Recursion

- Recursive definition
 - A **recursive definition** is one that uses the concept or thing that is being defined as part of the definition.
 - defining something at least partially in terms of itself
 - e.g.
 - a directory is a part of a drive that can hold files *and* other directories.
 - an ancestor is a parent or an ancestor of a parent
Recursion (cont.)

- Recursive definition
 - A **recursive definition** is one that uses the concept or thing that is being defined as part of the definition.
 - defining something at least partially in terms of itself
Recursion (cont.)

• Recursion as a programming technique

 – A recursive subroutine is one that calls itself, either directly or indirectly

 • a subroutine calls itself directly means that its definition contains a subroutine call statement that calls the subroutine that is being defined.

 • a subroutine calls itself indirectly means that it calls a second subroutine which in turn calls the first subroutine

```java
public int fact(int n){
    if (n < 0) {
        System.out.println("Error: NO negatives");
        return 0;
    } else if (n == 0 || n == 1) {
        return 1;
    } else{
        return (n * fact(n-1));
    }
}
```
Recursion (cont.)

- Recursion as a programming technique
 - A recursive subroutine is one that calls itself, either directly or indirectly
 - a subroutine calls itself directly means that its definition contains a subroutine call statement that calls the

```java
public String toString(){
    if (left == null && right==null) {
        return myRoot.toString();
    }
    else if (left != null && right == null){
        return new String(left.toString()+myRoot.toString());
    }else if (left == null && right != null){
        return new String(myRoot.toString()+right.toString());
    }else {
        return new String(left.toString()+
            myRoot.toString()+
            right.toString());
    }
}
```

This is not a recursive call. It refers to `toString()` inside `Node`
Recursive methods

• Base Case
 - a case that is handled directly instead of calling the method definition again!

 • in a binary tree, this is when a node has no children.
Recursive methods

```java
public String toString(){
    if (left == null && right==null) {
        return myRoot.toString();
    }
    else if (left != null && right == null){
        return new String(left.toString()+myRoot.toString());
    }
    else if (left == null && right != null){
        return new String(myRoot.toString()+right.toString());
    }
    else {
        return new String(left.toString()+
            myRoot.toString()+
            right.toString());
    }
}
```

- Recursive cases
 - calls the method again but on a different instance and possibly different arguments
 - node with only one child and node with 2 children.
Counting the number of nodes

• Create a method (NumberOfNodes()) that counts the number of nodes in a binary tree.

• Recipe
 – what is the base case?
 • when the whole tree is made up of one node!
 – what is the recursive case
 • any tree that has more than one node
Counting the number of nodes (cont.)

• Recipe
 - what is the base case?
 • when the whole tree is made up of one node!
 - what is the recursive case
 • any tree that has more than one node

```java
public int numberOfNodes(){
    int count = 0 ;
    if (left == null && right==null) {
        count++;
        return count;
    }
}
```
public int numberOfNodes() {
 int count = 0;
 if (left == null && right == null) {
 count++;
 return count;
 } else if (left != null && right == null) {
 count++;
 return count += left.numberOfNodes();
 } else if (left == null && right != null) {
 count++;
 return count += right.numberOfNodes();
 } else {
 count++;
 count += left.numberOfNodes();
 return count += right.numberOfNodes();
 }
}
Complexity

• Evaluating execution of programs
 - time taken to complete computation
 - space required to complete computation

• Time and space depend on the programs input!
 - Worst case analysis
 - Average case analysis
 - Best case analysis

• Primitive operations do not all take the same amount of time to complete.
 - assume that all take exactly one unit of time to complete.
Searching for an element

Searching involves determining if an element is a member of the collection.

• Simple/Linear Search:
 – If there is no ordering in the data structure
 – If the ordering is not applicable

• Binary Search:
 – If the data is ordered or sorted
 – Requires non-linear access to the elements
Simple/Linear Search

• **Best Case**
 – The element you are looking for is the first one in the collection.

• **Worst Case**
 – The element you are looking for is the last one in the collection
 – The element is not in the collection.

• **Average Case**
 – Its not the first and not the last, somewhere in the middle.
Simple/Linear Search (example)

- Assume that we have a linked list that contains unordered integers. Is 10 in the list?

- It will take:
 - 4 comparisons
 - 4 advance operations
 - total = 2 x 4.

- How much will it take if the list had 100 and '10' was not included. 1000 elements?
Simple/Linear Search (example)

- For any list of size n
 - total = kn for some k. Written as $O(n)$.
- The $O()$ notation
 - Upper Bound.
 - $O(g(n)) = \{ f(n) : \text{there exists a positive constant } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}$
Binary Search

- We may perform binary search on
 - Sorted arrays
 - Full and balanced binary search trees
- Tosses out $\frac{1}{2}$ the elements at each comparison.

Looking for 89
Binary Search (cont.)

- We may perform binary search on
 - Sorted arrays
 - Full and balanced binary search trees

- Tosses out $\frac{1}{2}$ the elements at each comparison.
Binary Search (cont.)

• We may perform binary search on
 – Sorted arrays
 – Full and balanced binary search trees
• Tosses out $\frac{1}{2}$ the elements at each comparison.

Looking for 89
Binary Search (cont.)

• We may perform binary search on
 – Sorted arrays
 – Full and balanced binary search trees
• Tosses out \(\frac{1}{2} \) the elements at each comparison.

89 not found – 3 comparisons

\[\log(8) = 3 \]
Binary Search (cont.)

• An element can be found by comparing and cutting the work in half.
 – We cut work in $\frac{1}{2}$ each time
 – How many times can we cut in half?
 – $\log_2 N$

• Thus binary search is $O(\log N)$.
Insert into unsorted collections

- Inserting an element requires two steps:
 - Find the right location
 - Perform the instructions to insert

- If the collection in question is unsorted, then $O(1)$
 - insert to the front
 - insert to end (in the case of an array)
 - There is no work to find the right spot and only constant work to actually insert.
Insert into sorted collections

Finding the right spot is \(O(\log N)\)
 – Binary search on the element to insert

Performing the insertion
 – Shuffle the existing elements to make room for the new item
Shuffling elements

- In the worst case, shuffle takes $O(n)$
 - adding to the beginning of the list.
Insert into sorted collections

Finding the right spot is $O(\log N)$

- Binary search on the element to insert

Performing the insertion $O(N)$

- **Shuffle** the existing elements to make room for the new item

These are sequential steps, add their complexities

- Total = $O(\log N + N) = O(N)$