Chapter 1

UNCERTAINTY IN Al SYSTEMS:
AN OVERVIEW

I consider the word probability as meaning
the state of mind with respect to an assertion,
 a coming event, or any other matter on which
absolute Knowledge does not exist.
— August De Morgan, 1838

1.1 INTRODUCTION

1.1.1 Why Bother with Uncertainty?

Reasoning about any realistic domain always requires that some simplifications be
made. The very act of preparing knowledge to support reasoning requires that we-
leave many facts unknown, unsaid, or crudely summarized. For example, if we
choose to encode knowledge and behavior in rules such as "Birds fly" or "Smoke
suggests fire," the rules will have many exceptions which we cannot afford to
enumerate, and the conditions under which the rules apply (e.g., seeing a bird or
smelling smoke) are usually ambiguously defined or difficult to satisfy precisely in
real life. Reasoning with exceptions is like navigating a minefield: Most steps are
safe, but some can be devastating. If we know their location, we can avoid or
defuse each mine, but suppose we start our journey with a map the size of a
postcard, with no room to mark down the exact location of every mine or the way
they are wired together. An alternative to the extremes of ignoring or enumerating
exceptions is to summarize them, i.e., provide some waming signs to indicate
which areas of the minefield are more dangerous than others. Summarization is
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essential if we wish to find a reasonable compromise between safety and speed of
movement. This book studies a language in which summaries of exceptions in the
minefield of judgment and belief can be represented and processed.

1.1.2 Why Is It a Problem?

One way to summarize exceptions is to assign to each proposition a numerical
measure of uncertainty and then combine these measures according to uniform
syntactic principles, the way truth values are combined in logic. This approach has
been adopted by first-generation expert systems, but it often yields unpredictable
and counterintuitive results, examples of which will soon be presented. As a
matter of fact, it is remarkable that this combination strategy went as far as it did,
since uncertainty measures stand for something totally different than truth values.
Whereas truth values in logic characterize the formulas under discussion,
uncertainty measures characterize invisible facts, i.e., exceptions not covered in
the formulas. Accordingly, while the syntax of the formula is a perfect guide for
combining the visibles, it is nearly useless when it comes to combining the
invisibles. For example, the machinery of Boolean algebra gives us no clue as to
how the exceptions to A — C interact with those of B — C to yield the exceptions -
to (A A B) — C. These exceptions may interact in intricate and clandestine ways,
robbing us of the modularity and monotonicity that make classical logic
computationally attractive.

- Although formulas interact in intricate ways, in logic too, the interactions are
- visible. This enables us to calculate the impact of egch new fact in stages, by a
“process of derivation that resembles the propagation of a wave: We compute the
impact of the new fact on a set of syntactically related sentences S, store the
results, then propagate the impact from §; to another set of sentences S5, and so
on, without having to return to S;. Unfortunately, this computational scheme, so
basic to logical deduction, cannot be justified under uncertainty unless one makes
some restrictive assumptions of independence .

Another feature we lose in going from logic to uncertainty is incrementality .
When we have several items of evidence, we would like to account for the impact
of each of them individually: Compute the effect of the first item, then absorb the
added impact of the next item, and so on. This, too, can be done only after making
restrictive assumptions of independence. Thus, it appears that uncertainty forces
us to compute the impact of the entire set of past observations to the entire set of
sentences in one global step—this, of course, is an impossiblc task.

113 Approaches to Uncertainty

Al researchets tackling these problems can be classiﬁed into three formal schools,
which T will call logicist, neo-calculist, and neo-probabilist. The logicist school
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~ attempts 'to deal with uncertainty using nonnumerical techniques, primarily
nonmonotonic logic.  The neo-calculist school uses numerical representations of
uncertainty but regards probability calculus as inadequate for the task and thus
invents entirely new calculi, such as the Dempster-Shafer calculus, fuzzy logic,
and certainty factors. The neo-probabilists remain within the traditional
framework of probability theory, while attempting to buttress the theory with
computational facilities needed to perform Al tasks. There is also a school of
researchers taking an informal, heuristic approach [Cohen 1985; Clancey 1985;
Chandrasekaran and Mittal 1983], in which uncertainties are not given explicit
notation but are instead embedded in domain-specific procedures and data
structures.”

- This taxonomy is rather superficial, capturing the syntactic rather than the
semantic variations among the various approaches. A more fundamental
taxonomy can be drawn along the dimensions of extensional vs. intensional
approaches.t The extensional approach, also known as production systems, rule-
based systems, and procedure-based systems, treats uncertainty as a generalized
truth value attached to formulas and (following the tradition of classical logic)
computes the uncertainty of any formula as a function of the uncertainties of its
subformulas. In the intensional approach, also known as declarative or model-
based, uncertainty is attached.to "states of affairs” or subsets of "possible worlds."
Extensional systems are computationally convenient but semantically sloppy,
while intensional systems are semantically clear but computationally clumsy. The
trade-off between semantic clarity and computational efficiency has been the main
issue of concern in past research and has transcended notational boundaries. For
example, it is possible to use probabilities either extensionally (as in
PROSPECTOR [Duda, Hart, and Nilsson 1976]) or intensionally (as in MUNIN
[Andreassen et al. 1987]). Similarly, one can use the Dempster-Shafer notation
either extensionally [Ginsberg 1984} or intensionally [Lowrance, Garvey, and Strat
1986]. '

1.14 Extensional vs. Intensional Approaches

- Extensional systems, a typical representative of which is the certainty-factors
calculus used in MYCIN [Shortliffe 1976], treat uncertainty as a generalized truth
- value; that is, the certainty of a formula is defined to be a unique function of the
certainties of its subformulas. Thus, the connectives in the formula serve to select
the appropriate weight-combining function. For example, the certainty of the
conjunction A A B is given by some function (e.g., the minimum or the product) of

1 These terms are due to.Perez and Jirousek (1985); the terms synfactic vs. semantic are.also
adequate.
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the certainty measures assigned to A and B individually. By contrast, in intensional
systems, a typical representative of which is probability theory, certainty measures
are assigned to sets of worlds, and the connectives combine sets of worlds by set-
theory operations. For example, the probability P(A A B) is given by the weight
assigned to the intersection of two sets of worlds—those in which A is true and
those in which B is true—but P(A A B) cannot be determined from the individual
probabilities P(A) and P(B).

Rules, too, have different roles in these two systems. The rules in extensional
systems provide licenses for certain symbolic activities. For example, a rule
A-"5 B may mean "If you see A, then you are given the license to update the
certainty of B by a certain amount which is a function of the rule strength m." The
rules are interpreted as a summary of past performance of the problem solver,
describing the way an agent normally reacts to problem situations or to items. of
evidence. . In intensional systems, the rules denote elastic constraints about the
world. For example, in the Dempster-Shafer formalism (see Chapter 9) the rule
A2, B does not describe how an agent reacts to the finding of A, but asserts that
the set of worlds in which A and —B hold simultaneously has low likelihood and
hence should be excluded with probability m. In the Bayesian formalism the rule
A-5 B is interpreted as a conditional probability expression P(B1A)=m,
stating that among all worlds satisfying A, those that also satisfy B constitute a
fraction of size m. Although there exists a vast difference between these two
interpretations (as will be shown in Chapters 9 and 10), they both represent
summaries of factual or empirical information, rather than summaries of past
decisions. We will survey intensional formalisms in*Section 1.3, but first, we will
briefly discuss their extensional rivals.

