Chapter 2

BAYESIAN INFERENCE

The purpose I mean is, to show what reason
we have for believing that there are in the
constitution of things fixed laws according to
which events happen...

— Richard Price, 1763

(Introduction to Bayes’ essay)

2.1 BASIC CONCEPTS

2.1.1 Probabilistic Formulation and Bayesian
Inversion

Bayesian methods provide a formalism for reasoning about partial beliefs under
conditions of uncertainty. In this formalism, propositions are given numerical
parameters signifying the degree of belief accorded them under some body of
knowledge, and the parameters are combined and manipulated according to the
rules of probability theory. For example, if A stands for the statement "Ted
Kennedy will seek the nomination for president in 1992," then P(A | K) stands fora
person’s subjective belief in A given a body of knowledge K, which might include

that person’s assumptions about American politics, specific proclamations made by
~ Kennedy, and an assessment of Kennedy’s past and personality. In defining belief

lals}
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expressions, we often simply write P (4) or P(—A), leaving out the symbol K. This;
abbreviation is justified when K remains constant, since the main purpose of the :@
quantifier P is to summarize K without explicating it. However, when the
background information undergoes changes, we need to identify specifically the -
assumptions that account for our beliefs and articulate explicitly K or some of its
elements. , _

In the Bayesian formalism, belief measures obey the three basic axioms of

probability theory:

i
et

0<PA)Y<1 , 2.1)
P(Sure proposition) = 1 2.2)
P(A or B) = P(A) + P(B) if A and B are mutually exclusive. 23)

The third axiom states that the belief assigned to any set of events is the sum of the
beliefs assigned to its nonintersecting components. Hence, since any event A can
be written as the union of the joint events (A and B) and (A and —B), their
associated probabilities are given by

P(A)=P(A, B) + P(A, —B), (2.4)

where P(A, B) is short for P(A and B). More generally, if B;, i = 1, 2,...,n, is a set
of exhaustive and mutually exclusive propositions (called a partition or a
variable), then P(A) can be computed from P(A, B;), i = 1, 2,...,n, using the sum

P(A)=Y P(A, B)). (2.5)

For example, the probability of A = "The outcomes of two dice are equal” can be
computed by summing over the joint events (A and B;)i =1, 2,...,6, where B;
stands for the proposition "The outcome of the first die is i,” yielding

1

1
PA) = ; P(A,B)=6x 6 -6 (2.6)

A direct consequence of Egs. (2.2) and (2.4) is that a proposition and its negation
must be assigned a total belief of unity,

PA)+P(-A) =1, | (2.7)

because one of the two statements is certain to be true.

The ‘basic expressions in the Bayesian formalism are statements about
_conditional prababilities—e.g., P(A | B)}—which specify the belief in A under the
assumption that B is known with absolute certainty. If P(A1B) = P(A), we say
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wesemwothat'A-and B-are mdependent KHPAIB C) =P(A IC), we say that A and B are

conditionally independent given C..
Contrary to the traditional practice of defining conditional probabllmes in

- terms of joint events,

Pa1B)= FE:EL P’:}}f : ex

Bayesian philosophers see the conditional relationship as more basic than that of
joint events, i.e., more compatible with the organization of human knowledge. In
" this view, B serves as a pointer to a context or frame of knowledge, and A | B stands
for an event A in the context specified by B (e.g., a symptom A in the context of a
disease B). Consequently, empirical knowledge invariably will be encoded in
conditional probability statements, while belief in joint events, if it is ever needed,
will be computed from those statements via the product

P(A, B) = P(A|B) P(B), (2.9)

which is equivalent to Eq. (2.8). For example, it was somewhat unnatural to assess

1
P(A B)) = 36

directly in Eq. (2.6). The mental process underlying such assessment presumes
that the two outcomes are independent, so to make this assumption explicit the
probability of the joint event (Equality, B;) should be assessed from the
conditional event (Equality | B;) via the product _

1
P(Equallty IB P (B ;Y =P(Outcome of second dte is i1 B;)P(B;) = —é' g = 3%
As in Eq. (2.5), the probability of any event A can be computed by conditioning
it on any set of exhaustive and mutually exclusive events B;, i = 1, 2, ...,n:
P(A) =Y, P(A1B;) P(B)). ' (2.10)

~ This decomposition provides the basis for hypothetical or "assumption-based"
-reasoning in the Bayesian formalism. It states that the belief in any event A is a
weighted sum over the beliefs in all the distinct ways that A might be realized. For
example, if we wish to calculate the probability that the outcome X of the first die
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will be greater than the outcome Y of the second, we can- condition the event
A: X > Y on all possible values of X and obtain

6
PA) =Y P(Y <XIX=i)P(X =1i)
i=1

It is worth reemphasizing that formulas like Eq. (2.10) are always understood
to apply in some larger context K, which defines the assumptions taken as common
knowledge (e.g., the faimess of dice rolling). Eq. (2.10) is really a shorthand
notation for the statement

P(AIK) =Y P(AIB;, K) P(B;|K). (2.11)

Another useful generalization of the product rule (Eq. (2.9)) is the so-called chain
rule formula. It states that if we have a set of n events, E,, E,, ...,,E,, then the
probability of the joint event (E, , E;, ..., E,) cap be written as a product of n
conditional probabilities:

P(E|,Eq, ... E)) = P(E,1E,_y, ., E3, E{) ... P(E5|E) P(E}). (2.12)

This product can be derived by repeated application of Eq. (2.9), in any convenient
order.

The heart of Bayesian techniques lies in the celebrated inversion formula,

P(Hle) = ﬂ%w, | 2.13)

which states that the belief we accord a hypothesis H upon obtaining evidence e
can be computed by multiplying our previous belief P(H) by the likelihood
P(e|H) that e will materialize if H is true. P(Hle) is sometimes called the
posterior probability (or simply posterior), and P(H) is called the prior probability
(or prior). The denominator P(e) of Eq. (2.13) hardly enters into consideration
because it is merely~ a normalizing constant P(e)= P(e'H)P(H) +
P (e | =H)P (—H), which can be computed by requiring that P(H l¢) and P(—H le)
- sum to unity. o
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- Whereas a formal mathematician might dismiss Eq. (2. 13) as a tautology
stemming from the definition of conditional probabilities,

paiBy =48 g ppiay=£E.B)

= , (2.149)
P(B) P(A)

the Bayesian subjectivist regards Eq. (2.13) as a normative rule for updating
beliefs in response to evidence. In other words, while the mathematician views
conditional probabilities” as mathematical constructs, as in Eq. (2.14), the Bayes
adherent views them as primitives of the language and as faithful translations of
the English expression "..., given that I know A." Accordingly, Eq. (2.14) is not a
definition but an empirically verifiable relationship between English expressions.
It asserts, among other things, that the belief a person attributes to B after
discovering A is never lower than that attributed to A A B before discovering A.
Also, the ratio between these two beliefs will increase proportionally with the
degree of surprise [P(A)]™! one associates with the discovery of A.

The importance of Eq. (2.13) is that it expresses a quantity P(H |e)——wh1ch
people often find hard to assess—in terms of quantities that often can be drawn
directly from our experiential knowledge. For example, if a person at the next
gambling table declares the outcome ‘‘Twelve,”” and we wish to know whether he
was rolling a pair of dice or spinning a roulette wheel, our models of the gambling

devices readily yield the quantities P(Twelve |Dice) and P(Twelve | Roulette }—
- 1/36 for the former and 1/38 for the latter. Similarly, we can judge the prior
probabilities P(Dice) and P(Roulette) by estimating the number of roulette wheels
and dice tables at the casino. Issuing a direct judgment of P(Dice |Twelve) would
- have been much more difficult; only a specialist in such judgments, trained at the
~ very same casino, could do it reliably.

To complete this brief introduction, we need to discuss the notion of
probabilistic models. ~A probabilistic model is an encoding of probabilistic
information that permits us to compute the probability of every well-formed
sentence S in accordance with the axioms of Eqs. (2.1) through (2.3). Starting with
a set of atomic propositions A, B, C,..., the set of well-formed sentences consists of
all Boolean formulas involving these propositions, e.g., S =(A vB) A—C. The
traditional method of specifying probabilistic models employs a joint distribution
function, namely, a function that assigns nonnegative weights to every elementary
event in the language (an elementary event being a conjunction in which every
atomic proposition or its negation appears once), such that the sum of the weights
adds up to 1. For example, if we have three atomic propositions, A, B, and C, a

_joint distribution function should assign nonnegative weights to all eight
combinations: (A AB AC), (A AB A=C), .., (mA A—B A=C), such that the
eight weights sum to 1.

It is sometimes convenient to view the conjunctive formulas corresponding to
elementary events as points, and to regard other formulas as sets made up of these
points. Since every Boolean formula can be expressed as a disjunction of
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elementary events, and since the elementary events-are mutually exclusive, we can
always compute P(S) using the additive axiom (Eq. (2.3)). Conditional
probabilities can be computed the same way, using Eq. (2.14). Thus, any joint
probability function represents a complete probabilistic model.

Joint distribution functions are mathematical constructs of primarily theoretical
use. They allow us to determine quickly whether we have sufficient information to
specify a complete probabilistic model, whether the information we have is
consistent, and at what point additional information is needed. The criterion is
simply to check whether the information available is sufficient for uniquely
determining the probability of every elementary event in the domain, and whether
the probablhtles addupto 1.

In practice, however, joint dlstnbutlon functions are rarely specified exphcntly
In the analysis of continuous random variables, the distribution functions are given
by algebraic expressions such as those describing normal or exponential
distributions, while for discrete variables, indirect representation methods have
been developed, where the overall distribution is inferred from local relationships
among small groups of variables. Network approaches, the most promising of
these representations, provide the basis of discussion throughout this book. Their
use will be illustrated in the following few sections, then given a more formal
treatment in Chapter 3.

2.1.2 Combining Predictive and Diagnostic
Supports

The essence of Bayes’ Rule (Eq. (2.13)) is conveniently portrayed .using the odds
and likelihood ratio parameters. Dividing Eq. (2.13) by the complementary form
for P(—H {e), we obtain '

P(Hle)  _P(elH) P(H) | (2.15)
P(~Hle)  Plel—H) P(~H) ° '

Defining the prior odds on H as

__PH) _ _PH)
OH) = Pty = 1-P(H) (2.16)

and the likelihood ratio as :
LietH) = L) B¢ 5 )

P(el-H)’
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the posterior odds
. _ . P(HIe) 218
O(Hle)_P(—lHle) (2.18)
are given by the product
O(Hle) = L(e|H) OH). ' (2.19)

Thus, Bayes’ Rule dictates that the overall strength of belief in a hypothesis H,
based on both our previous knowledge K and the observed evidence e, should be
the product of two factors: the prior odds O(H) and the likelihood ratio L(e | H).
The first factor measures the predictive or prospective support accorded to H by
the background knowledge alone, while the second represents the diagnostic or
retrospective support given to H by the evidence actually observed.

Strictly speaking, the likelihood ratio L(e | H) might depend on the content of
the tacit knowledge base K. However, the power of Bayesian techniques comes
primarily from the fact that in causal reasoning the relationship P(e |H) is fairly
local, namely, given that H is true, the probability of ¢ can be estimated naturally
and is not dependent on many other propositions in the knowledge base. For
example, once we establish that a patient suffers from a given disease H, it is
natural to estimate the probability that he will develop a certain symptom e. The
organization of medical knowledge rests on the paradigm that a symptom is a
stable characteristic of the disease and should therefore be fairly independent of
other factors, such as epidemic conditions, previous diseases, and faulty diagnostic
equipment. For this reason the conditional probabilities P(e |H), as opposed to
~ P(Hle), are the atomic relationships in Bayesian analysis. The former pos$ess
modularity features similar to logical production rules. They convey a degree of
confidence in rules such as "If H then e,” a confidence that persists regardless of
what other rules or facts reside in the knowledge base.

