinks in the H �elds, be
ause we 
an then determine the LO and HI parameters of t'sdes
endants as a fun
tion of t and its \parity."73. If the BDD pro�le is (b0; : : : ; bn), we 
an assign pj = dbj�1=2ee pages to bran
heson xj . Auxiliary tables of p1 + � � � + pn+1 � dB(f)=2ee + n short integers allow us to
ompute V (p) = T [�(p)℄, LO(p) = LO(M [�(p)℄ + �(p)), HI(p) = HI(M [�(p)℄ + �(p)).For example, if e = 12 and n < 216, we 
an represent arbitrary BDDs of up to232 � 228 +216 + 212 nodes with 32-bit virtual LO and HI pointers. Ea
h BDD requiresappropriate auxiliary T and M tables of size � 220, 
onstru
tible from its pro�le.[This method 
an signi�
antly improve 
a
hing behavior. It was inspired by thepaper of P. Ashar and M. Cheong, Pro
. International Conf. Computer-Aided Design(IEEE, 1994), 622{627, whi
h also introdu
ed algorithms similar to Algorithm S.℄74. The required 
ondition is now �n(x1; : : : ; x2n)^[ �x1=x2n ℄^� � �^[ �x2n�1 =x2n�1+1 ℄.If we set y1 = x1, y2 = x3, : : : , y2n�2 = x2n�1�1, y2n�2+1 = �x2n�1 , y2n�2+2 =�x2n�1�2, : : : , y2n�1 = �x2, (49) yields the equivalent 
ondition �n�1(y1; : : : ; y2n�1) ^[y2n�2 � �y2n�2+1 ℄^ [y2n�2�1� �y2n�2+2 ℄^� � �^ [y1� �y2n�1 ℄, whi
h is eminently suitablefor evaluation by Algorithm S. (The evaluation should be from left to right; right-to-leftwould generate enormous intermediate results.)With this approa
h we �nd that there are respe
tively 1, 2, 4, 12, 81, 2646,1422564, 229809982112 monotone self-dual fun
tions of 1, 2, : : : , 8 variables. (SeeTable 7.1.1{3 and answer 7.1.2{88.) The 8-variable fun
tions are 
hara
terized by aBDD of 130,305,082 nodes; Algorithm S needs about 204 gigamems to 
ompute it.75. Begin with �1(x1; x2) = [x1�x2 ℄, and repla
e G2n(x1; : : : ; x2n) in (49) by thefun
tion H2n(x1; : : : ; x2n) = [x1�x2�x3�x4 ℄ ^ � � � ^ [x2n�3�x2n�2�x2n�1�x2n ℄.(It turns out that B(�9) = 3;683;424; about 170 megamems suÆ
e to 
omputethat BDD, and �10 is almost within rea
h. Algorithm C now qui
kly yields the exa
tnumbers of regular n-variable Boolean fun
tions for 1 � n � 9, namely 3, 5, 10, 27,119, 1173, 44315, 16175190, 284432730176. Similarly, we 
an 
ount the self-dual ones,as in exer
ise 74; those numbers, whose early history is dis
ussed in answer 7.1.1{123,are 1, 1, 2, 3, 7, 21, 135, 2470, 319124, 1214554343, for 1 � n � 10.)76. Say that x0 : : : xj�1 for
es xj if xi = 1 for some i � j with 0 � i < j. Thenx0x1 : : : x2n�1 
orresponds to a 
lutter if and only if xj = 0 whenever x0 : : : xj�1 for
esxj , for 0 � j < 2n. And �n(x0; : : : ; x2n�1) = 1 if and only if xj = 1 whenever x0 : : : xj�1for
es xj . So we get the desired BDD from that of �n(x1; : : : ; x2n) by (i) 
hanging ea
hbran
h jj to � �� �j�1 , and (ii) inter
hanging the LO and HI bran
hes at every bran
hnode that has LO = ? . (Noti
e that, by Corollary 7.1.1Q, the prime impli
ants ofevery monotone Boolean fun
tion 
orrespond to 
lutters.)77. Continuing the previous answer, say that the bit ve
tor x0 : : : xk�1 is 
onsistentif we have xj = 1 whenever x0 : : : xj�1 for
es xj , for 0 < j < k. Let bk be thenumber of 
onsistent ve
tors of length k. For example, b4 = 6 be
ause of the ve
torsf0000; 0001; 0011; 0101; 0111; 1111g. Noti
e that exa
tly 
k = bk+1� bk 
lutters S havethe properly that k represents their \largest" set, maxfs j s represents a set of Sg.The BDD for �n(x1; : : : ; x2n) has bk�1 bran
h nodes jk when 1 � k � 2n�1.Proof: Every subfun
tion de�ned by x1, : : : , xk�1 is either identi
ally false or de�nesa 
onsistent ve
tor x1 : : : xk�1. In the latter 
ase the subfun
tion is a bead, be
auseit takes di�erent values under 
ertain settings of xk+1, : : : , x2n . Indeed, if x1 : : : xk�1
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en
y matrixinvolutionsfor
es xk, we set xk+1  � � �  x2n  1; otherwise we set xj  yj for k < j � 2n,where yj+1 = [xi+1=1 for some i � j with i+ 1 < k℄, noting that y2n+k = 0.On the other hand there are bk0 bran
hes jk when k = 2n�k0 and 0 � k0 < 2n�1.In this 
ase the non
onstant subfun
tions arising from x1, : : : , xk�1 lead to values yjas above, where the ve
tor �y00 �y10 : : : �yk0 is 
onsistent. (Here 00 = 2n, 10 = 2n � 1,et
.) Conversely, every su
h 
onsistent ve
tor des
ribes su
h a subfun
tion; we 
an, forexample, set xj  0 when j < k�2n�1 or 2n�1 � j < k, otherwise xj  y2n�1+j . Thissubfun
tion is a bead if and only if yk0 = 1 or �y00 : : : �y(k�1)0 for
es �yk0 . Thus the beads
orrespond to 
onsistent ve
tors of length k0; and di�erent ve
tors de�ne di�erent beads.This argument shows that there are bk�1�
k�1 bran
hes jk with LO = ? when1 � k � 2n�1 and 
2n�k su
h bran
hes when 2n�1 < k � 2n. Hen
e exa
tly half of theB(�n)� 2 bran
h nodes have LO = ? .78. To 
ount graphs on n labeled verti
es with maximum degree � d, 
onstru
t theBoolean fun
tion of the �n2� variables in its adja
en
y matrix, namely Vnk=1 S�d(Xk),where Xk is the set of variables in row k of the matrix. For example, when n = 5there are 10 variables, and the fun
tion is S�d(x1; x2; x3; x4) ^ S�d(x1; x5; x6; x7) ^S�d(x2; x5; x8; x9)^S�d(x3; x6; x8; x10)^S�d(x4; x7; x9; x10). When n = 12 the BDDsfor d = (1; 2; : : : ; 10) have respe
tively (5960, 137477, 1255813, 5295204, 10159484,11885884, 9190884, 4117151, 771673, 28666) nodes, so they are readily 
omputed withAlgorithm S. To 
ount solutions with maximum degree d, subtra
t the number of solu-tions for degree � d�1 from the number for degree � d; the answers for 0 � d � 11 are:114015135681193518616774658305
3038643940889754211677202624318662361700302117940553817884378201906645374

29271277569846191555178800570083256136294489497643961740521430038382710483623[In general there are tn�1 graphs on n labeled verti
es with maximum degree 1, wheretn is the number of involutions, Eq. 5.1.4{(40).℄The methods of Se
tion 7.2.3 are superior to BDDs for enumerations su
h as these,when n is large, be
ause labeled graphs have n! symmetries. But when n has a moderatesize, BDDs produ
e answers qui
kly, and ni
ely 
hara
terize all the solutions.79. In the following 
ounts, obtained from the BDDs in the previous answer, ea
hgraph with k edges is weighted by 266�k. Divide by 366 to get probabilities.737869762948382064645531567499308052900741125985355028683152365484769286837983522058455011716759552013803589275645776834792332984327024096376298397076969081536512
116467254834302955464842637475847767741687870924305547518803968251445753455897591860866868838445273361563608993921819340390445968637738881805341545676736209319558048031381829229498580. If the original fun
tions f and g have no BDD nodes in 
ommon, both algorithmsen
ounter almost exa
tly the same subproblems: Algorithm S deals with all nodes off � g that aren't des
ended from nodes of the forms � � ? or ? � �, while (55) alsoavoids nodes that des
end from the forms � � > or > � �. Furthermore, (55) takesshort
uts when it meets nontrivial subproblems AND(f 0; g0) with f 0 = g0; Algorithm S
annot re
ognize the fa
t that su
h 
ases are easy. And (55) 
an also win if it happensto stumble a
ross a relevant memo left over from a previous 
omputation.81. Just 
hange `AND' to `XOR' and `^' to `�' throughout. The simple 
ases are nowf � 0 = f , 0� g = g, and f � g = 0 if f = g. We should also swap f $ g if f > g 6= 0.



7.1.4 ANSWERS TO EXERCISES 91 KnuthBUTNOTNOTBUTdeaddereferen
eSomenziKnuth, DonSomenzi
Notes: The author experimentally inserted further memos `f�r = g' and `g�r =f ' in the bottom line; but these additional 
a
he entries seemed to do more harmthan good. Considering other binary operators, there's no need to implement bothBUTNOT(f; g) = f ^ �g and NOTBUT(f; g) = �f ^ g, sin
e the latter is BUTNOT(g; f).Also, XOR(1;OR(f; g)) may be better than an implementation of NOR(f; g) = :(f_g).82. A top-level 
omputation of F  AND(f; g) begins with f and g in 
omputerregisters, but REF(f) and REF(g) do not in
lude \referen
es" su
h as those. (We do,however, assume that f and g are both alive.)If (55) dis
overs that f ^ g is obviously r, it in
reases REF(r) by 1.If (55) �nds f ^ g = r in the memo 
a
he, it in
reases REF(r), and re
ursivelyin
reases REF(LO(r)) and REF(HI(r)) in the same way if r was dead.If step U1 �nds p = q, it de
reases REF(p) by 1 (believe it or not); this won't kill p.If step U2 �nds r, there are two 
ases: If r was alive, it sets REF(r) REF(r)+1,REF(p) REF(p) � 1, REF(q) REF(q) � 1. Otherwise it simply sets REF(r) 1.When step U3 
reates a new node r, it sets REF(r) 1.Finally, after the top-level AND returns a value r that we wish to assign to F ,we must �rst dereferen
e F , if F 6= �; this means setting REF(F)  REF(F) � 1,and re
ursively dereferen
ing LO(F) and HI(F) if REF(F) has be
ome 0. Then we setF  r (without adjusting REF(r)).[Furthermore, in a quanti�
ation routine su
h as (65) or in the 
omposition rou-tine (72), both rl and rh should be dereferen
ed after the OR or MUX has 
omputed r.℄83. Exer
ise 61 shows that the subproblem f ^ g o

urs at most on
e per top-level
all, when REF(f) = REF(g) = 1. [This idea is due to F. Somenzi; see the paper
ited in answer 84. Many nodes have referen
e 
ount 1, be
ause the average 
ountis approximately 2, and be
ause the sinks usually have large 
ounts. However, su
h
a
he-avoidan
e did not improve the overall performan
e in the author's experiments,possibly be
ause of the examples investigated, or possibly be
ause \a

idental" 
a
hehits in other top-level operations 
an be useful.℄84. Many possibilities exist, and no simple te
hnique appears to be a 
lear winner.The 
a
he and table sizes should be powers of 2, to fa
ilitate 
al
ulating the hashfun
tions. The size of the unique table for xv should be roughly proportional to thenumber of nodes that 
urrently bran
h on xv (alive or dead). It's ne
essary to rehasheverything when a table is downsized or upsized.In the author's experiments while writing this se
tion, the 
a
he size was doubledwhenever the number of insertions sin
e the beginning of the most re
ent top-level
ommand ex
eeded ln 2 times the 
urrent 
a
he size. (At that point a random hashfun
tion will have �lled about half of the slots.) After garbage 
olle
tion, the 
a
hewas downsized, if ne
essary, so that it either had 256 slots or was at least 1/4 full.It's easy to keep tra
k of the 
urrent number of dead nodes; hen
e we know atall times how mu
h memory a garbage 
olle
tion will re
laim. The author obtainedsatisfa
tory results by inserting a new step U2 12 between U2 and U3: \In
rease C by 1,where C is a global 
ounter. If C mod 1024 = 0, and if at least 1/8 of all 
urrentnodes are dead, 
olle
t garbage."[See F. Somenzi, Software Tools for Te
hnology Transfer 3 (2001), 171{181 fornumerous further suggestions based on extensive experien
e.℄85. The 
omplete table would have 232 entries of 32 bits ea
h, for a total of 234bytes (� 17:2 gigabytes). The BDD base dis
ussed after (58), with about 136 million



92 ANSWERS TO EXERCISES 7.1.4 zip-orderedIMPLIESBUTNOTremainders mod 3asso
iative law
ommutativedistributive lawrestri
tion
ofa
torliteralsCoudertBerthetMadrerestri
ted to

nodes using zip-ordered bits, 
an be stored in about 1.1 gigabyte; the one dis
ussed inCorollary Y, whi
h ranks all of the multiplier bits �rst, needs only about 400 megabytes.86. If f = 0 or g = h, return g. If f = 1, return h. If g = 0 or f = g, return AND(f; h).If h = 1 or f = h, return OR(f; g). If g = 1, return IMPLIES(f; h); if h = 0, returnBUTNOT(g; f). (If binary IMPLIES and/or BUTNOT aren't implemented dire
tly, it'sOK to let the 
orresponding 
ases propagate in ternary guise.)87. Sort so that f � g � h. If f = 0, return AND(g; h). If f = 1, return OR(g; h). Iff = g or g = h, return g.88. The trio of fun
tions (f; g; h) = (R0; R1; R2) makes an amusing example, whenRa(x1; : : : ; xn) = [(xn : : : x1)2 mod 3 6= a℄ = R(2a+x1) mod 3(x2; : : : ; xn):Thanks to the memos, the ternary re
ursion �nds f ^ g ^ h = 0 by examining only one
ase at ea
h level; the binary 
omputation of, say, f ^ g = �h de�nitely takes longer.More dramati
ally, let f = x1 ^ (x2? F : G), g = x2 ^ (x1? G: F ), and h =x1? �x2 ^F : x2 ^G, where F and G are fun
tions of (x3; : : : ; xn) su
h that B(F ^G) =�(B(F )B(G)) as in exer
ise 63. Then f ^ g, g ^ h, and h^ f all have large BDDs, butthe ternary re
ursion immediately dis
overs that f ^ g ^ h = 0.89. (a) True; the left side is (f00_f01)_(f10_f11), the right side is (f00_f10)_(f01_f11).(b) Similarly true. (And 's are 
ommutative too.)(
) Usually false; see part (d).(d) 8x19x2f = (f00 _ f01) ^ (f10 _ f11) = (9x28x1f) _ (f00 ^ f11) _ (f01 ^ f10).90. Change 9j1 : : :9jm to j1 : : : jm.91. (a) f # 1 = f , f # xj = f1, and f # �xj = f0, in the notation of (63).(b) This distributive law is obvious, by the de�nition of #. (Also true for _, �, et
.)(
) True if and only if g is not identi
ally zero. (Consequently the value off(x1; : : : ; xn) # g for g 6= 0 is determined solely by the values of xj # g for 1 � j � n.)(d) f(x1; 1; 0; x4; 0; 1; x7; : : : ; xn). This is the restri
tion of f with respe
t tox2 = 1, x3 = 0, x5 = 0, x6 = 1 (see exer
ise 57), also 
alled the 
ofa
tor of f withrespe
t to the sub
ube g. (A similar result holds when g is any produ
t of literals.)(e) f(x1; : : : ; xn�1; x1�� � ��xn�1�1). (Consider the 
ase f = xj , for 1 � j � n.)(f) x1? f(1; : : : ; 1): f(0; : : : ; 0).(g) f(1; x2; : : : ; xn) # g(x2; : : : ; xn).(h) If f = x2 and g = x1 _ x2 we have f # g = �x1 _ x2.(i) CONSTRAIN(f; g) = \If f # g has an obvious value, return it. Otherwise, iff # g = r is in the memo 
a
he, return r. Otherwise represent f and g as in (52);set r  CONSTRAIN(fh; gh) if gl = 0, r  CONSTRAIN(fl; gl) if gh = 0, otherwiser  UNIQUE(v;CONSTRAIN(fl; gl);CONSTRAIN(fh; gh)); put `f # g = r' into thememo 
a
he, and return r." Here the obvious values are f # 0 = 0 # g = 0; f # 1 = f ;1 # g = g # g = [g 6=0℄.[The operator f # g was introdu
ed in 1989 by O. Coudert, C. Berthet, and J. C.Madre. Examples su
h as the fun
tions in (h) led them to propose also the modi�edoperator f + g, \f restri
ted to g," whi
h has a similar re
ursion ex
ept that it usesf +(9xvg) instead of (�xv? fl+gl: fh+gh) when fl = fh. See Le
ture Notes in ComputerS
ien
e 407 (1989), 365{373.℄92. See answer 91(d) for the \if" part. Noti
e also that (i) x1 # g = x1 if and only ifg0 6= 0 and g1 6= 0, where g
 = g(
; x2; : : : ; xn); (ii) xn # g = xn if and only if xng = 0and g 6= 0.



7.1.4 ANSWERS TO EXERCISES 93 J(x; f) fun
tionjun
tion fun
tion3-
oloredSauerho�Wegenertail re
ursionRudellyes/no quanti�ers
ontiguous-USA
Suppose f�#g� = (f#g)� for all f and �. If g 6= 0 isn't a sub
ube, there's an index jsu
h that g0 6= 0 and g1 6= 0 and xj g 6= 0, where g
 = g(x1; : : : ; xj�1; 
; xj+1; : : : ; xn).By the previous paragraph, we have (i) xj #g = xj and (ii) xj #g 6= xj , a 
ontradi
tion.93. Let f = J(x1; : : : ; xn; f1; : : : ; fn) and g = J(x1; : : : ; xn; g1; : : : ; gn), wherefv = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; [v��1℄; : : : ; [v��n℄);gv = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; [v=1℄+[v��1℄; : : : ; [v=n℄+[v��n℄);and J is the jun
tion fun
tion of exer
ise 52.If G 
an be 3-
olored, let f̂ = J(x1; : : : ; xn; f̂1; : : : ; f̂n), wheref̂v = xn+1 _ � � � _ x5n _ J(x5n+1; : : : ; x6n; f̂v1; : : : ; f̂vn);and f̂vw = [v and w have di�erent 
olors℄. Then B(f̂) < n+ 3(5n) + 2.Conversely, suppose there's an approximating f̂ su
h that B(f̂) < 16n + 2, andlet f̂v be the subfun
tion with x1 = [v=1℄, : : : , xn = [v=n℄. At most three ofthese subfun
tions are distin
t, be
ause every distin
t f̂v must bran
h on ea
h of xn+1,: : : , x5n. Color the verti
es so that u and v get the same 
olor if and only if f̂u = f̂v;this 
an happen only if u /���v, so the 
oloring is legitimate.[M. Sauerho� and I. Wegener, IEEE Transa
tions CAD-15 (1996), 1435{1437.℄94. Case 1: v 6= gv. Then we aren't quantifying over xv ; hen
e g = gh, and f E g =�xv? fl E g : fh E g.Case 2: v = gv. Then g = xv ^ gh and f E g = (fl E gh) _ (fh E gh) = rl _ rh. Inthe sub
ase v 6= fv, we have fl = fh = f ; hen
e rl = rh, and we 
an dire
tly redu
ef E g to f E gh (an instan
e of \tail re
ursion").[Rudell observes that the order of quanti�
ation in (65) 
orresponds to bottom-up order of the variables. That order is 
onvenient, but not always best; sometimesit's better to remove the 9s one by one in another order, based on knowledge of thefun
tions involved.℄95. If rl = 1 and v = gv , we 
an set r  1 and forget about rh. (This 
hange led to a100-fold speedup in some of the author's experiments.)96. For 8, just 
hange E to A and OR to AND. For , 
hange E to D and OR to XOR;also, if v 6= fv, return 0. [Routines for the yes/no quanti�ers and are analogous to .Yes/no quanti�ers should be used only when m = 1; otherwise they make little sense.℄97. Pro
eeding bottom-up, the amount of work on ea
h level is at worst proportionalto the number of nodes on that level.98. The fun
tion NOTEND(x) = 9y9z(ADJ(x; y) ^ ADJ(x; z) ^ [y 6= z ℄) identi�es allverti
es of degree � 2. Hen
e ENDPT(x) = KER(x)^:NOTEND(x). And PAIR(x; y) =ENDPT(x) ^ ENDPT(y) ^ ADJ(x; y).[For example, when G is the 
ontiguous-USA graph, with the states ordered asin (104), we have B(NOTEND) = 992, B(ENDPT) = 264, and B(PAIR) = 203. Beforeapplying 9y9z the BDD size is 50511. There are exa
tly 49 kernels of degree 1. Thenine 
omponents of size 2 are obtained by mixing the following three solutions:
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 fun
time stampsReferen
e 
ounts
ompositionmemo 
a
he
The total 
ost of this 
al
ulation, using the stated algorithms, is about 14 megamems,in 6.3 megabytes of memory|only about 52 memory referen
es per kernel.℄99. Find a triangle of mutually adja
ent states, and �x their 
olors. The BDD sizealso de
reases substantially if we 
hoose states of high degree in the \middle" levels.For example, by setting aMO = bMO = aTN = �bTN = �aAR = bAR = 1 we redu
e the 25,579nodes to only 4642 (and the total exe
ution time also drops below 2 megamems).[Bryant's original manus
ript about BDDs dis
ussed graph 
oloring in detail, buthe de
ided to substitute other material when his paper was published in 1986.℄100. Repla
e IND(xME; : : : ; xCA) by IND(xME; : : : ; xCA) ^ S12(xME; : : : ; xCA), to get the12-node independent sets; this BDD has size 1964. Then use (73) as before, and thetri
k of answer 99, getting a COLOR fun
tion with 184,260 nodes and 12,554,677,864solutions. (The running time is approximately 26 megamems.)101. If a state's weight is w, assign 2w and w as therespe
tive weights of its a and b variables, and useAlgorithm B. (For example, variable aWY gets weight2(23 + 25) = 96.) The solution, shown here with
olor 
odes 1 2 3 4 , is unique. CA ID
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102. The main idea is that, when gj 
hanges, all results in the 
a
he for fun
tionswith fv > j remain valid. To exploit this prin
iple we 
an maintain an array of \timestamps" G1 � G2 � � � � � Gn � 0, one for ea
h variable. There's a master 
lo
k timeG � G1, representing the number of distin
t 
ompositions done or prepared; anothervariable G0 re
ords whether G has 
hanged sin
e COMPOSE was last invoked. InitiallyG = G0 = G1 = � � � = Gn = 0. The subroutine NEWG(j; g) is implemented as follows:N1. [Easy 
ase?℄ If gj = g, exit the subroutine. Otherwise set gj  g.N2. [Can we reset?℄ If g 6= xj , or if j < n and Gj+1 > 0, go to N4.N3. [Reset stamps.℄ While j > 0 and gj = xj , set Gj  0 and j  j � 1. Thenif j = 0, set G G�G0, G0  0, and exit.N4. [Update G?℄ If G0 = 0, set G G+ 1 and G0  1.N5. [New stamps.℄ While j > 0 and Gj 6= G, set Gj  G and j  j � 1.Exit.(Referen
e 
ounts also need to be maintained appropriately.) Before laun
hing a top-level 
all of COMPOSE, set G0  0. Change the COMPOSE routine (72) to use f [Gv℄in referen
es to the 
a
he, where v = fv ; the test `v > m' be
omes `Gv = 0'.103. The equivalent formula g(f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)) 
an be implementedwith the COMPOSE operation (72). (However, Dull was vindi
ated when it turned outthat his formula 
ould be evaluated more than a hundred times faster than Qui
k's, inspite of the fa
t that it uses twi
e as many variables! In his appli
ation, the 
omputationof (y1 = f1(x1; : : : ; xn))^ � � � ^ (ym = fm(x1; : : : ; xn))^ g(y1; : : : ; ym) turned out to bemu
h easier than COMPOSE's 
omputation of gj(f1; : : : ; fm) for every subfun
tion gjof g ; see, for example, exer
ise 162.)104. The following re
ursive algorithm COMPARE(f; g) needs at most O(B(f)B(g))steps when used with a memo 
a
he: If f = g, return `='. Otherwise, if f = 0 org = 1, return `<'; if f = 1 or g = 0, return `>'. Otherwise represent f and g asin (52); 
ompute rl  COMPARE(fl; gl). If rl is `k', return `k'; otherwise 
omputerh  COMPARE(fh; gh). If rh is `k', return `k'. Otherwise if rl is `=', return rh; if rhis `=', return rl; if rl = rh, return rl. Otherwise return `k'.
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eglobal variablesHoriyamaIbarakibran
hing programsorderedredu
ed2m-way multiplexLiawLinBreitbartHuntRosenkrantz

