Practice Exercises for Final

1. **Listing the k smallest numbers in sorted order**

 Given an unsorted list S of n numbers and an integer $k \leq n$, design an efficient algorithm to list the k smallest numbers in S in sorted order. Analyze the worst-case running time of your algorithm.

2. **LCS of three sequences**

 Give an efficient algorithm to determine the longest common subsequence of three sequences X, Y, and Z of length m, n, and p, respectively. Analyze the worst-case running time of your algorithm.

3. **Basic graph structures**

 For each of the following statements, indicate whether it is true or false. Briefly justify your answers.

 (a) If T is a minimum spanning tree of a weighted undirected graph G, then the unique path connecting any two vertices u and v in T is a shortest path between u and v in G.

 (b) If T is the depth-first search tree rooted at a node r of an unweighted undirected graph G, then the path connecting r to any vertex v in T is a shortest path between r and v in G.

4. **Alternating paths**

 You are given a directed graph $G = (V, E)$ in which each vertex has been assigned a color, either red or blue. A directed path in G is called an **alternating red-blue path** if and only if no two consecutive vertices on the path have the same color. Give an efficient algorithm that determines for all pairs of vertices u, v in V whether v is reachable from u via an alternating red-blue path. Briefly justify the correctness of your algorithm and analyze its worst-case running time.

5. **Hamiltonian path**

 A **Hamiltonian path** of a directed graph G is a simple path in G that visits every vertex in G exactly once. Design a linear time algorithm to determine whether a given **directed acyclic graph** has a Hamiltonian path. (Hint: Use topological sort.)

6. **Data compression**

 - You have two data sets foo and bar, each having a million characters from the alphabet \{a, b, c, d\}. The probability distribution of characters in foo is even (0.25 for each character), while that in bar is (0.5, 0.25, 0.125, 0.125). Which data set is more compressible?

 - Give the LZ77 (basic Lempel-Ziv compression) code for the string $abababababcab$, assuming a dictionary of size 5 and a lookahead buffer of 4.