EXAMPLE 1: Imagine being awakened one night by the shrill sound of your burglar
alarm. What is your degree of belief that a burglary attempt has taken place? For
illustrative purposes we make the following judgments: (a) There is a 95% chance that an
attemnpted burglary will trigger the alarm system~—P(Alarm | Burglary) = 0.95; (b) based
on previous false alarms, there is a slight (1 percent) chance that the alarm will be triggered
by a mechanism other than an attempted burglary—P(Alarm |No burglary) = 0.01; (c)
previous crime patterns indicate that there is a one in ten thousand chance that a given
house will be burglarized on a given night—P{(Burglary) = 107,

Putting these assumptions together using Eq. (2.19), we obtain

- O(Burglary |Alarm) = L(Alarm | Burglary) O(Burglary)

095 107
~ 001 1-107

= 0.0095.



36 Bayesian Inference

So, from
__0@A) ‘
PA)= 1+0(A) (2.20)
we have
- 0.0095
=———— =0.00941.
P(Burglary | Alarm) 1+0.0095 941

Thus, the retrospective support imparted to the burglary hypothesis by the alarm evidence
has increased its degree of belief almost a hundredfold, from one in ten thousand to 94.1 in
ten thousand. The fact that the belief in burglary is still below 1% should not be surprising,
given that the system produces a false alarm almost once every three months. Notice that it
was not necessary to estimate the absolute values of the probabilities P(Alarm |Burglary)
and P(Alarm |No burglary). Only their ratio enters the calculation, so a direct estimate of
this ratio could have been used instead.

2.1.3 Pooling of Evidence

Assume that the alarm system consists of a collection of N burglary detection
devices, each one sensitive to a different physical mechanism (air turbulence,
temperature variation, pressure, radar waves, etc.) and each one producing a
distinct sound.

Let H stand for the event that a burglary took place and let e stand for the
evidence obtained from the k-th detector, with e! representing an activated
detector and ef representing a silent detector. The reliability (and sensitivity) of
each detector is characterized by the probabilities P(e’f [H) and P(et | =H), or
more succinctly by their ratio: '

L le __[_)_.(E_LI_.I_)_ (221)
) = T '

If some detectors are triggered while others remain silent, we have conflicting
evidence on our hands, and the combined belief in the hypothe51s H is computed

by Eq. (2.19):
OHle'e?, ., ey=Lie' e, .. eVl oH). (22

Eq. (2.22) could require an enormous data base, because we need to specify the
probabilities of activation for every subset of detectors, conditioned on H and on
—H. Fortunately, reasonable assumptions of conditional independence can reduce
~ this storage requirement drastically. Assuming that the state of each detector
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depends only on whether a burglary took place and is thereafter independent of the
state of other detectors, we can write

’ N
Pel,e?, .., eN IH) = [[P(e* 1H) (2.23)
k=1
and
’ N
P(ele?, .., eN I=H) = [TP(e* | -H), (2.29)
k=1
which lead to
N
OHlele?, ..., eN) = OH)[]L(e* | H). (2.25)

k=1

Thus, the individual characteristics of each detector are sufficient for determining
the combined impact of any group of detectors.

2.14 Recursive Bayesian Updating

One of the attractive features of Bayes’ updating rule is its amenability to recursive
and incremental computation schemes. Let H denote a hypothesis,
e, = e, e?,....e" denote a sequence of data observed in the past, and e denote a
new fact. A brute-force way to calculate the belief in H, P(H ie,, e) would be to
- append the new datum e to the past data e, and perform a global computation of
the impact on H of the entire data set e,,; = {e,, ¢]}. Such a computation would
be uneconomical for several reasons. First, the entire stream of past data must be
available at all times. Also, as time goes on and the set e, increases, the
computation of P(H le,, ¢) becomes more and more complex. Under certain
conditions, this computation can be significantly curtailed by incremental
updating; once we have computed P(H le,), we can discard the past data and
compute the impact of the new datum by the formula

P(ele,, H)

P(Hle,, e)=P(H le,) Pele)

(2.26)

Thus, comparing Eq. (2.26) and Eq. (2.13), we see that the old belief P(H le,)
assumes the role of the prior probability in the computation of new impact; it
completely summarizes the past experience and for updating need only be
multiplied by the likelihood function P(ele,, H), which measures the probability
of the new datum e, given the hypothesis and the past observations.
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This recursive formulation still would be cumbersome but for the fact that the
likelihood function is often independent of the past data and involves only ¢ and H.
For example, the likelihood that a patient will develop a certain symptom, given
that ‘he definitely suffers from a disease H, is normally independent of what
symptoms the patient had in the past. This conditional independence condition,
which gave rise to the product expression in Eqs. (2.23) through (2.25), allows us
to write '

P(ele,, Hy=P(e|H) and P(ele,, =H) = P(e|-H), 2.27)
and after dividing Eq. (2.26) by the complementary equation for —/, we obtain
O(H le,,;) = O(He,) L(e | H), (2.28)

which also is obtainable from the product form of Eq. (2.25).

Eq. (2.28) describes a simple recursive procedure for updating the posterior
odds—upon the arrival of each new datum e, we multiply the current posterior
odds O(H le,) by the likelihood ratio of e. This procedure sheds new light on the
relationship between the prior odds O(H) and the posterior odds O(H le,); the
latter can be viewed as the prior odds relative to the next observation, while the
former are nothing but posterior odds that have evolved from prev1ous
observations not included in e,,.

If we take the logarithm of Eq. (2. 28) the incremental nature of the updating
“ process becomes more apparent. Writing

log O(H le,, ) =log O(Hle,) + log L(e | H), | (2.29)

we can view the log of the likelihood ratio as a weight, carried by the evidence e,
which additively sways the belief in H one way or the other. Evidence supporting
the hypothesis carries positive weight, and -evidence that opposes it carries
negative weight. '

The simplicity and appeal of the-log-likelihood calculation has led to a wide
variety of applications, especially in intelligence-gathering tasks. For each new
report, an intelligence analyst can estimate the likelihood ratio L. Using a log-log
paper, the contribution of the report can easily be incorporated into the already
accumuiated overall belief in H. This method also facilitates retracting or revising
beliefs in case a datum is found to be in error. If the erroneous datum is e, and the
correct one is e *, then to rectify the error one need only compute the difference
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‘A=logL(e’\H)—log L(e \H)

and add A to the accumnlated log-odds of Eq. (2.29).

The ability to update beliefs recursively depends heavily on the conditional
independence relation formulated in Eqgs. (2.23) and (2.24) and will exist only
when knowledge of H (or —H) renders past observations totally irrelevant with
regard to future observations. It will not be applicable, for example, if the
hypothesis H influences the observations only indirectly, via several causal links.
For instance, suppose that in our burglar alarm example we cannot hear the alarm
sound directly but must rely on the testimony of other people. Because the
burglary hypothesis has an indirect influence on the witnesses, the testimony of
one witness (regarding the alarm) affects our expectation of the next witness’s
testimony even when we are absolutely sure that a burglary has occurred. The two
testimonies will, however, become independent once we know the actual state of
the alarm system. For that reason, decision analysts (e.g., Kelly and Barclay
[1973], Schum and Martin [1982]) have gone to great lengths to retain incremental
updating in the context of "cascaded” inferencing. The issue will be discussed
further in Section 2.2 and will be given full treatment, using network propagation
techniques, in Chapter 4.

2.1.5 Multi-Valued Hypotheses

The assumption of conditional independence in Eqgs. (2.23) and (2.24) is justified if
both the failure of a detector to react to an attempted burglary and the factors that
can cause it to be activated prematurely depend solely on mechanisms intrinsic to
the individual detection systems, such as low sensitivity and internal noise. But if
false alarms can be caused by external circumstances affecting a select group of
sensors, such as a power failure or an earthquake, then the two hypotheses H =
Burglary and —H = No burglary may be too broad to allow sensor independence,
and additional refinement of the hypothesis space may be necessary. This
condition usually occurs when a proposition or its negation encompasses several
possible states, each associated with a distinct set of evidence. For example, the
hypothesis Burglary encompasses either Break-in through the door or Break-in
through a window, and since each mode of entry has a distinct effect on the
sensors, the modes ought to be spelled out separately. Similarly, the state No
burglary allows the possibilities Ordinary peaceful night, Night with earthquake,
and Attempted entry by the neighbor’s dog, each influencing the sensors in a
unique way. Eq. (2.24) might hold for each of these conditions, but not for their
aggregate, No burglary. For this reason, it is often necessary to refine the
Thypothesis space beyond binary propositions and group the hypothesis into multi-
valued variables, where each variable reﬂects a set of exhaustive and mutually
'excluswe hypotheses.
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EXAMPLE 2: We assign the variable H = {H,, H,, H3, H,) to the following set of
conditions: :

H, = No burglary, animal entry.

H, = Attempted burglary, window break-in .
H, = Artempted burglary, door break-in .
H, = No burglary, no entry.

Each evidence variable E* can also be multi-valued (e.g., et = No sound , eX = Low sound,
¢4 = High sound), in which case the causal link between H and E* is quantified by an mxn
matrix M*, where m and n are the number of values that H and E*, respectively, might take,
and the (i, j)-th entry of M* stands for

MY =P(elIH). (2.30)

For example, the matrix below could represent the sensitivity of the k-th detector to the four
conditions in H:

ek ek et
(nosound) (low sound) (high sound)

H, 0.5 0.4 0.1
H, 0.06 0.5 0.44
H, 0.5 0.1 04
H, 1 o ° 0.

Given a set of evidence readings e', €2, ..., e, ..., e, the overall belief in the i-th

hypothesis H; is (by Eq. (2.13))
P(H;le!, ..,eM) = aP(e!, .., eV IH)P(H,), (2.31)

where o = [P(e!,....,e™)]™! is a normalizing constant to be computed by requiring that Eq.
(2.31) sum to unity (over {). Assuming conditional independence with respect to each H,,
we obtain :

N
PH;le', .., eN) =aPH)ITIP 1H)). (2.32)
k=1

Thus, the matrices P(e |H;) now play the role of the likelihood ratios in Eq. (2.25). If for
each detector reading e* we define the likelihood vector

A = O, M, A, (233)
Af=PetIH), | | (2:39)
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then Eq. (2.32) is computed by a simple vector-product process. First the individual
likelihood vectors are multiplied together, term by term, to form an overall likelihood
vector A =A', ..., AV, namely,

N
A =[IP 1H). , (2.35)

k=1

Then we obtain the overall belief vector P(H;le!, ..., ") by the product

P le', .., eY) = aPH)A,, (2.36)

which is reminiscent of Eq..(2.25).

Note that only the relative magnitudes of the conditional probabilities in Eq. (2.34)
need be estimated; their absolute magnitudes do not affect the final result because o can be
determined later, via the requirement Y ,P(H;le', ..., e¥) = 1.

i

EXAMPLE 3: Let us assume that our alarm system contains two detectors having
identical characteristics, given by the matrix of Example 2. Furthermore, let us represent
the prior probabilities for the hypotheses in Example 2 with the vector
P(H;) =(0.099, 0.009, 0.001, 0.891) and assume that detector 1 was heard to issue a high
sound while detector 2 remained silent. From Eq. (2.34) we have

Al =(0.1,044,04,0), A2 =(0.5, 0.06, 0.5, 1),
A =A'A? = (0.05, 0.0264, 0.2, 0),
P(H;le', e?) = & (4.95, 0.238, 0.20, 0)1073 = (0.919, 0.0439, 0.0375, 0),
from which we conclude that the chance of an attempted burglary (H, or Hj) is
0.0439 +0.0375 = 8.14%. , _
Of course, the updating of belief need not be delayed until all the evidence is collected

but can be carried out incrementally. For example, if we first observe e! = High sound, our
belief in H calculates to :

P(H;le') = (0.0099, 0.00396, 0.0004, 0) = (0.694, 0.277, 0.028, 0).

