
SEARCH I NTEN TS A ND DI VERSIFICA TI ON

Increasing evaluation sensitivity to diversity

Peter B. Golbus • Javed A. Aslam • Charles L. A. Clarke

Received: 22 May 2012 / Accepted: 18 December 2012 / Published online: 16 June 2013
� Springer Science+Business Media New York 2013

Abstract Many queries have multiple interpretations; they are ambiguous or under-

specified. This is especially true in the context of Web search. To account for this, much

recent research has focused on creating systems that produce diverse ranked lists. In order

to validate these systems, several new evaluation measures have been created to quantify

diversity. Ideally, diversity evaluation measures would distinguish between systems by the

amount of diversity in the ranked lists they produce. Unfortunately, diversity is also a

function of the collection over which the system is run and a system’s performance at ad-

hoc retrieval. A ranked list built from a collection that does not cover multiple subtopics

cannot be diversified; neither can a ranked list that contains no relevant documents. To

ensure that we are assessing systems by their diversity, we develop (1) a family of eval-

uation measures that take into account the diversity of the collection and (2) a meta-

evaluation measure that explicitly controls for performance. We demonstrate experimen-

tally that our new measures can achieve substantial improvements in sensitivity to diversity

without reducing discriminative power.
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1 Introduction

Information retrieval research traditionally assumes that a given query can be associated

with a single underlying user intent, or information need. In reality—especially in the

context of Web search—users with very different intents may enter identical queries. In

many cases, queries may be ambiguous, with multiple unrelated interpretations (Clarke

et al. 2009). For example, a user entering the query ‘‘zeppelin’’ may be interested in either

the band or the type of airship. Even when a query is unambiguous it may be under-

specified, and may not precisely express the user’s information need (Clarke et al. 2009).

For example, a user entering the query ‘‘led zepplin’’ may be seeking a discography,

biographies of the members, and/or news about a possible reunion. When a query gives rise

to many possible interpretations, the ideal ranked result list should be both diverse—it

should cover as many search intents as possible—and novel—each new document should

provide previously unseen information (Clarke et al. 2008). Several recent research efforts

have proposed algorithms that support ambiguous and underspecified queries by diversi-

fiying search results (Santos et al. 2011; Vargas et al. 2012; Zuccon et al. 2012).

Evaluating these algorithms requires effectiveness measures that appropriately reward

diversity in the result list. Many such measures have been proposed, necessitating the need

for meta-evaluation analyses. A key component frequently used in such meta-evaluations

is discriminative power (Sakai 2006), which assesses how sensitive measures are to

changes in ranked lists. While discriminative power provides a valuable tool, it was

originally designed for ad-hoc performance measures. Discriminative power alone does not

tell us if the sensitivity is due to diversity, or if it is due to other factors.

Diversity necessarily depends on the collection over which the search is being run. If we

search back-issues of the Journal of Aerospace Engineering for the query ’’zeppelin,’’ we

are unlikely to find many references to the band. When a collection only covers a single

interpretation, even the best search engine will be unable to create a diverse ranked list.

Alternatively, consider searching a corpus like Wikipedia for ‘‘led zeppelin.’’ In this case,

any relevant document is likely to be at least partially relevant to several intents, and

almost any system will produce a diverse ranked list. Diversity also depends on a system’s

performance at basic ad-hoc retrieval—how many documents are relevant to any reason-

able intent, especially at the top of the ranked list. Poor ad-hoc performance implies poor

diversity; a system that returns few documents relevant to any intent cannot present a

diverse ranked list to the user. To isolate diversity from these confounding factors, we

define (1) a new family of diversity evaluation measures that explicitly account for the

diversity of the collection and (2) a meta-evaluation measure that can assess the sensitivity

of diversity evaluation measures when applied to artificial ranked lists with perfect

performance.

In order to isolate a system’s diversity from that of the collection, we develop a notion

analogous to query difficulty that measures the diversity present in a collection, inde-

pendent of any ranked list. Diversity difficulty (Sect. 4) measures this property at the topic

(i.e., query) level, and subtopic miss rate (Sect. 5) measures this property at the subtopic

(i.e., interpretation) level. In Sect. 6, we show how to incorporate the diversity of the

collection into a new family of diversity evaluation measures, a#-IA measures. We

demonstrate experimentally that these measures prefer different systems than existing

measures, and have slightly higher discriminative power.

In order to isolate a measure’s sensitivity to diversity from its ad-hoc performance, in

Sect. 7 we consider artificial ranked lists created by randomly permuting relevant docu-

ments. We show experimentally that, as measured by discriminative power, no measure is
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sensitive to the changes in these lists. Therefore, we develop a new meta-evaluation

measure, document selection sensitivity, which is able to distinguish between evaluation

measures applied to perfect-performance ranked lists.

