7 Homework

Due: Thursday, March 14, 2013.

Instructions

- Please, review the homework grading policy outlined in the course information page.

- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, which problems are to be graded for extra credit, and which problems you did not attempt. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	...
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	...

where “RC” denotes “regular credit”, “EC” denotes “extra credit”, and “NA” denotes “not attempted”. Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 6 problems
Points: 20 points per problem

1. Do Problem 3.4

Give a formal definition of an enumerator. Consider it to be a two-tape Turing machine that uses its second tape as the printer. Include a definition of the enumerated language.

2. Do Problem 3.6 and 3.7

Problem 3.6
In Theorem 3.21 in the text, we showed that a language is Turing-recognizable iff some enumerator enumerates it. Why didn’t we use the following simpler algorithm for the forward direction of the proof? As before, $s_1, s_2, ...$ is a list of all strings in Σ^*.

$E = \text{"Ignore the input.}$.
1. Repeat the steps 2. and 3. for $i = 1, 2, 3 ...$
2. Run M on s_i.
3. If it accepts, print out s_i."

Problem 3.7

Explain why the following is not a description of a legitimate Turing machine.

$M_{bad} = \text{"On input } < p >, \text{ a polynomial over variables } x_1, x_2, ... x_k:\n1. \text{ Try all possible settings of } x_1, x_2, ... x_k \text{ to integer values.}\n2. \text{ Evaluate } p \text{ on all these settings.}\n3. \text{ If any of these settings evaluates to 0, accept, otherwise reject."}$

3. Do Problems 3.8 parts b and c

Give implementation-level description of Turing machines that decide the following languages over the alphabet \{0, 1\}.

(b) $\{w|w \text{ contains twice as many 0s as 1s}\}$.

(c) $\{w|w \text{ does not contain twice as many 0s as 1s}\}$.

4. Do Problem 3.13

A Turing machine with stay put instead of left is similar to an ordinary Turing machine, but the transition function has the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, S\}$.

At each point, the machine can move its head right or let it stay in the same position. Show that this Turing machine variant is not equivalent to the usual version. What class of languages do these machines recognize?
5. Do Problems 3.15 part b and 3.16 part b

Problem 3.15 (b)
Show that the collection of decidable languages is closed under concatenation.

Problem 3.16 (b)
Show that the collection of Turing-recognizable languages is closed under concatenation.

6. Do Problems 3.15 part e and 3.16 part d

Problem 3.15 (e)
Show that the collection of decidable languages is closed under intersection.

Problem 3.16 (d)
Show that the collection of Turing-recognizable languages is closed under intersection.