This probability now serves as a prior belief with respect to the next datum, and after we
observe e? = No sound, it updates to

PH;le', e?) = a’A? - P(H;le") = a(0.347, 0.0166, 0.014, 0)
= (0.919, 0.0439, 0.0375, 0),

as before. Thus, the quiescent state of detector 2 lowers the probability of an attempted
burglary from 30.5% to 8.14%.
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2.2 HIERARCHICAL MODELING

2.2.1 Uncertain Evidence (Cascaded Inference)

One often hears the claim that Bayesian techniques cannot handle uncertain
evidence because the basic building block in these techniques is the relationship
P(A | B), which requires that the conditioning event B be known with certainty. To
see the difficulties that led to this myth, let us modify slightly the alarm scenario.

EXAMPLE 4: Mr. Holmes receives a telephone call from his neighbor Dr. Watson, who
states that he hears the sound of a burglar alarm from the direction of Mr. Holmes’s house.
While preparing to rush home, Mr. Holmes recalls that Dr. Watson is known to be a
tasteless practical joker, and he decides to first call another neighbor, Mrs. Gibbon, who,
despite occasional drinking problems, is far more reliable.

Since the evidence variable S= Sound is now uncertain, we cannot use it as
evidence in Eq. (2.19) but instead must apply Eq. (2.19) to the actual evidence at
hand, W = Dr. Watson’s testimony , and write

OHIW)=LWIH)YOH). (2.37)

Unfortunately, the task of estimating L(WIH) will be more difficult than
‘estimating L(S |H), because it requires mentally tracing a two-step process, as
shown in Figure 2.1. Even if we obtain L(W | H), we will not be able to combine it
with other possible testimonies, say Mrs. Gibbon’s (G), through a simple process
of multiplication as in Eq. (2.35), because those testimonies will no longer be
conditionally independent with respect to H. What Mrs. Gibbon is about to say
depends only on whether an alarm sound can be heard in the neighborhood, not on
whether a Dburglary actually took place. Thus, we cannot assume
P(G\Burglary, W) = P(G|Burglary); the joint event of a burglary and Dr.
Watson’s testimony constitutes stronger evidence for the occurrence of the alarm
sound than does the burglary alone.

Given the level of detail used in our story, it is more reasonable to assume that
the testimony (W and G) and the hypothesis (/) are mutually independent once
we know whether the alarm sound was actually triggered. In other words, each
neighbor’s testimony depends directly on the alarm sound (S) and is influenced
" only indirectly by the possible occurrence of a burglary (H) or by the other
testimony (see Figure 2.1).
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GIBBON’S TESTIMONY

BURGLARY ALARM
SOUND

WATSON’S TESTIMONY

Figure 2.1. The alarm sound (S), sﬁpported by unreliable testimonies (W and G},
represents an uncertain evidence for a burglary (H).

These considerations can easily be incorporated into the Bayesian formalism.
Using Eq. (2.11), we simply condition and sum Eq. (2.31) over all possible states
of the intermediate variable § and obtain

P(H;1G, W) = aP(G, WIH)PH))

= P (H)YP(G, W I H,, SHP(S; | H)), (2.38)
J ) ,

where S j» J=1, 2 stands for the two possible states of the alarm system, namely,
Sy = Sound ON and S, = Sound OFF. Moreover, the conditional independence of
G, W, and H; with respect to the mediating variable S allows us to state

P(G, WIH,, §;) = P(GIS)P(WS)), (2.39)

and Eq. (2.38) becomes

P(H;1G, W) = aP(H)Y.P(G |S,)P(WIS)P(S; | Hj). (2.40)
J
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The final computation can be interpreted as a three-stage process. First, the local
likelihood vectors P(G1S;) and P(W1S;) are multiplied to obtain a combined
likelihood vector

A(S) = P(e1S)) = P(G15,) PW15)), (2.41)

where e stands for the total evidence collected (G and W). Second, the vector
A;(S) is multiplied by the link matrix M;; = P(S; | H;) 1o form the likelihood vector
of the top hypothesis A;(H) = P(e |H;). Finally, using the product rule of Eq.
(2.24), we multiply A;(H) by the prior probability P(H;) to compute the overall
belief in H;. '

This process demonstrates the psychological and computational roles of the
mediating variable S. The conditional independence associated with S makes it a
convenient anchoring point from which reasoning "by assumptions” can proceed
effectively, because it decomposes the reasoning task into a set of independent
subtasks. It permits us to use local chunks of information taken from diverse
domains (e.g., P(H;), P(GIS)), P(W1S)), P(S;1H;)) and fit them together to form a
global inference P(H | e) in stages, using simple, local vector operations. It is this
role which prompts us to posit that conditional independence is not a grace of
nature for which we must wait passively, but rather a psychological necessity
which we satisfy actively by organizing our knowledge in a specific way. An
important tool in such organization is the identification of intermediate variables
that induce conditional independence among observables; if such variables are not
in our vocabulary, we create them. In medical diagnosis, for instance, when some
symptoms directly influence each other, the medical profession invents a name for
that interaction (e.g., "syndrome," "complication,” "pathological state") and treats it
as a new auxiliary variable that induces conditional independence; dependency
between any two interacting symptoms is fully attributed to the dependencies of
each on the auxiliary variable. It may be to reap the computational advantages
associated with such independence that we organize most of our knowledge in
causal hierarchies (see Chapter 8).

2.2.2 Virtual (Intangible) Evidence

Let us imagine a new development in the story of Mr. Holmes.

EXAMPLE 5: When Mr. Holmes calls Mrs. Gibbon, he soon realizes that she is
somewhat tipsy. Instead of answering his question directly, she goes on and on about her
latest back operation and about how terribly noisy and crime-ridden the neighborhood has
become. When he finally hangs up, all Mr. Holmes can glean from the conversation is that
there is probably an 80% chance that Mrs. Gibbon did hear an alarm sound from her
window, '
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“ The Holmes-Gibbon conversation is the kind of evidence that is hard to fit into
any formalism. If we try to estimate the probability P(el|Alarm sound) we will get
ridiculous numbers because it entails anticipating, describing, and assigning
probabilities to all the possible paths Mrs. Gibbon’s conversation might have taken
under the circumstances. Alternatively, if we try to directly estimate
P(Alarm sound | e), we must be careful to clearly specify what other information
was consulted in producing the estimate.

These difficulties arise whenever the task of gathering evidence is delegated to
autonomous interpreters who, for various reasons, cannot explicate their
interpretive process in full detail but nevertheless often produce informative
conclusions that summarize the evidence observed. In our case, Mr. Holmes
provides us with a direct mental judgment, based on Mrs. Gibbon’s testimony, that
the hypothesis Alarm sound should be accorded a confidence measure of 80%. The
interpretation process remains hidden, however, and we cannot tell how much of
the previously obtained evidence was considered in the process. Thus, it is
impossible to integrate this probabilistic - judgment with previously established
beliefs unless we make additional assumptions.

The prevailing convention in the Bayesian formalism is to assume that
probabilistic summaries of virtual evidence are produced independently of
previous information; they are interpreted as local binary relations between the
evidence and the hypothesis upon which it bears, independent of other information
in the system. For this reason, we cannot interpret Mr. Holmes’s summary as
literally stating P(S1G) = 0.80. P(S 1G) should be sensitive to variations in crime
rate information—P (H)—or equipment characteristics—P(S |H). The impact of
Gibbon’s testimony should be impervious to such variations. Therefore, the
measure P(S |G) cannot represent the impact the phone conversation has on the
truth of Alarm sound.

The likelihood ratio, on the other hand, meets this locality criterion, and for
that reason probabilistic summaries of virtual evidence are interpreted as
conveying likelihood information.t For example, Mr. Holmes’s summary of
attributing 80% credibility to the Alarm sound event can be interpreted as

P(G |Alarm sound) : P(G |No alarm sound) = 4:1. (2.42)

More generally, if the variable upon which the tacit evidence e impinges most
directly has several possible states, Sy, S3, ..., S;, ..., we instruct the interpreter to
estimate the relative magnitudes of the terms P(elS;), perhaps by eliciting
estimates of the ratios P(e |S;) : P(e|§ ). Since the absolute magnitudes do not

t Itis interesting to note that an identical assumption has been tacitly incorporated into the calculus

of certainty factors [Shortliffe 1976] if one interprets CF to stand for (A— 1)/ (A + 1) [Heckerman
1986b]. '
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affect the calculations, we can update the beliefs as though this likelihood vector
originated from an ordinary, logically definable event e.

For example, assuming that Mr. Watson’s phone call already contnbuted a like-
lihood ratio of 9:1 in favor of the hypothesis Alarm sound, the combined weight of
Watson’s and Gibbon’s testimonies would yield a likelihood vector
A(S) = P(W, GIS;) = (36, 1). Now we can integrate this vector into the computa-
tion of Eq. (2.38). Using the numbers given in Example 1, we get

[ 0.950.05\( 36\ ( 34.25
A"(H)z‘?‘Af(S)P(Sf'H‘)“( 0.01 0.99)( 1)'( 1.35)’

P(H/IG, W) = o A;(H) P(H;) = 0. (34.25, 1.35) (107*,1-107
= (0.00253, 0.99747). (2.43)

It is important to verify that Mr. Holmes’s 80% summarization is indeed based
only on Mrs. Gibbon’s testimony and not on prejudicial beliefs borrowed from the
previous evidence (e.g., Watson’s testimony or crime rate information); otherwise
we are in danger of counting the same information twice. The likelihood ratio is in
fact the only reasonable interpretation of Mr. Holmes’s summarization that reflects
a local binary relationship between the hypothesis and the evidence, unaffected by
previous information [Heckerman 1986b].

An effective way of eliciting pure likelihood ratio estimates is to present the
interpreter with a direct query: "How much more Jikely are we to obtain such an
evidence under H, compared with the denial of H?" Alternatively, we can ask the
interpreter to imagine that the evidence arrives in some standard state of belief, then
request an estimate of how much the degree of belief in the hypothesis would be
modified because of the evidence. In our example, if Mr. Holmes had a "neutral’
belief in S before conversing with Mrs. Gibbon—P(Alarm) = P(No alarm) =
1/2—then the after-conversation estimate P(AlarmiG) = 80% would indeed corre-
spond to a likelihood ratio of 4:1 in favor of Alarm. Bayesian practitioners claim
that people are capable of retracing the origins of their beliefs and of entertaining
hypothetical questions such as "What if you didn’t receive Watson’s call?”" or
"What is the increase in belief due to Gibbon’s testimony alone?” This explains
why interpretations of virtual evidence often are cast in terms of absolute probabili-
ties, rather than probability changes or probability ratios. Evidently, the interpreter
begins with some standard level of belief in the hypothesis (not necessary 50%),
mentally assimilates the impact of the observed evidence, and then reports the
updated posterior probability that emerges. However, it is not the final value but
the ratio between the initial value and the final value that characterizes the impact
of the evidence on the hypothesis, as this ratio is the only quantity that remains

impervious to changes in the initial standard chosen This issue will be discussed
further in Section 2.3.3.
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2.2.3 Predicting Future Events

One of the attractive features of causal models in the Bayesian formulation is the
“ease they lend to the prediction of future events such as the denouement of a social
episode, the outcome of a given test, and the prognosis of a given disease. The
need to facilitate such predictive tasks may in fact be the very reason that human
beings have adopted causal schema for encoding experiential knowledge.