2 Related work

Traditionally, information retrieval followed the Probabilistic Ranking Principle (Robert-

son 1977), which dictates that documents should be ranked by their probability of rele-

vance to the user’s intent, with the simplifying assumption of independent document

relevance. Zhai et al. (2003) explicitly rejected the assumption of independent relevance to

define the subtopic retrieval problem, which came to be known as diversity. Most existing

diversification systems are inspired (Santos et al. 2011) by Carbonell and Goldstein’s

Maximal Marginal Relevance method (Carbonell and Goldstein 1998), which contrary to

the PRP, iteratively selects documents that are most similar to the query and least similar to

the documents previously shown to the user. Indeed, Chen and Karger (2006) showed that

the PRP is actually sub-optimal if the user is interested in a limited number of relevant

documents, rather than all relevant documents.

Zhai et al. also invented several evaluation measures that can be used to measure

diversity. Subtopic recall, the percentage of subtopics covered by a ranked list, is still in

prominent use, usually referred to as S-Recall or I-Rec. Recently, research in ad-hoc

retrieval evaluation has been exploring measures that are driven by user models. Craswell

et al. (2008) introduced the cascade model of user behavior, under which users are

assumed to scan ranked lists from the top down, stopping when their need is satisfied or

their patience is exhausted. This model has been incorporated into evaluation measures

such as: expected reciprocal rank (ERR) (Chapelle et al. 2009), rank-biased precision

(RBP) (Moffat and Zobel 2008), and expected browsing utility (EBU) (Yilmaz et al.

2010). Chapelle et al. (2009) demonstrated experimentally that their cascade model is

better correlated with user behavioral metrics than traditional measures. Clarke et al.

(Clarke et al. 2008) modified nDCG (Järvelin and Kekäläinen 2002) by using the dimin-

ishing returns of cascade measures to model the user’s tolerance for redundancy in a

ranked list. By penalizing redundancy, a-nDCG rewards both novelty and diversity.

As originally defined, Clarke et al.’s cascade measures treated all documents and

subtopics equally. Agrawal et al. (2009) proposed the IA measure family that computes the

weighted average of ad-hoc metrics computed separately for each intent. These measures

incorporate both degrees of relevance, known as graded relevance, and the likelihood that a

user is interested in a particular subtopic, known as intent probability. As an example of

intent probability, suppose that more users who enter the query ‘‘zeppelin’’ are interested in

the band than the mode of travel. Then systems should receive higher rewards for

retrieving documents that refer to the former than the later. Cascade measures were

extended to also utilize graded relevance and intent probabilities, as well as to use other

discount functions (Clarke et al. 2009, 2011).

A drawback of IA measures is that they tend to prefer systems that perform well on the

most likely subtopics over systems that are more diverse (Clarke et al. 2011; Sakai et al.

2010). Partially in an attempt to correct this problem, Sakai et al. (2010) introduced the D#

family of measures. These measures compute the weighted average of each document’s

gain for each subtopic, which the authors call ‘‘global gain.’’ This formulation can be

derived from the probabilistic ranking principle (see Sect. 6), and has the added advantage

that the greedily constructed ideal rank list is optimal, unlike for a-nDCG where it is an
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approximation. The authors refer to measures that use global gain as D measures. D#

measures are D measures linearly combined with S-Recall, and are more highly correlated

with subtopic coverage than IA measures. Noting that D# measures seemed to perform

differently on subtopics depending on their taxonomy, i.e. navigational versus informa-

tional (Broder 2002), Sakai (2012) developed additional measures in the style of D# that

explicitly take subtopic taxonomy into account. One of these, the P?Q# measures, uses

what we would call a #-IA measure in the sense of Sect. 6.2 when the intent is

informational.

As we show in Sect. 7, existing measures are dominated by ad-hoc performance—

systems are ranked primarily by their ability to retrieve relevant documents and only

secondarily by their ability to diversify them. Such a result is consistent with other work in

the literature. Consider, for example, an experiment from recent work by Santos et al.

(2012). In that work the authors investigate the relative impact of increasing subtopic

coverage versus reducing redundancy. In one particular experiment, they show that taking

a quality ad-hoc run and diversifying it using state-of-the-art algorithms can increase the

a-nDCG@100 from roughly 0.35 to 0.45. However, removing all non-relevant documents

from the list without any attempts at diversification increases the a-nDCG@100 to almost

0.6. This implies that the best way to maximize a-nDCG may very well be to continue to

improve ad-hoc retrieval.

In light of this, how do we analyze evaluation measures? The two main approaches to

meta-evaluation used in the literature are ‘‘discriminative power,’’ based on hypothesis

testing, and ’’intuitiveness,’’ which analyzes the ideal ranked lists produced by optimizing

for each measure. Discriminative power, which uses a Bootstrapped t test, was first

introduced by Sakai et al. (2006) as a meta-evaluation measure for ad-hoc performance

metrics. It has since been used extensively to evaluate diversity measures (Clarke et al.