1.2 EXTENSIONAL SYSTEMS: MERITS,
DEFICIENCIES, AND REMEDIES

1.2.1 Computational Merits

A good way to show the computational merits of extensional systems is to examine
the way rules are handled in the certainty-factors formalism [Shortliffe 1976] and
contrast it with probability theory’s treatment of rules. Figure 1.1 depicts the
combination functions that apply to serial and parallel rules, from which one can
form a rule network. The result is a modular procedure for determining the
certainty of a conclusion, given the credibility of each rule and the certainty of the
premises (i.e., the roots of the network). ‘To complete the calculus we also need to
- define combining functions for conjunction and negation. Setting mathematical
'detrails‘ aside, the point to notice is that the same combination function applies
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uniformly to any two rules in the system, regardless of what other rules might be in
the neighborhood.

Rules: A
X
e If A then C (x)
C z
e If B then C (y) ~——>——— D
o IfC then D (2) Y
B
1. Parallel combination
X+y-—xy x,y>0

CF(C)= {(x +y)/ (1 —min(x, y)) x,y different sign

x+y+xy x,y<0

2. Series combination

CF(D) = z - max(0, CF(C))

3. Conjunction, negation ...

Figure 1.1, Certainty combination functions used in MYCIN. x, y, and z denote the
credibilities of the rules.

Computationally speaking, this uniformity mirrors the modularity of inference
rules in classical logic. For example, the logical rule "If A then B" has the
following procedural interpretation: "If you see A anywhere in the knowledge
base, then regardless of what other things the knowledge base contains and
regardless of how A was derived, you are given the license to assert B and add it to
the database." This combination of locality (“regardless of other things") and
detachment ("regardless of how it was derived") constitutes the principle of
 modularity. The numerical parameters that decorate the combination functions in
Figure 1.1 do not alter this basic principle. The procedural license provided by the
rule A £5 B reads as follows: "If you see the certainty of A undergoing a change

84, then regardless of what other things the knowledge base contains and
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regardless of how 8, was triggered, you are given an unqualified license to modify
the current certainty of B by some amount 8z, which may depend on x, on 84, and
on the current certainty of B."{

To appreciate the power of this interpretation, let us compare it with that given
by an intensional formalism such as probability theory. Interpreting rules as
conditional probability statements, P(B1A) = p, does not give us license to do
anything. Even if we are fortunate enough to find A true in the database, we still
cannot assert a thing about B or P(B), because the meaning of the statement is "If
A is true and A is the only thing that you know, then you can attach to B a
probability p.” As soon as other facts K appear in the database, the license to
assert P(B) = p is automatically revoked, and we need to look up P(BIA, K)
instead. The probability statement leaves us totally impotent, unable to initiate
any computation, unless we can verify that everything else in the knowledge base
is irrelevant. This is why verification of irrelevancy is so crucial in intensional
systems. ‘

In truth, such verifications are crucial in extensional systems too, but the
computational convenience of these systems and their striking resemblance to
logical derivation tempt people to neglect the importance of verifying irrelevancy.
We shall now describe the semantic penalties imposed when relevance
considerations are ignored.

1.2.2 Semantic Deficiencies ‘

The price tag attached to extensional systems is that they often yield updating that
is incoherent, i.e., subject to surprises and counterintuitive conclusions. These
problems surface in several ways, most notably

1. improper handling of bidirectional inferences,
2. difficulties in retracting conclusions, and

3. improper treatment of correlated sources of evidence.

We shall describe these problems in order.

THE ROLE OF BIDIRECTIONAL INFERENCES

The ability to use both predictive and diagnostic information is an important
component of plausible reasoning, and improper handling of such information
leads to rather strange results. A common pattern of normal discourse is that of

1 The observation that the rules refer to changes rather than absolute values was made by Horvitz and -
Heckerman [1986). ' -
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abductive reasoning—if A implies B, then finding that B is true makes A more
credible (Polya [1954] called this an induction pattern [see Section 2.3.1]). This
pattern involves reasoning both ways, from A to B and from B to A. Moreover, it
appears that people do not require two separate rules for performing these
inferences; the first rule (e.g., “Fire implies smoke”) provides the license to invoke
the second (e.g., "Smoke makes fire more credible”). Extensional systems, on the
other hand, require that the second rule be stated explicitly and, even worse, that
the first rule be removed. Otherwise, a cycle would be created where any slight
evidence in favor of A would be amplified via B and fed back to A, quickly turning
into a stronger confirmation (of A and B), with no apparent factual justification.
The prevailing practice in such systems (e.g., MYCIN) is to cut off cycles of that
sort, permitting only diagnostic reasoning and no predictive inferences.

- Removal of its predictive component prevents the system from exhibiting
another important pattern of plausible reasoning, one that we call explaining away:
If A implies B, C implies B, and B is true, then finding that C is true makes A less
credible. In other words, finding a second explanation for an item of data makes
the first explanation less credible. Such interaction among multiple causes appears
in many applications (see Sections 2.2.4, 2.3.1, 4.3.2, and 10.2). For example,
finding that the smoke could have been produced by a bad muffler makes fire less
credible.” Finding that my light bulb emits red light makes-it less credible that the
red-hued object in my hand is truly red.

To exhibit this sort of reasoning, a system must use bidirected inferences: from
evidence to hypothesis (or explanation) and from hypothesis to evidence. While it
is sometimes possible to use brute force (e.g., enumerating all exceptions) to
restore “explaining away"” without the danger of circular reasoning, we shall see
that any system that succeeds in doing this must sacrifice the principles of
modularity, i.e., locality and detachment. More precisely, every. system that
updates beliefs modularly at the natural rule level and that treats all rules equally is
bound to defy prevailing patterns of plausible reasomng

THE LIMITS OF MODULARITY

The principle of locality is fully realized in the inference rules of class:cal logic.
The rule "If P then Q" means that if P is found true, we can assert 0 with no
further analysis, even if the database contains some other knowledge K. In
plausible reasoning, however, the luxury of ignoring the rest of the database
- cannot be maintained. For example, suppose we have a rule R, = "If the ground is
wet, then assume it rained (with certainty c¢)." Validating the truth of "The ground
is wet” does not permit us to increase the certainty of "It rained" because the
knowledge base might contain strange items such as K = "The sprinkier was on
~last night." These strange .items, called defeaters or suppressors (Section 10.3), are
‘sometimes easy to discover (as with K” = "The neighbor’s grass is dry,” which
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directly opposes "It rained"), but sometimes they hide cleverly behind syntactical
innocence. The neutral fact K = "Sprinkler was on" neither supports nor opposes
the possibility of rain, yet K manages to undercut the rule R,. This undercutting
cannot be implemented in an extensional system; once R is invoked, the increase
in the certainty of "It rained” will never be retracted, because no rule would
normally connect "Sprinkler was on" to "It rained.” Imposing such a connection by
proclaiming "Sprinkler was on" as an explicit exception to R defeats the spirit of
modularity by forcing the rule-writer to pack together items of information that are
only remotely related to each other, and it burdens the rules with an unmanageably
large number of exceptions.

Violation of detachment can also be demonstrated in this example. In
deductive logic, if K implies P and P implies Q, then finding K true permits us to
deduce @ by simple chaining; a derived proposition (P) can trigger a rule (P — Q)
with the same vigor as a directly observed proposition can. Chaining does not
apply in plausible reasoning. The system may contain two innocent-looking
rules—"If the ground is wet then it rained” and "If the sprinkler was on then the
ground is wet"—but if you find that the sprinkler was on, you obviously do not
wish to conclude that it rained. On the contrary, finding that the sprmkler was on
only takes away support from "It rained."