105. (a) A unate fun
tion with polarities (y1; : : : ; yn) has xjf = 0 when yj = 1 andxjf = 0 when yj = 0, for 1 � j � n. Conversely, f is unate if these 
onditions holdfor all j. (Noti
e that xjf = xjf = 0 if and only if xjf = 0, if and only if f doesn'tdepend on xj . In su
h 
ases yj is irrelevant; otherwise yj is uniquely determined.)(b) The following algorithm maintains global variables (p1; : : : ; pn), initially zero,with the property that pj = +1 if yj must be 0 and pj = �1 if yj must be 1; pj willremain zero if f doesn't depend on xj . With this understanding, UNATE(f) is de�ned asfollows: If f is 
onstant, return true. Otherwise represent f as in (50). Return false if ei-ther UNATE(fl) or UNATE(fh) is false; otherwise set r  COMPARE(fl; fh) using exer-
ise 104. If r is `k', return false. If r is `<', return false if pv < 0, otherwise set pv  +1and return true. If r is `>', return false if pv > 0, otherwise set pv  �1 and return true.This algorithm often terminates qui
kly. It relies on the fa
t that f(x) � g(x) forall x if and only if f(x�y) � g(x�y) for all x, when y is �xed. If we simply want to testwhether or not f is monotone, the p variables should be initialized to +1 instead of 0.106. De�ne HORN(f; g; h) thus: If f > g, inter
hange f $ g. Then if f = 0 or h = 1,return true. Otherwise if g = 1 or h = 0, return false. Otherwise represent f , g,and h as in (59). Return true if HORN(fl; gl; hl), HORN(fl; gh; hl), HORN(fh; gl; hl),and HORN(fh; gh; hh) are all true; otherwise return false. [This algorithm is due toT. Horiyama and T. Ibaraki, Arti�
ial Intelligen
e 136 (2002), 189{213, who alsointrodu
ed an algorithm similar to that of answer 105(b).℄107. Let e$f $g$h mean that e(x) = f(y) = g(z) = 1 implies h(hxyzi) = 1. Thenf is Krom if and only if f $f $f $f , and we 
an use the following re
ursive algorithmKROM(e; f; g; h): Rearrange fe; f; gg so that e � f � g. Then if e = 0 or h = 1, returntrue. Otherwise if f = 1 or h = 0, return false. Otherwise represent e, f , g, h with thequaternary analog of (59). Return true if KROM(el; fl; gl; hl), KROM(el; fl; gh; hl),KROM(el; fh; gl; hl), KROM(el; fh; gh; hh), KROM(eh; fl; gl; hl), KROM(eh; fl; gh; hh),KROM(eh; fh; gl; hh), and KROM(eh; fh; gh; hh) are all true; otherwise return false.108. Label the nodes f1; : : : ; sg with root 1 and sinks fs�1; sg; then (s�3)! permuta-tions of the other labels give di�erent dags for the same fun
tion. The stated inequalityfollows be
ause ea
h instru
tion (�vk? lk: hk) has at most n(s � 1)2 possibilities, for1 � k � s � 2. (In fa
t, it holds also for arbitrary bran
hing programs, namely forbinary de
ision diagrams in general, whether or not they are ordered and/or redu
ed.)Sin
e 1=(s � 3)! < (s � 1)3=s! and s! > (s=e)s, we have (generously) b(n; s) <(nse)s. Let sn = 2n=(n + �), where � = lg e = 1=ln 2; then lg b(n; sn) < sn lg(nsne) =2n(1 � (lg(1 + �=n))=(n + �)) = 2n � 
(2n=n2). So the probability that a random n-variable Boolean fun
tion has B(f) � sn is at most 1=2
(2n=n2). And that is really tiny.109. 1=2
(2n=n2) is really tiny even when multiplied by n!.110. Let fn = Mm(xn�m+1; : : : ; xn; 0; : : : ; 0; x1; : : : ; xn�m) _ (�xn�m+1 ^ � � � ^ �xn ^[0 : : : 0x1 : : : xn�m is a square℄), when 2m�1 + m � 1 < n < 2m + m. Ea
h term ofthis formula has 2m +m� n zeros; the se
ond term destroys all of the 2m-bit squares.[See H.-T. Liaw and C.-S. Lin, IEEE Transa
tions C-41 (1992), 661{664; Y. Breitbart,H. Hunt III, and D. Rosenkrantz, Theoreti
al Comp. S
i. 145 (1995), 45{69.℄111. Let �n = �(n � �n), and noti
e that �n = m if and only if 2m + m � n <2m+1+m+1. The sum for 0 � k < n��n is 2n��n� 1; the other terms sum to 22�n.112. Suppose k = n� lgn+ lg�. Then(22n�k� 1)2k22n = exp�2n�n ln�1� 12n=��� = exp��2n�n=��n �1 +O� 12n=����:
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eWegenersubtablebeadzeadQDD2m-way muxtransformed BDDs
If � � 12 we have 2n�n=��=n � 1=(n2n+1); hen
e b̂k = (2n=�� 2n=(2�))(2n�n=��=n)�(1 +O(2�n=�)) = 2k(1�O(2�n=(2�))). And if � � 2 we have 2n�n=��=n � 2n=2+1=n;thus b̂k = (22n�k� 22n�k�1)(1 +O(exp(�2n=2=n))).[For the varian
e of bk, see I. Wegener, IEEE Trans. C-43 (1994), 1262{1269.℄113. The idea looks attra
tive at �rst glan
e, but loses its luster when examined 
losely.Comparatively few nodes of a BDD base appear on the lower levels, by Theorem U;and algorithms like Algorithm S spend 
omparatively little of their time dealing withthose levels. Furthermore, non
onstant sink nodes would make several algorithms more
ompli
ated, espe
ially those for reordering.114. For example, the truth table might be 01010101 00110011 00001111 00001111.115. Let Nk = b0+ � � �+bk�1 be the number of nodes jj of the BDD for whi
h j � k.The sum of the in-degrees of those nodes is at least Nk; the sum of the out-degrees is2Nk; and there's an external pointer to the root. Thus at most Nk + 1 bran
hes 
an
ross from the upper k levels to lower levels. Every su
h bran
h 
orresponds to somesubtable of order n� k. Therefore qk � Nk + 1.Moreover, we must have qk � bk+ � � �+ bn, be
ause every subtable of order n� k
orresponds to a unique bead of order � n� k.For (124), 
hange `BDD' to `ZDD', `bk' to `zk', `bead' to `zead' in these arguments.116. (a) Let vk = 22k + 22k�1 + � � �+ 220 . Then Q(f) �Pn+1k=1 min(2k�1; 22n+1�k ) =Un+ v�(n��n)�1. Examples like (78) show that this upper bound 
annot be improved.(b) q̂k=b̂k = 22n�k=(22n�k � 22n�k�1) for 0 � k < n; q̂n = b̂n.117. qk = 2k for 0 � k � m, and qm+k = 2m + 2 � k for 1 � k � 2m. Hen
eQ(f) = 22m�1+7 �2m�1�1 � B(f)2=8. (Su
h fs make QDDs unattra
tive in pra
ti
e.)118. If n = 2m � 1 we have hn(x1; : : : ; xn) = Mm(zm�1; : : : ; z0; 0; x1; : : : ; xn), where(zm�1 : : : z0)2 = x1 + � � � + xn is 
omputable in 5n � 5m steps by exer
ise 7.1.2{30,and Mm takes another 2n + O(pn ) by exer
ise 7.1.2{39. Sin
e hn(x1; : : : ; xn) =hn+k(x1; : : : ; xn; 0; : : : ; 0), we have C(hn) � 14n + O(pn ) for all n. (A little morework will bring this down to 7n+O(pn logn); 
an the reader do better?)The 
ost of h4 is 6 = L(h4), and x2 � ((x1 � (x2 ^ �x4)) ^ (�x3 � (�x2 ^ x4))) is aformula of shortest length. (Also C(h5) = 10 and L(h5) = 11.)119. True. For example, S2;3;5(x1; : : : ; x6) = h13(x1; x2; 0; 0; 1; 1; 0; 1; 0; x3; x4; x5; x6).120. We have h�n(x1; : : : ; xn) = hn(y1; : : : ; yn), where yj = xj� for 1 � j � n. Andhn(y1; : : : ; yn) = yy1+���+yn = yx1+���+xn = x(x1+���+xn)� .121. (a) If yk = �xn+1�k we have hn(y1; : : : ; yn) = y�y = yn��x = �xn+1�(n��x) = �x�x+1.(b) If x= (x1; : : : ; xn) and t 2 f0; 1g we have hn+1(x; t) = (t? x�x+1: x�x).(
) No. For example,  sends 0k11 7! 0k�1101 7! 0k�21021 7! � � � 7! 10k1 7! 0k11.(In spite of its simple de�nition,  has remarkable properties, in
luding �xed pointssu
h as 10011010000101011000111001011 and 11101111011001011101111101111.)(d) In fa
t, ĥn(x1 : : : xn) = x1(!), by indu
tion using re
urren
e (b).(If f(x1; : : : ; xn) is any Boolean fun
tion and � is any permutation of the binaryve
tors x1 : : : xn, we 
an write f(x) = f̂(x�), and the transformed fun
tion f̂ may wellbe mu
h easier to work with. Sin
e f(x) ^ g(x) = f̂(x�) ^ ĝ(x�), the transform of theAND of two fun
tions is the AND of their transforms, et
. The ve
tor permutations(x1 : : : xn)� = x1� : : : xn� that merely transform the indi
es, as 
onsidered in the text,are a simple spe
ial 
ase of this general prin
iple. But the prin
iple is, in a sense, toogeneral, be
ause every fun
tion f trivially has at least one � for whi
h f̂ is skinny
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in the sense of exer
ise 170; all the 
omplexity of f 
an be transferred to � . Evensimple transformations like  have limited utility, be
ause they don't 
ompose well;for example,   is not a transformation of the same type. But linear transformations,whi
h take x 7! xT for some nonsingular binary matrix T , have proved to be usefulways to simplify BDDs. [See S. Aborhey, IEEE Trans.C-37 (1988), 1461{1465; J. Bern,C. Meinel, and A. Slobodov�a, ACM/IEEE Conf. Design Automation 32 (1995), 408{413; C. Meinel, F. Somenzi, and T. Theobald, IEEE Trans.CAD-19 (2000), 521{533.℄)122. For example, when n = 7 the re
urren
e in answer 121(b) gives765 64 5 63 4 5 61

11 21 2 31 2 3 4 62 3 4 5? ? ? ? ? ?> > > > > >
;

where shaded nodes 
ompute the subfun
tion hDR on the variables that haven't yet beentested. Simpli�
ations o

ur at the bottom, be
ause h2(x1; x2) = x1 and hDR2 (x1; x2) =x2. [See D. Sieling and I. Wegener, Theoreti
al Comp. S
i. 141 (1995), 283{310.℄123. Let t = k � s = �x1 + � � �+ �xk. There's a slate for every 
ombination of s0 1s andt0 0s su
h that s0 + t0 = w, s0 � s, and t0 � t. The sum of �ws0� = �wt0� over all su
h(s0; t0) is (97). (Noti
e furthermore that it equals 2w if and only if w � min(s; t).)124. Letm = n�k. Ea
h slate [r0; : : : ; rm℄ 
orresponds to a fun
tion of (xk+1; : : : ; xn),whose truth table is a bead ex
ept in four 
ases: (i) [0; : : : ; 0℄ = 0; (ii) [1; : : : ; 1℄ = 1;(iii) [0; xn; 1℄ = xn (whi
h doesn't depend on xn�1); (iv) [1; : : : ; 1; xk+1; 0; : : : ; 0℄, wherethere are p 1s so that xk+1 = rp, is S<p(xk+2; : : : ; xn).The following polynomial-time algorithm 
omputes qk = q and bk = q � q0 by
ounting all slates. A subtle aspe
t arises when the entries of [r0; : : : ; rm℄ are all 0 or 1,be
ause su
h slates 
an o

ur for di�erent values of s; we don't want to 
ount themtwi
e. The solution is to maintain four setsCab = fr1 + � � �+ rm�1 j r0 = a and rm = b in some slateg:The value of 0� should be arti�
ially set to n+ 1, not 0. Assume that 0 � k < n.H1. [Initialize.℄ Set m n� k, q  q0  s 0, C00  C01  C10  C11  ;.H2. [Find v and w.℄ Set v = Pm�1j=1 [(s+ j)�� k ℄ and w  v + [s�� k ℄ +[(s+m)�� k ℄. If v = m� 1, go to step H5.H3. [Che
k for nonbeads.℄ Set p  �1. If v 6= m � 2, go to H4. Otherwise, ifm = 2 and (s + 1)� = n, set p  [(s+ 2)�� k ℄. Otherwise, if w = m and(s+ j)� = k + 1 for some j 2 [1 : :m�1℄, set p j.H4. [Add binomials.℄ For all s0 and t0 su
h that s0 + t0 = w, 0 � s0 � s, and0 � t0 � k � s, set q  q + �ws0� and q0  q0 + [s0= p℄. Then go to H6.H5. [Remember 0{1 slates.℄ Do the following for all s0 and t0 as in step H4: If(s+m)� � k, set C00  C00 [ fs0g and C01  C01 [ fs0�1g; otherwise set



98 ANSWERS TO EXERCISES 7.1.4 binomial 
oeÆ
ient summation te
hniquessummation of binomial 
oefsGenerating fun
tionsre
urren
esPerrin numbersAustinGuyplasti
 
onstantSiegelPisot number
C01  C01 [ fs0g. If s� � k and (s+m)� � k, set C10  C10 [ fs0�1g andC11  C11 [ fs0�2g. If s� � k and (s+m)� > k, set C11  C11 [ fs0�1g.H6. [Loop on s.℄ If s < k, set s s+ 1 and return to H2.H7. [Finish.℄ For ab = 00, 01, 10, and 11, set q  q+ �m�1r � for all r 2 Cab. Alsoset q0  q0 + [02C00 ℄ + [m�12C11 ℄.125. Let S(n;m) = �n0� + � � �+ �nm�. There are S(k + 1 � s; s)� 1 non
onstant slateswhen 0 < s � k and s � 2k � n + 2. The only other non
onstant slates, one ea
h,arise when s = 0 and k < (n � 1)=2. The 
onstant slates are tri
kier to 
ount, butthere usually are S(n + 1 � k; 2k + 1 � n) of them, appearing when s = 2k � n ors = 2k+1�n. Taking a

ount of nitpi
ky boundary 
onditions and nonbeads, we �ndbk = S(n� k; 2k � n) + n�kXs=0 S(n�k�s; 2k+1�n+s)�min(k; n� k)� [n=2k ℄� [3k� 2n� 1℄� 1for 0 � k < n. Although S(n;m) has no simple form, we 
an express Pn�1k=0 bk asBn=2 +P0�m�n�2k�n(n+ 3 �m � 2k)� km� + (small 
hange) when n is even, and thesame expression works when n is odd if we repla
e Bn=2 by A(n+1)=2. The double sum
an be redu
ed by summing �rst on k, sin
e (k + 1)� km� = (m+ 1)� k+1m+1�:nXm=0�(n+ 5�m)�b(n�m+ 2)=2
m+ 1 �� (2m+ 2)�b(n�m+ 4)=2
m+ 2 ��:And the remaining sum 
an be ta
kled by breaking it into four parts, depending onwhetherm and/or n is odd. Generating fun
tions are helpful: LetA(z) =Pk�n�n�k2k �znand B(z) =Pk�n�n�k2k+1�zn. Then A(z) = 1 +Pk<n �n�k�12k �zn +Pk<n �n�k�12k�1 �zn =1 +Pk�n �n�k2k �zn+1 +Pk�n �n�k2k+1�zn+2 = 1 + zA(z) + z2B(z). A similar derivationproves that B(z) = zB(z) + zA(z). ConsequentlyA(z) = 1�z1�2z+z2�z3 = 1�z21�z�z2�z4 ; B(z) = z1�2z+z2�z3 = z+z21�z�z2�z4 :Thus An = 2An�1 � An�2 + An�3 = An�1 + An�2 + An�4 for n � 4, and Bnsatis�es the same re
urren
es. In fa
t, we have An = (3P2n+1 + 7P2n � 2P2n�1)=23and Bn = (3P2n+2 + 7P2n+1 � 2P2n)=23, using the Perrin numbers of exer
ise 15.Furthermore, setting A�(z) =Pk�n k�n�k2k �zn and B�(z) =Pk�n k�n�k2k+1�zn, we�nd A�(z) = z2A(z)B(z) and B�(z) = z2B(z)2. Putting it all together now yields theremarkable exa
t formulaB(hn) = 56Pn+2 + 77Pn+1 + 47Pn23 � jn24 k� j7n+ 13 k+ (nmod 2)� 10:Histori
al notes: The sequen
e hAni was apparently �rst studied by R. Austinand R. K. Guy, Fibona

i Quarterly 16 (1978), 84{86; it 
ounts binary x1 : : : xn�1 withea
h 1 next to another. The plasti
 
onstant � was shown by C. L. Siegel to be thesmallest \Pisot number," namely the smallest algebrai
 integer > 1 whose 
onjugatesall lie inside the unit 
ir
le; see Duke Math. J. 11 (1944), 597{602.126. When n � 6, we have bk = Fb(k+7)=2
 + Fd(k+7)=2e � 4 for 1 � k < 2n=3, andbk = 2n�k+2 � 6� [k=n� 2℄ for 4n=5 � k < n. But the main 
ontributions to B(h�n)
ome from the 2n=15 pro�le elements between those two regions, and the methods of



7.1.4 ANSWERS TO EXERCISES 99 generating fun
tionsSiftingpi, as sour
eaddress bitstargetsslates of optionsSauerho�Wegenersymmetri
 fun
tion Sm
answer 125 
an be extended to deal with them. The interesting sequen
esAn = bn=2
Xk=0 �n� 2k3k �; Bn = bn=2
Xk=0 �n� 2k3k + 1�; Cn = bn=2
Xk=0 �n� 2k3k + 2�have respe
tive generating fun
tions (1� z)2=p(z), (1� z)z=p(z), z2=p(z), where p(z) =(1� z)3 � z5. These sequen
es arise in this problem be
ause Pnk=0�bn�2k=3
k � = An +Bn�1 + Cn�2. They grow as �n, where � � 1:7016 is the real root of (��1)3�2 = 1.The BDD size 
an't be expressed in 
losed form, but there is a 
losed form in termsof Abn=3
 through Abn=3
+4 that is a

urate to O(2n=4=pn). Thus B(h�n) = �(�n=3).127. (The permutation � = (3, 5, 7, : : : , 2n0 � 1, n, n � 1, n � 2, : : : , 2n0, 2n0 � 2,: : : , 4, 2, 1), n0 = b2n=5
, turns out to be optimum for hn when 12 < n � 24; but itgives B(h�100) = 1,366,282,025. Sifting does mu
h better, as shown in answer 152; butstill better permutations almost surely exist.)128. Consider, for example, M3(x4; x2; x7;x6; x1; x8; x3; x9; x11; x5; x10). The �rst mvariables fx4; x2; x7g are 
alled \address bits"; the other 2m are 
alled \targets." Thesubfun
tions 
orresponding to x1 = 
1, : : : , xk = 
k 
an be des
ribed by slates ofoptions analogous to (96). For example, when k = 2 there are three slates [x6; 0; x9; x11℄,[x6; 1; x9; x11℄, [x8; x3; x5; x10℄, where the result is obtained by using (x4x7)2 to sele
tthe appropriate 
omponent. Only the third of these depends on x3; hen
e q2 = 3 andb2 = 1. When k = 6 the slates are [0; 0℄, [0; 1℄, [1; 0℄, [1; 1℄, [x8; 0℄, [x8; 1℄, [x9; x11℄,[0; x10℄, and [1; x10℄, with 
omponents sele
ted by x7; hen
e q6 = 9 and b6 = 7.In general, if the variables fx1; : : : ; xkg in
lude a address bits and t targets, theslates will have A = 2m�a entries. Divide the set of all 2m targets into 2a subsets,depending on the known address bits, and suppose sj of those subsets 
ontain j knowntargets. (Thus s0 + s1 + � � � + sA = 2a and s1 + 2s2 + � � � + AsA = t. We have(s0; : : : ; s4) = (1; 1; 0; 0; 0) when k = 2 and a = t = 1 in the example above; and(s0; s1; s2) = (1; 2; 1) when k = 6, a = 2, t = 4.) Then the total number of slates, qk,is 20s0 + 21s1 + � � � + 2A�1sA�1 + 2A[sA> 0℄. If xk+1 is an address bit, the numberbk of slates that depend on xk+1 is qk � 2A=2[sA> 0℄. Otherwise bk = 2
, where 
 isthe number of 
onstants that appear in the slates 
ontaining target xk+1.129. (Solution by M. Sauerho�; see I. Wegener, Bran
hing Programs (2000), Theorem6.2.13.) Sin
e Pm(x1; : : : ; xm2) = Qm(x1; : : : ; xm2) ^ Sm(x1; : : : ; xm2) and B(Sm) =m3 + 2, we have B(P�m) � (m3 + 2)B(Q�m). Apply Theorem K.(A stronger lower bound should be possible, be
ause Qm seems to have largerBDDs than Pm. For example, when m = 5 the permutation (1�; : : : ; 25�) = (3, 1, 5,7, 9, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 20, 23, 17, 21, 19, 18, 22, 24, 25) is optimumfor Q5; but B(Q�5 ) = 535, while B(P5) = 229.)130. (a) Ea
h path that starts at the root of the BDD and takes s HI bran
hes and tLO bran
hes de�nes a subfun
tion that 
orresponds to graphs in whi
h s adja
en
iesare for
ed and t are forbidden. We shall show that these �s+ts � subfun
tions are distin
t.If subfun
tions g and h 
orrespond to di�erent paths, we 
an �nd k verti
es Wwith the following properties: (i) W 
ontains verti
es w and w0 with w���w0 for
edin g and forbidden in h. (ii) No adja
en
ies between verti
es of W are for
ed in h orforbidden in g. (iii) If u 2 W and v =2 W and u��� v is for
ed in h, then u = w oru = w0. (These 
onditions make at most 2s+ t = m� k verti
es ineligible to be in W .)We 
an set the remaining variables so that u���v if and only if fu; vg �W , when-ever adja
en
y is neither for
ed nor forbidden. This assignment makes g = 1, h = 0.
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tion fun
tionsymmetri
 fun
tionsfour-variable fun
tions
(b) Consider the subfun
tion of Cm;dm=2e in whi
h verti
es f1; : : : ; kg are requiredto be isolated, but u ��� v whenever k < u � dm=2e < v � m. Then a k-
lique onthe bm=2
 verti
es fdm=2e+1; : : : ;mg is equivalent to an dm=2e-
lique on f1; : : : ;mg.In other words, this subfun
tion of Cm;dm=2e is Cbm=2
;k.Now 
hose k �pm=3 and apply (a). [I. Wegener, JACM 35 (1988), 461{471.℄131. (a) The pro�le 
an be shown to be (1, 1, 2, 4, : : : , 2q�1, (p�2)�(2q�1; q�2q�1),2q � 1, 2q�1, : : : , 4, 2, 1, 2), where r � b denotes the r-fold repetition of b. Hen
e thetotal size is (pq + 2p� 2q + 2)2q�1 � p+ 2.(b) With the ordering x1, x2, : : : , xp, y11, y21, : : : , yp1, : : : , y1q, y2q, : : : , ypq,the pro�le 
omes to (1, 2, 4, : : : , 2p�1, (q�1)p� (2p�1), 2p�1, : : : , 4, 2, 1, 2), makingthe total size (pq � p+ 4)2p�1.(
) Suppose exa
tly m = bmin(p; q)=2
 x's o

ur among the �rst k variables insome ordering; we may assume that they are fx1; : : : ; xmg. Consider the 2m paths inthe QDD for C su
h that xj = �xm+j for 1 � j � p �m and yij = [i= j or i= j+mor j >m℄. These paths must pass through distin
t nodes on level k. Hen
e qk � 2m;use (85). [See M. Nikolskaia and L. Nikolskaia, Theor. Comp. S
i. 255 (2001), 615{625.℄Optimum orderings for (p; q) = (4; 4), (4; 5), and (5; 4), via exer
ise 138, are:x1y11x2y21x3y31y41y12y22y32y42y13y23y33y43y14y24y34y44x4 (size 108);x1y11x2y21x2y31y41y12y22y32y42y13y23y33y43y14y24y34y44y15y25y35y45x4 (size 140);x1y11x2y21y12y22y13y23y14y24x3y31y32y33y34x2y41y42y51y52y43y53y44y54x5 (size 167):132. There are 616,126 essentially di�erent 
lasses of 5-variable fun
tions, by Table7.1.1{5. The maximum Bmin(f), 17, is attained by 38 of those 
lasses. Three 
lasseshave the property that B(f�) = 17 for all permutations �; one su
h example, ((x2 �x4 � (x1 ^ (x3 _ �x4))) ^ ((x2 � x5) _ (x3 � x4))) � (x5 ^ (x3 � (x1 _ �x2))), has theinteresting symmetries f(x1; x2; x3; x4; x5) = f(�x2; �x3; �x4; �x1; �x5) = f(x2; �x5; x1; x3; �x4).In
identally, the maximum di�eren
e Bmax(f)�Bmin(f) = 10 o

urs only in the\jun
tion fun
tion" 
lass x1? x2: x3? x4: x5, when Bmin = 7 and Bmax = 17.(When n = 4 there are 222 
lasses; and Bmin(f) = 10 in 25 of them, in
luding S2and S2;4. The 
lass exempli�ed by truth table 16ad is uniquely hardest, in the sensethat Bmin(f) = 10 and most of the 24 permutations give B(f�) = 11.)133. Represent ea
h subset X � f1; : : : ; ng by the n-bit integer i(X) = Px2X 2x�1,and let bi(X);x be the weight of the edge between X and X [ x. Set 
0  0, and for1 � i < 2n set 
i  minf
i�j + bi�j;x j j = 2x�1 and i & j 6= 0g. Then Bmin(f) =
2n�1 + 2, and an optimum ordering 
an be found by remembering whi
h x = x(i)minimizes ea
h 
i. For Bmax, repla
e `min' by `max' in this re
ipe.134. ;f1g f2gf1; 2g f3gf1; 3g f2; 3gf1; 2; 3g