EXAMPLE 6: Immediately after his conversation with Mrs. Gibbon, as Mr. Holmes is
preparing to leave his office, he recalls that his daughter is scheduled to arrive home at any
minute. If greeted by an alarm sound, she probably (P = 0.70) would phone him for
instructions. Now he wonders whether he should wait a few more minutes in case she calls.

To estimate the likelihood of our new target event, D = Daughter will call, we
have to add a new causal link to the graph of Figure 2.1. Assuming that hearing an
alarm sound is the only event that would induce Mr. Holmes’s daughter to call, the
new link, shown in Figure 2.2, should emanate from the variable S and be
quantified by the following P(D 1§) matrix:

D
__________________ _‘
will call will not call
1 .
| on 0.7 0.3
| off 0.0 1.0
L

Accordingly, to compute P(D | All evidence) we write

P(Dle)=YPDIS;, e) P(S;le) = YPWDIS;) PS;le), (2.44)
J i

which means that the lengthy episodes with Mr. Watson and Mrs. Gibbon impart
their influence on D only via the belief P(S;!e} that they induce on S.

It is instructive to see how P(S;le) can be obtained from the previous
calculation of P(H;le). A natural temptation would be to use the updated belief
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P(H;le) as a new prior probability and, through rote, to write the conditioning
equation

P(Sjle) = XP(S;1H) P(H;le). (2.45)

This equation, however, is valid only in a very special set of circumstances. It
would be wrong in our example because the changes in the belief of H actually
originated from corresponding changes in S; reflecting these back to § would
amount to counting the same evidence twice. The correct conditioning equation
should be ' :

PSjley=YPS; | H,e)P(H; |e) (2.46)

instead of Eq. (2.45). Since P(S;|H;) may be different than P(S;|H;, e), it follows
that the evidence obtained affects not only the belief in H and S but also the
strength of the causal link between H and S. At first glance, this realization makes
Bayesian methods appear to be useless in handling a large number of facts; having
to recalculate all the link matrices each time a new piece of evidence arrives would
be an insurmountable computational burden. '

Fortunately, there is a simple way of updating beliefs that circumvents this
difficulty and uses only the original link matrices (see Chapter 4 for elaboration).
The calculation of P(S;|e), for instance, can be performed as follows: Treating S
as an intermediate hypothesis, Eq. (2.13) dictates ,

P(S;le) = aP(elS)) P(S)) (2.47)

The term P(elS§)) is the likelihood vector A;(S), which earlier was calculated as
(36, 1), while the prior P(S;) is given by the matrix multiplication

P(S) = XP(S; |H) P(H) = (107, 1—10—4)[ 020 oo = 0101, 0.9899).

Together, we have

P(S;le) = . (36, 1) (0.0101, 0.9899) = (0.2686, 0.7314),

which gives the event §; = Alarm sound on a credibility of 26.86% and gives the
predicted event D = Daughter will call the probability

PD ey = SPDI5) P(S;1e) = (0.2686, 0.7314) [ 0(-)7] =0.188. (2.48)



2.2 Hierarchical Modeling 49

224 Multiple Causes and “Explaining Away”

Consider the following situation:

EXAMPLE 7: As he is debating whether or not to rush home, Mr. Holmes remembers
reading in the instruction manual of his alarm system that the device is sensitive to
earthquakes and can be accidentally (P = 0.20) triggered by one. He realizes that if an
earthquake had occurred, it surely (P = 0.40) would be on the news. So he tums on his
radio and waits for either an announcement over the air or a call from his daughter.

'Mr. Holmes perceives two episodes as potential causes for the alarm sound—
an attempted burglary and an earthquake. Though burglaries can be safely
assumed to be independent of earthquakes, a positive radio announcement reduces
the likelihood of a burglary, since it "explains away" the alarm sound. It does this
even though the two causal events are perceived as individual variables (see
Figure 2.2); general knowledge about earthquakes rarely intersects knowledge
about burglaries.

BURGLARY?

WATSON'S CALL = TRUE

Figure 2.2. A network depicting predicted events (D), explanatory variables (E and H)
and evidence variqbles (W, G and R).

This interaction among multiple causes is a prevailing pattern of human
reasoning. (See Section 1.2.2.) When a physician discovers evidence in favor of
one disease, it reduces the perceived likelihood of other diseases, although the
patient may well be suffering from two or more disorders simuitaneously. A
suspect who provides an alternative explanation for being present at the scene of
the crime appears less likely to be guilty, even though the explanation furnished
does not preclude his having committed the crime,
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To model this "sideways" interaction a matrix M should be assessed, giving the
distribution of the consequence variable as a function of every possible
combination of the causal variables. . In our example, we should specify
‘M=P(SI|E, H) where E stands for the variable E = ({Earthquake, No
earthquake} and H stands for the hypothesis variable H = {Burglary, No
Burglary}. . Although this matrix is identical in form to the one described in Eq.
(2.30), where several causal variables from example 2 were combined into one
compound variable {H,, H,, H3, H4}, treating E and H as two separate entities
has an advantage: it allows us to relate each of the variables to a separate set of
evidence without consulting the other. For example, we can quantify the relation
between E and R = Radio announcement by the probabilities P (R | E) without
having to consider the irrelevant event of burglary, as would be required by
compounding the pair (E, H) into one variable. Moreover, upon confirmation of R,
we can update the beliefs of £ and H in two separate steps, mediated by the
updating of S. This more closely resembles the local process used by people in
tracing lines of evidence. (An updating scheme for networks with multiple-parent
nodes is described in Section 4.3.) '

If the number of causal factors k is large, estimating M may be troublesome
because in principle it requires a table of size 2**!. In practice, however, people
conceptualize causal relationships by creating hierarchies of small clusters of
variables, and the interactions among the factors in each cluster are normally
categorized into prestored, prototypical structures, each requiring about k
parameters. Common examples of such prototyplcal structures are noisy OR-gates
(i.e., any one of the factors is likely to trigger the’ effect), noisy AND-gates, and
various enabling mechanisms (i.e., factors identified as having no influence of their
own except that they enable other influences to become effective). In Example 7, it
is reasonable to assume that the influences of burglaries and earthquakes on alarm
systems is of the noisy OR-type; accordingly, only two parameters are needed,
one describing the sensitivity of the alarm to earthquakes (in the absence of
burglaries), the other describing its sensitivity to burglaries (in the absence of
earthquakes). These prototypical structures will be treated formally in Section
4.3.2.

2.2.5 Belief Networks and the Role of Causality

In the preceding discussion we twice resorted to the use of diagrams. Figures 2.1
and 2.2 were not, however, presented merely for mnemonic or illustrative
purposes. We will see that they convey important conceptual information, far
more meaningful than the numerical estimates of the probabilities involved. The
formal properties of such diagrams, called Bayesian belief networks, will be
discussed in Section 3.3; here, we briefly outline their salient features.

. Formally, Bayesian networks are directed acyclic graphs in which each node
represents a random variable, or uncertain quantity, which can take on two or more
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possible values. ‘The arcs signify.the existence of direct causal influences between
the linked variables, and the strengths. of these influences are quantified by
- conditional probabilities. Informally, the structure of a Bayesian network can be
determined by a simple procedure: We assign a vertex to each variable in the
domain and draw arrows toward each vertex X; from a select set Ily, of vertices
perceived to be direct causes of X;. The strengths of these direct influences are
then quantified by assigning to each variable X; a link matrix P(x; |1y,), which
represents judgmental estimates of the conditional probabilities of the event
X; = x;, given any value combination Iy of the parent set Ily.. The conjunction of
these local estimates specifies a complete and consistent global model (i.e., a joint
distribution function) on the basis of which all probabilistic queries can be
answered. The overall joint distribution function over the variables X, ..., X, is
given by the product

P(xy, X2y e Xp) = il;Il P(x; ITIy,). | (2.49)

- So, for example, the joint distribution corresponding to the network of Figure 2.2 is
given by

P(h,e,r,s,d,w, g)=P(h) P(e) P(rie)P(sle, h) P(dls) | (2.50)
P(wls) P(g)s), |

where lowercase symbols stand for the particular values (TRUE or FALSE) of the
corresponding variables.

The advantage of network representation is that it allows people to express
directly the fundamental qualitative relationship of "direct dependency.” The
~network then displays a consistent set of additional direct and indirect
‘dependencies and preserves it as a stable part of the model, independent of the
numerical estimates. For example, Figure 2.2 demonstrates that the radio report
- (R) does not change the prospects of Holmes’s daughter phoning (D), once we
verify the actual state of the alarm system (S). This fact is conveyed by the
network topology—showing S blocking the path between R and D—even though it
was not considered explicitly during the construction of the network. It can be
inferred visually from the linkages used to put the network together, and it will
remain part of the model regardless of the numerical estimates of the link matrices.

The directionality of the arrows is essential for displaying nontransitive
dependencies, i.e., S depends on both E and H, yet E and H are marginally
independent (they become dependent only if S or any of its descendants are
known). If the arcs were stripped of their arrows, some of these relationships
would be misrepresented. It is this computational role of identifying what
information is or is not relevant in any given situation that we attribute to the
mental construct of causation. Causality modularizes our knowledge as it is cast
from experience. By displaying the irrelevancies in the domain, causal schemata
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minimize the number of relationships that need to be considered while a model is
constructed, and in effect legitimizes many future local inferences. The prevailing
practice in rule-based expert systems of encoding knowledge by evidential rules
- (i.e., if effect then cause) is deficient in this respect. It usually fails to account for
induced dependencies between causes (e.g., an earthquake explaining away the
alarm sound), and if one ventures to encode these by direct rules, the number of
rules becomes unmanageable [Shachter and Heckerman 1987].

In Chapter 3, we will present a formal characterization of dependencies .
expressible in both causal and non-causal networks. In Chapters 4 and 5 we will
show that belief networks can also be used as inference engines, where the
network topology provides both the storage locations and the timing information to
sequence the computational steps involved in answering probabilistic queries.
Examples of such queries are "What are the chances of a burglary, given that the
radio announced an earthquake and my daughter did not call?” and "What is the
most likely explanation of Watson’s phone call?" Answers to such queries will be
assembled by local, parallel message-passing processes, with minimal external
supervision. The essential role of causality will be explored further in Chapters 8
and 10. Before advancing to these topics, we will use the next few sections to
further elaborate on the philosophy of Bayesian inference and the role of networks
in shaping human judgment.

2.3 EPISTEMOLOGICAL ISSUES OF BELIEF
UPDATING

2.3.1 Patterns of Plausible Inference:
Polya vs. Bayes?

In our previous discussion we suggested that once we encode knowledge in
probabilistic terms and adhere to the rules of probability calculus, we are
guaranteed never to produce paradoxical or counterintuitive conclusions. This
raises an interesting question about how people produce intuitively acceptable
conclusions using mechanisms that seem to involve only qualitative, nonnumerical
relationships. If such mechanisms work for people, can we simulate them on
digital machines and thus facilitate commonsense reasoning? This is indeed the
ultimate objective of many works in AI, most notably nonmonotonic logics. The
goal is to capture the patterns of plausible reasoning in nonnumerical terms, as
principles governing English sentences that contain linguistic hedges such as
"typically," "likely,” and "surely.” In this subsection we discuss some of the
 difficulties associated with using the logical approach instead of the probabilistic
- approach. A more detailed discussion will.be given in Chapter 10. '
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POLYA’S PATTERNS OF PLAUSIBLE INFERENCE

George Polya (1887—-1985) was one of the first mathematicians to attempt a formal
characterization of qualitative human reasoning. In his 1954 book Mathematics
and Plausible Reasoning, Polya argued that the process of discovery, even in as for-
mal a field as mathematics, is guided by nondeductive inference mechanisms,
entailing a lot of guesswork. "Patterns of plausible inference" was his term for the
principles governing this guesswork.