As another example, consider the relationships shown in Figure 1.2. Normally
an alarm sound alerts us to the possibility of a burglary. If somebody calls you at
the office and tells you that your alarm went off, you will surely rush home in a
hurry, even though there could be other causes for the alarm sound. If you hear a
radio announcement that there was an earthquaké nearby, and if the last false
alarm you recall was triggered by an earthquake, then your certainty of a burglary
will diminish. Again, this requires going both ways, from effect to cause (Radio
— Earthquake), and from cause to effect (Earthquake .— Alarm), and then from
effect to cause again (Alarm — Burglary). Notice what pattern of reasoning results
from such a chain, though: We have a rule, "If A (Alarm) then B (Burglary)"; you
listen to the radio, A becomes more credible, and the conclusion B becomes less
credible. Overall, we have "If A — B and A becomes more credible, then B
becomes less credible.” This behavior is clearly contrary to everything we expect
from local belief updating.

In conclusion, we see that the difficulties plaguing classical logic do not stem
from .its nonnumeric, binary character. Equally troublesome difficulties emerge
when truth and certainty are measured on a grey scale, whether by point values, by
interval bounds, or by linguistic quantifiers such as "likely” and “credible.” There
seems to be a basic struggle between procedural modularity and semantic
coherence, independent of the notation used.

CORRELATED EVIDENCE

_ Extensional Systems, greedily exploiting the licenses provided by locality and
detachment, respond only to the magnitudes of the weights and not to their origins.
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Phone |
call
Earthquake
Radio .
A - B announcement

A more credible

B less credible

Figure 1.2. Making the antecedent of a rule more credible can cause the consequent to
become less credible.

As a result they will produce the same conclusions whether the weights originate
from identical or independent sources of information. An example from Henrion
[1986b] about the Chernobyl disaster helps demonstrate the problems encountered
by such a local strategy. Figure 1.3 shows how multiple, independent sources of
evidence would normally increase the credibility of a hypothesis (e.g., Thousands
dead), but the discovery that these sources have a common origin should reduce
the credibility. Extensional systems are too local to recognize the common origin
of the information, and they would update the credibility of the hypothesis as if it
were supported by three independent sources.

123 Attempted Remedies and their Limitations

The developers of extensional systems have proposed and implemented powerful
techniques to remedy some of the semantic deficiencies we have discussed. The
remedies, most of which focus on the issue of correlated evidence, take two
- approaches:

1. Bounds propagation: Since most cormrelations are unknown, certainty
measures are combined under two extreme assumptions—that the
components have a high positive correlation, and that they have a high
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Figure 1.3. The Chernobyl disaster example (after Henrion) shows why rules

cannot combine locally.

negative correlation. This yields upper and lower bounds on the
combined certainty, which are entered as inputs to subsequent
computations, producing new bounds on the certainty of the
conclusions. This approach has been implemented in INFERNO
[Quinlan 1983] and represents a local approximation to Nilsson’s

probabilistic logic [Nilsson 1986] (see Section 9.3).

User-specified combination functions: A system named RUM
[Bonissone, Gans, and Decker 1987] permits the rule-writer to specify
the combination function that should apply to the rule’s components.
For example, if a, b, and c stand for the weights assigned to propositions
A, B, and C in the rule

AAB-C,

the user can specify which of the following three combination functions
should be used:

T(a, b) =max(0,a + b - 1),
T,(a, b) = ab,

or

Ts(a, b) = min(a, b).
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- These -functions - (called’ T norms) represent the probabilistic
-combinations obtained under three extreme cases of correlation between
A and B: highly negative, zero, and highly positive. _
Cohen, Shafer, and Shenoy [1987] have proposed a more reﬁned
scheme, where for any pair of values P(A) and P(B), the user is
permitted to specify the value of the resulting probability, P(C).

The difficulties with these correlation-handling techniques are several. First, the
bounds produced by systems such as INFERNO are too wide. For example, if we
are given P(A) = p and P(B | A) = q, then the bounds we obtain for P(B) are

pq<PB)<1-p(l-q),

which for small p approach the unit interval [0, 1]. Second, to handle the intricate
dependencies that may occur among rules it is not enough to capture pair-wise
correlations; higher-order dependencies are often necessary [Bundy 1985]. Finally,
even if one succeeds in specifying higher-order dependencies, a much more
fundamental limitation exists: Dependencies are dynamic relationShips, created
and destroyed as new evidence is obtained. For example, dependency between the
propositions "It rained last night” and "The sprinkler was on" is created once we
find out that the ground is wet. The dependence between a child’s shoe size and
reading ability is destroyed once we find out the child’s age. Thus, correlations and
combination functions specified at the knowledge-building phase may quickly
become obsolete once the program is put into use.

Heckerman [1986a, 1986b] delineated precisely the range of applicability of
extensional systems. ‘He proved that any system that updates certainty weights in a
modular and consistent fashion can be given a probabilistic interpretation in which
the certainty update of a proposition A is some function of the likelihood ratio

_ _P(Evidence |A)
" P(Evidence 1—-A)

In MYCIN, for example, the certainty factor CF can be interpreted as

A-1
k= A+l

Once we have a probabilistic interpretation, it is easy to determine the set of
- structures within which the update procedure will be semantically valid. It turns
out that a system of such rules will produce coherent updates if and only if the
rules form a directed tree, i.e., no two rules may stem from the same premise. This
limitation explains why strange results were obtained in the burglary example of

Figure 1.2. There, the alarm event points to two possible explanations, Burglary
" and Earthquake, which amounts to two evidential rules stemming from the
- premise, Alarm. '
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. Hajek [1985] and Héjek and Valdes [1987] have developed an algebraic theory
that characterizes an even wider range of the extensional systems and combining
functions, including those based on Dempster-Shafer intervals. The unifying
properties common to all such systems is that they form an ordered Abelian group.
Again, the knowledge base must form a tree so that no evidence is counted twice
via alternative paths of reasoning.

1.3 INTENSIONAL SYSTEMS AND NETWORK
REPRESENTATIONS

. We have seen that handling uncertainties is a rather tricky enterprise. It requires a
fine balance between our desire to use the computational permissiveness of
extensional systems and our ability to refrain from committing semantic sins. It is
like crossing a minefield on a wild horse. You can choose a horse with good
instincts, attach certainty weights to it and hope it will keep you out of trouble, but
the danger is real, and highly skilled knowledge engineers are needed to prevent
the fast ride from becoming a disaster. The other extreme is to work your way by
foot with a semantically safe intensional system, such as probability theory, but
then you can hardly move, since every step seems to require that you examine the
entire field afresh. We shall now examine means for making this movement
brisker.

In intensional systems, the syntax consists ‘of declarative statements about
states of affairs and hence mirrors world knowledge rather nicely. For example,
conditional probability statements such as "Most birds fly" are both empirically
testable and conceptually meaningful. Additionally, intensional systems have no
problem handling bidirected inferences and correlated evidence; these emerge as
built-in features of one globally coherent model (see Chapters 2 and 4). However,
since the syntax does not point to any useful procedures, we need to construct
special mechanisms that convert the declarative input into routines that answer
queries. Such a mechanism is offered by techniques based on belief networks,
which will be a central topic of discussion in this book.

1.3.1 Why Networks?

Qur goal is to make intensional systems operational by making relevance
relationships explicit, thus curing the impotence of declarative statements such as
P(B1A) = p. As mentioned earlier, the reason one cannot act on the basis of such
declarations is that one must first make sure that other items in the knowledge base
are irrelevant to B and hence can be ignored. The trick, therefore, is t0 encode
knowledge in such a way that the ignorable is recognizable, or better yet, that the -
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unignorable is quickly identified and is readily accessible. Belief networks encode
relevancies as neighboring nodes in a graph, thus ensuring that by consulting the
neighborhood one gains a license to act; what you don’t see locally doesn’t matter.
In effect, what network representations offer is a dynamically updated list of all
currently valid licenses to ignore, and licenses to ignore constitute permissions to
act.