2011; Sakai 2012; Sakai et al. 2010; Sakai and Song 2011). Intuitiveness (Sakai 2012;

Sakai et al. 2010; Sakai and Song 2011) attempts to view evaluation measures through the

eyes of a user.

In this work, we adopt the opposite approach, viewing measures from the perspective of

the collection. It is our hypothesis that by leveraging as much information as we can, no

matter how opaque to the end-user, we will be best able to distinguish between systems.

While a user neither knows nor cares whether a particular query is hard, we believe that if

we can find systems that are still able to perform reasonably on the most difficult queries,

they will tend to best satisfy users over all. It remains to be seen the extent to which our

collection-oriented perspective agrees with Sakai et al.’s user-oriented perspective, or with

actual user preference.

Another avenue we explore in this work is the difficulty of diversity queries. A great

deal of work has already been done to distinguish hard queries for ad-hoc performance. We

give a very brief overview of the work in the area of query difficulty prediction. We direct

the interested reader to Carmel and Yom-Tov (2010), in whose taxonomy we situate our

work. At the highest level, this schema first divides query difficulty prediction by whether

the analysis is performed pre- or post-retrieval.1 Pre-retrieval prediction is further divided

by whether the analysis is statistical (Hauff 2010) or linguistic (Mothe and Tanguy 2005)

in nature. Post-retrieval prediction is split into three categories: clarity, score analysis, and

robustness. Clarity analyzes the difference between the top-retrieved documents and the

collection as a whole (Carmel et al. 2006; Cronen-Townsend et al. 2002, 2006), and the

score analysis measures how much the document scores reported by a system vary at the

1 These categories are due to He and Ounis (2004)
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top of the list and across the corpus as a whole (Shtok et al. 2009; Zhou and Croft 2007).

Robustness measures the extent to which retrieval is affected by perturbations. These

perturbations can be to the query (Vinay et al. 2006; Yom-Tov et al. 2005; Zhou and Croft

2007), to the document set (Vinay et al. 2006; Zhou and Croft 2006) or to the retrieval

systems (Aslam and Pavlu 2007). Our approach to measuring diversity difficulty at the

topic and subtopic level is to consider the output of systems that pick relevant documents at

random. Even though we do not use actual IR systems, this falls in the category of post-

retrieval robustness as measured by perturbing systems.

3 The TREC diversity task

Since 2009, the TREC Web Track (Clarke et al. 2009, 2010, 2011) has included a diversity

task alongside the traditional ad-hoc task. The track organizers constructed 50 topics for

each collection. For each topic, the organizers created a number of subtopics corresponding

to example search intents by extracting information from the logs of a commercial search

engine. Each subtopic is given a type, ‘‘navigational’’ or ‘‘informational,’’ denoting

whether the user is interested in finding a specific web page or any web page with the

correct content. Figure 1 presents two topics from the 2011 collection and their subtopics.

Topic 114 is ‘‘faceted,’’ i.e. ’’underspecified’’ in the same sense as our ‘‘led zeppelin’’

example; we know what an adobe indian house is, but we do not know which facet of this

broad topic the user is interested in. Topic 140 is ‘‘ambiguous,’’ similar to our ‘‘zeppelin’’

example. There are many high schools named East Ridge; without additional information,

there is no way of knowing which one the user intended.

Track participants were given the queries (and not the subtopics) associated with each

topic. Systems were run on the ClueWeb09 corpus,2 a general web crawl from 2009

containing approximately 1 billion documents. The submissions were pooled and judged to

a depth of 20 (2009, 2010) or 25 (2011). Hired assessors made binary relevance judgments

with respect to each subtopic.3 All of our evaluations will be performed using these

relevance assessments.

In this paper, we focus on the 2010 and 2011 collections, since participants in those

years had time to work with the 2009 data to better understand how to diversify runs.

Where possible, we considered the two as a single collection with 100 topics.

4 Diversity difficulty

The amount of diversity present in a ranked list is affected by the amount of diversity

present in the collection. Therefore, when evaluating systems for diversity, it is necessary

to control for the diversity of the collection. For a specific topic and corpus, query difficulty

is a measure of how well a reasonable search engine can be expected to perform ad-hoc

retrieval. In this section, we introduce an analogous notion for diversity, diversity diffi-
culty, which assesses the amount of diversity present in the collection. Like query diffi-

culty, diversity difficulty is defined with respect to a topic and a corpus, and independent of

2 lemurproject.org/clueweb09/.
3 In 2011, the judgments were actually graded. For this work, we consider any document with relevance
grade greater than zero to be relevant and any document with a relevance grade of zero or marked as spam to
be non-relevant.

534 Inf Retrieval (2013) 16:530–555

123



any ranked list. Diversity difficulty is defined in Sect. 4.1. The diversity difficulties of the

TREC 2010 and 2011 corpora are analyzed in Sect. 4.2.

