Graph Connectedness (Decision) Problem

The decision problem: Give a finite undirected graph \(G \), is it connected?

The corresponding language:

\[C = \{ \langle G \rangle \mid G \text{ is a connected finite undirected graph} \} . \]

Consider this TM:

\[M_C = \text{"On input } \langle G \rangle : \]
\[0. \text{ If the input string is not a valid encoding of a finite undirected graph, reject.} \]
\[1. \text{ Mark the first node of } G. \]
\[2. \text{ Repeat until no new nodes get marked:} \]
\[3. \text{ Mark each node in } G \text{ that is attached by an edge to an already marked node.} \]
\[4. \text{ If all nodes are marked, accept; otherwise, reject."} \]

Assuming the encoding is as described earlier, here are some examples of strings that should get rejected in stage 0:

\[(1,2) \]
\[(1,3,4)((1,2),(1,3),(1,4),(3,4)) \]
\[(1,2)((1,2),(1,1)) \]

Consider the input string \((1, 2, 3, 4)((1,2), (2, 3))\).
It’s rejected in stage 4 because node 4 will not be marked.

Consider the input string \((1, 2, 3, 4, 5)((1,2), (2, 3), (2, 4)(4, 5))\).
It’s accepted in stage 4 because all nodes will be marked.

Observations about the general behavior of \(M_C \):

- At least one node gets marked each time through the loop except the last.
- There are only finitely many nodes.
- Therefore \(M_C \) terminates on all inputs.
- Clearly, \(M_C \) accepts a string iff the graph it encodes is connected.
- Therefore \(M_C \) is a decider for the language \(C \).

Overall conclusion:

- Stated formally: \(C \) is a decidable language.
- Stated informally: Graph connectedness is a decidable problem.
DFA Simulator - Acceptance Problem For DFAs

The decision problem: *Give a DFA D and a string w, does D accept w?*

The corresponding language:

$$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input string } w \}.$$

Consider this TM:

$Sim_{DFA} =$ “On input $\langle D, w \rangle$, where D is a DFA and w is a string:

0. Check that this is a valid encoding of a DFA together with a string in the corresponding input alphabet. If not, reject.
1. Simulate D on input w.
2. If the simulation ends in an accept state of D, accept; if not, reject.”

Remarks:

- Stage 0, the validity check, is usually not shown explicitly as it is here. Henceforth it will be omitted, but it is always implicitly assumed to be present.

- Stage 1 is itself a loop that iterates once for each symbol in w, consulting the transition function each time to determine the next state.

Observations about the general behavior of Sim_{DFA}:

- The loop implicitly present in stage 1 iterates $|w|$ times.
- Since $|w|$ is finite, stage 1 always halts.
- Therefore Sim_{DFA} terminates on all inputs.
- Clearly, Sim_{DFA} accepts a string $\langle D, w \rangle$ iff the DFA D accepts the string w.
- Therefore Sim_{DFA} is a decider for the language A_{DFA}.

Overall conclusion:

- Stated formally: A_{DFA} is a decidable language.
- Stated informally: The acceptance problem for DFAs is decidable.
TM Simulator - Acceptance Problem For TMs

The decision problem: *Given a TM T and a string w, does T accept w?*

The corresponding language:

\[A_{TM} = \{ \langle T, w \rangle \mid T \text{ is a TM that accepts input string } w \} \].

Consider this TM:

\[Sim_{TM} = \text{“On input } \langle T, w \rangle:\]

1. Simulate \(T \) on input \(w \).
2. If the simulation ends in \(T \)'s accept state, \textit{accept}.
 If it ends in a \(T \)'s reject state, \textit{reject}.”

Remarks:

- Stage 1 is carried out iteratively by consulting the transition function to determine the next configuration at each iteration.
- This TM has been called a \textit{universal Turing machine} because it is able to simulate the behavior of any other TM given an encoding of that TM.

Observations about the general behavior of \(Sim_{TM} \):

- If the simulated TM \(T \) halts and accepts \(w \), then \(Sim_{TM} \) halts and accepts \(\langle T, w \rangle \).
- If the simulated TM \(T \) halts and rejects \(w \), then \(Sim_{TM} \) halts and rejects \(\langle T, w \rangle \).
- If the simulated TM \(T \) fails to halt on input \(w \), then \(Sim_{TM} \) also fails to halt on input \(\langle T, w \rangle \).
- Therefore \(Sim_{TM} \) is a recognizer, but not a decider, for \(A_{TM} \).