Network representations are not foreign to Al systems. Most reasoning sys-
tems encode relevancies using intricate systems of pointers, i.e., networks of
indices that group facts into structures, such as frames, scripts, causal chains, and
inheritance hierarchies. These structures, though shunned by pure logicians, have
proved to be indispensable in practice, because they place the information required
to perform an inference task close to the propositions involved in the task. Indeed,
many patterns of human reasoning can be explained only by people’s tendency to
follow the pathways laid out by such networks.

The special feature of the networks discussed in this book is that they have
clear semantics. In other words, they are not auxiliary devices contrived to make
reasoning more efficient but are an integral part of the semantics of the knowledge
base, and most of their features can even be derived from the knowledge base.

Belief networks play a central role in two uncertainty formalisms: probability
theory, where they are called Bayesian networks, causal nets, or influence
diagrams, and the Dempster-Shafer théory (see Chapter 9), where they are referred
to as galleries [Lowrance, Garvey, and Strat 19861, qualitative Markov networks
[Shafer, Shenoy, and Mellouli 1988], or constraint networks [Montanari 1974},
Probabilistic networks will be given a formal treatment in Chapter 3 and will serve
as a unifying theme throughout this book. In the next subsection we briefly discuss
the theory of graphoids, which provides formal semantics for graphical representa-
tions in terms of information relevance.

1.3.2 Graphoids and the Formalization of
Relevance and Causality

A central requirement for managing intensional systems is to articulate the
conditions under which one item of information is considered relevant to another,
given what we already know, and to encode knowledge in structures that display
these conditions vividly as the knowledge undergoes changes. Different
formalisms give rise to different definitions of relevance. For example, in
probability theory, relevance is identified with dependence; in database theory,
with induced constraints—two variables are said to be relevant to each other if we
can restrict the range of values permitted for one by constraining the other,

~ The essence of relevance can be identified with a structure common to all of
these formalisms. It consists of four axioms which convey the simple idea that
when we learn an irrelevant fact, the relevance relationships of all other
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propositions 'remain -unaltered; any information that was irrelevant remains
irrelevant, and that which was relevant remains relevant. Structures that conform
to these axioms are called graphoids [Pearl and Paz 1985] and will be treated more
fully in Chapter 3. Interestingly, both undirected graphs and directed acyclic
graphs conform to the graphoids axioms (hence the name) if we associate the
sentenice "Variable X is irrelevant to variable ¥ once we know Z" with the
graphical condition "Every path from X to Y is intercepted by the set of nodes
corresponding to Z." (A special definition of intercept is required for directed
graphs [see Section 3.3.1]).

With this perspective in mind, graphs networks, and diagrams can be viewed
as inference engines devised for efficiently representing and manipulating
relevance relationships. The topology of the network is assembled from a list of
local relevance statements (e.g., direct dependencies). This input list implies
(using the graphoid axioms) a host of additional statements, and the graph ensures
that a substantial portion of the latter can be verified by simple graphical
procedures such as path tracing and path blocking. Such procedures enable one to
determine, at any state of knowledge Z, what information is relevant to the task at
hand and what can be ignored. Permission to ignore, as we saw in Section 1.1, is
the fuel that gives intensional systems the power to act.

The theory of graphoids shows that a belief network can constitute a sound and
complete inference mechanism relative to probabilistic dependencies, i.e., it
identifies, in polynomial time, every conditional independence relationship that
logically follows from those used in the construction of the network (see Section
3.3). Similar results hold for other types of relevance relationships, e.g., partial
correlations and constraint-based dependencies. The essential requirement for
soundness and completeness is that the network be constructed causally, i.e., that
we identify the most relevant predecessors of each variable recursively, in some
total order, say temporal. (Once the network is constructed, -the original order can
be forgotten; only the partial order displayed in the network matters.)

It is this soundness and completeness that gives causality such a central role in
this book, and perhaps in knowledge organization in general. However, the
precise relationship between causality as a representation of irrelevancies and
causality as a commitment to a particular inference strategy (e.g., chronological
ignorance [Shoham 1986]) has yet to be fully investigated.

1.4 THE CASE FOR PROBABILITIES

The aim of artificial intelligence is to provide a computational model of intelligent
behavior, most importantly, commonsense reasoning. The aim of probability
theory is to provide a coherent account: of how belief should change in light of
partial or uncertain information. Since commonsense reasoning always applies to
incomplete information, one might naturally expect the two disciplines to share
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language, goals, and techniques. However, ever since McCarthy and Hayes [1969]
proclaimed probabilities to be "epistemologically inadequate,” Al researchers have
shunned probability adamantly. Their attitude has been expressed through
commonly heard statements like "The use of probability requires a massive amount
of data,” "The use of probability requires the enumeration of all possibilities," and
"People are bad probability estimators.” "We do not have those numbers,” it is
often claimed, and even if we do, "We find their use inconvenient.”

Aside from the obvious corrections to these claims, this book will try to
communicate the idea that "probability is not really about numbers; it is about the
structure of reasoning," as Glenn Shafer recently wrote.t We will emphasize, for
example, that when a physician asserts, "The chances that a patient with disease D
will develop symptom S is p," the thrust of the assertion is not the precise
magnitude of p so much as the specific reason for the physician’s belief, the
context or assumptions under which the belief should be firmly held, and the
sources of information that would cause this belief to change. We will also stress
that probability theory is unique in its ability to process context-sensitive beliefs,
and what makes the processing computationally - feasible is that the information
needed for specifying context dependencies can be represented by graphs and
manipulated by local propagation.

14.1 Why Should Beliefs Combine Like
Frequencies?

On the surface, there is really no compelling reason that beliefs, being mental
dispositions about unrepeatable and often unobservable events, should combine by
the laws of proportions that govem repeatable trials such as the outcomes of
gambling devices. The primary appeal of probability theory is its ability to express
useful qualitative relationships among beliefs and to process these relationships in
a way that yields intuitively plausible conclusions, at least in cases where intuitive
judgments are compelling. A summary of such qualitative relationships will be
given in the next subsection. What we w1sh to stress here is that the fortunate
match between human intuition and the. laws of proportions is not a coincidence.
It-came about because beliefs are formed not in a vacuum but rather as a
distillation of sensory experiences. For reasons of storage economy and generality
we forget the actual experiences and retain their mental impressions in the forms
of averages, weights, or (more vividly) abstract qualitative relationships that help
us determine future actions. The organization of knowledge and beliefs must
strike a delicate balance between the computational resources these relationships
‘consume and the frequency of their use. With these considerations.in mind, it is

t Personal communication.
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hard to envision how a calculus of beliefs can evolve that is substantially different
from the calculus of proportions and frequencies, namely probability.

14.2 The Primitive Relationships of Probabtlzty
Language

Although probabilities are expressed in numbers, the merit of probability calculus
rests in providing a means for articulating and manipulating qualitative
relationships that are found useful in normal discourse. The following four
relationships are viewed as the basic primitives of the language:

1. Likelihood ("Tim is more likely to fly than to walk").

2. Conditioning ("If Tim is sick, he can’t fly").

3. Relevance ("Whether Tim flies depends on whether he is sick").
4

Causation ("Being sick caused Tim’s inability to fly").

LIKELIHOOD

The qualitative relationship of the form "A is more likely than B" has traditionally
been perceived as the prime purpose of using probabilities. The practical
importance of determining whether one event is more likely than another is best
represented by the fact that probability calculus was pioneered and developed by
such ardent gamblers as Cardano (1501-1576) and De Moivre (1667-1754).
However, the importance of likelihood relationships goes beyond gambling
situations or even management decisions. Decisions depending on relative
likelihood of events are important in every reasoning task because likelihood
translates immediately to processing time—the time it takes to verify the truth of a
proposition, to consider the consequence of a rule, or to acquire more information.
A reasoning system unguided by likelihood considerations (my ex-lawyer is a
perfect example of one) would waste precious resources in chasing the unlikely
while neglecting the likely.