4.1 Definition

Imagine a collection and a topic with ten subtopics and 1,009 relevant documents. One of

these subtopics, subtopic A, is covered by 1,000 different documents. Subtopics B through

J are each covered by only one relevant document. It is possible to generate a diverse

ranked list that covers all ten subtopics, but it is difficult. A system would need to order

those nine documents relevant to subtopics B–J high in the list—the equivalent of finding a

handful of ‘‘needles’’ in the ‘‘haystack’’ of 1,000 documents relevant to subtopic A.

However, imagine a different collection and the same topic. In this collection, there are

large numbers of documents relevant to each subtopic, or perhaps there are large numbers

of documents relevant to multiple subtopics. In this collection, it would be easy to produce

a diverse list. In fact, almost any list with good performance should exhibit diversity.

However, this topic exhibits the same maximum amount of diversity in both collections—

each of the 10 subtopics can be covered by some ranked list of ten documents. One could

also imagine a third collection where subtopics A through I are each covered by many

documents, each of which cover many subtopics, but there are no documents whatsoever

Fig. 1 Examples of TREC 2011 web track diversity task topics
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relevant to subtopic J. In this collection, it would still be easy to create a diverse ranked

list, but the maximum diversity is smaller than in the first two collections. One might argue

that this simply means that subtopic J should be disregarded, and that this third collection is

just as diverse. We will argue in Sect. 4.2 that this depends on how the collection was

created, and the purpose it is intended to serve.

We consider diversity difficulty to be a function of the two factors previously discussed:

(1) the maximum amount of diversity achievable by any ranked list, and (2) the ease with

which a system can produce a diverse ranked list.4 When the maximum amount of diversity

achievable by any system is small, the topic has little diversity. When the maximum

amount of diversity is large but it is hard to create a diverse list, the topic is somewhat

more diverse. Finally, if the maximum amount of diversity is large and a system created at

random will come close to achieving it, the topic is diverse.

Given a topic, S-Recall@k (Zhai et al. 2003) is the percentage of subtopics covered by a

list at rank k. The S-recall of a set of documents is the same for any ranked list of those

documents. We consider the maximum amount of diversity (denoted dmax) for a topic to be

the Maximum S-Recall for any set of documents in the corpus. Let n represent the

minimal cutoff k at which dmax can be achieved, i.e. the minimum number of documents

that cover the maximum number of subtopics. Unfortunately, computing n can be shown to

be NP-hard by reduction from the set covering problem (Carterette 2009). In this work, we

use a greedy approximation.

Once we know n, imagine the random experiment of selecting n relevant documents

from the corpus and measuring the S-Recall. The expectation of this experiment is anal-

ogous to the S-Recall of a system that performs ad-hoc retrieval perfectly, yet does not

attempt to diversify its results. We use the Expected S-Recall@n (also denoted dmean) to

measure how easy it is to create a diverse list. Let M be the number of subtopics, Ri be the

number of documents relevant to subtopic i, and RT be the number of documents relevant

to at least one subtopic. Then dmean can be approximated as

dmean � 1�

PM
i¼1 1� Ri

RT

� �n

M
: ð1Þ

We note that while dmean can be computed directly, we use an approximation that actually

models documents sampled with replacement. Therefore this approximation can be poor

when there are few relevant documents for a subtopic, e.g. when the subtopic is naviga-

tional. We define diversity difficulty, dd, as the harmonic mean of dmax and dmean,

dd ¼ 2dmaxdmean

dmax þ dmean

: ð2Þ

Since S-recall is a percentage of subtopics, diversity difficulty ranges between zero and

one. It is large for diverse queries where there are many subtopics and an arbitrary ranked

list is likely to cover many of them. It is small for queries lacking in diversity where there

are either few subtopics, or there are many subtopics but they are unlikely to be covered.

4 Note that our definition of diversity difficulty will actually be a description of diversity ’’easiness’’ in that
larger values indicate topics on which systems should do well. This is similar to e.g. query average average
precision (Aslam and Pavlu 2007). We choose to call this diversity difficulty rather than diversity easiness to
emphasize the similarity to query difficulty prediction.
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4.2 TREC collections

A commercial web search engine—which, in theory, indexes the entire web—must retrieve

relevant documents for every search intent, no matter how rare. In this context, it is important

to find those intents that the search engine is unable to satisfy so that the situation can be

rectified. TREC collections, however, are more artificial. Designed to evaluate search

engines, they consist of a first tier web crawl and topics created by visually inspecting the

search logs of a commercial search engine. In this context, there are often uncovered sub-

topics with no relevant documents. These subtopics may not have represented common user

intents, or documents pertaining to them may be missing from the crawl. Therefore, for TREC

collections only, we restrict our attention to subtopics that are actually covered by relevant

documents. However, this changes the meaning of diversity difficulty. Due to the collection

we are using, in these experiments, the Maximum S-Recall will be 1 for any topic. In this case,

topics will be considered diverse, i.e. dd is large, if and only if an arbitrary ranked list is likely

to cover all subtopics, independent of the number of subtopics.