Does there exist a decider for \(A_{TM} \)?

\textit{No!} We’ll soon see a proof that this language is undecidable.
Acceptance Problem For NFAs and Regular Expressions

Two decision problems:

1. Given NFA N and string w, does N accept w?
2. Given regular expression R and string w, does R generate w?

The corresponding languages:

1. $A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input string } w \}$
2. $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is an regular expression that generates string } w \}$

Deciders for these languages:

$M_{ANFA} =$ “On input $\langle N, w \rangle$, where N is an NFA and w is a string:
 1. Convert N to an equivalent DFA D using the procedure we learned in class (and described on pp. 55-56 of Sipser).
 2. Run Sim_{DFA} on $\langle D, w \rangle$.
 3. If it accepts, accept; if it rejects, reject.”

$M_{AREX} =$ “On input $\langle R, w \rangle$, where R is a regular expression and w is a string:
 1. Convert R to an equivalent NFA N using the procedure we learned in class (and described on pp. 67-69 of Sipser).
 2. Run M_{ANFA} on $\langle N, w \rangle$.
 3. If it accepts, accept; if it rejects, reject.”

Overall conclusion:

1. A_{NFA} is a decidable language.
2. A_{REX} is a decidable language.
Exhaustive Testing Strategy

Decision problem: Given DFA \(D \), is there some string that \(D \) accepts?

Corresponding language:

\[\text{SOME}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \neq \emptyset \} \]

Consider this TM:

\[M = \text{“On input } \langle D \rangle, \text{ where } D \text{ is a DFA:
1. For each possible string } w \text{ (enumerated, say, in lexicographic order):
2. Run } \text{Sim}_{\text{DFA}} \text{ on } \langle D, w \rangle.
3. If it accepts, accept
4. If no } \langle D, w \rangle \text{ is accepted, reject.”} \]

Observations:

- There are infinitely many possible strings \(w \) to try.
- Therefore the loop will never terminate if the DFA accepts no strings.
- Stage 4 will never run.
- This TM never enters its reject state.
- It either accepts or runs forever.
- This TM is a recognizer, but not a decider, for \(\text{SOME}_{\text{DFA}} \).
Exhaustive Testing Strategy (Continued)

Another decision problem: Is there some string of length no more than k that the DFA D accepts?

Corresponding language:

$$\{\langle D, k \rangle \mid D \text{ is a DFA and } D \text{ accepts some string of length } \leq k\}$$

Consider this TM:

$M' =$ “On input $\langle D, k \rangle$, where D is a DFA and k is a number:

1. For each possible string w of length $\leq k$ (enumerated, say, in lexicographic order):
2. Run Sim_{DFA} on $\langle D, w \rangle$.
3. If it accepts, accept
4. If no $\langle D, w \rangle$ is accepted, reject.”

Observations:

- There are only finitely many strings of length $\leq k$.
- Therefore this TM halts on all inputs.
- Therefore this TM is a decider for this language.

Moral:

- Exhaustive testing will generally yield only a recognizer if there are infinitely many instances to test.
- Exhaustive testing may yield a decider if there are finitely many instances to test.
Acceptance Problem For CFGs

The decision problem: Given CFG G and string w, does G generate w?

Corresponding language:

$$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$

One possible approach: Try all derivations to see if any of them generate the given string.
Since there could be infinitely many derivations to try, the best this could yield is a recognizer for A_{CFG}.

Some facts about CFGs in Chomsky normal form (see pp. 106-109 and Problem 2.26 in Sipser):

- If G is a CFG in Chomsky normal form, then any nonempty string w in its language can be derived in exactly $2|w| - 1$ steps.
- There is a procedure for converting any CFG to an equivalent CFG in Chomsky normal form.

Consider this TM:

$$M_{A_{\text{CFG}}} = \text{"On input } \langle G \rangle, \text{ where } G \text{ is a CFG:}$$

1. Convert G to an equivalent CFG G' in Chomsky normal form.
2. If $w = \varepsilon$:
3. If G' contains the rule $S \rightarrow \varepsilon$, accept; else reject.
4. For each possible derivation consisting of $2|w| - 1$ steps in G':
5. If the derivation generates w, accept.
6. If none of these derivations generate w, reject."

Observations:

- There are only finitely many possible $(2|w| - 1)$-step derivations in any CFG.
- Therefore stage 5 runs only finitely many times.
- Therefore this TM always halts.
- Therefore this TM is a decider for A_{CFG}.
- Therefore A_{CFG} is a decidable language.
Decidability of A_{CFL} Implies Decidability of any CFL

Theorem. Every CFL is decidable.