Philosophers and decision theorists have labored to obtain an axiomatic basis
for probability theory based solely on this primitive relationship of "more likely,"
namely, to identify conditions under which an ordering of events has a numerical
representation P that satisfies the properties of probability functions [Krantz et al.
1971; Fine 1973; Fishburn 1986]. More recently, the task of devising a
nonnumeric logic for manipulating sentences that contain the qualifier likely has
received considerable attention [Halpern and Rabin 1987; Fagin and Halpem
1988] and has tumed out to be a tougher challenge than expected.
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CONDITIONING

Probability theory adopts the autoepistemic phrase "...given that what I know is C"
as a primitive of the language. Syntactically, this is denoted by placing C behind
the conditioning bar in a statement such as P(A |C) = p. This statement combines
the notions of knowledge and belief by attributing to A a degree of belief p, given
the knowledge C. C is also called the context of the belief in A, and the notation
P(A1C) is called Bayes conditionalization. Thomas Bayes (1702—1761) made his
main contribution to the science of probability by associating the English phrase
"..given that I know C" with the now-famous ratio formula

PAIC) = KI(?(E:—?)— 1.1)

[Bayes 1763], which has become a deﬁmtlon of conditional probabilities (see Eq.
(2.8)).

It is by virtue of Bayes conditionalization that probability theory facilitates
‘nonmonotonic reasoning, i.e., reasoning involving retraction of previous
conclusions (see Section 1.5). For example, it is perfectly acceptable to assert
simultaneously P(Fly(a}|Bird(a)) = HIGH and P(Fly(a)|Bird(a), Sick(a))=
LOW. In other words, if all we know about individual a is that a is a bird, we jump
to the conclusion that a most likely flies. However, upon learning that a is also
sick, we retract our old conclusion and assert that a most likely cannot fly.

To facilitate such retraction it is necessary both that the original belief be
stated with less than absolute certainty and that the context upon which we
condition - beliefs be consulted constantly to see whether belief revision is
warranted. The dynamic of belief revision under changing contexts is not totally
arbitrary but must obey some basic laws of plausibility which, fortunately, are
embedded in the syntactical rules of probability calculus. A typical example of
such a plausibility law is the rule of the kypothetical mzddle

If two diametrically opposed assumptions lmpart two different degrees of belief onto
a proposition @, then the unconditional degree of belief merited by Q should be
somewhere between the two.

For example, our belief that Tim flies given that Tim is a bird must be between our
belief that Tim flies given that he is a sick bird and our belief that Tim flies given
that he is a healthy bird. Such a qualitative, commonsense restriction is built into
the syntax of probability calculus via the equality

P(BIC)—aP(BIC,A)+(1—q)P(BIC,——\A), (1.2)

“where oo = P(A|C) is some number between 0 and 1. Other typical_patterns of
plausible reasoning are those of abduction and "explaining away," mentioned in
Section 1.2.2 and further elaborated in Section 2.3.1.
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RELEVANCE

Relevance is a relationship indicating a potential change of belief due to a
specified change in knowledge (see Section 1.3.2). Two propositions A and B are
said to be relevant to each other in context C if adding B to C would change the
likelihood of A. Clearly, relevance can be defined in terms of likelihood and
conditioning, but it is a notion more basic than likelihood. For example, a person
might be hesitant to assess the likelihood of two events but feel confident about
judging whether or not the events are relevant to each other. People provide such
judgments swiftly and consistently because—we speculate—relevance relation-
ships are stored explicitly as pointers in one’s knowledge base. ’

Relevance is also a primitive of the language of probability because the
language permits us to specify relevance relationships directly and qualitatively
before making any numerical assessment. Later on, when numerical assessments
of likelihood are required, they can be added in a consistent fashion, without
disturbing the original relevance structure (see Chapter 3).

CAUSATION

Causation is a ubiquitous notion in man’s conception of his environment, yet it has
traditionally been considered a psychological construct, outside the province of
probability or even the physical sciences [Russell 1913]. In Section 3.3 we present
a new account of causation, according to which it can be given a nontemporal
probabilistic interpretation based solely on the notion of relevance. The temporal
component of causation [Suppes 1970; Shoham 1988] is viewed merely as a
convenient indexing standard chosen to facilitate communication and predictions.

Causation is listed as one of the four basic primitives of the language of
probability because it is an indispensable tool for structuring and specifying
probabilistic knowledge (see Sections 3.3 and 10.4) and because the semantics of
causal relationships are preserved by the syntax of probabilistic manipulations; no
auxiliary devices are needed to force conclusions to conform with people’s
conception of causation. The following is a brief summary of our notion of
causation, to be further developed in Sections 3.3, 8.2, and 10.3. -

Causation is a language with which one can talk efficiently about certain
structures of relevance relationships, with the objective of separating the relevant
from the superfluous. For example, to say that a wet pavement was a direct cause
of my slipping and breaking a leg is a concise way of identifying which events
should no longer be considered relevant to my accident, once the wetness of the
pavement is confirmed. The facts that it rained that day, that the rain was
welcomed by farmers, and that my friend also slipped and broke his leg should no
longer be considered relevant to the accident once we establish the truth of Wer
pavement and identify it as the direct cause of the accident.

The asymmetry conveyed by causal directionality is viewed as a notational

~device for encoding still more intricate patterns of relevance relationships, such as
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nontransitive and induced dependencies. For example, by designating Rain and
' Sprinkler as potential causes of the wet pavement we permit the two causes to be
independent of each other and still both be relevant to Wer pavement (hence
forming a nontransitive relationship). Moreover, by this designation we also
identify the consequences Wet pavement and Accident as potential sources of new
dependencies between the two causes; once a consequence is observed, its causes
can no longer remain independent, because confirming one ‘cause lowers the
likelihood of the other. This connection between nontransitive and induced
dependencies is, again, a built-in feature of the syntax of probability theory—the
syntax ensures that nontransitive dependencies always induce the appropnate
dependencies between causes (see Exercise 3.10).
To -summarize, causal directionality conveys the following - pattem of
dependency: Two events do not become relevant to each other merely by virtue of
_predicting a common consequence, but they do become. relevant when the
consequence is actually observed. The opposite is true for two consequences of a
common cause; typically the two become independent upon learning the cause.
(Chapter 8 deals with using this asymmetry to identify causal directionality in
nontemporal empirical data.)

14 3 Probability as a Fazthful Guardzan of
Common Sense

In the preceding subsectlons we presented qualitative patterns of commonsense
reasoning that are naturally embedded within the syntax of probability calculus.
Among - these intuitive patterns are ngnmonotonicity (context sensitivity),
abduction, "explaining away," causation, and hypothetical middle. It is possible to
assemble some of these desirable patterns of inference and pose them as axioms
that render probability calculus "inevitable," i.e., to show that any calculus
respecting these desired patterns behaves as if it were driven by a probability
engine. This route was a favorite preoccupation of many philosophers, most
notably Ramsey [1931], de Finetti [1937], Cox [1946], Good [1950], and Savage
[1954]. Cox assembled seven semi-qualitative arguments for the conditional
relation (A | B) (to read, "The plausibility of A conditioned on the evidence B") and
showed that they lead to Bayes’ ratio formula (Eq. (1.1)) and thus to probability
calculus. This axiomatic approach placed probability on firm qualitative ground,
but it has also been the subject of lively debates and refutations (e.g., Savage
[1962], Lindley [1982], and Shafer [1986a]). When posed as a stand-alone
axiomatic system, any chosen subset of reasoning patterns is vulnerable to
criticism because we can always imagine a situation ‘where one of the axioms
ceases to be necessary, thus discrediting the entire system. The interested reader is
referred to the classical literature on the foundations of probablllty [Fine 1973;
 Krantz et al. 1971].
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The approach taken in this book is somewhat different. We take for granted
that probability calculus is unique in the way it handles context-dependent
information and that no competing calculus exists that closely covers so many
qualitative aspects of plausible reasoning. So the calculus is worthy of
exploitation, emulation, or at the very least, serious exploration. We therefore take
probability calculus as an initial model of human reasoning from which more
refined models may originate, if needed. By exploring the limits of using
probability calculus in machine implementations of plausible inference, we hope
to identify conditions under which extensions, refinements, and simplifications are
warranted. ‘ 7 '

Obviously, there are applications where strict adherence to the dictates of
probability theory would be computationally infeasible, and there compromises
will have to be made. Still, we find it more comfortable to compromise an ideal
theory that is well understood than to search for a new surrogate theory, with only
gut feeling for guidance.