Among the conspicuous patterns listed by Polya, we find the following four:

1. Inductive patterns: "The verification of a consequence renders a conjec-
" ture more credible.”
For example, the conjecture "It rained last night" becomes more cred-
ible when we verify the consequence "The ground is wet."

2. Successive verification of several consequences: "The verification of a
new consequence counts more or less if the new consequcnce differs
more or less from the former, verified consequences.”

For example, if in trying to substantiate the conjecture "All ravens are
black," we observe n Australian ravens, all of them black, our subse-
quent confidence in the conjecture will be increased substantially if the
(n + 1)-th raven is a black Brazilian raven rather than another black Aus-
tralian raven.

3. Vertfication of improbable consequences: "The verification of a conse-
quence counts more or less according as the consequence is more or less
improbable in itself." '

For example, the conjecture "It rained last night" obtains more sup-
port from "The roof is leaking” than from the more common observat;on
"The grass is wet."

4. Inference from analogy: "A conjecture becomes more credible when an
analogous conjecture turns out to be true."

For example, the conjecture "Of all objects displacing the same vol-
ume, the sphere has the smallest surface” becomes more credible when
we prove the related theorem "Of all curves enclosing the same area, the
circle has the shortest perimeter.”

Polya also identified three main sub-patterns of inductive reasoning:
1. Examining a consequence: same as (1) above.

2. Examining a possible ground: "Our confidence in a conjecture can only
diminish when a possible ground for the conjecture is exploded."

3. Examining a conflicting conjecture: "Qur confidence in a conjecture
can only increase when an incompatible rival conjecture is exploded."
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These patterns can be further refined depending on whether propositions are
verified categorically or just become more credible (Polya called this shaded
verification). ’ :

Polya summarized the patterns and subpatterns by the followi;ig table:

) ) @ @
. Shaded - Shaded .
Demonstrative Demonstrative Inductive Inductlvg
1. Examining a A—B A—>B A—-B A—B
consequnce B false Bless cr. Bmorecr.  Btrue
A false A less cr. As.morecr. A more cr.
2. Examining a possible A«B A<B A«B A«B
ground Btrue B more cr. Bless cr. B false
A true A more cr. As. less cr. Alesscr.
3. Examining a conflicting  AlB- AB AlB ' AlB
conjecture B e B more cr. Bless cr. "B false

A false A less cr. As.morecr. A more Cr.

In this table, A — B means that A implies B, cr. is short for "credible,” s. is short
for "somewhat,” and A | B means that A is incompatible with B, i.e., A and B cannot
both be true at the same time.

The patterns for "Examining a possible ground” are logically equivalent to
those for "Examining a consequence.” For example, entry (2,2) follows from (1,2)
because A — B is logically equivalent to (;-B) = (—=A) and "B more cr." is
equivalent to "—B less cr.” It still makes sense to restate row 2 separately since
people do not readily perceive logical identities as psychological necessities;
redundant inference rules are useful for dealing with logically equivalent but
syntactically different situations. )

WHY POLYA PREFERRED PROBABILITIES OVER LOGIC

When stated individually, each pattern in Polya’s table appears plausible and is
supported by many examples. However, after extracting many such conspicuous
primitive patterns, Polya stopped short of proposing them as syllogistic axioms (or
_ inference rules) for a new logic, capable of manipulating concepts such as
"credible,” "more credible,” and "somewhat credible.” Instead, Polya shelved this
promising prospect and retreated to the safety of probability calculus—from
which, supposedly, all the qualitative patterns of plausible inference should follow
naturally and automatically, leaving no need to express them in symbolic terms.
The reason for Polya’s sharp retreat is explained in Chapter 15 of his book and
is based on the realization that primitive patterns of plausible reasoning, as
reasonable as they appear and as syntactically similar as they are to logical
syllogisms, are of basically different character than those syllogisms. Polya
identified four basic differences between the two modes of reasoning, the most
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important being -a feature he called self-sufficiency (today we use the term
" monotonicity —new information, as long as it does not conflict with the premises,
will never change the conclusions reached by demonstrative inferences.

Nothing is needed beyond the premises to validate the conclusmn and nothmg can
invalidate it if the premises remain solid.

By contrast, credibility levels established by plausible inferences are not "durable,”
as they may change with new information and are sensitive to the entire content of
one’s knowledge base. In Polya’s words:

In opposition to demonstrative inference, plausible inference leaves indeterminate a
highly relevant point: the "strength" or the "weight" of the conclusion. This weight
may depend not only on clarified grounds such as those expressed in the premises,
but also on unclarified unexpressed grounds somewhere in the background of the
person who draws the conclusion.

This is indeed the violation of modularity discussed in Chapter 1. Polya
claimed, however, that in each inferential step the direction of change depends
only on the premises considered at that step. For example, in the inductive pattern
above, the credibility of the hypothesis can only increase with the discovery of its
consequence, regardless of what background information we possess. This, we
shall soon demonstrate, is not entirely correct (see also Figure 1.2). The gap
between demonstrative and plausible inferences is, in fact, wider than that
identified by Polya, i.e., not only the strength of the conclusions but also their
"direction” depends on "unclarified unexpressed grounds somewhere in the
background...." 7

Notwithstanding this oversight, Polya apparently chose the calculus of
probability as a surrogate for logic because he believed that if things are set up
properly, probability calculus will preserve all the qualitative patterns of plausible
reasoning and, as a bonus, will provide the correct strengths of the conclusions.
Polya, in fact, showed that all the patterns of his table follow from probability
theory. For example, here is Polya’s probabilistic proof of the inductive pattern

(A — B) & B=> A more credible: - (2.51)

Assume that in knowledge state S,, A and B accrue the credibility measures P(A)
and P(B), respectively, and that in state S,, B is known to be true, i.e., P,(B) = 1.
One can defend the validity of Eq. (2.51) by showing that the inequality
P(A1B) > P(A) holds in all cases. Indeed, using Bayes’ Rule (Eq. (2.13)) and the
fact that A — B implies P(B |A) = 1, we obtain

P(B1APA) PQA)
P(B)  P@®)’

P(AIB) = (2.52)
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and, since P(B) < 1, we have -
PAIB)=P(A), ‘ _ (2.53)

with equality holding iff either P(A) = 0 or P(B) = 1. Thus, it appears as though
probability calculus lends unqualified confirmation to the inductive pattern (Eq.
(2.51)).

Unfortunately, the above proof has a major flaw. The inequality in Eq. (2.53)
is valid only in the rare and uninteresting case when B is the only new piece of
information by which §, differs from §,;. To be used as a syllogistic rule of
inference, the inductive pattern of Eq. (2.51) must be universally applicable to any
two knowledge states S and S,. Yet, if S, differs from §,; by two facts, say B and
C, Eq. (2.51) no longer holds. An extreme case is when C directly opposes A. For
example, consider the following three events:

A = "It rained last night."
B = "My grass is wet.” :
C = "My neighbor’s grass is dry."

Any reasonable probabilistic model would yield
PAIB)>P(A) but '_P(A IB, C) < P(A).

Although the left-hand side of Eq. (2.51) is satisfied in this example, the right-hand
side of Eq. (2.51) contradicts our expectations whenever S, entails both B and C.

This might be construed as an artificial ani harmless example, because the
knowledge base should also contain the rule C — —A, which eventually will
establish the falsity of A after Eq. (2.51) temporarily raises its credibility. A more
convincing criticism would be to demonstrate the failure of Eq. (2.51) when C has
no relation whatsoever to A. For example:

A = "It rained last night."
B = "My grass is wet."
C = "The sprinkler was on last night.”

Here, the falsity of Eq. (2.51) could produce paradoxical and irreversible
consequences. Perhaps it was this realization that prevented Polya from proposing
his patterns as inference rules for a logic of plausible reasoning.

IF BAYES NEVER ERRS, WHY DID POLYA?

It is instructive, at this point, to reiterate the fundamental difference between the
role of premises in logic and that of conditioning events in probability calculus
(see Chapter 1). In logic, the truth of a premise B is all that is required for

deducing the conclusion A. In probability calculus, the expression P(A|B)
~ specifically identifies B as the only information available—aside from the tacit
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knowledge base K, which we assume to be constant. This distinction is also
reflected in significant computational differences between the two formalisms. The
statement

PAIB)=p
denotes totally different operational semantics than the production rule
If B then A (with certainty p). (2.54)

The latter constitutes a carte blanche to execute a certain transformation on the
database whenever it entails the truth of B, regardless of what other information it
contains. The former permits us to draw certain conclusions (about the probability
of A) only when the database entails B and no other information that can affect A
once we know B. :

This difference may explain why the designers of first-generation expert
systems preferred the rule-based approach over straightforward Bayes’
conditioning. The latter seems to require that we inspect the entire database at
each step of the computation to see if it contains any new information that is
relevant to A and not fully accounted for in B. In subsequent chapters, we shall see
that networks provide an effective scheme for indexing this information so that
local inspections are sufficient. On the other hand, systems based on rules such as
Eq. (2.54) invariably run into the same paradoxical difficulties that plagued Polya’s
patterns. For example, such systems would draw the same conclusion from Eq.
(2.54) whether B was established by C”“= "My shoes are muddy” or by C= "The
sprinkler was on last night." This is a clear violation of common sense. Section
10.3 provides a remedy to this problem, within the framework of rule-based
systems. : ,

It is also interesting to inquire why Polya’s patterns are considered plausible if
they are not supported by probability theory and they lead to paradoxical
conclusions. The answer lies in the type of assumptions we all make when asked to
judge the plausibility of an argument. Apparently, the inductive pattern (Eq.
(2.51)) appears plausible to most people, because we tacitly assume that the truth
of B is the only relevant change known to have taken place in the world. In other
words, unless otherwise stated, all belief values, especially of events that precede
B, are presumed to persist unaltered.. Since changes in the belief of other
propositions (e.g., "The sprinkler was on") are not mentioned in Eq. (2.51), we
presume that in the transition from S, to S, the truth of B ("The grass is wet") was
established by direct observation or reliable testimony and not as a consequence of
other, unmentioned changes. ~

So far, we have discussed the difficulties associated with the nonmodularity of
plausible inferences, i.e., the impropriety of drawing conclusions from certain
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truths in the database without checking other truths that may reside there. The
following discussion will focus on an even tougher problem, query sensitivity,
which stems not from neglecting facts that were learned but from neglecting to
specify which facts could have been leamed. In other words, plausible reasoning,
unlike logical deduction, is sensitive not only to the information at hand but also to
the query process by which the information was obtained.

2.3.2 The Three Pfisoners Paradox: When
the Bare Facts Won't Do

Three prisoners, A, B, and C, have been tried for murder, and their verdicts will be
read and their sentences executed tomorrow morning. They know only that one of
them will be declared guilty and will be hanged to die while the other two will be
set free; the identity of the condemned prisoner is revealed to the very reliable
prison guard, but not to the prisoners themselves.