Measuring the diversity difficulty of the TREC 2010 and 2011 topics, we see that dd does

in fact measure the diversity of topics. Table 1 shows several topics and the number of

relevant documents for each subtopic. Topics 143 (‘‘arkadelphia health club’’) and 86 (‘‘bart

sf’’), have a non-negligible and roughly equal number of relevant documents for each sub-

topic. These are very diverse topics, and they have very high diversity difficulty scores of

almost 1. Topics 125 (’’butter and margarine’’) and 73 (‘‘neil young’’) each cover all subtopics

with many documents, but some subtopics are covered by many more documents than others.

They have some diversity, which is reflected in their diversity difficulty scores of about 0.75.

Topics 60 (‘‘bellevue’’) and 57 (‘‘ct jobs’’) both have dominant subtopics that are far more

covered than the others, as well as subtopics that are barely covered. These topics have little

diversity, and low diversity difficulty scores that are less than 0.5.

Figure 2 shows a histogram of the diversity difficulty of the topics in the combined

TREC 2010 and 2011 collection. Table 2 shows the minimum, maximum, and mean

diversity difficulty values for each year. Using diversity difficulty, we can see that the

TREC 2010 and 2011 collections were diverse, with 2011 being somewhat more so.

5 Subtopic miss rate

Because it is necessary to average system evaluations over topics to control for natural

variations within a collection, diversity difficulty tells us which topics are naturally more

Table 1 Examples of subtopic coverage and diversity difficulty in TREC 2010 and 2011 topics

Topic
ID

Title # Rel Docs Subtopic dd

1 2 3 4 5 6

143 arkadelphia health
club

25 25 21 – – – – 0.994

86 bart sf 82 78 62 60 – – – 0.977

125 butter and margarine 132 110 47 13 – – – 0.735

73 neil young 156 69 52 28 19 – – 0.730

60 bellevue 313 254 47 16 11 4 4 0.481

57 ct jobs 261 261 14 5 2 – – 0.449
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diverse than others. However, for individual topics, there is variation among subtopics as

well. In this section, we present subtopic miss rate, which, for each topic, measures the

relative prevalence of documents relevant to each subtopic.

For a given topic, consider drawing relevant documents at random. Subtopics con-

taining large numbers of relevant documents will be covered early and easily—these are

the ’’easy’’ subtopics, likely to be covered by any system with reasonable ad-hoc perfor-

mance. However, subtopics with few relevant documents are ‘‘harder’’ and will likely be

covered early and well by only high-quality diversity systems.

We define the subtopic miss rate of subtopic i at rank k as the probability of drawing

k relevant documents at random and failing to cover that subtopic, normalized with respect

to all of the subtopics for that topic. This forms a distribution for each topic, with prob-

abilities corresponding to each subtopic’s relative difficulty.

It is not strictly necessary to normalize these probabilities into a distribution. We do so

to emphasize the relative importance of each subtopic to evaluation, rather than any

universal notion of difficulty. The drawback to this approach is that the normalized

probabilities are not comparable across topics.

Let M be the number of subtopics, Ri represent the number of documents relevant to

subtopic i, and RT represent the total number of documents relevant to at least one sub-

topic. The subtopic miss rate, smr, of subtopic i at rank k can be approximated as

smrk
i �

1� Ri

RT

� �k

PM
j¼1 1� Rj

RT

� �k
: ð3Þ

While smri
k can be computed directly, to simplify computation, we approximate, asserting

that documents are sampled with replacement. Again, this is a poor assumption for sub-

topics with a small number of relevant documents. If no rank is specified, we define the smr

of a subtopic as the smr at rank n,

smri ¼ smrn
i ; ð4Þ

where n is the minimum rank at which all subtopics can be covered.

If a subtopic is covered by all relevant documents, then every reasonable system should

be able to cover it. The miss rate of this subtopic is zero at any rank; the subtopic is of no

Fig. 2 Histogram of diversity
difficulties of the topics in the
combined TREC 2010 and 2011
collection. The larger the value,
the easier it is to create a diverse
ranked list for that topic

Table 2 TREC 2010 and 2011
collection diversity difficulty
statistics

Min Max Mean

2010 0.449 0.994 0.727

2011 0.643 0.977 0.809
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interest and should be ignored. However, if a subtopic is covered by only a relatively small

number of relevant documents while most other subtopics are covered heavily, then the

miss rate could approach one. This implies that this subtopic will be very useful in

differentiating between the best systems.