The merits of a theory-based approach are threefold:

1. The theory can be consulted to ensure that compromises are made only
when necessary and that their damage is kept to a minimum.

2.  When system performance does not match expectations, knowing which
compromises were made helps identify the adjustments needed.

3. Compromised theories facilitate scientific communication; one need
specify only the compromises made, treating the rest of the theory as
common knowledge.

HOW BAD ARE THOSE NUMBERS?

People are notoriously bad numerical estimators. They find it hard to assess
absolute probabilities as well as distances, weights, and times. A person would
much rather assert qualitatively that one object is heavier than another than assess
the absolute weight of a given object. Still, the lack of an accurate scale does not
preclude the use of the laws of physics when it comes to deciding which bag is
lighter, the one containing 2000 dimes or the one containing 1000 quarters. It is
quite conceivable that a person has never before seen bags containing thousands of
coins, yet the limited experience gathered from handling small quantities of coins,
teaching us that two dimes are lighter than one quarter, can be amplified by the
laws of physics and extended to situations never seen before. We might assign a
single dime a rough weight estimate. of 10 grams, consult our experience and
assign a quarter an estimate of 30 grams, then multiply the two estimates by the
respective numbers of coins and compare the results. The absolute estimates in
this example can be completely off, but as long as their ratio reflects genuine
experience, the conclusions will still be useful. (Deriving these conclusions
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symbolically, using axioms to describe how weights combine, often requires much
more work.) In other words, if we strongly believe in the rules by which exact
quantities combine, we can use the same combination rules on the rough estimates
at hand. : ,
This heuristic strategy gives reasonably good results for several reasons. First,
by using reliable combination rules, we make the utmost use of the available
knowledge and keep the damage due to imprecision from extending beyond weli-
defined boundaries. Second, when we commit ourselves to a particular set of
numbers, no matter how erroneous, the consistency of the model prevents us from
reaching inconsistent conclusions. For example, we will never reach a conclusion
that the 2000-dime bag is lighter than the 1000-quarter bag and a simultaneous
conclusion that 3000 dimes are heavier than 1500 quarters. Finally, and most
importantly for dealing with uncertainty in Al systems, adhering to a coherent
model of reality helps us debug our inferences when they do' not match
~ expectations. In our coin example, if it turns out, contrary to calculations, that the
2000 dimes are not lighter than the 1000 quarters, we know immediately that we
have either wrongly estimated the relative weights of a dime and a quarter or
miscounted the coins in the bags; we need not tamper with the rules of inference or
with their calculus of combination. In general, we know precisely how the model
should be refined or improved. S

ON THE USEFULNESS OF NUMBERS

If people prefer to reason qualitatively, why should machines reason with
numbers? Probabilities are summaries of knowledge that is left behind when
information is transferred to a higher level of abstraction. The summaries can be
encoded logically or numerically; logic enjoys the advantages of parsimony and
simplicity, while numbers are more informative and sometimes are necessary.

The minefield metaphor used in Section 1.1 will help illustrate the usefulness
of numerical summarization. Imagine that-before we start our journey across the
minefield, we are given access to a complete record of the field, specifying in full
detail the exact location of each mine as recorded six months earlier by the team
that laid these mines, However, since we cannot carry with us the entire record,
we must somehow summarize that information on a miniature map, the size of a
- postcard. There are many ways we might summarize the data on the postcard, but
one of the most effective methods is to color the map to reflect the density of mines
in any given area: the darker the color, the higher the density. Viewing dark
colors as high numbers, this is the essence of numerical summarization of
uncertainty. Why is this scheme effective?

Imagine that you start your journey by pursuing what appears to be a rather
- safe path to your destination. After two days you reach a roadblock; the path
chosen is not usable and an aiternative path must be found. Here is where the
color code begins to show its usefulness. While traversing the original path you
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passed many side roads branching out from the one you chose. At the time, these
junctions were abandoned because your path appeared more promising, but now
that your first choice turned into a disappointment, you must look back at those
branching points and decide which one to pursue next. Had you summarized your
decisions using a bi-valued predicate, say "possible” or "not possible,” you would
now be at a loss. Among those marked "possible,” you would not know which one
is actually the least dangerous and the quickest, especially in light of the new
roadblocks you have discovered. The colored map provides exactly this
information. : :

To make the analogy closer to mental reasoning tasks, let us further imagine
that we can communicate with headquarters and ask them to wire us a more
detailed map of any region under consideration. The question is which map we
should request. In the absence of priority ranking among the viable alternatives,
precious time will be wasted transmitting and examining maps that, in view of the
new road conditions discovered, will again lead to dead ends. The function of
colored maps, and of numeric labels in general, is to prioritize the flow of
information and focus on items more likely to yield beneficial results.

The translation to reasoning tasks is obvious. Raw experiential data is not
amenable to reasoning activities such as prediction and planning; these require that
data be abstracted into a representation with a coarser grain. Probabilities are
summaries of details lost in this abstraction, similar in role to the colors on our
maps. The importance of maintaining such summaries in Al systems can be
appreciated in the context of planning systems, where a major obstacle has been
the impracticability of enumerating all precondltlons that might trigger, inhibit, or
enable a given event. (This problem is known as the gqualification problem
[McCarthy 1980], a refinement of the infamous frame problem [McCarthy and
Hayes 1969; Brown 1987]). Probabilistic formalisms enable us to summarize the
presumed existence of exceptional conditions without explicating the details of
their interactions unless the need arises. Probability does not offer a complete
solution to the frame problem because it does not provide rules for recomputing
the summaries when unanticipated refinements are warranted. It does, however,
provide a way to express summaries of unexplicated information, procedures for
manipulating these summaries, and criteria for deciding when additional chunks of
knowledge warrant explication. :

" To show what is still needed, let us examine  how an ideal system mlght reason
about the burglar alarm situation of Figure 1.2. Upon receiving the phone call
from your neighbor, only the burglary hypothesis is triggered; your decision
whether to drive home or stay at work is made solely on the basis of the parameter
P(False alarm), which summarizes all other (unexplicated) causes for an alarm
sound. After a moment’s reflection, the possibility of an April Fools’ Day joke
may enter your mind, in which case a two-stage inference chain is assembled,
governed by two probabilistic parameters, P(False alarm) and P(Prank call).
Later, when the possibility of an earthquake enters consideration, the parameter.
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'P(False alarm)® undergoes " a partial explication; a fragment of knowledge is
brought over from the remote frame of earthquake experiences and is appended to
the link Burglary — Alarm as an alternative cause or explanation. . The catchall
hypothesis All other causes shrinks (to exclude earthquakes), and its parameters
are readjusted. The radio announcement strengthens your suspicion in the
earthquake hypothesis and permits you to properly readjust your decisions without
elaborating the mechanics of the pressure transducer used in the alarm system.
The remote possibility of having forgotten to push the reset button will be invoked
only .if it is absolutely needed for explaining some observed or derived
phenomenon, e.g., finding your home burglarized and your alarm system silent.
.~ . Systems using probabilistic formalisms have so far -drawn inferences from
static knowledge bases, where the set of variables, their relationships, and all
probabilistic parameters are provided by external agents, at predetermined levels
of granularity. This is far from the reasoning pattern just portrayed by our burglary
example, where relationships are explicated, refined, and quantified mechanically
when the need arises. Clearly, what is lacking is the ability to transfer information
back and forth between knowledge strata at different levels of abstraction, the
ability to identify how information in one strata bears on information in another,
and a means of properly adjusting the parameters of each item transferred.}
Research toward the development of such facilities should bring together logic’s
aptitude  for handling the . visible and probability’s ability to summarize the
invisible,