In the middie of the night, Prisoner A calls the guard over and makes the
following request: "Please give this letter to one of my friends—to one who is to
be released. You and I know that at least one of them will be freed.” The guard
takes the letter and promises to do as told. An hour later Prisoner A calls the guard
again and asks, "Can you tell me which of my friends you gave the letter to? It
should give me no clue regarding my own status because, regardless of my fate,
each of my friends had an equal chance of receiving my letter.” The guard
answers, "I gave the letter to Prisoner B; he will be released tomorrow." Prisoner A
returns to his bed and thinks, "Before I talked to the guard, my chances of being
executed were one in three. Now that he has told me that B will be released, only
C and I remain, and my chances of dying have gone from 33.3% to 50%. What did
I do wrong? I made certain not to ask for any information relevant to my own
fate...."

SEARCHING FOR THE BARE FACTS

So far, we have the classical Three Prisoners story as described in many books of
mathematical puzzles (e.g., Gardner [1961]). Students are asked to test which of
the two values, 1/3 or 1/2, reflects prisoner A’s updated chances of perishing at
dawn.t Let us attempt to resolve the issue using formal probability theory.

t A survey conducted in the author’s class in -1984 showed 23 students in favor of 1/2 and 3 students
in favor of 1/3. (The proportion was reversed in 1987, when class notes became available.)
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‘Let I stand for the proposition "Prisoner B will be declared innocent,” and let
G, stand for the proposition "Prisoner A will be declared guilty." Our task is to
compute the probability of G, given all the information obtained from the guard,
i.e., to compute P(G,llg). Since G, DIz, we have P(Ig1G,) =1, and we can
write '

P(IBIGA)P(GA) N P(G,) _ 173
P(l) T P 23

P(G,lIp) = = 1/2. (2.55)

Thus, when facts are wrongly formulated, even the tools of probability calculus are
insufficient safeguards against drawing counterintuitive or false conclusions.
(Readers who are not convinced that the answer 50% is false are invited to
eavesdrop on Prisoner A’s further reflections: "... Worse yet, by sheer symmetry,
my chances of dying would also have risen to 50% if the guard had named C
instead of B—so my chances must have been 50% to begin with. I must be
hallucinating....") 7

The fallacy in the preceding formulation arose from omitting the full context in
which the answer was obtained by Prisoner A. By context we mean the entire
range of answers one could possibly obtain (as in Eq. (2.30)), not just the answer
actually obtained. In our example, it is important to know not only that the guard
said, "B will be released," but also that the only other possible reply was "C will be
released.” Had the guard’s answer, "B will be released,” been a reply to the query
"Will B die tomorrow?" the preceding analysis would have been correct.
A useful way of ensuring that we have conmsidered the full context is to
condition our analysis on events actually observed, not on their implications. In
our example, the information in

Ip = "B will be declared innocent.”
was inferred from a more direct observation,
I’ = "Guard said that B will be declared innocent.”

If we compute P(G4 | I ') instead of P(GA |15), we get the correct answer:

PI'g1GAP(Ga) ~ 1/2-1/3
PUR) 12

P(G4lI'p) = = 1/3. - (2.56)

The calculations in Eq. (2.56) differ from those in Eq. (2.55) in two ways. First, G4
subsumed Iy but does not subsume /g, because it is possible for ‘A to be the
condemned man and hear the guard report, "C will be released.” Second, P(I'p) is
12, whereas P(Ig) was 2/3. These differences exist because /g implies /p but not
vice versa; even if B is to be released, the guard can truthfully report, "C will be
released"—if A is slated to die.
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The lesson of the Three Prisoners paradox is that we cannot assess the impact
of new information by considering only propositions implied by the information;
we must also consider what information could have been reported.

THE THOUSAND PRISONER PROBLEM

Here is an extreme example, in which knowledge of the query context is even
more important. Imagine you are one of one thousand prisoners awaiting
sentencing with the knowledge that only one of you has been condemned. By
sheer luck, you find a computer printout (with a court seal on it) listing 998
prisoners; each name is marked "innocent,” and yours is not among them. Should
your chances of dying increase from 1/1000 to 1/2? Most people would say yes,
and rightly so.

Imagine, however, that while poring anxiously over the list you discover the
query that produced it: "Print the names of any 998 innocent right-handed
prisoners.” If you are the only left-handed person around, would you not breathe a
sigh of relief? Again, most people would.

Though the discovery of the query adds no logical conclusions to our
knowledge base, it alters drastically the relative likelihood of events that remain
unsettled. In other words, the range of possibilities is the same before and after
you discover the query: Either you or the other unlisted prisoner will die. Yet the
query renders the death of the other prisoner much more likely, because while you
can blame your exclusion from the list on being left-handed, the other prisoner has
no explanation except being found guilty. If thg list contained 999 names marked
“innocent,"” knowledge of the query would have no impact on your beliefs, because
the only possible conclusion would be that you had been found guilty.

Again we see the computational virtues and epistemological weaknesses of
crisp logic: It allows us to dispose of the query once we learn its ramifications but
prevents the ramifications learned from altering the likelihood of uncertain events.
Indeed, if we wish to determine merely which events are possible we need not
retain the queries; the bare information will suffice. But if we are concerned also
with the relative likelihood of these possible events, then the query process is
necessary. If the process is unknown, then several likely processes can be
conjectured and their average computed (see next subsection).

But first, let us return to the jail cell. Mathematically, the discovery of the
query should restore your confidence of innocence to its original value of 99.9%,
but psychologically you are more frightened than you were before you found the
list. In your intuition, the realization that you are one of the only two potentially
guilty individuals evidently carries more weight than Bayesian arithmetic does.
Still, intuition is a multifaceted resource, and pondering further, you should muster
intuitive support for the Bayesian conclusion as well: Finding the query after
seeing the list should have the same effect as seeing the list after the query. In the
second case, once you know the query, the list is useless to you, because it can
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_ contain neither your name nor the name of the guilty prisoner. Consequently, your
chances of being found guilty should revert to 1/1000.

WHAT IF WE DON'T KNOW THE QUERY?

In the Three Prisoners story, we assumed that if both B and C were pardoned, the
guard would give the letter to one or the other with equal (V2) probability. What if
we do not know the process by which the letter recipient is chosen, when A is con-
demned? The conditional probability P(I’!G ) can vary from O (the guard avoids
B), to 1 (the guard avoids C). Likewise, the marginal probability P(I’g) can vary
from !/ to 2/5. Treating g = P(I’3IG 4) as a variable, Eq. (2.56) can be written as
follows: :

PGy = P(I'5lG,) P(Gy)
AT B P(I'51G ) P(Gy) + P(I'5|Gg) P(Gg) + P(I'5IGc) P(Gc)
q'/s . q

T gls+0+1-1y 1+q° 27)
Thus, as g varies from 0 to 1, P(G 4H’g) varies from 0 to Y. :

Philosophers disagree on how to treat ignorance of this sort. Some favor the
use of probability intervals, where the upper and lower probabilities represent the
boundaries of our convictions, while others prefer an interpolation rule that selects
a single probability model having some desirable properties. The Dempster-Shafer
(D-S) formalism (see Chapter 9) is an example of the interval-based approach,
while maximum-entropy techniques [Tribus 1969, Jaynes 1979] represent the single
model approach.

Bayesian technique lies somewhere in between. For example, in the absence of
information about the selection process used by the guard, several plausible models
of the process are articulated, and their likelihoods are assessed. In our example,
we may treat the critical parameter g as a random variable ranging from O to 1 and
assess a probability distribution f(g) on g, reflecting the likelihood that the guard
will exhibit a bias g in favor of selecting B. This method yields a unique distribu-
tion on the variables previously considered, via

S L

_ 1 J q f (g)dq
PGAI'n) = [ ﬁ&- Fiqll’y) dg = —°— , (2.58)
’ 1+ [ a f (gdg
0

but the method simultaneously maintains a distinction between conclusions based
on definite models and conclusions based on uncertain models. For example, the
knowledge that the choice between B and C is made at random is modeled by
q="Y, while total lack of knowledge about the process is represented by
fl@=1, 0<g<1. Though both models yield the same point values of /3 for
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P(G4 1), they differ substantially in the way they allow new facts to be
assimilated. Suppose Prisoner A recalls that the guard had a fistfight with C
yesterday. This fact can easily be incorporated if g is a random variable (by
updating f(q)), but not if g is a fixed value. The problem of representing
uncertainty about probabilities will be discussed further in Section 7.3.

2.3.3 Jeffrey’s Rule and the Problem of Autonomous
Inference Agents

The Three Prisoners puzzle shows that before we can determine the implications of
a new fact in our knowledge base, we must know the process by which the fact was
learned—in particular, what other facts could have been gathered in that process.
Such detailed knowledge is not always available; we often must respond to new
information without having the slightest idea how it was collected. These
situations occur when the gathering of information is delegated to autonomous
agents, ‘each using private procedures which for various reasons cannot be
explicated in full detail.

OBSERVATION BY CANDLE LIGHT

Richard Jeffrey was the first to recognize the importance of this problem, and he
devised a rule for handling it [Jeffrey 1965]. The autonomous agents used in
Jeffrey’s original example are our sensory organs, as described in the following
passage: .

The agent inspects a piece of cloth by candlelight and gets the impression that it is
green, although he concedes that it might be blue or, even (but very improbably),
violet. If G, B and V are the propositions that the cloth is green, blue and violet,
respectively, then the outcome of the observation might be that, whereas originally
his degrees of belief in G, B and V were 0.30, 0.30 and 0.40, his degrees of belief in
those same propositions after the observation are 0.70, 0.25 and 0.05. If there were a
proposition E in his preference ranking [i.e., knowledge base] which described the
precise quality of his visual experience in looking at the cloth, one would say that
what the agent leamned from the observation was that £ is true. If his original
subjective probability assignment was prob his new assignment should then be
probg, and we would have

prob G = 30 prob B = 30 prob V = 40

representing his opinions about the color of the cloth before the observation but
would have

prob(G IE)=.70 prob(B|E)=.25 prob(VIE)= 05

representing his opinions about the colof of the cloth after the observation.... When
the agent looks at the piece of cloth by candlelight there is a particular complex
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pattern of physical stimulation of his retina, on the basis of which his beliefs about
the possible colors of the cloth change in the indicated ways. However, the pattern
of stimulation need not be describable in the language he speaks; and even if it is,
there is every reason to suppose that the agent is quite unaware of what that pattern
is, and is quite incapable of uttering or identifying a correct description of it. Thus, a
complete description of the pattern of stimulation includes a record of the firing
times of all the rods and cones in the outer layer of retinal neurons during the pertod
of the observation. Even if the agent is an expert physiologist, he will be unable to
produce or recognize a correct record of this sort on the basis of his expenence
during the observation.

 With this story in mind, Jeffrey wonders how the new information should be
used to influence other propositions that depend on the color of the cloth:

Then the problem is this: " Given that a passage of experience has led the agent to
change his degrees of belief in certain propositions B, B, ..., B, from their original
values,

prob B, prob B,, ..., prob B,

to new values,

PROB B,, PROB B,, .., PROB B,,

how should these changes be propagated over the rest of the structure of his beliefs?
If the original probability measure was prob, and the new one is PROB, and if Ais a
proposition in the agent’s preference ranking [i.e., knowledge base] but is not one of
the n propositions whose probabilities were directly affected by the passage of
experience, how shall PROB A be determined?