f4gf1; 4g f2; 4gf1; 2; 4g f3; 4gf1; 3; 4g f2; 3; 4gf1; 2; 3; 4g
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urren
esmaster pro�le 
hart0{1 matri
essymmetri
 threshold fun
tion
The maximum pro�le, (1; 2; 4; 2; 2), o

urs on paths su
h as ; ! f2g ! f2; 3g !f2; 3; 4g ! f1; 2; 3; 4g. The minimum pro�le, (1; 2; 2; 1; 2), o

urs only on the paths; ! (f3g or f4g) ! f3; 4g ! f1; 3; 4g ! f1; 2; 3; 4g. (Five of the 24 possible pathshave the pro�le (1; 2; 3; 2; 2) and are unimprovable by sifting on any variable.)135. Let �0 = 1, �1 = x1, �2 = x1 ^ x2, and �n = xn? �n�1: �n�3 for n � 3. One 
anprove that, when n � 4, B(��n) = n+2 if and only if (n�; : : : ; 1�) = (1; : : : ; n). The keyfa
t is that if k < n and n � 5, the subfun
tions obtained by setting xk  0 or xk  1 are distin
t, and they both depend on the variables fx1; : : : ; xk�1; xk+1; : : : ; xng,ex
ept that the subfun
tion for xn�1  0 does not depend on xn�2. Thus the weightsfxkg ! fxk; xlg in the master pro�le 
hart are 2 ex
ept when k = n or (k; l) =(n�1; n�2). Below fxn�1; xn�2g there are three subfun
tions, namely xn? �n�4: �n�3,xn? �n�5: �n�3, and �n�3; all of them depend on fx1; : : : ; xn�3g, and two of them on xn.136. Let n = 2n0 � 1 and m = 2m0 � 1. The inputs form an m� n matrix, and we're
omputing the median of m row-medians. Let Vi be the variables in row i. If X isa subset of the mn variables, let Xi = X \ Vi and ri = jXij. Subfun
tions of type(s1; : : : ; sm) arise when exa
tly si elements of Xi are set to 1; these subfun
tions arehS1S2 : : : Smi; where Si = S�n0�si(VinXi) and 0 � si � ri for 1 � i � m.When x =2 X, we want to 
ount how many of these subfun
tions depend on x. Bysymmetry we may assume that x = xmn. Noti
e that the symmetri
 threshold fun
tionS�t(x1; : : : ; xn) equals 0 if t > n, or 1 if t � 0; it depends on all n variables if 1 � t � n.In parti
ular, Sm depends on x for exa
tly rm$n = min(rm + 1; n� rm) 
hoi
es of sm.Let aj = Pm�1i=1 [ri= j ℄ for 0 � j � n. Then an of the fun
tions fS1; : : : ; Sm�1gare 
onstant, and an�1 + � � �+ an0 of them might or might not be 
onstant. Choosing
i to be non
onstant gives us (rm$n)((an+an�1+ � � �+an0�
n�1�� � ��
n0)$m) times�an�1
n�1 � � � ��an0
n0 �1a02a1 : : : (n0)an0�1(n0 � 1)
n0 (n0 � 2)
n0+1 : : : 1
n�1distin
t subfun
tions that depend on x. Summing over f
n�1; : : : ; 
n0g gives the answer.When variables have the natural row-by-row order, these formulas apply withrm = k mod n, an = bk=n
, a0 = m� 1� an. The pro�le element bk for 0 � k < mn istherefore (bk=n
$m)((kmod n)$n), and we havePmnk=0 bk = (m0n0)2+2. This orderingis optimum, although no easy proof is apparent; for example, some orderings 
ande
rease bn+2 or b2n�2 from 4 to 3 while in
reasing bk for other k.Every path from top to bottom of the master 
hart 
an be represented as �0 !�1 ! � � � ! �mn, where ea
h �j is a string rj1 : : : rjm with 0 � rj1 � � � � � rjm � n,rj1+ � � �+rjm = j, one 
oordinate in
reasing at ea
h step. For example, one path whenm = 5 and n = 3 is 00000 ! 00001 ! 00011 ! 00111 ! 00112 ! 00122 ! 00123 !01123 ! 11123! 11223 ! 12223 ! 12233! 12333 ! 22333! 23333! 33333. We
an 
onvert this path to the \natural" path by a series of steps that don't in
rease thetotal edge weight, as follows: In the initial segment up to the �rst time rjm = n, doall transitions on the rightmost 
oordinate �rst. (Thus the �rst steps of the examplepath would be
ome 00000 ! 00001 ! 00002 ! 00003 ! 00013 ! 00113 ! 00123.)Then in the �nal segment after the last time rj1 = 0, do all transitions on the leftmost
oordinate last. (The �nal steps would thereby be
ome 01123 ! 01223 ! 02223 !02233 ! 02333 ! 03333 ! 13333 ! 23333 ! 33333.) Then, after the �rst n steps,normalize the se
ond-last 
oordinates in a similar fashion (00003! 00013! 00023!00033! 00133! 01133! 01233! 02233); and before the last n steps, normalize these
ond 
oordinates (00133! 00233! 00333! 01333! 02333! 03333). Et 
etera.
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liqueBolligWegenerSielingbu
ket sorting
[This ba
k-and-forth proof te
hnique was inspired by the paper of Bollig andWegener 
ited below. Can every nonoptimal ordering be improved by merely sifting?℄137. If we add a 
lique of 
 new verti
es and �
2� new edges, the 
ost of the opti-mum arrangement in
reases by �
+13 �. So we may assume that the given graph hasm edges and n verti
es f1; : : : ; ng, where m and n are odd and suÆ
iently large. The
orresponding fun
tion f, whi
h depends on mn + m + 1 variables xij and sk for1 � i � m, 1 � j � n, and 0 � k � m, is J(s0; s1; : : : ; sm;h; g1; : : : ; gm), wheregi = (xiui � xivi) ^Vfxiw j w =2 fui; vigg when the ith edge is ui ��� vi, and whereh = hhx11 : : : xm1i : : : hx1n : : : xmnii is the transpose of the fun
tion in exer
ise 136.One 
an show that Bmin(f) = min�Pu��v ju��v�j+(m+12 )2(n+12 )2+mn+m+2;the optimum ordering uses (m+12 )2(n+12 )2 nodes for h, n+ jui�� vi�j nodes for gi, onenode for ea
h sk, and two sink nodes, minus one node that is shared between h andsome gi. [See B. Bollig and I. Wegener, IEEE Trans.C-45 (1996), 993{1002. D. Sieling,in J. Computer and System S
i. 74 (2008), 394{403, has proved that Bmin(f) 
an't beapproximated within a 
onstant fa
tor in polynomial time, unless P = NP.℄138. (a) LetXk = fx1; : : : ; xkg. The QDD nodes at depth k represent the subfun
tionsthat 
an arise when 
onstants repla
e the variables of Xk. We 
an add an n-bit �eldDEP to ea
h node, to spe
ify exa
tly whi
h variables of Xn n Xk it depends on. Forexample, the QDD for f in (92) has the following subfun
tions and DEPs:depth 0: 0011001001110010 [1111℄;depth 1: 00110010 [0111℄, 01110010 [0111℄;depth 2: 0010 [0011℄, 0011 [0010℄, 0111 [0011℄;depth 3: 00 [0000℄, 01 [0001℄, 10 [0001℄, 11 [0000℄.An examination of all DEP �elds at depth k tells us the master pro�le weights betweenXk and Xk [ xl, for 0 � k < l � n.(b) Represent the nodes at depth k as triples Nkp = (lkp; hkp; dkp) for 0 � p < qk,where (lkp; hkp) are the (LO,HI) pointers and dkp re
ords the DEP bits. If k < n,these nodes bran
h on xk+1, so we have 0 � lkp; hkp < qk+1; but if k = n, we haveln0 = hn0 = 0 and ln1 = hn1 = 1 to represent ? and > . We de�ne dkp =Pf2t�k�1 jNkp depends on xtg; hen
e 0 � dkp < 2n�k. For example, the QDD (82) is equivalentto N00 = (0; 1; 7); N10 = (0; 1; 3), N11 = (1; 2; 3); N20 = (0; 0; 0), N21 = (0; 1; 1),N22 = (1; 1; 0); N30 = (0; 0; 0), N31 = (1; 1; 0).To jump up from depth b to depth a, we essentially make two 
opies of the nodesat depths b� 1, b� 2, : : : , a, one for the 
ase xb+1 = 0 and one for the 
ase xb+1 = 1.Those 
opies are moved down to depths b, b � 1, : : : , a + 1, and redu
ed to eliminatedupli
ates. Then every original node at depth a is repla
ed by a node that bran
hes onxb+1; its LO and HI �elds point respe
tively to the 0-
opy and the 1-
opy of the original.This pro
ess involves some simple (but 
ool) list pro
essing to update DEPs whilebu
ket sorting: Nodes are unpa
ked into a work area 
onsisting of auxiliary arrays r, s,t, u, and v, initially zero. Instead of using lkp and hkp for LO and HI, we store HI in 
ellup of the work area, and we let vp link to the previous node (if any) with the same LO�eld; furthermore we make sl point to the last node (if any) for whi
h LO = l. The algo-rithm below uses UNPACK(p; l; h) as an abbreviation for \up  h, vp  sl, sl  p+1."When nodes of depth k have been unpa
ked in this way to arrays s, u, and v,the following subroutine ELIM(k) pa
ks them ba
k into the main QDD stru
ture withdupli
ates eliminated. It also sets rp to the new address of node p.



7.1.4 ANSWERS TO EXERCISES 103 hidden weighted bitFriedmanSupowittruth tablesE1. [Loop on l.℄ Set q  0 and th  0 for 0 � h < qk+1. Do step E2 for 0 � l < qk+1.Then set qk  q and terminate.E2. [Loop on p.℄ Set p sl and sl  0. While p > 0, do step E3 and set p vp�1.Then resume step E1.E3. [Pa
k node p � 1.℄ Set h  up�1. (The unpa
ked node has (LO;HI) = (l; h).) Ifth 6= 0 and lk(th�1) = l, set rp�1  th�1. Otherwise set lkq  l, hkq  h, dkq  ((d(k+1)l jd(k+1)h)�1)+[l 6=h℄, rp�1  q, q  q+1, th  q. Resume step E2.We 
an now use ELIM to jump up from b to a. (i) For k = b � 1, b � 2, : : : , a,do the following steps: For 0 � p < qk, set l  lkp, h  hkp; if k = b � 1,UNPACK(2p; lbl; hbl) and UNPACK(2p+1; lbh; hbh), otherwise UNPACK(2p; r2l; r2h) andUNPACK(2p + 1; r2l+1; r2h+1) (thereby making two 
opies of Nkp in the work area).Then ELIM(k + 1). (ii) For 0 � p < qa, UNPACK(p; r2p; r2p+1). Then ELIM(a).(iii) If a > 0, set l l(a�1)p, h h(a�1)p, l(a�1)p  rl, h(a�1)p  rh, for 0 � p < qa�1.This jump-up pro
edure garbles the DEP �elds above depth a, be
ause the vari-ables have been reordered. But we'll use it only when those �elds are no longer needed.(
) By indu
tion, the �rst 2n�2 steps a

ount for all subsets that do not 
ontain n;then 
omes a jump-up from n� 1 to 0, and the remaining steps a

ount for all subsetsthat do 
ontain n.(d) Start by setting yk  k and wk  2k � 1 for 0 � k < n. In the followingalgorithm, the y array represents the 
urrent variable ordering, and the bitmap wk =Pf2yj j 0 � j < kg represents the set of variables on the top k levels.We augment the subroutine ELIM(k) so that it also 
omputes the desired edgeweights of the master pro�le: Counters 
j are initially 0 for 0 � j < n � k; aftersetting dkq in step E3, we set 
j  
j + 1 for ea
h j su
h that 2j � dkq; �nally we setbwk;yk+j+1  
j for 0 � j < n�k, using the notation of answer 133. [To speed this up,we 
ould 
ount bytes not bits, in
reasing 
j;(dkq�8j)&#ff by 1 for 0 � j < (n� k)=8.℄We initialize the DEP �elds by doing the following for k = n � 1, n � 2, : : : , 0:UNPACK(p; lkp; hkp) for 0 � p < qk; ELIM(k); if k > 0, set l  l(k�1)p, h  h(k�1)p,l(k�1)p  rl, and h(k�1)p  rh, for 0 � p < qk�1.The main loop of the algorithm now does the following for 1 � i < 2n�1: Seta �i� 1 and b �i+ �i. Set (ya; : : : ; yb) (yb; ya; : : : ; yb�1) and (wa+1; : : : ; wb) (2yb + wa; : : : ; 2yb + wb�1). Jump up from b to a with the pro
edure of part (b); butuse the original (non-augmented) ELIM routine for ELIM(a) in step (ii).(e) The spa
e required for nodes at depth k is at most Qk = min(2k; 22n�k); wealso need spa
e for 2max(Q1; : : : ; Qn) elements in arrays r, u, v, plus max(Q1; : : : ; Qn)elements in arrays s and t. So the total is dominated by O(2nn) for the outputs bw;x.Subroutine ELIM(k) is 
alled �nk� times in augmented form, for 0 � k < n, and�n�1k+1� times non-augmented. Its running time in either 
ase is O(qk(n� k)). Thus thetotal 
omes to O(Pk�nk�2k(n � k)) = O(3nn), and it will be substantially less if theQDD never gets large. (For example, it's O((1 +p2)nn) for the fun
tion hn.)[The �rst exa
t algorithm to determine optimum variable ordering in a BDD wasintrodu
ed by S. J. Friedman and K. J. Supowit, IEEE Trans. C-39 (1990), 710{713.They used extended truth tables instead of QDDs, obtaining a method for m = 1 thatrequired �(3n=pn) spa
e and �(3nn2) time, improvable to �(3nn).℄139. The same algorithm applies, almost un
hanged: Consider all QDD nodes thatbran
h on xa to be at level 0, and all nodes that bran
h on xb+1 to be sinks. Thuswe do 2b�a jump-ups, not 2n�1. (The algorithm doesn't rely on the assumptions thatq0 = 1 and qn = 2, ex
ept in the spa
e and time analyses of part (e).)
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hslerDre
hslerG�untherTeslenkoMartinelliDubrovaorgan-pipe orderHosakaTakenagaKanedaYajimafRorgan-pipe order

140. We 
an �nd shortest paths in a network without knowing the network in advan
e,by generating verti
es and ar
s \on the 
y" as needed. Se
tion 7.3 points out that thedistan
e d(X;Y ) of ea
h ar
X ! Y 
an be 
hanged to d0(X;Y ) = d(X;Y )�l(X)+l(Y )for any fun
tion l(X), without 
hanging the shortest paths. If the revised distan
es d0are nonnegative, l(X) is a lower bound on the distan
e from X to the goal; the tri
k isto �nd a good lower bound that fo
uses the sear
h yet isn't diÆ
ult to 
ompute.If jXj = l, and if a QDD for f with X on its top l levels has q non
onstant nodeson the next level, then l(X) = max(q; n � l) is a suitable lower bound for the Bminproblem. [See R. Dre
hsler, N. Dre
hsler, and W. G�unther, ACM/IEEE Conf. DesignAutomation 35 (1998), 200{205.℄ However, a stronger lower bound is needed to makethis approa
h 
ompetitive with the algorithm of exer
ise 138, unless f has a relativelyshort BDD that 
annot be attained in very many ways.141. False. Consider g(x1 _ � � � _ x6; x7 _ � � � _ x12; (x13 _ � � � _ x16)� x18; x17; x19 _� � � _ x22), where g(y1; : : : ; y5) = ((((�y1 _ y5) ^ y4) � y3) ^ ((y1 ^ y2) � y4 � y5)) � y5.Then B(g) = 40 = Bmin(g) 
an't be a
hieved with fx13; : : : ; x16; x18g 
onse
utive.[M. Teslenko, A. Martinelli, and E. Dubrova, IEEE Trans. C-54 (2005), 236{237.℄142. (a) Supposem is odd. The subfun
tions that arise after (x1; : : : ; xm+1) are knownare [wm+2xm+2 + � � �+ wnxn> 2m�1m� 2m�2� t℄, where 0 � t � 2m. The sub
asesxm+2 + � � �+ xn = (m� 1)=2 show that at least � m�1(m�1)=2� of these subfun
tions di�er.But organ-pipe order, hx1x2m�12 x13x2m�24 x25 : : : x2m�2m�2n�2 x2m�2n�1 x2m�1n i, is mu
hbetter: Let tk = x1+(2m�1)x2+x3+� � �+(2m�2k�1)x2k+2k�1x2k+1, for 1 � k < m�1.The remaining subfun
tion depends on at most 2k + 2 di�erent values, dtk=2ke.(b) Let n = 1+ 4m2. The variables are x0 and xij for 0 � i; j < 2m; the weightsare w0 = 1 and wij = 2i + 22m+1+jm. Let Xl be the �rst l variables in some ordering,and suppose Xl in
ludes elements in il rows and jl 
olumns of the matrix (xij). Ifmax(il; jl) = m, we will prove that ql � 2m; hen
e B(f) > 2m by (85).Let I and J be subsets of f1; : : : ; 2mg with jIj = jJ j = m and Xl � x0 [ fxij ji 2 I; j 2 Jg; let I 0 and J 0 be the 
omplementary subsets. Choose m elementsX 0 � Xl n x0, in di�erent rows (or, if il < m, in di�erent 
olumns). Consider 2mpaths in the QDD de�ned as follows: x0 = 0, and xij = 0 if xij 2 Xl n X 0; alsoxi0j = xij0 = �xi0j0 = �xij for i 2 I, j 2 J , where i $ i0 and j $ j0 are mat
hingsbetween I $ I 0 and J $ J 0. Then there are 2m distin
t values t = Pi2I;j2J wijxij ;but P0�i;j<2m wijxij = (22m�1)(1+22m+1m) on ea
h path. The paths must passthrough distin
t nodes on level l. Otherwise, if t 6= t0, one of the lower subpaths wouldlead to ? , the other to > .[These results are due to K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima,Theoreti
al Comp. S
i. 180 (1997), 47{60, who also proved that jQ(f)�Q(fR)j < n.Do self-dual threshold fun
tions always satisfy also jB(f)�B(fR)j < n?℄143. In fa
t, the algorithm of exer
ises 133 and 138 proves that organ-pipe order isbest for these weights: (1, 1023, 1, 1022, 2, 1020, 4, 1016, 8, 1008, 16, 992, 32, 960, 64,896, 128, 768, 256, 512) gives the pro�le (1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 4, 8, 3, 6, 2, 4,1, 2, 2, 1, 2) and B(f) = 80. The worst ordering, (1022, 896, 512, 64, 8, 1, 4, 32, 1008,1020, 768, 992, 1016, 1023, 960, 256, 128, 16, 2, 1), makes B(f) = 1913.(One might think that properties of binary notation are 
ru
ial to this example.But hx1x2x23x44x85x166 x317 x608 x1169 x22410 x22411 x44812 x56413 x62014 x64915 x66416 x67217 x67618 x67819 x67920 i is a
tu-ally the same fun
tion, by exer
ise 7.1.1{103(!).)144. (5; 7; 7; 10; 6; 9; 5; 4; 2); the QDD-not-BDD nodes 
orrespond to f1, f2, f3, 0, 1.
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lear the 
a
he
olle
t all garbagelinked listsTransmogrifyUNIQUE
145. Bmin = 31 is attained in (36). The worst ordering for (x3x2x1x0)2 + (y3y2y1y0)2is y0, y1, y2, y3, x2, x1, x0, x3, making Bmax = 107. In
identally, the worst orderingfor the 24 inputs of 12-bit addition, (x11 : : : x0)2 + (y11 : : : y0)2, turns out to be y0, y1,: : : , y11, x10, x8, x6, x4, x3, x5, x2, x7, x1, x9, x0, x11, yielding Bmax = 39111.[B. Bollig, N. Range, and I. Wegener, Le
ture Notes in Comp. S
i. 4910 (2008),174{185, have proved that Bmin = 9n� 5 for addition of two n-bit numbers whenevern > 1, and also that Bmin(Mm) = 2n� 2m+ 1 for the 2m-way multiplexer.℄146. (a) Obviously b0 � q0; and if q0 = b0 + a0, then b1 � 2b0 + a0 = b0 + q0. Alsoq0�b0 = a0 � b1+q2 � q22 , the number of strings of length 2 on a q2-letter alphabet; sim-ilarly b0+b1+q2 � (b1+q2)2. (The same relations hold between qk, qk+2, bk, and bk+1.)(b) Let the subfun
tions at level 2 have truth tables �j for 1 � j � q2, and usethem to 
onstru
t beads �1, : : : , �b1 at level 1. Let (
1; : : : ; 
q2+b1) be the truth tables(�1�1; : : : ; �q2�q2 ; �1; : : : ; �b1). If b0 � b1=2, let the fun
tions at level 0 have truthtables f�2i�1�2i j 1 � i � b0g [ f�j�j j 2b0 < j � b1g [ f
j
j j 1 � j � b0 + q0 � b1g.Otherwise it's not diÆ
ult to de�ne b0 beads that in
lude all the �'s, and use them atlevel 0 together with the nonbeads f
j
j j 1 � j � q0 � b0g.147. Before doing any reordering, we 
lear the 
a
he and 
olle
t all garbage. Thefollowing algorithm inter
hanges levels ju $ jv when v = u+1. It works by 
reatinglinked lists of solitary, tangled, and hidden nodes, pointed to by variables S, T , andH (initially �), using auxiliary LINK �elds that 
an be borrowed temporarily from thehash-table algorithm of the unique lists as they are being rebuilt.T1. [Build S and T .℄ For ea
h ju -node p, set q  LO(p), r  HI(p), and delete pfrom its hash table. If V(q) 6= v and V(r) 6= v (p is solitary), set LINK(p) S andS  p. Otherwise (p is tangled), set REF(q) REF(q)�1, REF(r) REF(r)�1,LINK(p) T , and T  p.T2. [Build H and move the visible nodes.℄ For ea
h jv -node p, set q  LO(p),r  HI(p), and delete p from its hash table. If REF(p) = 0 (p is hidden), setREF(q) REF(q)�1, REF(r) REF(r)�1, LINK(p) H, andH  p; otherwise(p is visible) set V(p) u and INSERT(u; p).T3. [Move the solitary nodes.℄ While S 6= �, set p  S, S  LINK(p), V(p)  v,and INSERT(v; p).T4. [Transmogrify the tangled nodes.℄ While T 6= �, set p  T , T  LINK(p), anddo the following: Set q  LO(p), r  HI(p). If V(q) > v, set q0  q1  q;otherwise set q0  LO(q) and q1  HI(q). If V(r) > v, set r0  r1  r;otherwise set r0  LO(r) and r1  HI(r). Then set LO(p) UNIQUE(v; q0; r0),HI(p) UNIQUE(v; q1; r1), and INSERT(u; p).T5. [Kill the hidden nodes.℄ While H 6= �, set p  H, H  LINK(p), and re
y
lenode p. (All of the remaining nodes are alive.)The subroutine INSERT(v; p) simply puts node p into xv's unique table, using the key(LO(p); HI(p)); this key will not already be present. The subroutine UNIQUE in stepT4 is like Algorithm U, but instead of using answer 82 it treats referen
e 
ounts quitedi�erently in steps U1 and U2: If U1 �nds p = q, it in
reases REF(p) by 1; if U2 �nds r,it simply sets REF(r) REF(r) + 1.Internally, the bran
h variables retain their natural order 1, 2,: : : , n from top tobottom. Mapping tables � and � represent the 
urrent permutation from the externaluser's point of view, with � = ��; thus the user's variable xv appears on level v� � 1,
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k�yWegener
and node UNIQUE(v; p; q) on level v � 1 represents the user's fun
tion (�xv�? p: q). Tomaintain these mappings, set j  u�, k  v�, u� k, v� j, j�  v, k�  u.148. False. For example, 
onsider six sinks and nine sour
e fun
tions, with extendedtruth tables 1156, 2256, 3356, 4456, 5611, 5622, 5633, 5644, 5656. Eight of the nodesare tangled and one is visible, but none are hidden or solitary. There are 16 newbies:15, 16, 25, 26, 35, 36, 45, 46, 51, 61, 52, 62, 53, 63, 54, 64. So the swap takes 15 nodesinto 31. (We 
an use the nodes of B(x3 � x4; x3 � �x4) for the sinks.)149. The su