Proof. Let L be a CFL, and let G be a CFG that generates L. Define a TM as follows:

$$M_G = \text{"On input string } w:\"$$

1. Run M_{CFG} on (G,w).
2. If it accepts, accept; if it rejects, reject.”

Then:

- Since M_{CFG} is a decider, stage 1 halts.
- Thus M_G is a decider.
- M_G accepts exactly those strings that G generates, so $\text{ACCEPT}(M_G) = L(G) = L$.
- Therefore M_G is a decider for L.
- Therefore the CFL L is decidable.
Emptiness Problem For DFAs

Decision problem: Given DFA D, does D accept no strings at all?

Corresponding language:

$$E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \}$$

Consider this TM:

$M_{E_{DFA}} =$ “On input $\langle D \rangle$, where D is a DFA:

1. Mark the start state of D.
2. Repeat until no more states get marked:
 3. Mark any state having a transition into it from any state already marked.
4. If no accept state is marked, accept; otherwise reject.”

Observations:

- There are only finitely many states.
- Thus stage 3 runs only finitely many times.
- Therefore this TM always halts.
- Therefore it’s a decider for E_{DFA}.
- Therefore E_{DFA} is a decidable language.
Emptiness Problem For CFGs

Decision problem: Given CFG G, does G generate no strings at all?

Corresponding language:

$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Phi \}$$

Consider this TM:

$M_{E_{CFG}} =$ “On input $\langle G \rangle$, where G is a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
 3. Mark any variable A for which there is a rule $A \rightarrow U_1U_2 \ldots U_k$ with all symbols U_1, U_2, \ldots, U_k marked.
4. If the start variable is not marked, accept; otherwise reject.”

Observations:

- There are only finitely many variables.
- Thus stage 3 runs only finitely many times.
- Therefore this TM always halts.
- Therefore it’s a decider for E_{CFG}.
- Therefore E_{CFG} is a decidable language.
Subset and Equivalence Problems For DFAs

Two decision problems:

1. Given two DFAs D_1 and D_2, is the language recognized by D_1 a subset of the language recognized by D_2?

2. Given two DFAs D_1 and D_2, are they equivalent?

Corresponding languages:

1. $\text{SUB}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1$ and D_2 are DFAs and $L(D_1) \subseteq L(D_2) \}$

2. $\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1$ and D_2 are DFAs and $L(D_1) = L(D_2) \}$

Consider this TM for SUB_{DFA}:

$M_{\text{SUB}_{\text{DFA}}} =$ “On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs:

1. Construct a DFA C such that $L(C) = L(D_1) - L(D_2)$.
2. Run $M_{\text{E}_{\text{DFA}}}$ on $\langle C \rangle$.
3. If it accepts, accept; if it rejects, reject.”

Observations on $M_{\text{SUB}_{\text{DFA}}}$:

- $L(D_1) - L(D_2) = L(D_1) \cap \overline{L(D_2)}$, so stage 1 involves combining the intersection and complement constructions for DFAs from p. 46 and Exercise 1.14, respectively, of Sipser.

- Thus stage 1 always terminates since it requires finitely many steps.

- Stage 2 always terminates since $M_{\text{E}_{\text{DFA}}}$ is a decider.

- For any sets A and B,
 - $A - B$ consists of all elements of A that do not belong to B; so
 - $A - B$ is empty iff every element of A belongs to B; so
 - $A - B$ is empty iff $A \subseteq B$.

- Therefore this TM accepts $\langle D_1, D_2 \rangle$ iff $L(D_1) \subseteq L(D_2)$.

- Therefore this TM is a decider for SUB_{DFA}.

Since $L(D_1) = L(D_2)$ if and only if $L(D_1) \subseteq L(D_2)$ and $L(D_2) \subseteq L(D_1)$, we can use $M_{\text{SUB}_{\text{DFA}}}$ to construct the following decider for EQ_{DFA}:

$M_{\text{EQ}_{\text{DFA}}} =$ “On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs:

1. Run $M_{\text{SUB}_{\text{DFA}}}$ on $\langle D_1, D_2 \rangle$. If it rejects, reject.
2. Run $M_{\text{SUB}_{\text{DFA}}}$ on $\langle D_2, D_1 \rangle$. If it accepts, accept; otherwise reject.”

Therefore:

1. SUB_{DFA} is a decidable language.

2. EQ_{DFA} is a decidable language.