Table 3 shows the subtopic miss rate of several TREC topics. Topic 60 has a small

diversity difficulty score, meaning that it is a topic with little inherent diversity. Subtopic

one has a very small subtopic miss rate—it is very unlikely to be missed by any ranked list.

The remaining five subtopics all have very similar subtopic miss rates. They are all equally

unlikely to be covered. This implies that the first subtopic is not useful for evaluation, and

that systems should be measured by how well they cover the other five subtopics. Topic 73

has an intermediate diversity difficulty score, and is therefore a topic that is neither par-

ticularly diverse nor lacking in diversity. The subtopic miss rates are less similar, showing

that several subtopics are highly likely to be covered and several subtopics are less likely to

be covered. Each subtopic should contribute differently to evaluation. Topic 86 has a high

diversity difficulty score; it is a diverse topic. This topic has a single ‘‘dominant’’ subtopic

with a very high miss rate. All systems should be expected to satisfy the more common

user intents, and therefore they should be evaluated largely by whether or not they are able

to satisfy this rare one.

6 Diversity evaluation measures

We have shown how to quantify the amount of diversity present in a collection at the levels

of topic and subtopic. In Sect. 6.1, we briefly give definitions for several existing evalu-

ation measures. In Sect. 6.2, we introduce a new family of evaluation measures, the a#-IA

measures. In Sect. 6.3, we show how our new measures can be made to explicitly account

Table 3 Example subtopic miss rates of TREC topics

Topic ID Title dd n Subtopic Rank

n 5 10 20

60 ‘‘bellevue’’ 0.481 3 1 0.002 0.000 0.000 0.000

2 0.143 0.113 0.061 0.016

3 0.199 0.196 0.182 0.144

4 0.209 0.213 0.215 0.202

5 0.224 0.239 0.271 0.319

6 0.224 0.239 0.271 0.319

73 ‘‘neil young’’ 0.730 2 1 0.141 0.050 0.007 0.000

2 0.202 0.122 0.040 0.003

3 0.306 0.344 0.321 0.204

4 0.351 0.484 0.632 0.793

86 ‘‘bart sf’’ 0.977 1 1 0.087 0.00 0.000 0.000

2 0.435 0.383 0.278 0.129

3 0.478 0.617 0.722 0.871

All subtopics tend to have similar rates for non-diverse topics (small diversity difficulty scores), whereas
diverse topics (high diversity difficulty scores) tend to have ‘‘dominant’’ subtopics. Recall that n is the
minimum rank at which all coverable subtopics can be covered by any ranked list
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for collection diversity at the topic and subtopic levels. Finally, we demonstrate experi-

mentally that these measures prefer different systems than existing measures (Sect. 6.4),

and that they have slightly higher discriminatory power (Sect. 6.5)

6.1 Intent-aware, cascade, and D#-measures

Following Zhang et al. (2010), we note that most measures can easily be described as the

cross-product of a gain vector with a discount vector, normalized in some fashion. Fol-

lowing Clarke et al. (2011), we begin by highlighting three particular functions for pro-

ducing discount vectors based on ad-hoc performance measures.

1. S-Recall (Zhai et al. 2003): S-Recall does not fit into this framework. Let X be the

number of subtopics covered by at least one document at or before rank k. Assume a

topic has M subtopics. Then

S-Recall@k ¼ X

M
: ð5Þ

2. Cascade (Clarke et al. 2008, 2009, 2011): These methods use a cascading gain

function where a document’s gain with respect to some subtopic is decreased each

time the subtopic is encountered. To define the gain function, let Ii
r be an indicator

variable representing whether the document at rank r is relevant to subtopic i. Let

ck
i ¼

Xk�1

r¼1

Ir
i ð6Þ

represent the number of documents relevant to subtopic i seen prior to rank k. Let gi
k be

the relevance grade, or a function thereof, of the document at rank k with respect to

subtopic i. Let wi represent the probability that a user’s intent is subtopic i. Then the

gain of the document at rank k is

GainðkÞ ¼
XM

i¼1

wi � gk
i ð1� aÞc

k
i ; ð7Þ

where a is a parameter in [0, 1] which models the users tolerance for redundancy. The

gain can be combined with any discount vector from Table 4. Normalization is per-

formed relative to a single ideal ranked list. A drawback of the Cascade measures is

that the ideal ranked list required for normalization is NP-hard to compute, and is

therefore usually approximated.

3. Intent aware (Agrawal et al. 2009): Intent aware measures model diversity by

computing the weighted average of an evaluation measure with respect to each

subtopic. As an example of an intent aware measure, consider nDCG-IA. Let nDCGi

represent nDCG (Järvelin and Kekäläinen 2002) evaluated with respect to subtopic

i. Then the intent aware measure nDCG-IA would be:

nDCG-IA@k ¼
XM

i¼1

wi � nDCGi@k: ð8Þ

Notice that normalization is computed separately for each subtopic. Each subtopic

requires its own ideal ranked list, but these lists can be computed directly. These
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measures have a tendency to reward systems that ignore minor subtopics (Clarke et al.

