Homework 09

Due: Tuesday, December 5, 2006
Note: This assignment cannot be accepted late because solutions will be distributed at the December 5 class meeting when we review for Exam 3.

Instructions

1. Please review the [homework grading policy](#) outlined in the course information page.

2. On the first page of your solution write-up, you **must** make explicit which problems are to be graded for regular credit, which problems are to be graded for extra credit, and which problems you did not attempt. Use a table that looks like this:

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td>RC</td>
<td>RC</td>
<td>RC</td>
<td>EC</td>
<td>RC</td>
<td>EC</td>
<td>NA</td>
<td>NA</td>
<td>EC</td>
<td></td>
</tr>
</tbody>
</table>

 where “RC” denotes “regular credit”, “EC” denotes “extra credit”, and “NA” denotes “not attempted”. Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

3. You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 7 problems
Points: 20 points per problem

1. (a) Show that P is closed under complement and concatenation.

 (b) Let A be a decidable language and let D be a polytime decider for it. Consider the following algorithm for deciding whether a given non-empty string s of length n belongs to A^*: For every possible way of splitting s into non-empty substrings $s = s_1s_2 \ldots s_k$, run D on each substring s_i in that split and accept iff all substrings are accepted by D for some split. Derive an exact expression for how many possible such splits there are as a function of $n = |s|$. Use this to conclude that this algorithm does not run in polynomial time even though D does.

 (c) What does the result of part b imply about the closure of P under the star operation? Explain.

2. Do the following:

 - Exercise 7.10. (ALL_{DFA} is defined in Problem 4.3.)
 - Exercise 7.11.

3. Given any language L, define $\text{FirstHalf}(L)$ as follows:

 \[
 \text{FirstHalf}(L) = \{ w \mid \text{there exists } x \text{ such that } |x| = |w| \text{ and } wx \in L \}.
 \]

 In other words, a string w is in $\text{FirstHalf}(L)$ if w is the first half of some string in L. For example, if

 \[
 L = \{1, 00, 101, 1100, 101001\}
 \]

 then

 \[
 \text{FirstHalf}(L) = \{0, 11, 101\}.
 \]
a. Prove that the class of decidable languages is closed under \textsc{FirstHalf}.

b. Prove that NP is closed under \textsc{FirstHalf}.

c. Your proof for part (a) should involve constructing a TM (or TM variant) for \textsc{FirstHalf}(L) given a TM (or TM variant) for L. Does this construction also show that P is closed under \textsc{FirstHalf}? If so, explain how; if not, explain why not.

4. In an undirected graph \(G = (V, E) \), an \textit{independent set} is a set of nodes \(S \subseteq V \) such that for any pair of nodes \(u, v \in S \) there does not exist an edge \((u, v) \in E \). In other words, \(S \) is an independent set in \(G \) if every node in \(S \) has no edge in \(G \) connecting it to any other node in \(S \). Define the language \[\textsc{Independent-Set} = \{ \langle G, k \rangle \mid G \text{ is a graph having an independent set of size } k \} . \]

Prove that \(\textsc{Independent-Set} \) is NP-complete.

5. Two Boolean formulas \(\phi_1 \) and \(\phi_2 \) with the same set of variables are defined to be (logically) equivalent if they evaluate to the same value for all possible 0/1 (i.e., \text{FALSE}/\text{TRUE}) assignments to these variables. Define the language \[\textsc{Eq-Boolean} = \{ \langle \phi_1, \phi_2 \rangle \mid \phi_1 \text{ and } \phi_2 \text{ are equivalent Boolean formulas} \} . \]

Prove that \(\textsc{Eq-Boolean} \) is NP-complete.

6. Do Problem 7.29. You may take for granted (without proving it) that \textsc{3Color} (defined in Problem 7.27) is NP-complete.

7. Do Problem 7.36.

For any of these problems where NP-completeness is to be proved, use an appropriate polytime reduction involving one of the NP-complete decision problems described in the book or in lectures or online course handouts.