essive pro�les are bounded by (b0; b1; : : : ; bn), (b0 + b1; 2b0; b2; : : : ; bn),(b0 + b1; 2b0 + b2; 4b0; b3; : : : ; bn), : : : , (20b0 + b1; : : : ; 2k�2b0 + bk�1; 2k�1b0; bk; : : : ; bn).Similarly, we also have B(f�1 ; : : : ; f�m) � B(f1; : : : ; fm)+2(b0+� � �+bk�1) in addi-tion to Theorem J+, be
ause swaps 
ontribute at most 2bk�1, 2bk�2, : : : , 2b0 new nodes.150. We may assume that m = 1, as in exer
ise 52. Suppose we want to jump xk tothe position that is jth in the ordering, where j 6= k. First 
ompute the restri
tionsof f when xk = 0 and xk = 1 (see exer
ise 57); 
all them g and h. Then renumberthe remaining variables: If j < k, 
hange (xj ; : : : ; xk�1) to (xj+1; : : : ; xk); otherwise
hange (xk+1; : : : ; xj) to (xk; : : : ; xj�1). Then 
ompute f  (�xj ^ g) _ (xj ^ h), usingthe linear-time variant of Algorithm S in exer
ise 72.To show that this method has the desired running time, it suÆ
es to prove thefollowing: Let g(x1; : : : ; xn) and h(x1; : : : ; xn) be fun
tions su
h that g(x) = 1 impliesxj = 0 and h(x) = 1 implies xj = 1. Then the meld g � h has at most twi
e as manynodes as g _ h. But this is almost obvious, when truth tables are 
onsidered: Forexample, if n = 3 and j = 2, the truth tables for g and h have the respe
tive formsab00
d00 and 00st00uv. The beads � of g _ h on levels < j 
orrespond uniquely to thebeads �0 � �00 of g � h on those levels, be
ause � = �0 _ �00 
an be \fa
tored" in onlyone way by putting 0s in the appropriate pla
es. And the beads � of g _ h on levels� j 
orrespond to at most two beads of g � h, namely to � � ? and/or ? � �.[See P. Savi
k�y and I. Wegener, A
ta Informati
a 34 (1997), 245{256, Theorem 1.℄151. Set tk  0 for 1 � k � n, and make the swapping operation xj�1$ xj also swaptj�1$ tj . Then set k  1 and do the following until k > n: If tk = 1 set k  k + 1;otherwise set tk  1 and sift xk.(This method repeatedly sifts on the topmost variable that hasn't yet been sifted.Resear
hers have tried fan
ier strategies, su
h as to sift the largest level �rst; but nosu
h method has turned out to dominate the simple-minded approa
h proposed here.)152. Applying Algorithm J as in answer 151 yields B(h�100) = 1,382,685,050 after17,179 swaps, whi
h is almost as good as the result of the \hand-tuned" permuta-tion (95). Another sift brings the size down to 300,451,396; and further repetitions
onverge down to just 231,376,264 nodes, after a total of 232,951 swaps.If the loops of steps J2 and J5 are aborted when S > 1:05s, the results areeven better(!), although fewer swaps are made. The �rst sift redu
es the size to1,342,191,700, and iteration produ
es B(h�100) = 208,478,228 after 139,245 swaps, where� is the following permutation:3 4 6 8 10 12 14 16 18 20 22 24 27 28 30 32 35 67 37 3943 41 45 51 47 49 55 80 53 83 85 92 93 94 78 75 77 95 73 7196 98 97 68 57 58 60 65 63 62 61 87 64 59 66 88 56 69 70 99100 72 76 91 79 74 90 89 86 84 52 82 81 48 54 50 46 44 42 4038 36 34 33 31 29 26 25 23 21 19 17 15 13 11 9 7 5 2 1
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In
identally, if we sift the variables h100 in order of pro�le size, so that x60 issifted �rst, then x59, x61, x58, x57, x62, x56, et
. (wherever they 
urrently happen tobe), the resulting BDD turns out to have 2,196,768,534 nodes.Simple \downhill swapping" instead of full sifting is of no use whatever for h100:The �1002 � swaps x1 $ x2, x3 $ x1, x3 $ x2, : : : , x100 $ x1, : : : , x100 $ x99
ompletely reverse the order of all variables without 
hanging the BDD size at any step.153. Ea
h gate is easily synthesized using re
ursions like (55). About 1 megabyte ofmemory and 3.5 megamems of 
omputation suÆ
e to 
onstru
t the entire BDD base of8242 nodes. Using exer
ise 138 we may 
on
lude that the ordering x7, x3, x9, x1, o9, o1,o3, o7, x4, x6, o6, o4, o2, o8, x2, x8, o5, x5 is optimum, and that Bmin(y1; : : : ; y9) = 5308.Reordering of variables is not advisable for a problem su
h as this, sin
e thereare only 18 variables. For example, autosifting whenever the size doubles would requiremore than 100 megamems of work, just to redu
e 8242 nodes to about 6400.154. Yes: CA was moved between ID and OR at the last sifting step, and we 
an workba
kwards all the way to dedu
e that the �rst sift moved ME between MA and RI.155. The author's best attempt for (a) isME NH VT MA CT RI NY DE NJ MD PA DC VA OH WV KY NC SC GA FL AL IN MI IAIL MO TN AR MS TX LA CO WI KS SD ND NE OK WY MN ID MT NM AZ OR CA WA UT NVgiving B(f�1 ) = 403, B(f�2 ) = 677, B(f�1 ; f�2 ) = 1073; and for (b) the orderingNH ME MA VT CT RI NY DE NJ MD PA VA DC OH WV KY TN NC SC GA FL AL IN MIIL IA AR MO MS TX LA CO KS OK WI SD NE ND MN WY ID MT AZ NM UT OR CA WA NVgives B(f�1 ) = 352, B(f�2 ) = 702, B(f�1 ; f�2 ) = 1046.156. One might expe
t two \siftups" to be at least as good as a single sifting pro
essthat goes both up and down. But in fa
t, ben
hmark tests by R. Rudell show that siftupalone is de�nitely unsatisfa
tory. O

asional jump-downs are needed to 
ompensate forvariables that temporarily jump up, although their optimum �nal position lies below.157. A 
areful study of answer 128 shows that we always improve the size when the �rstaddress bit that follows a target bit is jumped up past all targets. [But simple swapsare too weak. For example,M2(x1; x6;x2; x3; x4; x5) andM3(x1; x10; x11;x2; x3; : : : ; x9)are lo
ally optimal under the swapping of xj�1$ xj for any j.℄158. Consider �rst the 
ase when m = 1 and n = 3t � 1 � 5. Then if n� = k, thenumber of nodes that bran
h on j is aj if j� < k, bj if j� = k, and an+2�j if j� > k,where aj = j � 3max(j � 2t; 0); bj = min(j; t; n+ 1� j):The 
ases with fx1; : : : ; xn�1g 
onse
utive are k = 1 and B(f�) = 3t2 + 2; k = n andB(f�) = 3t2+1. But when k = dn=2e we have B(f�) = b3t=2
(d3t=2e�1)+n�bt=2
+2.Similar 
al
ulations apply when m > 1: We have B(f�) > 6�p=32 � + B(g�)when � makes fx1; : : : ; xpg 
onse
utive, but B(f�) � 2�p=22 � + p3B(g�) when � putsfxp+1; : : : ; xp+mg in the middle. Sin
e g is �xed, pB(g�) = O(n) as n!1.[If g is a fun
tion of the same kind, we obtain examples where symmetri
 variableswithin g are best split up, and so on. But no Boolean fun
tions are known for whi
hthe optimum B(f�) is less than 3/4 of the best that is obtainable under the 
onstraintthat no blo
ks of symmetri
 variables are split. See D. Sieling, Random Stru
tures &Algorithms 13 (1998), 49{70.℄159. The fun
tion is almost symmetri
, so there are only nine possibilities. Whenthe 
enter element x is pla
ed in position (1; 2; : : : ; 9) from the top, the BDD size isrespe
tively (43; 43; 42; 39; 36; 33; 30; 28; 28).
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tionsymmetry�spark plugre
urren
e
160. (a) Compute V9i=0V9j=0(:Lij(X)), a Boolean fun
tion of 64 variables| for ex-ample, by applying COMPOSE to the relatively simple L fun
tion of exer
ise 159,100 times. With the author's experimental programs, about 320 megamems and 35megabytes are needed to �nd this BDD, whi
h has 251,873 nodes with the normalordering. Then Algorithm C qui
kly �nds the desired answer: 21,929,490,122. (Thenumber of 11�11 solutions, 5,530,201,631,127,973,447, 
an be found in the same way.)(b) The generating fun
tion is 1+64z+2016z2+39740z3+ � � �+80z45+8z46, andAlgorithm B rapidly �nds the eight solutions of weight 46. Three of them are distin
tunder 
hessboard symmetry; the most symmetri
 solution is shown as (A0) below.(
) The BDD for V8i=1V8j=1(:Lij(X)) has 305,507 nodes and 21,942,036,750solutions. So there must be 12,546,628 wild ones.(d) Now the generating fun
tion is 40z14+936z15+10500z16+ � � �+16z55+ z56;examples of weight 14 and 56 appear below as (A1) and (A2).(e) Exa
tly 28 of weight 27 and 54 of weight 28, all tame; see (A3).(f) There are respe
tively (26260, 5, 347, 0, 122216) solutions, found with about(228, 3, 32, 1, 283) megamems of 
al
ulation. Among the lightest and heaviest solutionsto (1) are (A4) and (A5); the ni
est solution to (2) is (A6); (A7) and (A9) solve (3)lightly and (5) heavily. Pattern (4), whi
h is based on the binary representation of �,has no 8� 8 prede
essor; but it does, for example, have the 9� 8 in (A8):

(A0) (A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)161. (a) With the normal row-by-row ordering (x11; x12; : : : ; xn(n�1); xnn), the BDDhas 380,727 nodes and 
hara
terizes 4,782,725 solutions. The 
omputational 
ost isabout 2 gigamems, in 100 megabytes. (Similarly, the 29,305,144,137 still Lifes of size10� 10 
an be enumerated with 14,492,923 nodes, after fewer than 50 gigamems.)(b) This solution is essentially unique; see (B1) below. There's also a unique (andobvious) solution of weight 36.(
) Now the BDD has 128 variables, with the ordering (x11; y11; : : : ; xnn; ynn).We 
ould �rst set up BDDs for [L(X)=Y ℄ and [L(Y )=X ℄, then interse
t them; butthat turns out to be a bad idea, requiring some 36 million nodes even in the 7 � 7
ase. Mu
h better is to apply the 
onstraints Lij(X) = yij and Lij(Y ) = xij row byrow, and also to add the lexi
ographi
 
onstraint X < Y so that still Lifes are ruledout early. The 
omputation 
an then be 
ompleted with about 20 gigamems and 1.6gigabytes; there are 978,563 nodes and 582,769 solutions.(d) Again the solution is unique, up to rotation; see the \spark plug" (B2)$ (B3).(And (B4)$ (B5) is the unique 7�7 
ip-
op of 
onstant weight 26. Life is astonishing.)
(B1) (B2) (B3) (B4) (B5) (B6)162. Let T (X) = [X is tame℄ and Ek(X) = [X es
apes after k steps℄. We 
an 
omputethe BDD for ea
h Ek by using the re
urren
eE1(X) = :T (X); Ek+1(X) = 9Y (T (X) ^ [L(X)=Y ℄ ^ Ek(Y )):
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ationtruth table(Here 9Y stands for 9y11 9y12 � � � 9y66. As noted in answer 103, this re
urren
e turnsout to be mu
h more eÆ
ient than the rule Ek+1 = T (X) ^ Ek(L11(X); : : : ; L66(X)),although the latter looks more \elegant.") The number of solutions, jEkj, is foundto be (806544 � 216, 657527179 � 24, 2105885159, 763710262, 331054880, 201618308,126169394, 86820176, 63027572, 41338572, 30298840, 17474640, 9797472, 5258660,3058696, 1416132, 523776, 204192, 176520, 62456, 13648, 2776, 2256, 440, 104, 0)for k = (1, 2, : : : , 26); thus P25k=1 jEkj = 67,166,017,379 of the 236 = 68,719,476,736possible 
on�gurations eventually es
ape from the 6� 6 
age. (One of the 104 pro
ras-tinators in E25 is shown in (B6) above.)BDD te
hniques are ex
ellent for this problem when k is small; for example,B(E1) = 101 andB(E2) = 14441. But Ek eventually be
omes a 
ompli
ated \nonlo
al"fun
tion: The size peaks at B(E6) = 28,696,866, after whi
h the number of solutionsgets small enough to keep the size down. More than 80 million nodes are present in theformula T (X)^ [L(X)=Y ℄^E5(Y ) before quanti�
ation; this stret
hes memory limits.Indeed, the BDD for W25k=1 Ek(X) takes up more spa
e than its 233-byte truth table.Therefore a \forward" method for this exer
ise would be preferable to the use of BDDs.(Cages larger than 6�6 appear to be impossibly diÆ
ult, by any known method.)163. Suppose �rst that Æ is ^. We obtain the BDD for f = g ^ h by taking the BDDfor g and repla
ing its > sink by the root of the BDD for h. To represent also �f , makea separate 
opy of the BDD for g, and use a BDD base for both h and �h; repla
e the? in the 
opy by > , and repla
e the > in the 
opy by the root of the BDD for �h.This de
ision diagram is redu
ed be
ause h isn't 
onstant.Similarly, if Æ is �, we obtain a BDD for f = g�h (and possibly �f) from the BDDfor g (and possibly �g) after repla
ing ? and > by the roots of BDDs for h and �h.The other binary operations Æ are essentially the same, be
ause B(f) = B( �f). Forexample, if f = g�h = g^�h, we have B(f) = B( �f) = B(g)+B(�h)�2 = B(g)+B(h)�2.164. Let U1(x1) = V1(x1) = x1, Un+1(x1; : : : ; xn+1) = x1 � Vn(x2; : : : ; xn+1), andVn+1(x1; : : : ; xn+1) = Un(x1; : : : ; xn) ^ xn+1. Then one 
an show by indu
tion thatB(f) � B(Un) = 2d(n+1)=2e+2b(n+1)=2
�1 for all read-on
e f , and also that we alwayshave B(f; �f) � B(Vn; Vn) = 2dn=2e+1+2bn=2
+1�2. (But an optimum ordering redu
esthese sizes dramati
ally, to B(U�n ) = b 32n+ 2
 and B(V �n ; Vn�) = 2n+ 2.)165. By indu
tion, we prove also thatB(u2m; �u2m) = 2mF2m+3+2, B(u2m+1; �u2m+1) =2m+1F2m+3 + 2, B(v2m; �v2m) = 2m+1F2m+1 + 2, B(v2m+1; �v2m+1) = 2m+1F2m+3 + 2.166. We may assume as in answer 163 that Æ is either ^ or �. By renumbering,we 
an also assume that j� = j for 1 � j � n, hen
e f� = f . Let (b0; : : : ; bn)be the pro�le of f , and (b00; : : : ; b0n) the pro�le of (f; �f); let (
1�; : : : ; 
(n+1)�) and(
01�; : : : ; 
0(n+1)�) be the pro�les of f� and (f�; �f�), where (n + 1)� = n + 1. Then
j� is the number of subfun
tions of f� = g� Æ h� that depend on xj� after settingthe variables fx1�; : : : ; x(j�1)�g to �xed values. Similarly, 
0j� is the number of su
hsubfun
tions of f� or �f�. We will try to prove that bj��1 � 
j� and b0j��1 � 
0j� for all j.Case 1: Æ is ^. We may assume that n� = n, sin
e ^ is 
ommutative. Case1a: 1 � j� � k. Then bj��1 and b0j��1 
ount subfun
tions in whi
h only the variablesxi� with 1 � i < j and 1 � i� � k are spe
i�ed. These subfun
tions of g ^ h or�g _ �h have 
ounterparts that are 
ounted in 
j� and 
0j� , be
ause h� is not 
onstant inany subfun
tion when n� = n. Case 1b: k < j� � n. Then bj��1 and b0j��1 
ountsubfun
tions of h or �h, whi
h have 
ounterparts 
ounted in 
j� and 
0j�.Case 2: Æ is �. We may assume that 1� = 1, sin
e � is 
ommutative. Then anargument analogous to Case 1 applies. [Dis
rete Applied Math. 103 (2000), 237{258.℄



110 ANSWERS TO EXERCISES 7.1.4 re
ursivelySauerho�WegenerWer
hnerChangSpitkovsky
urious propertiesrandom bit generationthreshold fun
tionprime impli
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167. Let f = f1n; pro
eed re
ursively to 
ompute 
ij = Bmin(fij), 
0ij = Bmin(fij ; �fij),and a permutation �ij of fi; : : : ; jg for ea
h subfun
tion fij(xi; : : : ; xj) as follows: Ifi = j, we have fij(xi) = xi; let 
ij = 3, 
0ij = 4, �ij = i. Otherwise i < j, andwe have fij(xi; : : : ; xj) = fik(xi; : : : ; xk) Æ f(k+1)j(xk+1; : : : ; xj) for some k and someoperator Æ. If Æ is like ^, let 
ij = 
ik + 
(k+1)j � 2, and either (
0ij = 2
ik + 
0(k+1)j � 4,�ij = �ik�(k+1)j) or (
0ij = 2
(k+1)j + 
0ik � 4, �ij = �(k+1)j�ik), whi
hever minimizes
0ij . If Æ is like �, let 
0ij = 
0ik + 
0(k+1)j � 2, and either (
ij = 
ik + 
0(k+1)j � 2,�ij = �ik�(k+1)j) or (
ij = 
(k+1)j+
0ik�2, �ij = �(k+1)j�ik), whi
hever minimizes 
ij .(The permutations �ij represented as strings in this des
ription would be repre-sented as linked lists inside a 
omputer. We 
ould also 
onstru
t an optimum BDDfor f re
ursively in O(Bmin(f)) steps, using answer 163.)168. (a) This statement transforms and simpli�es the re
urren
es (112) and (113).(b) True by indu
tion; also x � n.(
) Easily veri�ed. Noti
e that T is a re
e
tion about the 22 12Æ line y = (p2�1)x.(d) If z 2 Sk and z0 2 Sn�k we have jzj = q� and jz0j = q0� , where q � k andq0 � n�k by indu
tion. By symmetry we may let q = (1� Æ)t and q0 = (1+ Æ)t, wheret = 12 (q + q0) � 12n. Then if the �rst hint is true, we have jz �z0j � (2t)� � n� . And wealso will have jz Æ z0j � n� , by (
), sin
e jzT j = jzj.To prove the �rst hint, we note that the maximum jz � z0j o

urs when y = y0.For when y � y0 we have jz �z0j2 = (x+x0+y0)2+y2 = r2+2(x0+y0)x+(x0+y0)2; thelargest value, given z0, o

urs when y = y0. A similar argument applies when y0 � y.Now when y = y0 we have y = prr0 sin � for some �; and one 
an show thatx+x0 � (r+ r0) 
os �. Thus z � z0 = (x+x0+ y; y) lies in the ellipse of the se
ond hint.On that ellipse we have (a 
os �+ b sin �)2+(b sin �)2 = a2=2+ b2+ u sin 2�+ v 
os 2� =a2=2 + b2 +w sin(2� + �), where u = ab, v = 12a2 � b2, w2 = u2 + v2, and 
os � = u=w.Hen
e jz�z0j2 � 12a2+b2+w. And 4w2 = (r+r0)4+4(rr0)2 � (r2+(2p5�2)rr0+r02)2, sojz � z0j2 � r2 + (p5 + 1)rr0 + r02; r = (1� Æ)� ; r0 = (1 + Æ)� :The remaining task is to prove that this quantity is at most 22� = 2�2; equivalently,ft(2) � ft(2�), where ft(�) = (et=� + e�t=�)� � 2� and t = � ln((1� Æ)=(1 + Æ)). One
an show, in fa
t, that ft is an in
reasing fun
tion of � when � � 2.[The O(n�) bound on Sn seems to require a deli
ate analysis; an earlier attemptby Sauerho�, Wegener, and Wer
hner was 
awed. The proof given here is due to A. X.Chang and V. I. Spitkovsky in 2007.℄169. This 
onje
ture has been veri�ed for m � 7. [Many other 
urious properties alsoremain unexplained. A paper that des
ribes what is known so far is 
urrently beingprepared by members of the \
urious resear
h group."℄170. (a) 22n�1. There are four 
hoi
es at jj when 1 � j < n, namely LO = ? orLO = > or HI = ? or HI = > ; and there are two 
hoi
es for jn .(b) 2n�1, sin
e half the 
hoi
es at ea
h bran
h are ruled out.(
) Indeed, if t = (t1 : : : tn)2 we have LO = ? at jj when tj = 1 and HI = > atjj when tj = 0. (This idea was applied to random bit generation in exer
ise 3.4.1{25.Sin
e there are 2n�1 su
h values of t, we've shown that every monotone, skinny fun
tionis a threshold fun
tion, with weights f2n�1; : : : ; 2; 1g. The other skinny fun
tions areobtained by 
omplementing individual variables.)(d) �ft(�x) = [(�x)2<t℄ = [(x)2>�t ℄ = [(x)2> 2n � 1� t℄ = f2n�t(x).(e) By Theorem 7.1.1Q, the shortest DNF is the OR of the prime impli
ants, andits general pattern is exhibited by the 
ase n = 10 and t = (1100010111)2: (x1^x2^x3)_
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(x1^x2^x4)_ (x1^x2^x5)_ (x1^x2^x6^x7)_ (x1^x2^x6^x8^x9^x10). (One term forea
h 0 in t, and one more.) The shortest CNF is the dual of the shortest DNF of thedual, whi
h 
orresponds to 2n � t = (0011101001)2: (x1) ^ (x2) ^ (x3_x4_x5_x6) ^(x3_x4_x5_x7_x8) ^ (x3_x4_x5_x7_x9) ^ (x3_x4_x5_x7_x10).171. Note that the 
lasses of read-on
e, regular, skinny, and monotone fun
tions areea
h 
losed under the operations of taking duals and restri
tions. A skinny fun
tion is
learly read-on
e; a monotone threshold fun
tion with w1 � � � � � wn is regular; and aregular fun
tion is monotone. We must show that a regular read-on
e fun
tion is skinny.Suppose f(x1; : : : ; xn) = g(xi1 ; : : : ; xik ) Æ h(xj1 ; : : : ; xjl), where Æ is a nontriv-ial binary operator and we have i1 < � � � < ik, j1 < � � � < jl, k + l = n, andfi1; : : : ; ik; j1; : : : ; jlg = f1; : : : ; ng. (This 
ondition is weaker than being \read-on
e.")We 
an assume that i1 = 1. By taking restri
tions and using indu
tion, both g and hare skinny and monotone; thus their prime impli
ants have the spe
ial form in exer
ise170(e). The operator Æ must be monotone, so it is either _ or ^. By duality we 
anassume that Æ is _.Case 1: f has a prime impli
ant of length 1. Then x1 is a prime impli
ant of f ,by regularity. Hen
e f(x1; : : : ; xn) = x1 _ f(0; x2; : : : ; xn), and we 
an use indu
tion.Case 2: All prime impli
ants of g and h have length > 1. Then xj1^ � � � ^xjp is aprime impli
ant, for some p � 2, but xj1�1^xj2^ � � � ^xjp is not, 
ontradi
ting regular-ity. [See T. Eiter, T. Ibaraki, and K. Makino, Theor. Comp. S
i. 270 (2002), 493{524.℄172. By examining the CNF for ft in exer
ise 170(e), we see that when t = (t1 : : : tn)2the number of Horn fun
tions obtainable by 
omplementing variables is one more thanthe number for (t2 : : : tn)2 when t1 = 0, but twi
e that number when t1 = 1. Thus theexample t = (1100010111)2 
orresponds to 2�(2�(1+(1+(1+(2�(1+(2�(2�2))))))))Horn fun
tions. Summing over all t gives sn where sn = (2n�2+ sn�1) + 2sn�1, wheres1 = 2; and the solution to this re
urren
e is 3n � 2n�1.To make both f and �f Horn fun
tions, assume (by duality) that tmod 4 = 3.Then we must 
omplement xj if and only if tj = 0, ex
ept for the string of 1s at theright of t. For example, when t = (1100010111)2, we should 
omplement x3, x4, x5,x7, and then at most one of fx8; x9; x10g. This gives �(t + 1) + 1 � 3 
hoi
es relatedto ft. Summing over all t with tmod 4 = 3 gives 2n � 1; so the answer is 2n+1 � 2.173. Consider monotone fun
tions �rst. We 
an write t = (0a11a2 : : : 0a2k�11a2k )2,where a1+ � � �+a2k = n, a1 � 0, aj � 1 for 1 < j < 2k, and a2k � 2 when tmod 4 = 3.When tmod 4 = 1, 2n� t has this form. Then ft has a1! a2! : : : a2k! automorphisms, soit is equivalent to n!=(a1! a2! : : : a2k!) � 1 others, none of whi
h are skinny. Summingover all t gives 2(Pn � nPn�1) monotone Boolean fun
tions that are reorderable toskinny form, when n � 2, where Pn is the number of weak orderings (exer
ise 5.3.1{3).[See J. S. Beissinger and U. N. Peled, Graphs and Combinatori
s 3 (1987), 213{219.℄Every su
h monotone fun
tion 
orresponds to 2n di�erent unate fun
tions thatare equally skinny, when variables are 
omplemented. (These are the fun
tions with theproperty that all of their restri
tions are 
analizing, known also as \unate 
as
ades,"\1-de
ision list fun
tions," or \generalized read-on
e threshold fun
tions.")174. (a) Assign the numbers 0, : : : , n�1, n, n+1 to nodes j1 , : : : , jn , > , ? ; andlet the (LO;HI) bran
hes from node k go to nodes (a2k+1; a2k+2) for 0 � k < n. Thende�ne pk as follows, for 1 � k � 2n: Let l = b(k � 1)=2
 and Pl = fp1; : : : ; p2lg. Setpk  ak if ak =2 Pl; otherwise, if ak is the mth smallest element of Pl\fl+1; : : : ; n+1g,set pk to the mth smallest element of fn+ 2; : : : ; n+ l+ 1g n Pl. (This 
onstru
tion isdue to T. Dahlheimer.)
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hi numbersmedian Geno