2011; Sakai et al. 2010).

4. D#-measures (Sakai 2012; Sakai et al. 2010; Sakai and Song 2011): D#-measures

incorporate subtopic weighting into the gain function, which the authors refer to as

global gain.

GlobalGainðkÞ ¼
XM

i¼1

wig
k
i : ð9Þ

This definition can be derived from the probabilistic ranking principle by assuming that

(a) intents are mutually exclusive, i.e.
PM

i¼1 wi ¼ 1, and

(b) the binary probability of relevance is proportional to the relevance grade.

Global gains are computed for each subtopic and normalized with regard to a single

ideal ranked list. Unlike Cascade measures, this ideal ranked list can be found by a

simple greedy algorithm. Measures using global gain are called D-measures. To

increase the correlation with subtopic coverage, D#-measures are D-measures

combined linearly with S-Recall. The mixture is controlled by a parameter k 2
½0; 1�; with k = 1 being equivalent to pure S-Recall.

6.2 a#-IA measures

Consider a hypothetical user whose search needs are satisfied by any document relevant to

their intent. If the probability of each subtopic is uniform, then S-Recall represents the

percentage of such users that would be satisfied by a particular ranked list. Intent aware

measures can be thought of as extending this idea to non-trivial user models and non-

uniform subtopic probabilities; in this framework, intent aware measures represent the

expected satisfaction of a user over all possible intents. This is an attractive model of

diversity, but there is no explicit novelty component: systems will be rewarded for finding

multiple documents relevant to a subtopic rather than being penalized. Cascade measures

do model novelty, but they do not have this feature of explicitly averaging over intents—in

a sense, they ‘‘macro-average’’ subtopics, whereas in this work we wish to ‘‘micro-aver-

age’’ them. Merging cascade measures with intent-aware measures creates a new family of

intent aware cascade measures e.g. a-nDCG-IA. This family computes gains in the style of

cascade measures using Eq. 7, but separately for each subtopic, with each normalized

against a ranked list ideal for that subtopic. These separate evaluations can then be merged

in the style of the intent aware measures. Unfortunately, this re-inherits the problem of

rewarding systems for ignoring minor intents. Therefore, our final family has a #-measure

component as well. Intent-Aware cascade #-measures are defined as a linear combination

of S-Recall and an intent aware cascade measure. For example,

Table 4 Discount vectors used
in evaluation measures 1. ERRðkÞ ¼ 1

k

2. DCGðkÞ ¼ 1
logðkþ1Þ

3. RBPðkÞ ¼ 1
b

k�1
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a#-nDCG-IA@k ¼ k� S-Recall@k þ ð1� kÞ
XM

i¼1

wi � a-nDCGi@k ð10Þ

6.3 Averaging over topics and subtopics

Our first goal has been to develop evaluation measures that explicitly take into account the

diversity present in the collection. Our hypothesis is that all systems will perform well on

the easier topics for which any ranked list is likely to be diverse, and the easier, more

represented subtopics that any ranked list is likely to cover. If a system performs well with

regard to these topics and subtopics, it does not provide us with much information.

Therefore, we wish to place more emphasis on the more difficult topics and less prevalent

subtopics, as only high quality systems should be able to perform well on these.

We focus on the difficult topics and subtopics in two ways. The first, inspired by GMAP

(Robertson 2006), is by using the geometric mean. This has the effect of amplifying the

impact of topics and subtopics for which a system performed poorly. By assumption, these

must have been the more difficult topics and subtopics. The second is to explicitly account

for the difficulty using diversity difficulty and subtopics miss rate. Since dd is a number

between zero and one, with zero representing a topic with no diversity, we weight each

topic by one minus its diversity difficulty. smr can be used directly.

Experimentally, we investigate the following three methodologies for averaging eval-

uations over topics.

1. Avg: the arithmetic average over the topics.

2. Geom: the geometric mean over the topics.

3. DD: dd-weighted average.

We also investigate the following four methodologies for averaging over subtopics.

1. Cascade: we do not average over subtopics. As in cascade and D# measures, ranked

lists are normalized by a single ideal ranked list.

2. Micro: all subtopics are considered equally. This is the arithmetic average of each

subtopic normalized independently.