15 QUALITATIVE REASONING WITH
PROBABILITIES

In the preceding section we described some of the merits of using numerical
representations in reasoning tasks. Thereé are applications, however, where
categorical abstractions may suffice and knowledge can be summarized by hard
logical facts, merely distinguishing the possible from the impossible. For example,
when the number of possibilities is small, instead of calculating which option is
preferred we might settle for an indication of which option is still a candidate for
exploration. In such cases we enter the province of logical analysis, and the
problem becomes one of representing exceptions and reflecting nonmonotonic
reasoning. The connection between probability theory and nonmonotonic logic
will be expounded more fully in Chapter 10. Here we merely outline how
‘probability theory, even stripped of all its numbers, can be useful as a paradigm
facnhtatmg purely qualitative reasoning.

T Variable precision logic [Michalski and Winston 1986] is an attempt to formulate this dynamics.
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1.5.1 Softened Logic vs. Hardened Probabilities

The ills of classical logic have often been attributed to its rigid, binary character.
Indeed, when one tries to explain why logic would not predict the obvious fact that
penguin are birds but do not fly, the first thing that one tends to blame is logic’s
rigid stance toward exceptions to the rule "Birds fly.” It is therefore natural to
assume that once we soften the constraints of Boolean logic and allow truth values
to be measured on a grey scale, these problems will disappear. There have been
several such attempts. Rich [1983] proposed a likelihood-based interpretation of
default rules, managed by certainty-factors calculus. Ginsberg [1984] and
Baldwin [1987] have pursued similar aspirations using the Dempster-Shafer notion
of belief functions (see Chapter 9). While these attempts can produce valuable
results (revealing, for instance, how sensitive a conclusion is to the uncertainty of
its premises), the fundamental problem of monotonicity remains unresolved. For
example, regardless of the certainty calculus used, these analyses always yield an
increase in the belief that penguins can fly if one adds the superfiuous information
that penguins are birds and birds normally fly. Identical problems surface in the
use of incidence calculus and softened versions of truth-maintenance systems
[Falkenhainer 1986; D’ Ambrosio 1987].

Evidently, it is not enough to add a soft probabilistic veneer to a system that is
built on hard monotonic logic. The problem with monotonic logic lies not in the
hardness of its truth values, but rather in its inability to process context-dependent
information. Logic does not have a device equivalent to the conditional
probability statement "P(B1A) is high,” whose main function is to define the
context A under which the proposition B can be believed and to make sure that the
only context changes permitted are those that do not change the behef in B (e.g.,
going from A = Birds to A" = Feathered birds).

Lacking an appropriate logical device for condltlonahzatxon, the natural
tendency is to interpret the English sentence "If A then B" as a softened version of
the material implication constraint A © B. A useful consequence of such softening
is the freedom from outright contradictions. For example, while the classical
interpretation of the three rules "Penguins do not fly," "Penguins are birds," and
"Birds fly" yields a blatant contradiction, attaching uncertainties to these rules
renders them manageable. They are still managed in the wrong way, however,
because the material-implication interpretation of if—then rules is so fundamentally
wrong that its maladies cannot be rectified simply by allowing exceptions in the
form of shaded truth values. The source of the problem lies in the property of
transitivity, (@ = b, b = c) =>a —> ¢, which is inherent to the material-
implication mterpretauon On some occasions rule transitivity must be totally
suppressed, not merely weakened, or else strange results will surface. One such
‘occasion-occurs in property inheritance, where subclass specificity should override
superclass properties. Another occurs in causal reasoning, where predictions
should not trigger explanations (e.g., "Sprinkler was on" predicts "Ground is wet,"
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| "Ground is wet" suggests "It rained,” yet "Sprinkler was on" should not suggest "It
rained"). In such cases, softening the rules weakens the flow of inference through
the rule chain but does not bring it to a dead halt, as it should. . _
Apparently what is needed is a new interpretation of if-then statements, one
that does not destroy the context sensitivity of probabilistic conditionalization.
McCarthy [1986} remarks that circumscriptiont indeed provides such an
interpretation. In his words:

Smcc c1rcumscr1pt10n doesn’t provide numerical probabilities, its probabilistic
interpretation involves probabilities that are either infinitesimal, within an

_ infinitesimal of one, or intermediate—without any discrimination among the
intermediate values. The circumscriptions give conditional probabilities. Thus we
may treat the probability that a bird can’t fly as an infinitesimal. However, if the rare
event occurs that the bird is a penguin, then the conditional probability that it can fly
is infinitesimal, but we may hear of some rare condition that would allow it to fly
after all.

Rather than contriving new logics and hoping that they match the capabilities of
probability theory, we can start with probability theory, and if we can’t get the
numbers or we find their use inconvenient, we can extract the infinitesimal
approximation as an idealized abstraction of the theory, while preserving its
context-dependent properties. In this way, a nonmonotonic logic should
crystallize that is guaranteed to capture the context-dependent features of natural
dcfaults

1.5.2 Probabilities and the Logic of “Almost True”

This program was in fact initiated over twenty years ago by the philosopher Emest
Adams, who developed a logic of conditionals based on probabilistic semantics
[Adams 1966]. The sentence "If A then B" is interpreted to mean that the
conditional probability of B given A is very close to 1 but is short of actually being
1. An adaptation of Adams’s logic to default schemata of the form
Bird(x) — Fly(x), where x is a variable, is described in Section 10.2. The resulting
logic is nonmonotonic relative to leaming new facts, in accordance with
McCarthy’s desiderata. For example, learning that Tweety is a bird will yield the
conclusion that Tweety can fly. Subsequently learning that Tweety is also a
penguin will yield the opposite conclusion: Tweety can’t fly. Further, learning
that Tweety is black and white will not alter this belief, because black and white is
a typical color combination for penguins. However, and this is where Adams’s
logic falls short of expectations, learning that Tweety is clever would force us to

t Circumscription is a system developed by McCarthy for nonmonotonic reasoning. With
circumscription, the conclusions are sanctioned relative to the minimal models of the theory.
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retract all previously held beliefs about Tweety’s flying and answer, "I don’t
know." The logic is so conservative that it never jumps to conclusions that some
new rule schemata might invalidate (just in case clever penguins can fly). In other
words, the logic does not capture the usual convention that unless we are told
otherwise, properties are presumed to be irrelevant to each other. w

Attempts to enrich Adams’s logic with relevance-based features are reported in
Gefiner and Pearl [1987b] and briefly described in Section 10.2.5. The idea is to
follow a default strategy similar to that of belief networks (Section 3.1):
Dependencies exist only if they are mentioned explicitly or if they follow logically
from other explicit dependencies. However, whereas the stratified method of
constructing belief networks ensures that all relevant dependencies were already
encoded in the network, this can no longer be assumed in the case of partially
specified models of isolated default rules. A new logic is needed to capture the
conventions by which we proclaim properties to be irrelevant to each other.