hi numbersEulerBernoulli numbersGeno

hiSeidel
(b) The inverse p�11 : : : p�12n of a Della
 permutation satis�es 2(k�n)� 1 � p�1k �2k. It 
orresponds to a Geno

hi derangement q1 : : : q2n+2 when q2 = 1, q2n+1 = 2n+2,and q2k+2 = 1 + p�1k , q2k�1 = 1 + p�1k+n for 1 � k � n.(
) Given a permutation q1 : : : q2n+2, let rk be the �rst element of the sequen
eq�1k , q�2k , : : : that is � k. This transformation takes Geno

hi permutations intoDumont pistols, and has the property that qk = k if and only if rk = k =2 fr1; : : : ; rk�1g.(d) Ea
h node (j; k) represents a set of strings r1 : : : rj , where (1; 0) = f1g and theother sets are de�ned by the following transition rules: Suppose r1 : : : rj 2 (j; k), and letl = 2k. If k = 0 then (j + 1; k) 
ontains 1r+1 : : : r+j when j is even, 2r+1 : : : r+j when j isodd, where r+ denotes r+1. If k > 0 then (j +1; k) 
ontains r+1 : : : r+l (l+1)r+l+1 : : : r+jwhen j is even, r�1 : : : r�l�1(l)r�l : : : r�j when j is odd, where r� denotes r + 1 whenr � l, r � 1 when r < l. Going verti
ally, if l � j � 3 and j is odd, (j; k + 1)
ontains r1 : : : rlrl+2rl+3(l+3)rl+4 : : : rj . On the other hand if k = 1 and j is even,(j; 0) 
ontains r2r1r3 : : : rj . Finally if k > 1 and j is even, (j; k � 1) 
ontains thestring r01 : : : r0l�3(l�2)r0l�2r0l�1r0l+1 : : : r0j , where r0 denotes l when r = l � 2, otherwiser0 = r. (One 
an show that the elements of (2j; k) are the Dumont pistols for Geno

hipermutations of order 2j whose largest �xed point is 2k.)All of these 
onstru
tions are invertible. For example, the path (1;0)! (2;0)!(3;0) ! (3;1) ! (4;1) ! (5;1) ! (6;1) ! (7;1) ! (7;2) ! (7;3) ! (8;3) ! (8;2) !(8;1) ! (8;0) 
orresponds to the pistols 1 ! 22 ! 133 ! 333 ! 4244 ! 53355 !624466 ! 7335577 ! 7355577 ! 7355777 ! 82448688 ! 82646888 ! 82466888 !28466888. The latter pistol, whi
h 
an be represented by the diagram , 
or-responds to the Geno

hi derangement q1 : : : q8 = 61537482. And this derangement
orresponds to p�11 : : : p�16 = 231546 and the Della
 permutation p1 : : : p6 = 312546.That permutation, in turn, 
orresponds to a1 : : : a6 = 312343, whi
h stands for thethin BDD 1 2 3 > ? :Let djk be the number of pistols in (j; k), whi
h is also the number of dire
tedpaths from (1; 0) to (j; k). These numbers are readily found by addition, beginning with38227 38227 � � �2073 2073 38227 76454 � � �155 155 2073 4146 36154 112608 � � �17 17 155 310 1918 6064 32008 144616 � � �3 3 17 34 138 448 1608 7672 25944 170560 � � �1 1 3 6 14 48 104 552 1160 8832 18272 188832 � � �1 1 1 2 2 8 8 56 56 608 608 9440 9440 198272 � � � ;and the 
olumn totals Dj = Pk djk are (D1;D2; : : : ) = (1; 1; 2; 3; 8; 17; 56; 155; 608;2073; 9440; 38227; 198272; 929569; : : : ). The even-numbered elements of this sequen
e,D2n, have long been known as the Geno

hi numbers G2n+2. The odd-numberedelements, D2n+1, have therefore been 
alled \median Geno

hi numbers." The numberSn of thin BDDs is d(2n+2)0 = D2n+1.Referen
es: L. Euler dis
ussed the Geno

hi numbers in the se
ond volume ofhis Institutiones Cal
uli Di�erentialis (1755), Chapter 7, where he showed that theodd integers G2n are expressible in terms of the Bernoulli numbers: In fa
t, G2n =(22n+1 � 2)jB2nj, and z tan z2 = P1n=1G2nz2n=(2n)!. A. Geno

hi examined thesenumbers further in Annali di S
ienze Matemati
he e Fisi
he 3 (1852), 395{405; andL. Seidel, in Sitzungsberi
hte math.-phys. Classe, Akademie Wissen. M�un
hen 7 (1877),
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Dahlheimerorderedredu
edBDD base
157{187, dis
overed that they 
ould be 
omputed additively via the numbers djk. Their
ombinatorial signi�
an
e was not dis
overed until mu
h later; see D. Dumont, DukeMath. J. 41 (1974), 305{318; D. Dumont and A. Randrianarivony, Dis
rete Math. 132(1994), 37{49. Meanwhile H. Della
 had proposed an apparently unrelated problem,equivalent to enumerating what we have 
alled Della
 permutations; see L'Interm�ediairedes Math. 7 (1900), 9{10, 328; Annales de la Fa
ult�e s
i. Marseille 11 (1901), 141{164.There's also a dire
t 
onne
tion between thin BDDs and the paths of (d), dis
ov-ered in 2007 by Thorsten Dahlheimer. Noti
e �rst that unrestri
ted Dumont pistols oforder 2n + 2 
orrespond to thin BDDs that are ordered but not ne
essarily redu
ed,be
ause we 
an let r1 : : : r2nr2n+1r2n+2 = (2a1) : : : (2a2n)(2n+2)(2n+2). The numberof su
h pistols in whi
h minfi j r2i�1 = r2ig = l turns out to be d(2n+2)(n+1�l).To prove this, we 
an use new transition rules instead of those in answer (d):Suppose r1 : : : rj 2 (j; k), and let l = j� 2k. Then (j+1; k) 
ontains r+1 : : : r+l r+l : : : r+jwhen j is odd, r�1 : : : r�l�1(l�1)r�l : : : r�j when j is even. If j is odd, (j; k + 1) 
ontains1r1r3 : : : rj when l = 3, and when l > 3 it 
ontains r01 : : : r0l�4(l�4)r0l�3r0l�2r0l : : : r0j ,where r0 = r + 2[r= l�4℄. Finally, if j is even and k > 0, (j; k � 1) 
ontainsr1 : : : rl�1qrl+2rl+2 : : : rj , where q = l if rl = rl+1, otherwise q = rl+1.With these magi
 transitions the path above 
orresponds to 1 ! 22 ! 313 !133 ! 2244 ! 31355 ! 424466 ! 5153577 ! 5135577 ! 1535577 ! 22646688 !26446688! 26466688! 26466888; so a1 : : : a6 = 132334.175. This problem seems to require a di�erent approa
h from the methods that workedwhen b0 = � � � = bn�1 = 1. Suppose we have a BDD base of N nodes in
luding the twosinks ? and > together with various bran
hes labeled j2 , : : : , jn , and assume thatexa
tly s of the nodes are sour
es (having in-degree zero). Let 
(b; s; t; N) be the numberof ways to introdu
e b additional nodes labeled j1 , in su
h a way that exa
tly s+ b� tsour
e nodes remain. (Thus 0 � t � 2b; exa
tly t of the old sour
e nodes are nowrea
hable from a j1 bran
h.) Then the number of non
onstant Boolean fun
tionsf(x1; : : : ; xn) having the BDD pro�le (b0; : : : ; bn) is equal to T (b0; : : : ; bn�1; 1), whereT (b0; s) = 2[s= b0=1℄ + [s=2℄[b0=0℄ + [s=2℄[b0=2℄;T (b0; : : : ; bn�1; s) = 2b0Xt=max(0;b0�s)
(b0; s+t�b0; t; b1+ � � �+bn�1+2)T (b1; : : : ; bn�1; s+t�b0):One 
an show that 
(b; s; t;N) =P2br=0 arbptr(s;N)=b!, where we have (N(N � 1))b =P2br=0 arbNr and ptr(s;N) = Pk �rk��kt	st(N � s)r�k = Pk �rk	�kt�st(N � s)k�t =r! [wtzr ℄ e(N�s)z(wez � w + 1)s.176. (a) If p 6= p0 we have Pa2A;b2B [ha;b(p)=ha;b(p0)℄ � jAjjBj=2l, by the de�nitionof universal hashing. Let ri(a; b) be the number of p 2 P su
h that ha;b(p) = i. ThenXa2A;b2B X0�i<2l ri(a; b)2 = Xa2A;b2BXp2P Xp02P [ha;b(p)=ha;b(p0)℄� jP jjAjjBj+Xp2P Xp02P [p 6= p0 ℄ jAjjBj2l = 2tjAjjBj�1 + 2t�12l �:On the other hand P2l�1i=0 ri(a; b)2 = P2l�1i=0 (ri(a; b) � 2t=jIj)2 + 22t=jIj � 22t=jIj, forany a and b. Similar formulas apply when there are sj(a; b) solutions to ha;b(q) = j.
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arriesSo there must be a 2 A and b 2 B su
h that22tjIj + 22tjJ j � Xi2I ri(a; b)2 +Xj2J sj(a; b)2 � 2t+1�1 + 2t�12l � � 22t2l + 22t(1� �)2l :(b) The middle l bits of aqk + b and aqk+2 + b di�er by at least 2, so the middlel � 1 bits of aqk and aqk+2 must be di�erent.(
) Let q and q0 be di�erent elements of Q� with (g(q0)� g(q)) mod 2l�1 � 2l�2.(Otherwise we 
an swap q $ q0.) If l � 3, the 
ondition g(p) + g(q) = 2l�1 impliesthat fq(p) = 0. Now (g(p)+g(q0)) mod (2l�1) = (g(q0)�g(q)) mod (2l�1); furthermoreg(q0) and g(p) are both even. Therefore no 
arry 
an propagate to 
hange the middlebit, and we have fq0(p) = 1.(d) The set Q00 has at least (1��)2l�1 elements, and so does the analogous set P 00.At most 2l�2 elements of Q00 have g(q) odd; and at most 2l�1+1�jP 00j of the elementswith g(q) even are not in Q�. Thus jQ�j � (1� �)2l�1�2l�2�2l�1�1+(1� �)2l�1 =(1� 4�)2l�2 � 1, and we have Bmin(Zn;y) � (1� 4�)2l�1 � 2 by (85).Finally, 
hoose l = t� 4 and � = 1=9. The theorem is obvious when n < 14.177. Suppose k � n=2 and x = 2k+1xh + xl, y = 2kyh + yl. Then (xy� k) mod 2n�kdepends on 2xhyl, xlyh, and xlyl� k, modulo 2n�k, so q2k+1 � 2n�k�1+n�k+n�k.Summing up, we get P2nk=0 qk � P0�k�6n=5 2k +P6n=5<k�2n 23n�2bk=2
�dk=2e.If n = 5t+ (0; 1; 2; 3; 4) the total 
omes to exa
tly (2d6n=5e � (19; 10; 12; 13; 17)� 12)=7.178. We 
an write x = 2kxh + xl as in the proof of Theorem A; but now xl = x̂l +(xmod 2), where x̂l is even and xmod 2 is not yet known. Similarly y = 2kyh + yl =2kyh + ŷl + (ymod 2). Let ẑl = x̂lŷl mod 2k. At level 2k� 2, for n=2 � k < n, we needonly \remember" three (n� k)-bit numbers x̂l mod 2n�k, ŷl mod 2n�k, (x̂lŷl� k) mod2n�k, and three \
arries" 
1 = (x̂l+ ẑl)� k, 
2 = (ŷl+ ẑl)� k, 
3 = (x̂l+ ŷl+ ẑl)� k.These six quantities will suÆ
e to determine the middle bit, after xh, yh, xmod 2, andy mod 2 be
ome known.There are only six possibilities for the 
arries: 
1
2
3 = 000, 001, 011, 101, 111,or 112. Thus q2k�2 � 6 � 2(n�k�1)+(n�k�1)+(n�k). Similarly, when n=2 � k < n� 1, wehave q2k�1 � 6 � 2(n�k�2)+(n�k�1)+(n�k). With these estimates, together with qk � 2k,we get P2n�4k=0 qk � (26t � (37; 86; 184; 464; 1024)� 268)=28 when n = 5t+ (0; 1; 2; 3; 4).The a
tual BDD sizes, for the fun
tion f of Theorem A and the fun
tion g of thisexer
ise, are B(f) = (169, 381, 928, 2188, 5248, 12373, 29400, 68777, 162768, 377359,879709) and B(g) = (165, 352, 806, 1802, 4195, 9774, 22454, 52714, 121198, 278223,650188) for 6 � n � 16; so this variant appears to save about 25%. A slightly betterordering is obtained by testing (lo-bit(x), hi-bit(y), hi-bit(x), lo-bit(y)) on the last fourlevels, giving B(h) = B(g)�20 for n � 6. Then B(h)=Bmin(f) � (1:07, 1.05, 1.04, 1.04,1.04, 1.01, 1.02) for 6 � n � 12, so this ordering may be 
lose to optimal as n!1.180. By letting am+1 = am+2 = � � � = 0, we may assume that m � p. Let a =(ap : : : a1)2, and write x = 2kxh + xl as in the proof of Theorem A. If p � n, we haveqk � 2p�k for 0 � k < p, be
ause the given fun
tion f = Z(p)m;n(a;x) depends only ona, xh, and (axl� k) mod 2p�k. We may therefore assume that p > n.Consider the multiset A = f2kxhamod 2p�1 j 0 � xh < 2n�kg. Write A =f2p�1 � �1; : : : ; 2p�1 � �sg, where s = 2n�k and 0 < �1 � � � � � �s = 2p�1, and let�s+i = �i + 2p�1 for 0 � i � s. Then qk � 2s, be
ause f depends only on a, xh, andthe index i 2 [0 : : 2s) su
h that �i � axl mod 2p < �i+1.Consequently Pnk=0 qk �Pnk=0min(2k; 2n+1�k) = 2bn=2
+1 + 2dn=2e+1 � 3.
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y
lebra
es181. For every (x1; : : : ; xm) the remaining fun
tion of (y1; : : : ; yn) requires O(n) nodes,by exer
ise 170.182. Yes; B. Bollig [Le
ture Notes in Comp. S
i. 4978 (2008), 306{317℄ has shownthat it is 
(2n=432). In
identally, Bmin(L12;12) = 1158 is obtained with the strange or-dering L12;12(x18; x17; x16; x15; x14; x12; x10; x8; x6; x4; x2; x1; x19; x20; x21; x22; x23; x13;x11; x9; x7; x5; x3; x24); and Bmax(L12;12) = 9302 arises with L12;12(x24; x23; x20; x19;x22; x11; x6; x7; x8; x9; x10; x13; x1; x2; x3; x4; x5; x21; x18; x17; x16; x15; x14; x12). Simi-larly Bmin(L8;16) = 606 and Bmax(L8;16) = 3415 aren't terribly far apart. CouldBmin(Lm;n) and Bmax(Lm;n) both 
on
eivably be �(2min(m;n))?183. The pro�le (b0; b1; : : : ) begins (1, 1, 1, 2, 3,5, 7, 11, 15, 23, 31, 47, 63, 95, : : : ). When k > 0there's a node on level 2k for every pair of inte-gers (a; b) su
h that 2k�1 � a; b < 2k and ab <22k�1 < (a + 1)(b + 1); this node represents thefun
tion [((a + x)=2k)((b + y)=2k) � 12 ℄. Whenb is given, in the appropriate range, there ared22k�1=be � b22k�1=(b + 1)
 
hoi
es for a; hen
eb2k =P2k�1�b<2k(d22k�1=be � b22k�1=(b+1)
),whi
h teles
opes to 2k � 1. A similar argument shows that b2k+1 = 2k + 2k�1 � 1.

1 2 34 45 5 56 6 6 6 6
? ? >?

184. Two kinds of beads 
ontribute to bm(i�1)+j�1: One for every 
hoi
e of i 
olumns,at least one of whi
h is <j; and one for every 
hoi
e of i�1 
olumns, missing at least oneelement � j. Thus bm(i�1)+j�1 = (�mi ���m+1�ji �)+ (� mi�1��� j�1m+1�i�). Summing over1 � i; j � m gives B(Pm) = (2m�3)2m+5. (In
identally, qk = bk+1 for 2 � k < m2.)The ZDD has simply zm(i�1)+j�1 = �n�1i�1� for 1 � i; j � m, one for every 
hoi
eof i � 1 
olumns 6= j; hen
e Z(Pm) = m2m�1 + 2 � 14B(Pm). (The lower bound ofTheorem K applies also to ZDD nodes, be
ause only su
h nodes get ti
kets; thereforethe natural ordering of variables is optimum for ZDDs. The natural ordering might beoptimum also for BDDs; this 
onje
ture is known to be true for m � 5.)185. Suppose f(x) = t�x for some binary ve
tor t0 : : : tn. Then the subfun
tionsof order d > 0 
orrespond to the distin
t substrings ti : : : ti+d. Su
h substrings �
orrespond to beads if and only if � 6= 0d+1 and � 6= 1d+1; they 
orrespond to zeads ifand only if � 6= 0d+1 and � 6= 10d.Thus the maximum Z(f) is the fun
tion Sn of answer 44. To attain this worst
ase we need a binary ve
tor of length 2d+1+d�2 that 
ontains all (d+1)-tuples ex
ept0d+1 and 10d as substrings; su
h ve
tors 
an be 
hara
terized as the �rst 2d+1+d�2elements of any de Bruijn 
y
le of period 2d+1, beginning with 0d1.186. �x1 ^ �x2 ^ x3 ^ �x4 ^ �x5 ^ �x6.187. (These diagrams should be 
ompared with the answer to exer
ise 1.)
?1 ? >2

1
4 ? >

1
3 ? >2

1
4 ? >23 ? >2

1
4 ? >2

1
4 ? >2 21

5 >1 ? >2
1
4 >

1
2 >2

1
3 >22 ? >2 21

5 >2
1
3 >2

1
3188. To avoid nested bra
es, let �, a, b, and ab stand for the subsets ;, f1g, f2g,and f1; 2g. The families are then ;, fabg, fag, fa; abg, fbg, fb; abg, fa; bg, fa; b; abg,f�g, f�; abg, f�; ag, f�; a; abg, f�; bg, f�; b; abg, f�; a; bg, f�; a; b; abg, in truth-table order.189. When n = 0, only the 
onstant fun
tions; when n > 0, only 0 and x1 ^ � � � ^ xn.(But there are many fun
tions, su
h as x2 ^ (x1_ �x3), with (b0; : : : ; bn) = (z0; : : : ; zn).)
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ontext-free grammarAsymptoti
allyCMathEu
lid numberSylvesterEgyptian fra
tionsmonotone de
reasing fun
tionindependent setszeadsquasi-pro�lessubtablesDumont pistolGeno

hi number2m-way muxelementary fun
tionsupportsfamily of setssupports

190. (a) Only x1 � � � � � xn and 1� x1 � � � � � xn, for n � 0. (b) This 
ondition holdsif and only if all subtables of order 1 are either 01 or 11. So there are 22n�1 solutionswhen n > 0, namely all fun
tions su
h that f(x1; : : : ; xn�1; 1) = 1.191. The language Ln of truth tables for all su
h fun
tions has the 
ontext-free gram-mar L0 ! 1; Ln+1 ! LnLn j Ln02n. The desired number ln = jLnj therefore satis�esl0 = 1, ln+1 = ln(ln + 1); so (l0; l1; l2; : : : ) is the sequen
e (1, 2, 6, 1806, 3263442, : : : ).Asymptoti
ally, ln = �2n � 12 � �, where 0 < � < ��2n=8 and� = 1:59791 02180 31873 17833 80701 18157 45531 23622+:[See CMath exer
ises 4.37 and 4.59, where ln+1 is 
alled en+1 (a \Eu
lid number") and� is 
alled E2. The numbers ln+1 were introdu
ed by J. J. Sylvester in 
onne
tion withhis study of Egyptian fra
tions, Amer. J. Math. 3 (1880), 388. Noti
e that a monotonede
reasing fun
tion, like a fun
tion representing independent sets, always has zn = 1.℄192. (a) 10101101000010110.(b) True, by indu
tion on j� j, be
ause � 6= � 6= 0n if and only if �Z 6= �Z 6= 0n.(
) The beads of f of order k are the zeads of fZ of order k, for 0 < k � n.Hen
e the beads of fZ are also the zeads of (fZ)Z = f . Therefore, if (b0; : : : ; bn) and(z0; : : : ; zn) are the pro�le and z-pro�le of f while (b00; : : : ; b0n) and (z00; : : : ; z0n) are thepro�le and z-pro�le of fZ , we have bk = z0k and zk = b0k for 0 � k < n.(We also have zn = z0n, but they might both be 1 instead of 2. The quasi-pro�lesof f and fZ may di�er, but only by at most 1 at ea
h level, be
ause of all-0 subtables.)193. S�k(x1; : : : ; xn), by indu
tion on n. (Hen
e we also have SZ�k(x1; : : : ; xn) =Sk(x1; : : : ; xn). Exer
ise 249 gives similar examples.)194. De�ne a1 : : : a2n as in answer 174, but use the ZDD instead of the BDD. Then(1; : : : ; 1) is the z-pro�le if and only if (2a1) : : : (2a2n) is an unrestri
ted Dumont pistolof order 2n. So the answer is the Geno

hi number G2n+2.195. The z-pro�le is (1; 2; 4; 4; 3; 2; 2). We get an optimum z-pro�le (1; 2; 3; 2; 3; 2; 2)from M2(x4; x2;x5; x6; x3; x1), and a pessimum z-pro�le (1; 2; 4; 8; 12; 2; 2) 
omes fromM2(x5; x6;x1; x2; x3; x4) as in (78). (In
identally, the algorithm of exer
ise 197 
an beused to show that Zmin(M4) = 116 is obtained with the strikingly pe
uliar orderingM4(x8; x5; x17; x2;x20; x19; x18; x16; x15; x13; x14; x12; x11; x9; x10; x4; x7; x6; x3; x1)!)196. For example, Mm(x1; : : : ; xm; em+1; : : : ; en), where n = m + 2m and ej is theelementary fun
tion of exer
ise 203. Then we have Z(f) = 2(n �m) + 1 and Z( �f) =(n�m+ 7)(n�m)=2� 2.197. The key idea is to 
hange the signi�
an
e of the DEP �elds so that dkp is nowPf2t�k�1 j Nkp supports xtg, where we say that g(x1; : : : ; xm) supports xj if there isa solution to g(x1; : : : ; xm) = 1 with xj = 1.To implement this 
hange, we introdu
e an auxiliary array (�0; : : : ; �n), where wewill have �k = q if Nkq denotes the subfun
tion 0 and �k = �1 if that subfun
tiondoes not appear on level k. Initially �n  0, and we set �k  �1 at the beginningof step E1. In step E3, the operation of setting dkq should be
ome the following: \Ifd(k+1)h 6= �k+1, set dkq  ((d(k+1)l j d(k+1)h)�1)+1; otherwise set dkq  d(k+1)l� 1.Also set �k  q if d(k+1)l = d(k+1)h = �k+1."(The master z-pro�le 
hart 
an be used as before to minimize z0 + � � � + zn�1;but additional work is needed to 
onsider zn if the absolute minimum is important.)198. Reinterpreting (50), we represent an arbitrary family of sets f as (�xv? fl: fh),where v = fv indexes the �rst variable that f supports; see answer 197. Thus fl is the