Jeffrey’s solution is based on the critical assumption that the propositions B
selected to summarize the experience possess a special property: "..while the
observation changed the agent’s degree of belief in B and in certain other
propositions, it did not change the conditional degree of belief in any propositions
on the evidence B or on the evidence —B" (italics added). Thus, if B, B, ..., B,
are exhaustive and mutually exclusive propositions (like Green, Blue, and Violet
in the candlelight example), Jeffrey maintains that, for every proposition A not
"directly affected by the passage of experience,” we should write

PROB(A'\B))=prob(A|B;) i=1,2,..,n. (2.59)
This, together with the additivity of PROB, leads directly to
PROB(A) = 2 prob (A 1B;) PROB(B)), (2.60)

a formula now known as Jejfrey s Rule of updating, or the rule of probabtltty
kinematics.
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The convenience of the rule is enticing in a way that is reminiscent of the
logical rules of deduction; we need not know anything about how prob(B;) was
updated to PROB(B;)—only the net result matters. We simply take PROB(B;) as a
new set of priors and apply the textbook formula of Eq. (2.10). Unfortunately, the
rule is applicable only in situations where the criterion of Eq. (2.59) holds, and this
condition, as we shall soon see, is not easy to test. '

Traditional probabilistic analysis gives us a way to decide when Eqgs. (2.59) and
(2.60) are applicable, based on Bayes’ conditioning. If we denote by e the
evidence actually observed and equate PROB(A) with prob(A le), we get the
Bayes conditionalization formula,

prob(A le) = T prob(4 Bye) prob(B;\e), (2.61)

which coincides with Eq. (2.60) only when A and e are condmonally independent
given B;, i.e., only when

prob(A |B;, ¢) = prob(A 1B;). (2.62)

However, philosophers might argue that it sometimes makes no sense to equate
PROB(A) with prob(Ale) or even to talk about prob(Ale), e being an elusive,
non-propositional experience. Indeed, the textbook definition of conditional
probability, P(Ale) = P(A, e)/ P(e), suggests that before P(Ale) can be
computed one must have the joint probability P(A, €), so e must already be
integrated in one’s knowledge base as a proposition that might later be an object of
attention. This condition clearly is not met in the candlelight story; the sensory
experience responsible for the color judgment cannot have been anticipated in
anyone’s knowledge base. In such cases, so the argument goes, Bayes
conditionalization is not applicable and should give way to the more general
Jeffrey’s Rule. Likewise, the conditional independence criterion of Eq. (2.62) is a
quality ascertainable only by Bayes conditionalization and therefore is clearly
inadequate for delineating the class of proposmons A to which Jeffrey’s Rule
applies.

While no alternate criterion for testing Eq. (2.59) is formulated in Jeffrey’s
book, some hint is provided by the requirement that A "is not one of the n
propositions whose probabilities were directly affected by the passage of
experience.” Jeffrey apparently believed that the question of whether a proposition
A is affected directly or indirectly can be decided on qualitative grounds, prior to
defining joint distributions. In this sense, he pioneered the idea that dependence
relationships are the fundamental building blocks of probabilistic knowledge, more
basic than numerical distributions (a position that will be developed further in
Chapter 3).

In a subsequent publication [Jeﬂi'ey 1968] Jeffrey replaced the notion of
directness with that of a basis, where a basis B for an observation is defined as the
set of propositions B, B,..., B, that satisfy Eq. (2.59) for every A not in B. This
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way, the validity of Eq. (2.60) is automatically guaranteed to hold for every'A not
in B, but from a practical viewpoint the problem of determining the basis
associated with a given observation remains unresolved.

To demonstrate the type of information required for determining the
applicability of Jeffrey’s Rule, let us return to the candlelight example and assign
two alternative meanings to proposition A.

Casel e —B — A: Assume that the proposition A stands for the statement "The
cloth will be sold the next day,” and we know the chances of selling the cloth
depend solely on its color: '

P(A |Green) =040, P(A |Blue)=0.40, and
P (A | Violer) = 0.80. | (2.63)

~ Eq. (2.60), then, allows us to calculate the updated belief in the salability of the
cloth, based only on the color inspection (see Figure 2.3). Prior to the test, our
belief in selling the cloth measured

prob(A) = (0.4)(0.3) + (0.4)(0.3) + (0.8)(0.4) = 0.56,
and once the test results become known, our belief should change to

PROB(A) = (0.4)(0.7) + (0.4)(0.25) + (0.8)(0.05) = 042.

cloth color

salability

Figure 2.3. A network representing the conditional independence of A and e, given B.

Bayes conditionalization would yield the same result, because the salability of the
- cloth depending only on its color is interpreted as A and e being conditionally
independent, and therefore

P(A |Color, e) = P(A|Color), (2.64)
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which legitimizes Jeffrey’s assurnption that
| PROB(A |B;) = prob(A | B,),

as long as we identify PROB(A1B;) with P(AiB;, ¢). In other words, modern
Bayesians take the liberty of writing equations such as Eq. (2.64) even though
P(A1Color, e) is available nowhere and cannot be computed numerically. The
equation does convey the qualitative information expressed in the story—that
color is the only factor relevant to salability—and it thus draws legitimacy not
from numerical probability values but from a more reliable knowledge source:
people’s qualitative reasoning about dependencies.

Note that Jeffrey’s Rule is equivalent to the Bayesian treatment of virtual
evidence (Section 2.2.2), using the likelihood vector

PROB(B)) (270 025 005
prob(B) 030’ 0.30° 0.40

AB)AP(elB)=a )

= o (2.330, 0.833, 0.125). (2.65)

Indeed, in Section 2.2.2 we saw that the likelihood vector requires no absolute
probability assessments and therefore avoids the difficulties associated with non-
propositional evidence (e.g., the visual stimulus in the candlelight story). We also
argued that the assumption of conditional independence means that the likelihood
vector is the only stable component in the relation between the evidence and the
impacted variable B, making it more reliagble to assess than the final product
PROB(B;). Thus, an alternate way of viewing the impact of sensory experience on
one’s knowledge is to replace the former by a likelihood vector impinging on the
basis B. (A similar idea was advanced by Field [1978].)

To demonstrate the volatility of the assumption in Eq. (2.59), let us choose an
example where it is obviously violated.

Case 2 A — e — B: Imagine that the main interest of our candlelight observer
lies not in the color of the cloth but rather in the chemical composition of the
candle wax. The agent inspects the color of the cloth, adjusts his belief from
prob(B;) to PROB(B;), and then wonders how to update prob(A), where A is the
proposition that the wax is a notoriously cheap brand known to produce flames
deficient in violet content.

Are we justified in using Jeffrey’s Rule? Slnce the color of the cloth (B;) is of
no relevance to A prior to the observation, we have prob(A 1B;) = prob A If we
blindly apply Eq. (2.60), we obtain a paradoxical result,

PROB (A) = ¥ prob(A) PROB (B;) = prob (A) , (2.66)



23 Epistemological Issues of Belief Updating 67

which states that no matter how violet or greenish the cloth looks under the
* candlelight, the observer’s belief regarding the makeup of the wax ought to remain
unaltered.

Is there any information in the story that should warn us against applying
Jeffrey’s Rule here? Modemn Bayesians claim that even though we lack the
knowledge required for precise description of the measurement process, our
qualitative understanding of the process is sufficient to alert us to the falsity of
P(A |B;, ¢) = P(A | B;) and thus protect us from drawing a false conclusion like
Eq. (2.66). Colloquially, we say that in Case 1, the color of the cloth "stood
between" the evidence and A (the salability of the cloth), while in Case 2 it was the
evidence that mediated between the colors and A (the brand of wax), as shown in
~ Figure 2.4,

W&X content

cloth color

(8)

flame spectrum

Figrure‘ 2.4. A network representing an evidence (e) mediating between A and B.

-One might argue that Jeffrey’s original account also prevents us from applying
his rule to Case 2 because A presumably should qualify as "one of the n
propositions whose probabilities were directly affected by the passage of
experience.” But the criterion by which this passage of experience can be termed
"direct” is rather hard to define. In other words, it is hard to see how the visual
experience bears directly on the nature of the wax (A) when it is the flame that
mediates between the two (see Figure 2.4). If anything, B seems more directly
affected by e than A is; the agent’s judgment about the color was reported first, and
color bears a closer semantic relation to visual experience than wax chemistry
does. - _
~If the road map outlining one’s passage of experience is so crucial for

understanding the structure of stories (i.e., which propositions should be affected
by the evidence and how), it is unfortunate that the philosophical literature on
probability kinematics does not provide a more complete analysis of this crucial
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source of information. Evidently, some believed that this road map is so deeply
entrenched in human intuition that no further explication is required. .

Neo-Bayesian philosophers go one step beyond Jeffrey. They say any
assertions one wishes to make about “"passage of experience” ought to be
‘explicated formally, using the familiar syntax of probability calculus. For
example, one’s intuition that A is not directly affected by the passage of experience
ought to be written in the format of Eq. (2.62), treating e as a genuine propositional
entity. On the surface, this requirement seems vacuous. If one interprets Eq.
(2.62) merely as a notation for expressing intuitions about the “passage of
experience,” then Bayes conditionalization—P (A | e)—ceases to be a statement
about the numeric magnitudes of P(A) and P(Ale) and becomes no more
informative than the verbal, intuitive sentences it purports to replace. However,
there is a profound significance to the use of the P(* |*) syntax instead of some
other notation.

First, it embodies the claim that passages of experience have traffic laws of
their own and that these laws are similar, if not identical, to those governing Bayes
conditionalization. For example, one traffic law states that it is inconsistent for an
agent to assert, "B stands between e and a pair of propositions {4, A,}" without
also asserting, "B and A, together stand between e and A,." This consistency
requirement holds both in Bayes conditionalization and in the road map metaphor.
Thus, even if one insists that statements such as Eq. (2.62) represent qualitative
facts about the passage of experience, not conditional probabilities, by agreeing to
manipulate these sentences by the rules of Bayes conditionalization one is
guaranteed never to violate any of the traffic lawssthat govern the roadmaps of
experience. The question of whether graphical representatlon of dependencies can
yield similar guarantees is treated in Chapter 3.

Second, the use of the P(* |*) syntax to define criteria such as Eq. (2.62)
suggests procedures a person should use to test mentally the validity of the
criterion in any given situation. Eq. (2.62) instructs a person to imagine first that
the cloth has a definite color, say B; = Green, then test whether any visual
experience e could significantly sway the belief in A one way or the other. In Case
1 the answer is clearly no, because the salability was proclaimed to be a function

only of the cloth color. In Case 2, however, this mental exercise would evoke
~ some vivid scenarios that could sway our belief. For example, a green cloth that
appears totally violet under the candlelight would induce a different opinion about
the candle’s wax than a green cloth that appears totally yellow under candlelight.
Thus, Bayes conditionalization has syntactic and psychological merits beyond the
numerical definition

P(AIB)=ﬂ};ﬁ(‘B’—l)&.l

that appears in most textbooks on probability theory.
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.+ Case 2 carries two messages. First, we demonstrated again that even when we
cannot describe precisely the observed evidence e, the qualitative elements of the
story are sufficient for judging whether the situation meets Jeffrey’s criterion, or the
conditional independence requirement P(A 1B;, e)=P(A |B;). Second, we
demonstrated that Jeffrey’s Rule is invalid not only when A is directly affected by
the passage of experience; it is enough that A branches off someplace on the path
from e to B, as in Figure 2.4. A more striking example is provided by the diamond
structure of Figure 2.5. Here, B is clearly more directly affected by e than A is, as
B stands between e and A, yet Eq. (2.62) will be violated. '

yaN
NS

Figure 2.5. A is not affected directly by the passage of experience, yet the observation e
changes the conditional degree of belief in A given B.