There is another dimension along which probabilistic analysis can assist
current research into nonmonotonic logics——the logics provide no criterion for
testing whether a database comprising default rules is internally consistent. The
prevailing attitude is that once we tolerate exceptions we might as well tolerate
anything [Brachman 1985]. There is a sharp qualitative difference, however,
between exceptions and outright contradictions. For example, the statement "Red
penguins can fly" can be accepted as a description of a world in which redness
defines an abnormal type of penguin, but the statements "Typically, birds fly” and
"Typically, birds do not fly” stand in outright contradlctxon to each other, and
because there is no world in which the two statéments can hold simultaneously,
they will inevitably lead to strange, inconsistent conclusions. While such obvious
contradictions can easily be removed from the database [Touretzky 1986}, more
subtle ones might escape detection, e.g., "Birds fly,” "Birds are feathered animals,”
"Feathered animals are birds,” and "Feathered animals do not fly." Adams’s logic
provides a criterion for detecting such inconsistencies, in the form of three axioms
that should never be violated. These axioms, and their implied graphical test for
consistency, will be discussed in Sections 10.1 and 10.2.

1.6 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS "

Broad surveys of uncertainty formalisms proposed for Al can be found in Prade
[1983], Thompson [1985], Stephanou and Sage [1987], and the works collected in
Kanal and Lemmer [1986)] and Smets et al. [1988]. The February 1987 issue of
Statistical Science, devoted to the calculus of uncertainty in artificial intelligence
and expert systems, includes a lively debate between advocates of the Bayesian
methods and advocates of the Dempster-Shafer approach. The February 1988
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: lssue e of Computattonal Intelligence offers a similar debate between advocates of

i 'the probabilistic and logicist schools in AL

Systems—pnmanly expert systems~—that provide practical soiutlons to various
vt problems of reasoning with uncertainty include MYCIN ([Shortliffe 1976],
. INTERNIST [Miller, Poole, and Myers 1982; Pople 1982], PROSPECTOR [Duda,
h Hart, and Nilsson’ 1976], MEDAS [Ben-Bassat et al. 1980], INFERNO [Quinlan
1983], RUM {Bonissone, Gans, and Decker 1987], MUM [Cohen et al. 19871,
MDX [Chandrasekaran and Mittal 1983], and MUNIN [Andreassen et al. 1987].
Of these, only MEDAS and MUNIN would be classified as intensional systems;
~ the rest are extensional (i.e., rule-based) systems. An in-depth study of rule-based
systems, including the uncertainty management technique used in MYCIN, can be
found in Buchanan and Shortliffe [1984] and the survey articles by Davis,
Buchanan, and Shortlife [1977] and Buchanan and Duda [1983]. Critical
discussions of the use of probabilistic reasoning in medical decisions are given in
Szolov1ts and Pauker [1978] and Pauker and Kassirer {1987].

" Cox’s [1946] argument for the use of -probability theory has also been

expounded by Reichenbach [1949] and restated in Horvitz, Heckerman, and
: LahglotZ [1986] and Cheeseman [1988] for an Al audience. Heckerman [1986bj
has generalized Cox’s argument to measures of confirmation, i.e., the impact
evidence has on the belief in a hypothesis. A stronger argument, based entirely on
qualitative axioms, has been developed by Aleliunas [1988], who mcluded the
hypothetical-middle pattern (Section 1.4.2) as one of his axioms,

Arguments based on pragmatic considerations go back to Ramsey [1931] and
de Finetti [1937]. These are often called "Dutch book™” arguments, because they
show that a gambler deviating from the rules of probability calculus will, in the
long run, lose against an opponent who adheres to those rules. Lindley [1982]
introduced a pragmatic’ argument based on the notion of a scoring rule, ie., a
payoff function that depends both on one’s degree of belief in an event and on
whether the event actually occurred (see Exercise 6.9). He showed that under
rather general conditions, an agent can maximize his expected payoffs only by
adopting the axioms of probability theory. Rebuttals to this argument are given in
the discussion following Lindley’s article.

Our treatment of MYCIN’s certainty calculus (Figure 1.1) follows that of
Heckerman [1986a]. A coherent treatment of bidirectional inferences in trees was
given in Pearl [1982] and will be described in Section 4.2. The distinction
between rebutting and undercutting defeaters (Section 1.2.2) was first made in
Pollock [1974], and the example of an object observed in red light is his. A
probabilistic model for such defeaters was proposed by Kim and Pearl {1983] and
implemented in CONVINCE [Kim 1983; Kim and Pearl 1987] (see Section 4.3).
A logic-based model was proposed in Pearl [1988b] and will be described in
Section 10.3.

Bibliographical references for graphoids and nonmonotonic logic are in

- Chapters 3 and 10, respectively.
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References to recent literature on various approaches to uncertainty in Al can
be found in the following volumes:

Kanal L.N.; and Rosenfeld A. (series eds.). 1986-1991. Uncertainty in Artificial
Intelligence 1-6 V) Elsevier Science Publishers B.V. (North-Holland).

Shafer, G., and Pearl, J. (Eds.). 1990. Readings in Uncertain Reasoning, Morgan
Kaufmann, Palo Alto, CA.

Neapolitan , R.E. 1990. Probabilistic Reasoning in Expert Systems: Theory and
Algorithms, Wiley, New York. ‘

Shachter, R., (ed.), Special Issue on Influence Diagrams, Networks: an
International Journal, Vol. 20, No. 5, August 1990.

Oliver, R.M., and Smith, J.Q. (Eds.). 1990. Influence Diagrams, Belief Nets and
Decision Analysis, Sussex, England: John Wiley & Sons, Ltd.

The following articles describe general uncertainty-management systems:

Andersen, S. K., et al. 1989. "HUGIN —— A Shell for Building Bayesian Belief
Universes for Expert Systems," Proceedings, IJCAI-89, 1080-1085.

Poole, D. "Representing Diagnostic Knowledge for Probabilistic Homn
Abduction,” Proceedings IJCAI-91, Sydney, Australia, August, 1991, 1129-
1137.

Srinivas, S. and Breese, J., 1989. IDEAL: Influence Diagram Evaluation and
Analysis in Lispu, Rockwell International Science Center, Palo Alto, CA. |

Systems designed for specific applications include:

Heckerman, D.E., Horvitz, E.J., and Nathwan.y, B.N. 1990. "Toward normative
expert systems: The Pathfinder project.” Technical Report KSL-90-08,
Medical Computer Science Group, Section on Medical Informatics, Stanford
University, Stanford, CA. (diagnosis of pathological findings)

Peng, Y., and Reggia, J.A. 1990. Abductive Inference Models for Diagnostic
Problem-Solving, Springer-Verlag, New York. (medical diagnosis)

Levitt, T.S., Agosta, J.M., and Binford, T.O. 1990. "Model-Based Influence
Diagrams for Machine Vision," UAI 5, 371-388.

Charmiak, E., and Goldman, R. 1991. "A Probabilistic Model of Plan Recognition,
" Proceedings, AAAI-91, Anaheim, CA, 160-165. (story understanding)

Agogino, A.M., Srinivas, S. and Schneider, K. 1988. "Multiple sensor expert
system for diagnostic reasoning, monitoring and control of mechanical
systems, Mechanical Systems and Signal Processing, 2(2), 165-85.

Abramson, B. 1991. "ARCOI: An application of belief networks to the oil
market," Proceedings of the 1991 Conference on Uncertainty in Al, Los
Angeles, CA., Morgan Kaufmann, 1-8. (economic forcasting)

- In subsequent references, these volumes will be denoted UAI-1 through UAI-6.