7.1.4 ANSWERS TO EXERCISES 117 ZUNIQUEReferen
e 
ountssanity 
he
kdebugging
omplementationtautologypower set} (power set)
subfamily of f that doesn't support xv , and fh is the subfamily that does (but with xvdeleted). We also let fv =1 if f has no support (i.e., if f is either ; or f;g, representedinternally by ? or > ; see answer 200). In (52), v = min(fv; gv) now indexes the�rst variable supported by either f or g; thus fh = ; if fv > gv, and gh = ; if fv < gv .Subroutine AND(f; g), ZDD-style, is now the following instead of (55): \Repre-sent f and g as in (52). While fv 6= gv , return ; if either f = ; or g = ;; otherwiseset f  fl if fv < gv , set g  gl if fv > gv. Swap f $ g if f > g. Return f iff = g or f = ;. Otherwise, if f ^ g = r is in the memo 
a
he, return r. Otherwise
ompute rl  AND(fl; gl) and rh  AND(fh; gh); set r  ZUNIQUE(v; rl; rh), usingan algorithm like Algorithm U ex
ept that the �rst step returns p when q = ; insteadof when q = p; put `f ^ g = r' into the memo 
a
he, and return r." (See also thesuggestion in answer 200.)Referen
e 
ounts are updated as in exer
ise 82, with slight 
hanges; for example,step U1 will now de
rease the referen
e 
ount of ? (and only of this node), whenq = ;. It is important to write a \sanity 
he
k" routine that double-
he
ks all referen
e
ounts and other redundan
ies in the entire BDD/ZDD base, so that subtle errors arenipped in the bud. The sanity 
he
ker should be invoked frequently until all subroutineshave been thoroughly tested.199. (a) If f = g, return f . If f > g, swap f $ g. If f = ;, return g. If f _ g = r is inthe memo 
a
he, return r. Otherwiseset v  fv, rl  OR(fl; gl), rh  OR(fh; gh), if fv = gv;set v  fv, rl  OR(fl; g), rh  fh, in
rease REF(fh) by 1, if fv < gv;set v  gv , rl  OR(f; gl), rh  gh, in
rease REF(gh) by 1, if fv > gv.Then set r  ZUNIQUE(v; rl; rh); 
a
he it and return it as in answer 198.(b) If f = g, return ;. Otherwise pro
eed as in (a), but use (�;XOR) not (_;OR).(
) If f = ; or f = g, return ;. If g = ;, return f . Otherwise, if gv < fv, setg  gl and begin again. Otherwiseset rl  BUTNOT(fl; gl), rh  BUTNOT(fh; gh), if fv = gv;set rl  BUTNOT(fl; g), rh  fh, in
rease REF(fh) by 1, if fv < gv.Then set r  ZUNIQUE(fv; rl; rh) and �nish as usual.200. If f = ;, return g. If f = h, return OR(f; g). If g = h, return g. If g = ; orf = g, return AND(f; h). If h = ;, return BUTNOT(g; f). If fv < gv and fv < hv , setf  fl and start over. If hv < fv and hv < gv , set h  hl and start over. Otherwise
he
k the 
a
he and pro
eed re
ursively as usual.201. In appli
ations of ZDDs where proje
tion fun
tions and/or the 
omplementationoperation are permitted, it's best to �x the set of Boolean variables at the beginning,when everything is being initialized. Otherwise, every external fun
tion in a ZDD basemust 
hange whenever a new variable enters the fray.Suppose therefore that we've de
ided to deal with fun
tions of (x1; : : : ; xN ), whereN is prespe
i�ed. In answer 198, we let fv = N + 1, not 1, when f = ; or f = f;g.Then the tautology fun
tion 1 = } has the (N +1)-node ZDD 1 2 N >: : : ,whi
h we 
onstru
t as soon as N is known. Let tj be node j of this stru
ture, withtN+1 = > . The ZDD for xj is now 1 j ?: : : tj+1 ; thus the ZDD base for theset of all xj will o

upy �N+12 � nodes in addition to the representations of ; and }.If N is small, all N proje
tion fun
tions 
an be prepared in advan
e. But N islarge in many appli
ations of ZDDs; and proje
tion fun
tions are rarely needed when



118 ANSWERS TO EXERCISES 7.1.4 family algebrapartial-tautologyANDORMUXtransmogri�
ationHorn fun
tionspower setre
ursive prin
iple, underlying ZDDs+
\family algebra" is used to build the stru
tures as in exer
ises 203{207. So it's generallybest to wait until a proje
tion fun
tion is a
tually required, before 
reating it.In
identally, the partial-tautology fun
tions tj 
an be used to speed up the synthe-sis operations of exer
ises 198{199: If v = fv � gv and f = tv, we have AND(f; g) = g,OR(f; g) = f , and (if v � hv) also MUX(f; g; h) = h, MUX(g; h; f) = OR(g; h).202. In the transmogri�
ation step T4, 
hange `q0  q1  q' to `q0  q, q1  ;' and`r0  r1  r' to `r0  r, r1  ;'. Also use ZUNIQUE instead of UNIQUE; within T4,this subroutine in
reases REF(p) by 1 if step U1 �nds q = ;.A subtler 
hange is needed to keep the partial-tautology fun
tions of answer 201up to date, be
ause of their spe
ial meaning. Corre
t behavior is to keep tu un
hangedand set tv  LO(tu).203. (a) f t g = ff1; 2g; f1; 3g; f1; 2; 3g; f3gg = (e1 t ((e2 t (e3 [ �)) [ e3)) [ e3; theother is (e1 t e2) [ �, be
ause f u g = (e1 t (e2 [ �)) [ e3 [ � and f e1 = e1 [ e2 [ e3.(b) (f t g)(z) = 9x 9y (f(x) ^ g(y) ^ (z � x _ y)); (f u g)(z) = 9x 9y (f(x) ^g(y) ^ (z � x ^ y)); (f g)(z) = 9x9y (f(x) ^ g(y) ^ (z � x� y)). Another formula is(f g)(z) = Wff(z � y) j g(y) = 1g = Wfg(z � x) j f(x) = 1g.(
) Both (i) and (ii) are true; also f (g [ h) = (f g) [ (f h). Formula (iii)fails in general, although we do have f t (guh) � (f t g)u (f th). Formula (iv) makeslittle sense; the right-hand side is (f t f) [ (f t h) [ (g t f) [ (g t h), by (i). Formula(v) is true be
ause all three parts are ;. And (vi) is true if and only if f 6= ;.(d) Only (ii) is always true. For (i), the 
ondition should be f u g � �, sin
ef u g = ; implies f ? g. For (iii), noti
e that jf t gj = jf u gj = jf gj = 1 wheneverjf j = jgj = 1. Finally, in statement (iv), we do have f ? g =) f t g = f g; but the
onverse fails when, say, f = g = e1 [ �.(e) f = ; in (i) and f = � in (ii); also � g = g for all g. There's no solutionto (iii), be
ause f would have to be ff1; 2; 3; : : : gg and we are 
onsidering only �nitesets. But in the �nite universe of answer 201 we have f = ff1; : : : ; Ngg. (This family Uhas the property that (f U) t (g U) = (f u g) U .) The general solution to (iv)is f = e1 t e2 t f 0, where f 0 is an arbitrary family; similarly, the general solutionto (v) is f = (e1 t f 0) [ (e2 t f 00) [ (e1 t e2 t (f 0 [ f 00 [ f 000)), where f 0, f 00, and f 000are arbitrary. In (vi), f = ((((e1 t e2) [ �) t f 0) [ ((e1 [ e2) t f 00)) t (e3 [ �), wheref 0 [ f 00 ? e1 [ e2 [ e3; this representation follows from exer
ise 204(f). In (vii), jf j = 1.Finally, (viii) 
hara
terizes Horn fun
tions (Theorem 7.1.1H).204. (a) This relation is obvious from the de�nition. (Also (f [g)=h � (f=h)[ (g=h).)(b) f=e2 = ff1g; ;g = e1 [ �; f=e1 = e2 [ e3; f=� = f ; hen
e f=(e1 [ �) = e2 [ e3.(
) Division by ; gives trouble, be
ause all sets � belong to f=;. (But if werestri
t 
onsideration to families of subsets of f1; : : : ; Ng, as in exer
ises 201 and 207,we have f=; = }; also }=} = �, and f=} = ; when f 6= }.) Clearly f=� = f . Andf=f = � when f 6= ;. Finally, (f mod g)=g = ; when g 6= ;, be
ause � 2 (f mod g)=gand � 2 g implies that � [ � 2 f , � 2 f=g, and � [ � =2 (f=g) t g|a 
ontradi
tion.(d) If � 2 g, we have � [ � 2 f and � \ � = ; for all � 2 f=g; this proves thehint. Hen
e f=g � f=(f=(f=g)). Also f=h � f=g when h � g, by (a); let h = f=(f=g).(e) Let f==g be the family in the new de�nition. Then f=g � f==g, be
auseg t (f=g) � f and g ? (f=g). Conversely, if � 2 f==g and � 2 g, we have � 2 h forsome h with g t h � f and g ? h; 
onsequently � [ � 2 f and � \ � = ;.(f) If f has su
h a representation, we must have g = f=ej and h = f mod ej .Conversely, those families satisfy ej ? g [ h. (This law is the fundamental re
ursive



7.1.4 ANSWERS TO EXERCISES 119 BraytonM
Mullensub
ubes
luttersORORdereferen
edisjoint unions, family ofdereferen
e}Minato
prin
iple underlying ZDDs| just as the unique representation f = (xj? g: h), with gand h independent of xj , underlies BDDs.)(g) Both true. (To prove them, represent f and g as in part (f).)[R. K. Brayton and C. M
Mullen introdu
ed the quotient and remainder opera-tions in Pro
. Int. Symp. Cir
uits and Systems (IEEE, 1982), 49{54, but in a slightlydi�erent 
ontext: They dealt with families of in
omparable sets of sub
ubes.℄205. In all 
ases we 
onstru
t a re
ursion based on exer
ise 204(f). For example, iffv = gv = v, we have f t g = (�v? fl t gl: (fl t gh) [ (fh t gl) [ (fh t gh)); f u g =(�v? (flugl)[(flugh)[(fhugl): fhugh); f g = (�v? (fl gl)[(fh gh): (fh gl)[(fl gh)).(a) If fv < gv or (fv = gv and f > g), swap f $ g. If f = ;, return f ; if f = �,return g. If f t g = r is in the memo 
a
he, return r. If fv > gv , set rl  JOIN(f; gl)and rh  JOIN(f; gh); otherwise set rl  JOIN(fl; gl), rlh  JOIN(fl; gh), rhl  JOIN(fh; gl), rhh  JOIN(fh; gh), rh  OROR(rlh; rhl; rhh), and dereferen
e rlh, rhl,rhh. Finish with r  ZUNIQUE(gv; rl; rh); 
a
he it and return it as in exer
ise 198.(We 
ould also 
ompute rh via the formula OR(rlh; JOIN(fh;OR(gl; gh))), or viaOR(rhl; JOIN(OR(fl; fh); gh)). Sometimes one way is mu
h better than the other two.)The DISJOIN operation, whi
h produ
es the family of disjoint unions f� [ � j� 2 f , � 2 g, � \ � = ;g, is similar but with rhh omitted.(b) If fv < gv or (fv = gv and f > g), swap f $ g. If f � �, return f . (We
onsider ; < � and � < all others.) Otherwise, if MEET(f; g) hasn't been 
a
hed, thereare two 
ases. If fv > gv, set rh  OR(gl; gh), r  MEET(f; rh), and dereferen
e rh;otherwise pro
eed analogously to (a) but with l$ h. Ca
he and return r as usual.(
) This operation is similar to (a), but rl  OR(rll; rhh) and rh  OR(rlh; rhl).(d) First we implement the important simple 
ases f=ev and f mod ev:EZDIV(f; v) = 8<: If fv = v, return fh; if fv > v, return ;. Otherwise look forf=ev = r in the 
a
he; if it isn't present, 
ompute it viar  ZUNIQUE(fv;EZDIV(fl; v);EZDIV(fh; v)).EZMOD(f; v) = 8<: If fv = v, return fl; if fv > v, return f . Otherwise look forf mod ev = r in the 
a
he; if it isn't present, 
ompute it viar  ZUNIQUE(fv;EZMOD(fl; v);EZMOD(fh; v)).Now DIV(f; g) = \If g = ;, see below; if g = �, return f . Otherwise, if f � �, return ;;if f = g, return �. If gl = ; and gh = �, return EZDIV(f; gv). Otherwise, if f=g = r isin the memo 
a
he, return r. Otherwise set rl  EZDIV(f; gv), r  DIV(rl; gh), anddereferen
e rl. If r 6= ; and gl 6= ;, set rh  EZMOD(f; gv) and rl  DIV(rh; gl), deref-eren
e rh, set rh  r and r  AND(rl; rh), dereferen
e rl and rh. Insert f=g = r in thememo 
a
he and return r." Division by ; returns } if there is a �xed universe f1; : : : ; Ngas in exer
ise 201. Otherwise it's an error (be
ause the universal family } doesn't exist).(e) If g = ;, return f . If g = �, return ;. If (gl; gh) = (;; �), return EZMOD(f; gv).If f mod g = r is 
a
hed, return it. Otherwise set r  DIV(f; g) and rh  JOIN(r; g),dereferen
e r, set r  BUTNOT(f; rh), and dereferen
e rh. Ca
he and return r.[S.Minato gave EZDIV(f; v), EZREM(f; v), and DELTA(f; ev) in his originalpaper on ZDDs. His algorithms for JOIN(f; g) and DIV(f; g) appeared in the sequel,ACM/IEEE Design Automation Conf. 31 (1994), 420{424.℄206. The upper bound O(Z(f)3Z(g)3) is not diÆ
ult to prove for 
ases (a) and (b),as well as O(Z(f)2Z(g)2) for 
ase (
). But are there examples that take su
h a longtime? And 
an the running time for (d) be exponential? All �ve routines seem to bereasonably fast in pra
ti
e.



120 ANSWERS TO EXERCISES 7.1.4 partial-tautologypower set}generating fun
tion from ZDDsolutionslinear fun
tionBoolean programmingCoudertpro�lez-pro�leKnuthtop-downbottom-upbalan
edternary ANDAND

207. If f = ei1 [ � � � [ eil and k � 0, let SYM(f; v; k) be the Boolean fun
tion that istrue if and only if exa
tly k of the variables fxi1 ; : : : ; xilg \ fxv; xv+1; : : : g are 1 andx1 = � � � = xv�1 = 0. We 
ompute (ei1 [ � � � [ eil) x k by 
alling SYM(f; 1; k).SYM(f; v; k) = \While fv < v, set f  fl. If fv = N + 1 and k > 0, return ;.If fv = N + 1 and k = 0, return the partial-tautology fun
tion tv (see answer 201). Iff xv xk = r is in the 
a
he, return r. Otherwise set r  SYM(f; fv+1; k). If k > 0, setq  SYM(fl; fv +1; k� 1) and r  ZUNIQUE(fv; r; q). While fv > v, set fv  fv � 1,in
rease REF(r) by 1, and set r  ZUNIQUE(fv; r; r). Put f x v x k = r in the 
a
he,and return r." The running time is O((k + 1)N). Noti
e that ; x 0 = }.208. Just omit the fa
tors 2vs�1�1, 2vl�vk�1, and 2vh�vk�1 from steps C1 and C2.(And we get the generating fun
tion by setting 
k  
l+z
h in step C2; see exer
ise 25.)The number of solutions equals the number of paths in the ZDD from the root to > .209. Initially 
ompute Æn  ? and Æj  (�xj+1 Æ xj+1) � Æj+1 for n > j � 1. Then,where answer 31 says `�  (�xj Æ xj) � �', 
hange it to `�  (�xj � �) Æ (xj � Æj)'. Alsomake the analogous 
hanges with � and 
 in pla
e of �.210. In fa
t, when x = x1 : : : xn we 
an repla
e �x in the de�nition of g by any linearfun
tion 
(x) = 
1x1 + � � � + 
nxn, thus 
hara
terizing all of the optimal solutions tothe general Boolean programming problem treated by Algorithm B.For ea
h bran
h node x of the ZDD, with �elds V(x), LO(x), HI(x), we 
an 
om-pute its optimum value M(x) and new links L(x), H(x) as follows: Let ml = M(LO(x))andmh = 
V(x)+M(HI(x)), where M( ? ) = �1 and M( > ) = 0. Then L(x) LO(x)if ml � mh, otherwise L(x) ? ; H(x) HI(x) if ml � mh, otherwise H(x) ? .The ZDD for g is obtained by redu
ing the L and H links a

essible from the root.Noti
e that Z(g) � Z(f), and the entire 
omputation takes O(Z(f)) steps. (This ni
eproperty of ZDDs was pointed out by O. Coudert; see answer 237.)211. Yes, unless the matrix has all-zero rows. Without su
h rows, in fa
t, the pro�leand z-pro�le of f satisfy bk � qk � 1 � zk for 0 � k < n, be
ause the only level-ksubfun
tion independent of xk+1 is the 
onstant 0.212. The best alternative in the author's experiments was to make ZDDs for ea
hterm Tj = S1(Xj) in (129), using the algorithm of exer
ise 207, and then to AND themtogether. For example, in problem (128) we have X1 = fx1; x2g, X2 = fx1; x3; x4g,: : : , X64 = fx105; x112g; to make the term S1(X2) = S1(x1; x3; x4), whose ZDD has 115nodes, just form the 5-node ZDD for e1 [ (e3 [ e4) and 
ompute T2  (e1 [ e3 [ e4) x 1.But in what order should the ANDs be done, after we've got the individual termsT1, : : : , Tn of (129)? Consider problem (128). Method 1: T1  T1 ^ T2, T1  T1 ^ T3,: : : , T1  T1 ^ T64. This \top-down" method �lls in the upper levels �rst, and takesabout 6.2 megamems. Method 2: T64  T64 ^ T63, T64  T64 ^ T62, : : : , T64  T64 ^ T1. By �lling in the lower levels �rst (\bottom-up"), the time goes down toabout 1.75 megamems. Method 3: T2  T2 ^ T1, T4  T4 ^ T3, : : : , T64  T64 ^ T63;T4  T4 ^ T2, T8  T8 ^ T6, : : : , T64  T64 ^ T62; T8  T8 ^ T4, T16  T16 ^ T12, : : : ,T64  T64 ^T60; : : : ; T64  T64 ^T32. This \balan
ed" approa
h also takes about 1.75megamems. Method 4: T33  T33 ^ T1, T34  T34 ^ T2, : : : , T64  T64 ^ T32; T49  T49 ^T33, T50  T50 ^T34, : : : , T64  T64 ^T48; T57  T57 ^T49, T58  T58 ^T50, : : : ,T64  T64 ^ T56; : : : ; T64  T64 ^ T63. This is a mu
h better way to balan
e the work,needing only about 850 kilomems. Method 5: An analogous balan
ing strategy that usesthe ternary ANDAND operation turns out to be still better, 
osting just 675 kilomems.(In all �ve 
ases, add 190 kilomems for the time to form the 64 initial terms Tj .)



7.1.4 ANSWERS TO EXERCISES 121 transposesymmetry breakinglexi
ographi
 orderdynami
 variable orderingSiftingbipartite graph
he
kerboardBDD versus ZDDGrahamKotanisymmetry under transpositionbottom-upun
oloring

In
identally, we 
an redu
e the ZDD size from 2300 to 1995 by insisting thatx1 = 0 and x2 = 1 in (128) and (129), be
ause the \transpose" of every 
overing isanother 
overing. This idea does not, however, redu
e the running time substantially.The rows of (128) appear in de
reasing lexi
ographi
 order, and that may not beideal. But dynami
 variable ordering is unhelpful when so many variables are present.(Sifting redu
es the size from 2300 to 1887, but takes a long time.)Further study, with a variety of exa
t 
over problems, would 
learly be desirable.213. It is a bipartite graph with 30 verti
es in one part and 32 in the other. (Think ofa 
hessboard as a 
he
kerboard : Every domino joins a white square to a bla
k square,and we've removed two bla
k squares.) A row sum of (1; : : : ; 1; 1; �; �) has 1s in at least31 \white" positions, so its last two 
oordinates must be either (2; 1) or (3; 2).214. Add further 
onstraints to the 
overing 
ondition (128), namely V14j=1 S�1(Yj),where Yj is the set of xi that 
ross the jth potential fault line. (For example, Y1 =fx2; x4; x6; x8; x10; x12; x14; x15g is the set of ways to pla
e a domino verti
ally in thetop two rows of the board; ea
h jYj j = 8.) The resulting ZDD has 9812 nodes, and
hara
terizes 25,506 solutions. In
identally, the BDD size is 26622. [Faultfree dominotilings of m � n boards exist if and only if mn is even, m � 5, n � 5, and (m;n) 6=(6; 6); see R. L. Graham, The Mathemati
al Gardner (Wadsworth International, 1981),120{126. The solution in (127) is the only 8� 8 example that is symmetri
 under bothhorizontal and verti
al re
e
tion; see Fig. 29(b) for symmetry under 90Æ rotation.℄215. This time we add the 
onstraints V49j=1 S�1(Zj), where Zj is the set of four pla
e-ments xi that surround an internal 
orner point. (For example, Z1 = fx1; x2; x4; x16g.)These 
onstraints redu
e the ZDD size to 66. There are just two solutions, one thetranspose of the other, and they 
an readily be found by hand. [See Y. Kotani, Puzzlers'Tribute (A. K. Peters, 2002), 413{420.℄Conje
ture: The generating fun
tion for the number of m � n tatami tilings,when n � m� 2 � 0 and m is even, is (1 + z)2(zm�2 + zm)=(1� zm�1 � zm+1).216. (a) Assign three variables (ai; bi; 
i) to ea
h row of (128), 
orresponding to thedomino's 
olor if row i is 
hosen. Every bran
h node of the ZDD for f in (129) nowbe
omes three bran
h nodes. We 
an take advantage of symmetry under transpositionby repla
ing f by f ^ x2; this redu
es the ZDD size from 2300 to 1995, whi
h grows to5981 when ea
h bran
h node is tripli
ated.Now we AND in the adja
en
y 
onstraints, for all 682 
ases fi; i0g where rows iand i0 are adja
ent domino positions. Su
h 
onstraints have the form :((ai ^ ai0) _(bi ^ bi0) _ (
i ^ 
i0)), and we apply them bottom-up as in Method 2 of answer 212.This 
omputation in
ates the ZDD until it rea
hes more than 800 thousand nodes; buteventually it settles down and ends up with size 584,205.The desired answer turns out to be 13,343,246,232 (whi
h, of 
ourse, is a multipleof 3! = 6, be
ause ea
h permutation of the three 
olors yields a di�erent solution).(b) This question is distin
t from part (a), be
ause many 
overings (in
ludingFig. 29(b)) 
an be 3-
olored in several ways; we want to 
ount them only on
e.Suppose f(a1; b1; 
1; : : : ; am; bm; 
m) = f(x1; : : : ; x3m) is a fun
tion with ai =x3i�2, bi = x3i�1, and 
i = x3i, su
h that f(x1; : : : ; x3m) = 1 implies ai + bi + 
i � 1for 1 � i � m. Let's de�ne the un
oloring $f of f to be$f(x1; : : : ; xm) = 9y1 � � � 9y3m(f(y1; : : : ; y3m)^ (x1 = y1 + y2 + y3) ^ � � � ^ (xm = y3m�2 + y3m�1 + y3m)):



122 ANSWERS TO EXERCISES 7.1.4 BDDs instead of ZDDsKnuthbottom-upbalan
ingZDD versus BDDdan
ing links
A straightforward re
ursive subroutine will 
ompute the ZDD for $f from the ZDDfor f . This pro
ess transforms the 584,205 nodes obtained in part (a) into a ZDD ofsize 33,731, from whi
h we dedu
e the answer: 3,272,232.(The running time is 1.2 gigamems for part (a), plus 1.3 gigamems to un
olor;the total memory requirement is about 44 megabytes. A similar 
omputation based onBDDs instead of ZDDs 
ost 13:6 + 1:5 gigamems and o

upied 185 megabytes.)217. The separation 
ondition adds 4198 further 
onstraints of the form :(xi ^ xi0),where rows i and i0 spe
ify adja
ent pla
ements of 
ongruent pie
es. Applying these
onstraints while also evaluating V468j=1 S1(Xj) turned out to be a bad idea, in theauthor's experiments; even worse was an attempt to 
onstru
t a separate ZDD for thenew 
onstraints alone. Mu
h better was to build the 512,227-node ZDD as before, thento in
orporate the new 
onstraints one by one, �rst 
onstraining the variables at thelowest levels. The resulting ZDD of size 31,300,699 was �nally 
ompleted after 286gigamems of work, proving that exa
tly 7,099,053,234,102 separated solutions exist.We might also ask for strongly separated solutions, where 
ongruentpie
es are not allowed to tou
h even at their 
orners; this requirementadds 1948 more 
onstraints. There are 42,159,777,732 strongly separated
overings, found after 304 gigamems with a ZDD of size 20,659,124.(Other methods may well be better than ZDDs for this problem.)218. This is an exa
t 
over problem. For example, the matrix when n = 3 is001001010 ({{2{{2)010001001 ({3{{{3)010010010 ({2{{2{)010100100 ({1{1{{)100010001 (3{{{3{)100100010 (2{{2{{)101000100 (1{1{{{)and in general there are 3n 
olumns and �2n�12 �� �n2� rows. Consider the 
ase n = 12:The ZDD on 187 variables has 192,636 nodes. It 
an be found with a 
ost of 300megamems, using Method 4 of answer 212 (binary balan
ing); Method 5 turns out tobe 25% slower than Method 4 in this 
ase. The BDD is mu
h larger (2,198,195 nodes)and it 
osts more than 900 megamems.Thus the ZDD is 
learly preferable to the BDD for this problem, and it identi�esthe L12 = 108;144 solutions with reasonable eÆ
ien
y. (However, the \dan
ing links"te
hnique of Se
tion 7.2.2 is about four times faster, and it needs far less memory.)219. (a) 1267; (b) 2174; (
) 2958; (d) 3721; (e) 4502. (To form the ZDD for WORDS(n)we do n�1 ORs of the 7-node ZDDs for w1th2ti3t
4th5, t1th2te3tr4te5, et
.)220. (a) There is one a2 node for the des
endants of ea
h initial letter that 
an befollowed by a in the se
ond position (aargh, babel, : : : , zappy); 23 letters qualify,all ex
ept q, u, and x. And there's one b2 node for ea
h initial letter that 
an be followedby b (abbey, ebony, oboes). However, the a
tual rule isn't so simple; for example, thereare three z2 nodes, not four, be
ause of sharing between 
zars and tzars.(b) There's no v5 be
ause no �ve-letter word ends with v. (The SGB 
olle
tiondoesn't in
lude arxiv or webtv.) The three nodes for w5 arise be
ause one stands for
ases where the letters < w5 must be followed by w (aglo and many others); anothernode stands for 
ases where either w or y must follow (stra, or resa, or when we'veseen allo but not allot); and there's also a w5 node for the 
ase when unse is not
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lusion and ex
lusionKnuthjokefollowed by e or t, be
ause it must then be followed by either w or x. Similarly, thetwo nodes for x5 represent the 
ases where x is for
ed, or where the last letter must beeither x or y (following rela). There's only one y5 node, be
ause no four letters 
anbe followed by both y and z. Of 
ourse there's just one z5 node, and two sinks.221. We 
ompute, for every possible zead �, the probability that � will o