So far, we have used the diagrams in Figures 2.3 through 2.5 primarily as
mnemonic devices to distinguish among the cases discussed and to make an
occasional association with Jeffrey’s "passage of experience" notion. However, the
preceding discussion also demonstrates a rather useful pattern produced by
graphical representations (Figures 2.3 through 2.5): Jeffrey’s Rule is applicable if
and only if B separates A from e. This may be what Jeffrey meant by requiring that
A not be "one of the n propositions whose probabilities were directly affected by
the passage of experience." The notion of separation and its relation to
information independence will be given formal treatment in Chapter 3.

SUMMARY

Jeffrey’s Rule of belief updating was devised to replace Bayes conditioning in
cases where the evidence cannot be articulated propositionally. Our analysis
shows that to determine whether the rule is valid in any specific case, one must
have topological knowledge about one’s belief structure, namely, which beliefs are
directly related and which are only indirectly related. If such knowledge is
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available, it can be faithfully represented by the syntax of conditional
independence sentences, and traditional Bayes’ methods can be used to update
beliefs. Thus, the question arises whether it is ever necessary to avoid
conditionalization in formal belief updating. Lo

Since simple criteria based on graphical considerations lead to conclusions that
match our intuition, perhaps human intuition itself can be represented by networks
of relations, and perhaps intuitive judgments are really mental tracings of those
networks. These suggestions motivate the discussion of dependency graphs in
Chapter 3. '

24 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The Italian mathematician Gerolamo Cardano (1501-1576) is believed to be the
first to have formulated the notion of probability in gambling in terms of the
number of distinguishable ways that events may occur. This development marks a
radical (if somewhat tardy) change in cultural attitudes toward uncertainty.
Although fascination with the unpredictability of gambling devices goes back to
the time of the Pharaohs [David 1962], these devices were not perceived as
possessing inherent elements of uncertainty; instead, they were seen as means of
communicating with a source of knowledge (e.g., deity) that was basically
deterministic [Hacking 1975]. :

Cardano’s "objective” view of probability developed into a rather sophisticated
mathematical theory of combinatorics, in the hands of Fermat (1601-1665), Pascal
(1623-1662), Huygens (1629-1695), James Bemoulli (1654-1705), DeMoivre
(1667- 1754), and LaPlace (1749-1827), until in 1837 Denis Poisson gave it a new
twist by defining probability as a limit of a long-run relative frequency. Emile
Borel (1871-1956) and A. N. Kolmogorov are credited with developing the
modemn axiomatic foundations of mathematical probability, of which Egs. (2.1)
through (2.3) are a simplified version [Kolmogorov 1950}. Kolmogorov’s
axiomatization of probability is responsible for the unfortunate tradition of treating
Eq. (2.8) as a definition of conditional probability, rather than a theorem that
follows from more primitive axioms about conditioning.

In parallel to these mathematical developments, an alternative view of
probability came into being with Bernoulli’s suggestion that probability is a
"degree of confidence” that an individual attaches to an uncertain event. This
concept, aided by Bayes’ Rule [Bayes 1763], blossomed in the writings of LaPlace
and De Morgan and later in the works of Keynes [1921] and Jeffreys [1939].
However, the established communities of statisticians and mathematical
probabilists viewed this "subjectivist” intrusion with suspicion. It was not until the
-1950s, V\{ith the development of statistical decision theory (see Section 6.5), that
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~ Bayesian methods gained their current momentum. The two defining attributes of
the Bayesian school are (1) willingness to accept subjective opinions as an
expedient substitute for raw data and (2) adherence to Bayes conditionalization as
the primary mechanism for updating beliefs in light of new information. The
articles in Kyburg and Smokler [1980] deal with the philosophical underpmmng of
the Bayesian revival.

A critical analysis of Bayes conditionalization can be found in Shafer [1982,
1985, 1986b]: According to Shafer, it was DeMoivre who first formulated the idea
that the occurrence of one event can change the probability of another and who
proved the multiplication rule of Eq. (2.9) using the method of expectation. Bayes
gave a version of DeMoivre’s proof for his rule (Eq. (2.13)), while interpreting it as
providing the subjective probabilities of past events. Exercise 2.2 gives a modemn
version of the example used in Bayes’ original essay [Bayes 1763). Alternatives to
Bayes conditioning—including Jeffrey’s rule and Dempster’s rule (see Chapter
9)—have been discussed by Diaconis and Zabell [1986]. Jeffrey’s rule constitutes
the minimum entropy extension of prob (-), and Lemmer and Barth [1982] first
proposed it for belief updating in expert systems. The formal identity between
Jeffrey’s rule and virtual conditionalization (as in Eq. (2.65)) renders the two
semantically equivalent, ie., beliefs updated by Jeffrey’s rule cannot be
distinguished from those updated by Bayes’ conditionalization on some virtual
evidence. Another alternative to Bayes’ conditionalization, called imaging, was
introduced by Lewis [1976] and was used to represent counterfactual conditionals.

The Three Prisoners story is one of many well-known puzzles that illustrate the
need for specifying the query process in tasks involving inference from
observations (see Exercise.2.6). Shafer [1985] calls this query process a protocol
and views it as a disadvantage of Bayes conditioning, since we must assign
probabilities for all possible ways information may be obtained. Our discussion in
Section 2.3.2 attempts to convince the reader that formalisms that ignore the query
process altogether (see Chapter 9 for examples) are bound to be insensitive to an
important component of human reasoning. In the Thousand Prisoners story, for
example, such systems will not attach any significance to discovering the query
after seeing the list; beliefs will remain the same, based solely on the one-m-two
model (see Exercise 9.5b).

Our treatment of virtual evidence (Section 2.2.2), using the vector of likelihood-
ratios, sidesteps the requirement of specifying a full protocol in advance (see
Exercise 2.7). This option expands the repertoire of Bayes analysis by permitting
us to assimilate evidence by means other than straight conditioning, and it
simultaneously facilitates the manipulation of belief updates within the traditional
syntax of probability calculus. :

~ There are, of course, items of information that cannot and should not be
handled as evidential data, but must be treated as constraints on—or
specificational adjustments to—the probabilistic model we currently possess.
Conditional sentences are typical examples of such information. For example, the
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sentence "If Joe goes to the party Mary will not go” must be treated as a meta-level
constraint in the form of conditional probability and not as evidence to be
conditioned upon (see Exercises 10.1 and 10.2). On the other hand, the sentence
“Joe and Mary will not both go to the party,” though logically equivalent to the
previous sentence, is a form of information that can be treated as evidence for
conditionalization. The difference is that conditionalization changes the
probability of Joe’s going to the party while constraint-based updating leaves this
probability intact. The purpose of the English word if is to convey a distinction
between these two modes of assimilating information and to instruct the listener to
refrain from straight conditioning.

The papers in Harper et al. [1981] provide a cross section of the philosophical
literature dealing with conditionals. Section 10.2 illustrates how conditional
information can be absorbed in the form of specification constraints, following the
work of Adams [1975].

The treatment of Jeffrey’s rule (Section 2.3) is further expanded in Pearl
[1990]P. ~

Recent works on foundational issues of probability have focused on higher-
order probabilities®® (see also Section 7.3) and on the development of logics for
reasoning about probabilities.(>X®

M Pearl, J. Jeffrey’s Rule, Passage of Experience, and Neo-Bayesianism. H.E. Kyburg, Ir. et al.,

(eds.), Knowledge Representation and Defeasible Reasomng, 1990, Kluwer Academic Publishers,
245-264.
@ Haddawy, P., and Frisch, A.M. Modal logics of higher-order probability. In Shachter et al., (eds.),
Uncertainty in Al 4, North Holland, 1990, 133-148.
Fagin, R., and Halpem, J. Y., Reasoning about Knowledge and Probability: Preliminary Report,
in Proceedings, 2nd Conference on Theoretical Aspects of Reasoning about Knowledge,
Morgan-Kaufmann, 1988, 277-293.
Fagin, R., Halpem, J.Y., and Megiddo, N., A logic for reasoning about probabilities, Information
‘and Computation, 87 (1/2), 1990, 78-128. ,
Bacchus, F., Representing and reasoning with probabzhsnc knowledge, Cambridge, MA: The
MIT Press, 1990.
Kyburg, H., Evidential Probability, Proceedmgs TJCAI- 91 Sydney, Austraha, 1991, 1196-1203. -
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- Exercises

2.1. There are three urns labeled one, two, and three. These ums contain,
respectively, three white and three black balls, four white and two black
balls and one white and two black balls. An experiment consists of
selecting an urn at random, then drawing a ball from it.

a.  Find the probability of selecting urn 2 and drawing a black ball.
b.  Find the probability of drawing a black ball.

c¢.  Find the conditional probability that urn 2 was selected, given that
a black ball was drawn.

It may be helpful to label the possible outcomes (1, B), (1, W), (2, B),
2, W), 3,B), 3, W).

2.2, A billiard table has unit length, measured from left to right. A ball is
rolled on this table, and when it stops, a partition is placed at its stopping
position, a distance x from the left end of the table. A second ball is now
rolled between the left end of the table and the partition, and its stopping
position, y, is measured.

a.  Answer qualitatively: How does knowledge of y affect our belief
about x? Is x more likely to be near y, far from y, or near the
midpoint between y and 1? '

b.  Justify your answer for (a) by quantitative analysis. Assume each
stopping position is uniformly distributed over its feasible range.

2.3. Let the hypothesis variable H = {H,, H,, H3,Hy] stand for the
following set of exhaustive and mutually exclusive conditions

H | = No burglary, animal entry.

Hy = Attempted burglary, window break-in.
H 3 = Attempted burglary, door break-in.
H4 = No burglary, no entry.
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with prior probabilities P(H;) = (0.099, 0.009, 0.001, 0.891). Let the

alarm system contain two detectors, E' and EZ, with the following -
sensitivity matrices: .

el el el

05 04 0.1
006 05 044
05 01 04
1.0 0 0

el €} e3
H |08 01 01
H, | 08 01 01
Hy |01 01 08
H, | 09 005 005.

What is the probability of burglary if detector E! is OFF (E! = e})

and E2 is HIGH (E? = 3 )?

Repeat problem (a) under the following conditions:

e A reliable witness claims to have heard detector E!, but she
cannot tell whether it was High sound (e 1y or Low sound (e}).

e A second reliable witness claims detector £? was definitely not
in High sound state but’there is a slight (5%) chance that it

issued a Low sound (€3).

You are considering adding to your alarm system a new detector
E?, with the following sensitivity matrix:

OFF | ON
H; | 01 { 09
H, | 09 | 01
Hy | 09 | 0.1
H, 1 0

What is- the probability that E3 will

conditions described in problem (b)?

be activated under the
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24.

25.

2.6.

2.7.

d.
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- You are considering installing a monitor E* at your. office,

connected directly to detector E'. The relation between E' and E*
is characterized by the matrix

E*=0OFF | E*=0ON

E' = OFF 0.9 0.1
E! = LOW 0.2 0.8

E! = HIGH 0.1 0.9.

What is the probability that £4 will turn on under the conditions of

-problem (b).

Verify which entries in Table 1 (page 54) are unconditionally
supported by probability theory and which must be qualified with
additional assumptions about context. ’

Which of the entries are violated in the Three Prisoners story.

How would Jeffrey’s rule handle the Three Prisoners problem?

I have three cups and one ball. I put the ball under one of the cups and

~mix up the cups. You must pick the cup with the ball under it. You

choose one without inspecting its content. Then I remove one of the other
cups and show you that it does not have a ball under it. Now I give you
the chance to change your choice of cups. Should you do it? How is this
puzzle related to the Three Prisoners story?

a’

Formulate Case 2 of the candlelight story using a Bayesian
approach, and determine what additional information is required for
computing P(A le). (Recall: e is non-propositional, so the absolute
value of P(e i-) is meaningless).

Assume reasonable values for the missing information and compute
P(Ale).