ur, andsum over all �. For de�niteness, 
onsider a zead that 
orresponds to bran
hing on r3,and suppose it represents a subfamily of 10 three-letter suÆxes. There are exa
tly�608410 �� �540810 � � 1:3� 1031 su
h zeads, and by the prin
iple of in
lusion and ex
lusionthey ea
h arise with probability Pk�1 �676k �(�1)k+1�11881376�6084k5757�10k �=�118813765757 � � 2:5�10�32. [Hint: jfr; s; t; u; v; w; x; y; zgj = 9, 676 = 262, and 6084 = 9� 262.℄ Thus su
hzeads 
ontribute about 0.33 to the total. The r3-zeads for subfamilies of sizes 1, 2, 3, 4,5, : : : , 
ontribute approximately 11.5, 32.3, 45.1, 41.9, 29.3, : : : , by a similar analysis;so we expe
t about 188.8 bran
hes on r3 altogether, on average. The grand total5Xl=1 26Xj=1 5757Xs=1��265�l(27�j)s �� �265�l(26�j)s ��
� 1Xk=1�26l�1k �(�1)k+1�265 � 265�l(27�j)k5757� sk �.� 2655757�;plus 2 for the sinks, 
omes to � 7151:986. The average z-pro�le is � (1:00, : : : , 1.00;25.99, : : : , 25.99; 188.86, : : : , 171.43; 86.31, : : : , 27.32; 3.53, : : : , 1.00; 2).222. (a) It's the set of all subsets of the words of F . (There are 50,569 su
h subwords,out of 275 = 14;348;907 possibilities. They are des
ribed by a ZDD of size 18,784,
onstru
ted from F and } via answer 205(b) at a 
ost of about 15 megamems.)(b) This formula gives the same result as F u }, be
ause every member of F
ontains exa
tly one element of ea
h Xj . But the 
omputation turns out to be mu
hslower|about 370 megamems| in spite of the fa
t that Z(X) = 132 is almost assmall as Z(}) = 131. (Noti
e that j}j = 2130 while jXj = 265 � 223:5.)(
) (F=P ) t P , where P = t1 t u3 t h5 is the pattern. (The words are tou
h,tough, truth. This 
omputation 
osts about 3000 mems with the algorithms of answer205.) Other 
ontenders for simple formulas are F \Q, where Q des
ribes the admissiblewords. If we set Q = t1 t X2 t u3 t X4 t h5, we have Z(Q) = 57 and the 
ost on
eagain is � 3000�. With Q = (t1 [ u3 [ h5) x 3, on the other hand, we have Z(Q) = 132and the 
ost rises to about 9000 mems. (Here jQj is 262 in the �rst 
ase, but 2127 inthe se
ond| reversing any intuition gained from (a) and (b)! Go �gure.)(d) F \((V1[ � � � [V5)xk). The number of su
h words is (24, 1974, 3307, 443, 9, 0)for k = (0, : : : , 5), respe
tively, from ZDDs of sizes (70, 1888, 3048, 686, 34, 1). (\Seeexer
ise 7{34 for the words F mod y1 mod y2 mod � � � mod y5," said the author wryly.)(e) The desired patterns satisfy P = (F u})\Q, where Q = ((X1[� � �[X5) x3).We have Z(Q) = 386, Z(P ) = 14221, and jP j = 19907.(f) The formula for this 
ase is tri
kier. First, P2 = F u F gives F together withall patterns satis�ed by two distin
t words; we have Z(P2) = 11289, jP2j = 21234, andjP2\Qj = 7753. But P2\Q is not the answer; for example, it omits the pattern *at
*,whi
h o

urs eight times but only in the 
ontext *at
h. The 
orre
t answer is given byP 02\Q, where P 02 = (P2nF )u}. Then Z(P 02) = 8947, Z(P 02\Q) = 7525, jP 02\Qj = 10472.(g) G1[ � � � [G5, where Gj = (F=(bj[oj))tbj). The answers are bared, bases,basis, baths, bobby, bring, busts, herbs, limbs, tribs.
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omplementary familyKnuthleft-
hild/right-sibling linksright-sibling/left-
hild linksfrontier
(h) Patterns that admit all vowels in se
ond pla
e: b*lls, b*nds, m*tes, p*
ks.(i) The �rst gives all words whose middle three letters are vowels. The se
ondgives all patterns with �rst and last letter spe
i�ed, for whi
h there's at least onemat
h with three vowels inserted. There are 30 solutions to the �rst, but only 27 tothe se
ond (be
ause, e.g., louis and luaus yield the same pattern). In
identally, the
omplementary family } n F has 2130 � 5757 members, and 46316 nodes in its ZDD.223. (a) d(�; �) + d(�; �) + d(
; �) = 5, sin
e d(�; �) = [�1 6=�1 ℄ + � � �+ [�5 6=�5 ℄.(b) Given families f , g, h, the family f� j � = h��
i for some � 2 f , � 2 g,
 2 h with � 6= �, � 6= �, 
 6= �, and � \ � \ 
 = ;g 
an be de�ned re
ursively toallow ZDD 
omputation, if we 
onsider eight variants in whi
h subsets of the inequality
onstraints are relaxed. In the author's experimental system, the ZDDs for mediansof WORDS(n) for n = (100, 1000, 5757) have respe
tively (595, 14389, 71261) nodesand 
hara
terize (47, 7310, 86153) �ve-letter solutions. Among the 86153 medianswhen n = 5757 are 
hads, stent, blogs, ditzy, phish, bling, and tet
h; in fa
t,tet
h = hfet
h tea
h totali arises already when n = 1000. (The running times ofabout (.01, 2, 700) gigamems, respe
tively, were not espe
ially impressive; ZDDs areprobably not the best tool for this problem. Still, the programming was instru
tive.)(
) When n = 100, exa
tly (1, 14, 47) medians of WORDS(n) belong to WORDS(100),WORDS(1000), WORDS(5757), respe
tively; the solution with most 
ommon words iswhile = hwhite whole stilli. When n = 1000, the 
orresponding numbers are (38,365, 1276); and when n = 5757 they are (78, 655, 4480). The most 
ommon Englishwords that aren't medians of three other English words are their, first, and right.224. Every ar
 u��! v of the dag 
orresponds to a vertex v of the forest. The ZDDhas exa
tly one bran
h node for every ar
. The LO pointer of that node leads to theright sibling of the 
orresponding vertex v, or to ? if v has no right sibling. The HIpointer leads to the left 
hild of v, or to > if v is a leaf. The ar
s 
an be ordered inmany ways (e.g., preorder, postorder, level order), without 
hanging this ZDD.225. As in exer
ise 55, we try to number the verti
es in su
h a way that the \frontier"between early and late verti
es remains fairly small; then we needn't remember toomu
h about what de
isions were made on the early verti
es. In the present 
ase wealso want the sour
e vertex s to be number 1.In answer 55, the relevant state from previous bran
hes 
orresponded to anequivalen
e relation (a set partition); but now we express it by a table mate[i℄ forj � i � l, where j = uk is the smaller vertex of the 
urrent edge uk��� vk and wherel = maxfv1; : : : ; vk�1g. Let mate[i℄ = i if vertex i is untou
hed so far; let mate[i℄ = 0if vertex i has been tou
hed twi
e already. Otherwise mate[i℄ = r and mate[r℄ = i, ifprevious edges form a simple path with endpoints fi; rg. Initially we set mate[i℄ i for1 � i � n, ex
ept that mate[1℄ t and mate[t℄ 1. (If t > l, the value of mate[t℄ neednot be stored, be
ause it 
an be determined from the values of mate[i℄ for j � i � l.)Let j0 = uk+1 and l0 = maxfv1; : : : ; vkg be the values of j and l after edge khas been 
onsidered; and suppose uk = j, vk = m, mate[j℄ = |̂, mate[m℄ = m̂. We
annot 
hoose edge j���m if |̂ = 0 or m̂ = 0. Otherwise, if |̂ 6= m, the new mate tableafter 
hoosing edge j ���m 
an be 
omputed by doing the assignments mate[j℄  0,mate[m℄ 0, mate[|̂℄ m̂, mate[m̂℄ |̂ (in that order).Otherwise we have |̂ = m and m̂ = j; we must 
ontemplate the endgame. Leti be the smallest integer su
h that i > j, i 6= m, and either i > l0 or mate[i℄ 6= 0 andmate[i℄ 6= i. The new state after 
hoosing edge j���m is ; if i � l0, otherwise it is �.



7.1.4 ANSWERS TO EXERCISES 125 Hamiltoniangenerating fun
tionstandard deviationvarian
eWhether or not the edge is 
hosen, the new state will be ; if mate[i℄ 6= 0 andmate[i℄ 6= i for some i in the range j � i < j0.For example, here are the �rst steps for paths from 1 to 9 in a 3�3 grid (see (132)):k j l m mate[1℄ : : :mate[9℄ |̂ m̂ mate 0[1℄ : : :mate 0[9℄1 1 1 2 9 2 3 4 5 6 7 8 1 9 2 0 9 3 4 5 6 7 8 22 1 2 3 9 2 3 4 5 6 7 8 1 9 3 0 2 9 4 5 6 7 8 32 1 2 3 0 9 3 4 5 6 7 8 2 0 3 |3 2 3 4 0 2 9 4 5 6 7 8 3 2 4 0 4 9 2 5 6 7 8 33 2 3 4 0 9 3 4 5 6 7 8 2 9 4 0 0 3 9 5 6 7 8 4where mate 0 des
ribes the next state if edge j ���m is 
hosen. The state transitionsmatej::l 7! mate 0j0::l0 are 9 7! (12? 92: 09); 92 7! (13? ;: 29); 09 7! (13? 93: ;);29 7! (24? 294: 492); 93 7! (24? 934: 039).After all rea
hable states have been found, the ZDD 
an be obtained by redu
ingequivalent states, using a pro
edure like Algorithm R. (In the 3 � 3 grid problem,57 bran
h nodes are redu
ed to 28, plus two sinks. The 22-bran
h ZDD illustrated inthe text was obtained by subsequently optimizing with exer
ise 197.)226. Just omit the initial assignments `mate[1℄ t, mate[t℄ 1.'227. Change the test `mate[i℄ 6= 0 and mate[i℄ 6= i' to just `mate[i℄ 6= 0' in two pla
es.Also, 
hange `i � l0' to `i � n'.228. Use the previous answer with the following further 
hanges: Add a dummy vertexd = n+1, with new edges v���d for all v 6= s; a

epting this new edge will mean \endat v." Initialize the mate table with mate[1℄  d, mate[d℄  1. Leave d out of themaximization when 
al
ulating l and l0. When beginning to examine a stored matetable, start with mate[d℄ 0 and then, if en
ountering mate[i℄ = d, set mate[d℄ i.229. 149,692,648,904 of the latter paths go from VA to MD; graph (133) omits DC.(However, the graphs of (18) have fewer Hamiltonian paths than (133), be
ause (133)has 1,782,199 Hamiltonian paths from CA to ME that do not go from VA to MD.)230. The unique minimum and maximum routes from ME both end at WA:
11698 miles; 18040 miles.Let g(z) = P zmiles(r), summed over all routes r. The average 
ost, g0(1)=g(1) =1022014257375=68656026 � 14886:01, 
an be 
omputed rapidly as in answer 29.(Similarly, g00(1) = 15243164303013274, so the standard deviation is � 666:2.)231. The algorithm of answer 225 gives a proto-ZDD with 8,062,831 bran
h nodes; itredu
es to a ZDD with 3,024,214 bran
hes. The number of solutions, via answer 208,is 50,819,542,770,311,581,606,906,543.232. With answer 227 we �nd h = 721,613,446,615,109,970,767 Hamiltonian pathsfrom a 
orner to its horizontal neighbor, and d = 480,257,285,722,344,701,834 of themto its diagonal neighbor; in both 
ases the relevant ZDD has about 1.3 million nodes.The number of oriented Hamiltonian 
y
les is 2h+ d = 1,923,484,178,952,564,643,368.(Divide by 2 to get the number of undire
ted Hamiltonian 
y
les.)
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-digraphnotation f - gnotation f . gCoudertMadreFraisseOkunoMinatoIsozakiBoolean fun
tions versus families of setsBoolean dualnotation

Essentially only two king's tours a
hieve the maximal length 8 + 56p2:
:

233. A similar pro
edure 
an be used but with mate[i℄ = r and mate[r℄ = �i whenthe previous 
hoi
es de�ne an oriented path from i to r. Pro
ess all ar
s uk��!vk anduk ��vk 
onse
utively when uk = j < vk = m. De�ne |̂ = �j if mate[j℄ = j, otherwise|̂ = mate[j℄. Choosing j��!m is illegal if |̂ � 0 or m̂ � 0. The updating rule for that
hoi
e, when legal, is: mate[j℄ 0, mate[m℄ 0, mate[�|̂℄ m̂, mate[m̂℄ |̂.234. The 437 oriented 
y
les 
an be represented by a ZDD of � 800 nodes. The short-est are, of 
ourse, AL��!LA��!AL and MN��!NM��!MN. There are 37 of length 17 (themaximum), su
h as (ALARINVTNMIDCOKSC)| i.e., AL��!LA��!� � ���!SC��!CA��!AL.In
identally, the dire
ted graph in question is the ar
-digraphD� of the digraphDon 26 verti
es fA; B; : : : ; Zg whose 49 ar
s are A��!L, A��!R, : : : , W��!Y. Every orientedwalk of D� is an oriented walk of D, and 
onversely (see exer
ise 2.3.4.2{21); but theoriented 
y
les of D� are not ne
essarily simple in D. In fa
t, D has only 37 oriented
y
les, the longest of whi
h is unique: (ARINMOKSDC).If we extend 
onsideration to the 62 postal 
odes in exer
ise 7{54(
), the numberof oriented 
y
les rises to 38336, in
luding the unique 1-
y
le (A), as well as 192 thathave length 23, su
h as (APRIALASCTNMNVINCOKSDCA). About 17000 ZDD nodes suÆ
eto 
hara
terize the entire family of oriented 
y
les in this 
ase.235. The digraph has 7912 ar
s; but we 
an prune them dramati
ally by removingar
s from verti
es of in-degree zero, or ar
s to verti
es of out-degree zero. For example,owner��!nerdy goes away, be
ause nerdy is a dead end; in fa
t, all su

essors of ownerare likewise eliminated, so 
rown is out too. Eventually we're left with only 112 ar
samong 85 words, and the problem 
an basi
ally be done by hand.There are just 74 oriented 
y
les. The unique shortest one, slant��! antes��!tesla��!slant, 
an be abbreviated to `(slante)' as in the previous answer. The twolongest are (�!) and (�!), where � = pi
astepsomaso, � = pointrotherema, and! = ni
adrearedidoserumoreli
iteslabsitaresetuplena
tori
edareruni
hesto.236. (a) Suppose � 2 f and � 2 g. If � � �, then � 2 f u g. If � \ � 2 f, then�\� =2 f%g. A similar argument, or the use of part (b), shows that f&g = f n (f tg).Notes: The 
omplementary operations \f - g = f n (f & g) = f� 2 f j � � �for some � 2 gg" for supersets, and \f . g = f n (f % g) = f� 2 f j � � � for some� 2 gg" for subsets, are also important in appli
ations. They were omitted from thisexer
ise only be
ause �ve operations are already rather intimidating. The supersetoperation was introdu
ed by O. Coudert, J. C. Madre, and H. Fraisse [ACM/IEEEDesign Automation Conferen
e 30 (1993), 625{630℄. The identity f - g = f \ (f t g)was noted by H. G. Okuno, S. Minato, and H. Isozaki [Information Pro
essing Letters66 (1998), 195{199℄, who also listed several of the laws in (d).(b) Elementary set theory suÆ
es. (The �rst six identities appear in pairs, ea
hof whi
h is equivalent to its mate. Stri
tly speaking, fC involves in�nite sets, and Uis the AND of in�nitely many variables; but the formulas hold in any �nite universe.Noti
e that, when 
ast in the language of Boolean fun
tions, fC(x) = f(�x) is the
omplement of fD, the Boolean dual; see exer
ise 7.1.1{2. Is there any use for the dualof f ℄, namely f� j � 2 f implies � [ � 6= Ug"? If so, we might denote it by f [.)
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lutterpower set}hypergraphre
urren
esCoudertKnuth
ontiguous USA
a
hinggarbage-
olle
tion
(
) All true ex
ept (ii), whi
h should have said that x"1 = xC#C1 = �x#C1 = �C = U .(d) The \identities" to 
ross out here are (ii), (viii), (ix), (xiv), and (xvi); theothers are worth remembering. Regarding (ii){(vi), noti
e that f = f" if and only iff = f#, if and only if f is a 
lutter. Formula (xiv) should be f & g# = f & g, the dualof (xiii). Formula (xvi) is almost right; it fails only when f = ; or g = ;. Formula (ix)is perhaps the most interesting: We a
tually have f ℄℄ = f if and only if f is a 
lutter.(e) Assuming that the universe of all verti
es is �nite, we have (i) f = }& g and(ii) g = (} n f)#, where } is the universal family of exer
ises 201 and 222, be
ause g isthe family of minimal dependent sets. (Purists should substitute }V = Fv2V (� [ ev)for } in these formulas. The same relations hold in any hypergraph for whi
h no edgeis 
ontained in another.)237. MAXMAL(f) = \If f = ; or f = �, return f . If f" = r is 
a
hed, return r. Oth-erwise set r  MAXMAL(fl), rh  MAXMAL(fh), rl  NONSUB(r; rh), dereferen
e r,and r  ZUNIQUE(fv; rl; rh); 
a
he and return r."MINMAL(f) = \If f = ; or f = �, return f . If f# = r is 
a
hed, return r. Oth-erwise set rl  MINMAL(fl), r  MINMAL(fh), rh  NONSUP(r; rl), dereferen
e r,and r  ZUNIQUE(fv; rl; rh); 
a
he and return r."NONSUB(f; g) = \If g = ;, return f . If f = ; or f = � or f = g, return ;.If f % g = r is 
a
hed, return r. Otherwise represent f and g as in (52). If v < gv ,set rl  NONSUB(fl; g), rh  fh, and in
rease REF(fh) by 1; otherwise set rh  NONSUB(fl; gl), r  NONSUB(fl; gh), rl  AND(r; rh), dereferen
e r and rh, and setrh  NONSUB(fh; gh). Finally r  ZUNIQUE(v; rl; rh); 
a
he and return r."NONSUP(f; g) = \If g = ;, return f . If f = ; or g = � or f = g, return ;.If fv > gv, return NONSUP(f; gl). If f & g = r is 
a
hed, return r. Otherwise setv = fv. If v < gv , set rl  NONSUP(fl; g) and rh  NONSUP(fh; g); otherwise setrl  NONSUP(fh; gh), r  NONSUP(fh; gl), rh  AND(r; rl), dereferen
e r and rl,and set rl  NONSUP(fl; gl). Finally r  ZUNIQUE(v; rl; rh); 
a
he and return r."CROSS(f) = \If f = ;, return �. If f = �, return ;. If f ℄ = r is 
a
hed,return r. Otherwise set r  OR(fl; fh), rl  CROSS(r), dereferen
e r, r  CROSS(fl),rh  NONSUP(r; rl), dereferen
e r, and r  ZUNIQUE(fv; rl; rh); 
a
he and return r."As in exer
ise 206, the worst-
ase running times of these routines are unknown.Although NONSUB and NONSUP 
an be 
omputed via JOIN or MEET and BUTNOT,by exer
ise 236(a), this dire
t implementation tends to be faster. It may be preferableto repla
e `f = �' by `� 2 f ' in MINMAL and CROSS; also `g = �' by � 2 g' in NONSUP.[Olivier Coudert introdu
ed and implemented the operators f", f% g, and f & gin Pro
. Europ. Design and Test Conf. (IEEE, 1997), 224{228. He also gave a re
ursiveimplementation of the interesting operator f � g = (f t g)"; however, in the author'sexperiments, mu
h better results have been obtained without it. For example, if f isthe 177-node ZDD for the independent sets of the 
ontiguous USA, the operation g  JOIN(f; f) 
osts about 350 kilomems and h MAXMAL(g) 
osts about 3.6 megamems;but more than 69 gigamems are needed to 
ompute h  MAXJOIN(f; f) all at on
e.Improved 
a
hing and garbage-
olle
tion strategies may, of 
ourse, 
hange the pi
ture.℄238. We 
an 
ompute the 177-node ZDD for the family f of independent sets, usingthe ordering (104), in two ways: With Boolean algebra (67), f = :Wu��v(xu ^ xv);the 
ost is about 1.1 megamems with the algorithms of answers 198{201. With familyalgebra, on the other hand, we have f = } & Wu��v(eu t ev) by exer
ise 236(e); the
ost, via answer 237, is less than 175 kilomems.
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tionsmaximum versus maximalBergeThe subsets that give 2-
olorable and 3-
olorable subgraphs are g = f t f andh = g t f , respe
tively; the maximal ones are g" and h". We have Z(g) = 1009,Z(g") = 3040, Z(h) = 179, Z(h") = 183, jgj = 9,028,058,789,780, jg"j = 2,949,441,jhj = 543,871,144,820,736, and jh"j = 384. The su

essive 
osts of 
omputing g, g",h, and h" are approximately 350 K� (kilomems), 3.6 M�, 1.1 M�, and 230 K�. (We
ould 
ompute h" by, say, (g" t f)"; but that turns out to be a bad idea.)The maximal indu
ed bipartite and tripartite subgraphs have the respe
tivegenerating fun
tions 7654z25 + � � � + 9040z33 + 689z34 and 128z43 + 84z44 + 112z45 +36z46 + 24z47. Here are typi
al examples of the smallest and largest:
(Compare with the smallest and largest \1-partite" subgraphs in 7{(61) and 7{(62).)Noti
e that the families g and h tell us exa
tly whi
h indu
ed subgraphs 
an be2-
olored and 3-
olored, but they don't tell us how to 
olor them.239. Sin
e h = ((e1 [ � � � [ e49) x 2) n g is the set of nonedges of G, the 
liques aref = }& h, and the maximal 
liques are f". For example, we have Z(f) = 144 for the214 
liques of the USA graph, and Z(f") = 130 for the 60 maximal ones. In this 
asethe maximal 
liques 
onsist of 57 triangles (whi
h are easily visible in (18)), togetherwith three edges that aren't part of any triangle: AZ���NM, WI���MI, NH���ME.Let fk des
ribe the sets 
overable by k 
liques. Then f1 = f, and fk+1 = fk t ffor k � 1. (It's not a good idea to 
ompute f16 as f8 t f8; mu
h faster is to do ea
hjoin separately, even if the intermediate results are not of interest.)The maximum elements of fk in the USA graph have sizes 3, 6, 9, : : : , 36, 39,41, 43, 45, 47, 48, 49 for 1 � k � 19; these maxima 
an readily be determined by hand,in a small graph su
h as this. But the question of maximal elements is mu
h moresubtle, and ZDDs are probably the best tool for investigating them. The ZDDs forf1, : : : , f19 are qui
kly found after about 30 megamems of 
al
ulation, and they aren'tlarge: maxZ(fk) = Z(f11) = 9547. Another 400 megamems produ
es the ZDDs forf"1 , : : : , f"19, whi
h likewise are small: maxZ(f"k ) = Z(f"11) = 9458.We �nd, for example, that the generating fun
tion for f"18is 12z47 + 13z48; eighteen 
liques suÆ
e to 
over all but one ofthe 49 verti
es, if we leave out CA, DC, FL, IL, LA, MI, MN, MT,SC, TN, UT, WA, or WV. There also are twelve 
ases where we 
anmaximally 
over 47 verti
es; for example, if all but NE and NM are
overed by 18 
liques, then neither of those states are 
overed. An unusual example ofmaximal 
lique 
overing is illustrated here: If the 29 \bla
k" states are 
overed by 12
liques, none of the \white" states will also be 
overed.240. (a) In fa
t, the subformula f(x) = Vv(xv _Wu��v xu) of (67) pre
isely 
hara
ter-izes the dominating sets x. And if any element of a kernel is removed, it isn't dominatedby the others. [C. Berge, Th�eorie des graphes et ses appli
ations (1958), 44.℄(b) The Boolean formula of part (a) yields a ZDD with Z(f) = 888 after about1.5 M� of 
omputation; then another 1.5 M� with the MINMAL algorithm of answer237 gives the minimal elements, with Z(f#) = 2082.A more 
lever way is to start with h = Wv(ev tFu��v eu), and then to 
omputeh℄, be
ause h℄ = f#. However, 
leverness doesn't pay in this 
ase: About 80 K� suÆ
eto 
ompute h, but the 
omputation of h℄ by the CROSS algorithm 
osts about 350 M�.
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tionkernels8-queens problemno three queens in a straight lineLoydde Jaenis
hDudeneyDudeneyvon SzilyAhrens
Either way, we dedu
e that there are exa
tly 7,798,658 minimal dominating sets.More pre
isely, the generating fun
tion has the form 192z11+58855z12+� � �+4170z18+40z19 (whi
h 
an be 
ompared to 80z11 + 7851z12 + � � �+ 441z18 + 18z19 for kernels).(
) Pro
eeding as in answer 239, we 
an determine the sets of verti
es dk that aredominated by subsets of size k = 1, 2, 3, : : : , be
ause dk+1 = dk t d1. Here it's mu
hfaster to start with d1 = } u h instead of d1 = h, even thoughZ(}uh) = 313 while Z(h) = 213, be
ause we aren't interested indetails about the small-
ardinality members of dk. Using the fa
tthat the generating fun
tion for d7 is � � �+61z42+z43, one 
an ver-ify that the illustrated solution is unique. (Total 
ost � 300 M�.)241. Let g the family of all 728 edges. Then, as in previous exer
ises, f = } & g isthe family of independent sets, and the 
liques are 
 = }& (((Sv ev) x 2) n g). We haveZ(g) = 699, Z(f) = 20244, Z(
) = 1882.(a) Among jf j = 118969 independent sets, there are jf"j = 10188 kernels, withZ(f") = 8577 and generating fun
tion 728z5+6912z6+2456z7+92z8. The 92 maximumindependent sets are the famous solutions to the 
lassi
 8-queens problem, whi
h weshall study in Se
tion 7.2.2; example (C1) is the only solution with no three queens in astraight line, as noted by Sam Loyd in the Brooklyn Daily Eagle (20 De
ember 1896).The 728 = 91�8 minimum kernels were �rst listed by C. F. de Jaenis
h, Trait�e des ap-pli
ations de l'analyse math. au jeu des �e
he
s 3 (1863), 255{259, who as
ribed them to\Mr de R���." The upper left queen in (C0) 
an be repla
ed by king, bishop, or pawn,still dominating every open square [H. E. Dudeney, The Weekly Dispat
h (3 De
 1899)℄.Q Q QQ Q(C0)

Q Q
Q Q(C2)

QQQ
QQ(C4)

QQQQQ (C6)
Q Q QQ Q
q qq q q

(C8)Q Q QQ QQ QQ(C1)
QQQQQQQQ

(C3)
Q QQ QQ QQ QQ Q Q

(C5)
QQQQQQ Q

(C7)
Q Q QQ QQ QQ

qqq qq qq q(C9)(b) Here Z(
") = 866; the 310 maximal 
liques are des
ribed in exer
ise 7{129.(
) These subsets are 
omputationally more diÆ
ult: The ZDD for all dominatingsets d has Z(d) = 12,663,505, jdj = 18,446,595,708,474,987,957; the minimal ones haveZ(d#) = 11,363,849, jd#j = 28,281,838, and generating fun
tion 4860z5 + 1075580z6 +14338028z7+11978518z8+873200z9+11616z10+36z11. One 
an 
ompute the ZDD for din 1.5 G� by Boolean algebra, and then the ZDD for d# in another 680 G�; alternatively,the \
lever" approa
h of answer 240 obtains d# in 775 G� without 
omputing d. The11-queen arrangement in (C5) is the only su
h minimal dominating set that is 
on�nedto three rows. H. E. Dudeney presented (C4), the only 5-queen solution that avoids the
entral diamond, in Tit Bits (1 Jan 1898), 257. The set of all 4860 minimum solutionswas �rst enumerated by K. von Szily [Deuts
he S
ha
hzeitung 57 (1902), 199℄; his 
om-plete list appears in W. Ahrens, Math. Unterhaltungen und Spiele 1 (1910), 313{318.
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kayneMynhardtkernels3-regular hypergraphindependent subsets of a hypergraphfamily algebraDudeneysymmetryAdenaHoltonKellyAinleyGardnerin�nite setsHorn fun
tionre
urren
e

(d) Here it suÆ
es to 
ompute (
 \ d)# instead of 
 \ (d#), if we don't alreadyknow d#, be
ause 
u} = 
. We have Z(
\d#) = 342 and j
\d#j = 92, with generatingfun
tion 20z5 + 56z6 + 16z7. On
e again, Dudeney was �rst to dis
over all 20 of the5-queen solutions [The Weekly Dispat
h (30 July 1899)℄.(e) We have Z(f t f) = 91,780,989 at a 
ost of 24 G�; then Z((f t f)") =11,808,436 after another 290 G�. There are 27,567,390 maximal indu
ed bipartite sub-graphs, with generating fun
tion 109894z10+2561492z11+13833474z12+9162232z13+1799264z14+99408z15+1626z16. Any 8 independentqueens 
an be 
ombined with their mirror re
e
tionto obtain a 16-queen solution, as (C1) yields (C9).But the disjoint union of minimum kernels is not al-ways a maximal indu
ed bipartite subgraph; for ex-ample, 
onsider the union of (C0) with its re
e
tion:
Q Q QQ Q

qqq qq � Q Q QQQ Q Q
qqq q qqq .

Parts (a), (b), (d), and possibly (
) 
an be solved just as well without the useof ZDDs; see, for example, exer
ise 7.1.3{132 for (a) and (b). But the ZDD approa
hseems best for (e). And the 
omputation of all the maximal tripartite subgraphs of Q8may be beyond the rea
h of any feasible algorithm.[In larger queen graphs Qn, the smallest kernels and the minimum dominatingsets are ea
h known to have sizes either dn=2e or dn=2e + 1 for 12 � n � 120. SeeP. R. J. �Osterg�ard and W. D. Weakley, Ele
troni
 J. Combinatori
s 8 (2001), #R29;D. Finozhenok and W. D. Weakley, Australasian J. Combinatori
s 37 (2007), 295{200.The largest minimal dominating sets have been investigated by A. P. Burger, E. J.Co
kayne, and C. M. Mynhardt, Dis
rete Mathemati
s 163 (1997), 47{66.℄242. These are the kernels of an interesting 3-regular hypergraph with 1544 edges. Its4,113,975,079 independent subsets f (that is, its subsets with no three 
ollinear points)have Z(f) = 52,322,105, 
omputable with about 12 gigamems using family algebraas in answer 236(e). Another 575 G� will 
ompute the kernels f", for whi
h we haveZ(f") = 31,438,750 and jf"j = 66,509,584; the generating fun
tion is 228z8+8240z9+728956z10+9888900z11+32215908z12+20739920z13+2853164z14+73888z15+380z16.
[The problem of �nding an independent set of size 16 was �rst posed by H. E. Dudeneyin The Weekly Dispat
h (29 Apr 1900 and 13 May 1900), where he gave the leftmostpattern shown above. Later, in the London Tribune (7 Nov 1906), Dudeney askedpuzzlists to �nd the se
ond pattern, whi
h has two points in the 
enter. The full set ofmaximum kernels, in
luding 51 that are distin
t under symmetry, was found by M. A.Adena, D. A. Holton, and P. A. Kelly, Le
ture Notes in Math. 403 (1974), 6{17, whoalso noted the existen
e of an 8-point kernel. The middle pattern above is the only su
hkernel with all points in the 
entral 4 � 4. The other two patterns yield kernels thathave respe
tively (8; 8; 10; 10; 12; 12; 12) points in n�n grids for n = (8; 9; : : : ; 14); theywere found by S. Ainley and des
ribed in a letter to Martin Gardner, 27 O
t 1976.℄243. (a) This result is readily veri�ed even for in�nite sets. (Noti
e that, as a Booleanfun
tion, f\ is the least Horn fun
tion that is � f , by Theorem 7.1.1H.)(b) We 
ould form f (2) = f uf , then f (4) = f (2)uf (2), : : : , until f (2k+1) = f (2k),using exer
ise 205. But it's faster to devise a re
urren
e that goes to the limit all aton
e. If f = f0 [ (e1 t f1) we have f\ = f 0 [ (e1 t f\1 ), where f 0 = f\0 [ (f\0 u f\1 ).



7.1.4 ANSWERS TO EXERCISES 131 MinatoArimuraZ-transformsFredmanKha
hiyanDughmiPostbasesmatroid
[An alternative formula is f 0 = (f0 [ f1)\ n (f\1 % f0); see S. Minato and H. Arimura,Transa
tions of the Japanese So
iety for Arti�
ial Intelligen
e 22 (2007), 165{172.℄(
) With the �rst suggestion of (b), the 
omputation of F (2), F (4), and F (8) =F (4) 
osts about (610 + 450 + 460) megamems. In this example it turns out thatF (4) = F (3), and that just three patterns belong to F (3) n F (2), namely 
***f, *k*t*,and ***sp. (The words that mat
h ***sp are 
lasp, 
risp, and grasp.) A dire
t
omputation of F\ using the re
urren
e based on f\0 u f\1 
osts only 320 M�; andin this example the alternative re
urren
e based on (f0 [ f1)\ 
osts 470 M�. Thegenerating fun
tion is 1 + 124z + 2782z2 + 7753z3 + 4820z4 + 5757z5.244. To 
onvert Fig. 22 from a BDD to a ZDD, we add appropriate nodes with LO = HIwhere links jump levels, obtaining the z-pro�le (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). To
onvert it from a ZDD to a BDD, we add nodes in the same pla
es, but with HI = ? ,obtaining the pro�le (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). (In fa
t, the 
onne
tedness fun
tionand the spanning tree fun
tion are Z-transforms of ea
h other; see exer
ise 192.)245. See exer
ise 7.1.1{26. (It should be interesting to 
ompare the performan
e ofthe Fredman{Kha
hiyan algorithm in exer
ise 7.1.1{27 with the ZDD-based algorithmCROSS in answer 237, on a variety of di�erent fun
tions.)246. If a non
onstant fun
tion doesn't depend on x1, we 
an repla
e x1 in the formulasby xv, as in (50). Let P and Q be the prime impli
ants of fun
tions p and q. (Forexample, if P = e2 [ (e3 t e4) then p = x2 _ (x3 ^ x4).) By (137) and indu
tion on jf j,the fun
tion f des
ribed in the theorem is sweet if and only if p and q are sweet andPI(f0) \ PI(f1) = ;. The latter equality holds if and only if p � q.247. We 
an 
hara
terize them with BDDs as in (49) and exer
ise 75; but this time�n(x1; : : : ; x2n) = �n�1(x1; : : : ; x2n�1) ^�(�x2 ^ � � � ^ �x2n) _ ��n�1(x2; : : : ; x2n) ^ 2k�1̂j=0 ��x2j+1 __i�j x2i+2���:The answers j�nj for 0 � n � 7 are (2, 3, 6, 18, 106, 2102, 456774, 7108935325). (This
omputation builds a BDD of size B(�7) = 7,701,683, using about 900 megamems and725 megabytes altogether.)248. False; for example, (x1_x2)^(x2_x3) isn't sweet. (But the 
onjun
tion is sweetif f and g depend on disjoint sets of variables, or if x1 is the only variable on whi
hthey both depend.)249. (Solution by Shaddin Dughmi and Ian Post.) A nonzero monotone Booleanfun
tion is ultrasweet if and only if its prime impli
ants are the bases of a matroid; seeSe
tion 7.6.1. By extending answer 247 we 
an determine the number of ultrasweetfun
tions f(x1; : : : ; xn) for 0 � n � 7: (2, 3, 6, 17, 69, 407, 3808, 75165).250. Exhaustive analysis shows that ave B(f) = 76726=7581 � 10:1; ave Z(PI(f)) =71513=7581 � 9:4; Pr(Z(PI(f)) > B(f)) = 151=7581 � :02; and max Z(PI(f))=B(f) =8=7 o

urs uniquely when f is (x1^x4) _ (x1^x5) _ (x2^x3^x4) _ (x2^x5).251. More strongly, 
ould it be that lim supZ(PI(f))=B(f) = 1?252. The ZDD should des
ribe all words on fe1; e01; : : : ; en; e0ng that have exa
tly junprimed letters and k � j primed letters, and no o

urren
es of both ei and e0i in thesame word, for some set of pairs (j; k). For example, if n = 9 and f(x) = v�x, wherev = 110111011, the pairs are (0; 8), (3; 6), and (8; 8). Regardless of the set of pairs, the
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z-pro�le elements will all be O(n2), hen
e Z(PI(f)) = O(n3). (We order the variablesso that xi and x0i are adja
ent.) And f(x) = Sbn=3
;:::;b2n=3
(x) has Z(PI(f)) = 
(n3).253. Let I(f) be the family of all impli
ants of f ; then PI(f) = I(f)#. The formulaI(f) = I(f0 ^ f1) [ (e01tI(f0)) [ (e1tI(f1)) is easy to verify. Thus I(f)# = A [ (e01 t(PI(f0) & A)) [ (e1 t (PI(f1) & A)), as in exer
ise 237. But PI(f0) & A = PI(f0) n A,sin
e A � I(f).[This re
urren
e for prime impli
ants is due to O. Coudert and J. C. Madre,ACM/IEEE Design Automation Conf. 29 (1992), 36{39. Partial results had previouslybeen formulated by B. Reus
h, IEEE Trans. C{24 (1975), 924{930.℄254. By (53) and (137), we need to show that PI(gh) nPI(fh [ gl) = (PI(gh)nPI(gl)) n(PI(fh)nPI(fl)). But both of these are equal to PI(gh) n (PI(fh) [ PI(gl)), be
ausefl � fh � gh and fl � gl � gh.[This re
urren
e produ
es a ZDD dire
tly from the BDDs for f and g, and ityields PI(g) when f = 0. Thus it is easier to implement than (137), whi
h requires alsothe set-di�eren
e operator on ZDDs. And it sometimes runs mu
h faster in pra
ti
e.℄255. (a) A typi
al item � like e2 t e5 t e6 has a very simple ZDD. We 
an readilydevise a BUMP routine that sets g  g � � and returns [�2 g ℄, given ZDDs g and �.To insert � into the multifamily f , start with k  
  0; then while 
 = 0, set
  BUMP(fk) and k  k + 1. To delete �, assuming that it is present, start withk  0 and 
 1; while 
 = 1, set 
 BUMP(fk) and k  k + 1.(b) Suppose fk and gk are ; for k � m. Set k  0 and t  ; (the ZDD ? ).While k < m, set hk  fk � gk � t and t hfkgk ti. Finally set hm  t.[This representation and its insertion algorithm are due to S. Minato and H. Ari-mura, Pro
. Workshop, Web Information Retrieval and Integration (IEEE, 2005), 3{10.℄256. (a) Re
e
t the binary representation from left to right, and append 0s until thenumber of bits is 2n for some n. The result is the truth table of the 
orrespondingBoolean fun
tion f(x1; : : : ; xn), with xk 
orresponding to 22n�k 2 U . When x = 41,for example, 10010100 is the truth table of (x1^�x2^x3) _ (�x1^x2^x3) _ (�x1^�x2^�x3).(b) If x < 22n , we have Z(x) � Un = O(2n=n), by (79) and exer
ise 192.(
) There's a simple re
ursive routine ADD(x; y; 
), whi
h takes a \
arry bit" 
and pointers to the ZDDs for x and y and returns a pointer to the ZDD for x+ y + 
.This routine is invoked at most 4Z(x)Z(y) times.(d) We 
annot 
laim that Z(x .� y) = O(Z(x)Z(y)), be
ause Z(x .� y) = n + 1and Z(x) = 3 and Z(y) = 1 when x = 22n and y = 1. But by 
omputing x .� y =(x + 1 + ((22n � 1) � y)) � 22n when y � x < 22n , we 
an show that Z(x .� y) =O(Z(x)Z(y) log log x). (See the ZDD nodes tj in answer 201.) So the answer is \yes."(e) No. For example, if x = (222k+k � 1)=(22k � 1), we have Z(x) = 2k + 1 butZ(x2) = 3 � (22k � 1) = U2k+k+1 � 2, where U2k+k+1 is the largest possible ZDD sizefor numbers with lg lg x2 < 2k + k + 1 (see part (b)).[This exer
ise was inspired by Jean Vuillemin, who began to experiment withsu
h sparse integers about 1993. Unfortunately the numbers that are of greatest im-portan
e in 
ombinatorial 
al
ulations, su
h as Fibona

i numbers, fa
torials, binomial
oeÆ
ients, et
., rarely turn out to be sparse in pra
ti
e.℄257. See Pro
. Europ. Design and Test Conf. (IEEE, 1995), 449{454. With signed 
oef-�
ients one 
an use f�2; 4;�8; : : : g instead of f2; 4; 8; : : : g, as in negabinary arithmeti
.[In the spe
ial 
ase where the degree is at most 1 in ea
h variable and whereaddition is done modulo 2, the polynomials of this exer
ise are equivalent to the
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multilinear representations of Boolean fun
tions (see 7.1.1{(19)), and the ZDDs areequivalent to \binary moment diagrams" (BMDs). See R. E. Bryant and Y.-A. Chen,ACM/IEEE Design Automation Conf. 32 (1995), 535{541.℄258. If n is odd, the BDD must depend on all its variables, and there must be at leastdlgne of them. Thus B(f) � dlgne+2 when n > 1, and the skinny fun
tions of exer
ise170(
) a
hieve this bound. If n is even, add an unused variable to the solution for n=2.The ZDD question is easily seen to be equivalent to �nding a shortest addition
hain, as in Se
tion 4.6.3. Thus the smallest Z(f) for jf j = n is l(n)+1, in
luding > .259. The theory of nested parentheses (see, for example, exer
ise 2.2.1{3) tells us thatNn(x) = 1 if and only if �x1 + � � � + �xk � x1 + � � � + xk for 0 � k � 2n, with equalitywhen k = 2n. Equivalently, k � n � x1 + � � � + xk � k=2 for 0 � k � 2n. So theBDD for Nn is rather like the BDD for Sn(x), but simpler; in fa
t, the pro�le elementsare bk = bk=2
 + 1 for 0 � k � n and bk = n + 1 � dk=2e for n � k < 2n. Hen
eB(Nn) = b0 + � � � + b2n�1 + 2 = �n+22 � + 1. The z-pro�le has zk = bk � [k even℄ for0 � k < 2n, be
ause of HI bran
hes to ? on even levels; hen
e Z(Nn) = B(Nn)� n.[An interesting BDD base for the n+1 Boolean fun
tions that 
orrespond to Cnn,C(n�1)(n+1), : : : , C0(2n) in 7.2.1.6{(21) 
an be 
onstru
ted by analogy with exer
ise 49.℄260. (a, b) Arrange the variables xn;0, xn;1, : : : , xn;n�1, xn�1;0, : : : , x1;0, from topto bottom. Then the HI bran
h from the ZDD root of Rn is the ZDD root of Rn�1.(This ordering a
tually turns out to minimize Z(Rn) for n � 6, probably also forall n.) The z-pro�le is 1, : : : , 1; n � 2, : : : , 2, 1, 1; n � 3, : : : , 2, 1, 1; : : : ; hen
eZ(Rn) = �n3� + 2n + 1 � 16n3 and Z(R100) = 161;901. The ordinary pro�le is 1, 2, 2,3, 4, : : : , n�1; n�1, 2n�4, 2n�5, : : : , n�1; n�2, 2n�6, : : : , n�2; : : : ; altogetherB(Rn) = 3�n3�+ �n+12 �+ 3 for n � 5, and B(R100) = 490;153.[See I. Semba and S. Yajima, Trans. Inf. Pro
. So
. Japan 35 (1994), 1666{1667.In
identally, the method of exer
ise 7.2.1.5{26 leads to a ZDD for set partitions that hasonly �n2� variables and �n2�+ 1 nodes. But the 
onne
tion between that representationand the partitions themselves is less dire
t, thus harder to restri
t in a natural way.℄(
) Now there are 573 variables instead of 5050 when n = 10; the number ofvariables in general is nl � 2l + 1, where l = dlg ne, by Eq. 5.3.1{(3). We examine thebits of an, an�1, : : : , with the most signi�
ant bit �rst. Then B(R0100) = 31;861, andone 
an show that B(R0n) = �n2�l� 164l� 122l��(n�1)+ l+ 83 for n > 2. The ZDD sizeis more 
ompli
ated, and appears to be roughly 60% larger; we have Z(R0100) = 50;154.261. Given a Boolean fun
tion f(x1; : : : ; xn), the set of all binary strings x1 : : : xnsu
h that f(x1; : : : ; xn) = 1 is a �nite language, so it is regular. The minimum-statedeterministi
 automaton A for this language is the QDD for f . (In general, when L isregular, the state ofA after reading x1 : : : xk a

epts the language f� j x1 : : : xk� 2 Lg.)[The quoted theorem was dis
overed in a more general 
ontext by D. A. Hu�man,Journal of the Franklin Institute 257 (1954), 161{190, and independently by E. F.Moore, Annals of Mathemati
s Studies 34 (1956), 129{153.℄An interesting example of the 
onne
tion between this theory and the theory ofBDDs 
an be found in early work by Yuri Breitbart that is summarized in DokladyAkad. Nauk SSSR 180 (1968), 1053{1055. Lemma 7 of Breitbart's paper states, in es-sen
e, that Bmin( ) = 
(2n=4), where  is the fun
tion of 2n variables x = (x1; : : : ; xn)and y = (y1; : : : ; yn) de�ned by  (x; y) = x�y � y�x, with the understanding thatx0 = y0 = 0. (Noti
e that  is sort of a \two-sided" hidden weighted bit fun
tion.)262. (a) If a denotes the fun
tion or subfun
tion f , we 
an for example let C(a) =a � 1 denote �f , assuming that ea
h node o

upies an even number of bytes. Then
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C(C(a)) = a, and a link to a denotes a nonnormal fun
tion if and only if a is odd;a&�2 always points to a node, whi
h always represents a normal fun
tion.The LO pointer of every node is even, be
ause a normal fun
tion remains normalwhen we repla
e any variable by 0. But the HI pointer of any node might be 
omple-mented, and an external root pointer to any fun
tion of a normalized BDD base mightalso be 
omplemented. Noti
e that the > sink is now impossible.(b) Uniqueness is obvious be
ause of the relation to truth tables: A bead is eithernormal (i.e., begins with 0) or the 
omplement of a normal bead.(
) In diagrams, ea
h 
omplement link is 
onveniently indi
ated by a dot:
?1 ?2

1
3 ?2

1
3 ?

1
2 ?2

1
3 ?22 ?2

1
3 ?2

1
3 ?2

1
3 ?2

1
3 ?22 ?2

1
3 ?

1
2 ?2

1
3 ?2

1
3 ?1(d) There are 22m�1�22m�1�1 normal beads of orderm. The worst 
ase, B0(f) �B0(fn) = 1 +Pn�1k=0 min(2k; 22n�k�1� 22n�k�1�1) = (Un+1 � 1)=2, o

urs with thefun
tions of answer 110. For the average normalized pro�le, 
hange 22n�k � 1 in (80)to 22n�k � 2, and divide the whole formula by 2; again the average 
ase is very 
loseto the worst 
ase. For example, instead of (81) we have(1:0; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 127:3; 103:9; 6:0; 1:0; 1:0):(e) We save > , one j6 , two j5 s, and three j4 s, leaving 45 normalized nodes.(f) It's probably best to have subroutines AND, OR, BUTNOT for the 
ase wheref and g are known to be normal, together with a subroutine GAND for the general 
ase.The routine GAND(f; g) returns AND(f; g) if f and g are even, BUTNOT(f;C(g)) if fis even but g is odd, BUTNOT(g;C(f)) if g is even but f is odd, C(OR(C(f); C(g))) iff and g are odd. The routine AND(f; g) is like (55) ex
ept that rh  GAND(fh; gh);only the 
ases f = 0, g = 0, and f = g need be tested as \obvious" values.Notes: Complement links were proposed by S. Akers in 1978, and independentlyby J. P. Billon in 1987. Although su
h links are used by all the major BDD pa
kages,they are hard to re
ommend be
ause the 
omputer programs be
ome mu
h more
ompli
ated. The memory saving is usually negligible, and never better than a fa
torof 2; furthermore, the author's experiments show little gain in running time.With ZDDs instead of BDDs, a \normal family" of fun
tions is a family thatdoesn't 
ontain the empty set. Shin-i
hi Minato has suggested using C(a) to denotethe family f � �, instead of �f , in ZDD work.263. (a) If Hx = 0 and x 6= 0, we 
an't have �x = 1 or 2 be
ause the 
olumns of Hare nonzero and distin
t. [R. W. Hamming, Bell System Te
h. J. 29 (1950), 147{160.℄(b) Let rk be the rank of the �rst k 
olumns of H, and sk the rank of the last k
olumns. Then bk = 2rk+sn�k�rn for 0 � k < n, be
ause this is the number of elementsin the interse
tion of the ve
tor spa
es spanned by the �rst k and last n� k 
olumns.In the Hamming 
ode, rk = 1+�k and sk = min(m; 2+ �(k� 1)) for k > 1; so we �ndB(f) = (n2 + 5)=2. [See G. D. Forney, Jr., IEEE Trans. IT-34 (1988), 1184{1187.℄(
) Let qk = 1�pk. MaximizingQnk=1 p[xk=yk℄k q [xk 6=yk℄k is the same as maximizingPnk=1 wkxk, where wk = (2yk � 1) log(pk=qk), so we 
an use Algorithm B.Notes: Coding theorists, beginning with unpublished work of Forney in 1967,have developed the idea of a 
ode's so-
alled trellis. In the binary 
ase, the trellis is thesame as the QDD for f , but with all nodes for the 
onstant subfun
tion 0 eliminated.(Useful 
odes have distan
e > 1; then the trellis is also the BDD for f , but with ?
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eliminated.) Forney's original motivation was to show that the de
oding algorithm ofA. Viterbi [IEEE Trans. IT-13 (1967), 260{269℄ is optimum for 
onvolutional 
odes.A few years later, L. R. Bahl, J. Co
ke, F. Jelinek, and J. Raviv [IEEE Trans. IT-20(1974), 284{287℄ extended trellis stru
ture to linear blo
k 
odes and presented furtheroptimization algorithms. See also the papers of G. B. Horn and F. R. Ks
his
hang[IEEE Trans. IT-42 (1996), 2042{2047℄; J. La�erty and A. Vardy [IEEE Trans. C-48(1999), 971{986℄.264. Pro
edures that 
ombine the \bottom-up" methods of Algorithm B with \top-down" methods that optimize over prede
essors of a node might be more eÆ
ient thanmethods that go stri
tly in one dire
tion.
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