3. Geom: the geometric, rather then the arithmetic, mean.

4. SMR: each subtopic is weighted by its subtopic miss rate.

6.4 Impact on evaluation

In this section, we explore the extent to which a#-IA measures evaluate systems differently than

existing measures. Given a collection, an evaluation measure induces an ordering on the sub-

mitted runs. We use Kendall’s s (Kendall 1938) to assess the degree of correlation between the

ranking of systems by different measures. By evaluating all systems submitted to TREC 2010 and

2011, we can compare the relative system rankings as computed by ERR-IA and D#-nDCG, the

primary measures by which systems are evaluated at TREC and NTCIR respectively, and a#-IA

measures to see how correlated they are. We can also measure the impact of the topic averaging

methodologies of Sect. 6.3 by using them with ERR-IA and D#-nDCG. In our evaluations, we use

the default parameters of TREC and NTCIR, and set a = 0.3 and k = 0.5 in a#-IA measures.5

This can tell us whether two measures evaluate systems similarly. However, if two measures are

5 In Sect. 6.5, these values will be shown to produce metrics with high discriminatory power.
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found to be different, it cannot tell us which of the two is better. This question will be addressed in

Sects. 6.5 and 7.2.

Table 5 shows the ‘‘gold standard’’ TREC and NTCIR measures compared with each

other and several a#-IA measures. Each cell in the table shows the Kendall’s s value in

2010 and 2011, separated by a slash. With s values ranging from roughly 0.7 to 0.9, we can

see that the ERR-IA, D#-nDCG, and a#-IA measures with geometrice topic averaging and

arithmetic subtopic averaging (Geom-Micro), and arithmetic topic averaging and subtopic

miss rate-weighted subtopic averaging (AVG-SMR) all rank systems in highly correlated

orders. However, when comparing any of these measures to a#-IA with diversity difficulty

topic averaging and geometric subtopic averaging (DD-Geom), we get highly uncorrelated

rankings with s values approximately between 0.15 and 0.2. This tells us that DD-Geom

evaluates systems very differently from other measures.

Tables 6 and 7 show the impact of topic averaging on the gold standard measures. With

s values ranging from 0.74 to 0.89, we can see that ordering systems by arithmetic (avg)

and geometric (geom) averaging produce similar lists. However, averaging topics by their

diversity difficulty (DD) produces orderings that rank systems very differently. In fact, in

2010, the s values of 0.06 and 0.08 show that the results using ERR-IA with DD averaging

are almost completely uncorrelated with the results using ERR-IA with arithmetic and

geometric averaging.

Table 8 shows the impact of subtopic averaging on a#-IA measures. We observe that,

independent of topic average, cascade normalization (casc) and geometric subtopic aver-

aging (geom) are quite similar. This matches our intuition of a-nDCG (recall that arith-

metic average and cascading subtopic average is a linear combination of S-Recall and

a-ndcg), namely that penalizing redundancy increases the impact of difficult subtopics.

We can also see that, with a minimum s value of 0.72, if we use arithmetic topic averaging

(avg, top table), the choice of subtopic averaging does not have a large impact. The impact is

somewhat larger with geometric topic averaging (geom, middle table), with a minimum of 0.6.

When we use diversity difficulty (DD, bottom table) topic weighting, however, the difference

becomes more dramatic, with a minimum of 0.4. However, we observe that subtopic miss rate

weighting (smr) is highly similar to the arithmetic average of subtopics (micro).

That diversity difficulty averaging is so different from the other averages supports our

hypothesis that evaluation should use information about the collection to emphasize dif-

ficult topics. We have shown that doing so causes evaluation metrics to prefer different

systems (although we have not yet shown that it causes metrics to prefer more diverse

systems). However, Table 8 also shows that subtopic miss rate-weighted averaging (smr) is

very similar to the arithmetic average of subtopics (micro), suggesting that it would be

better to emphasize subtopics on which systems performed poorly, rather than subtopics

Table 5 TREC and NTCIR gold standard vs a small sample of a#-IA measures

ERR-IA D#-nDCG DD-Geom Geom-Micro Avg-SMR

ERR-IA – 0.82 / 0.71 0.15 / 0.23 0.72 / 0.68 0.80 / 0.73

D#-nDCG – 0.19 / 0.13 0.74 / 0.86 0.89 / 0.86

DD-Geom – 0.21 / 0.16 0.20 / 0.17

Geom-Micro – 0.79 / 0.86

Avg-SMR –

Kendall’s s 2010 / 2011
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that we expect to be difficult. We believe that our hypothesis is valid, but our approxi-

mation of smr is not. We discuss this further in Sect. 7.2 and in our conclusion.

6.5 Disciminative power

We have shown that our measures can rank systems differently than other diversity

measures. In this section, we show that this does not sacrifice the sensitivity of evaluation

to changes in ranked lists. One of the primary measures of sensitivity appearing in the IR

literature (Clarke et al. 2011; Sakai 2012; Sakai et al. 2010; Sakai and Song 2011) is

discriminative power (Sakai 2006). Discriminative power measures sensitivity by con-

ducting statistical significance testing on pairs of systems. Given the same set of queries,

two different systems will produce different ranked lists. Ideally, measures should produce

Table 6 Impact of topic aver-
aging on ERR-IA

Kendall’s s 2010 / 2011

ERR-IA avg geom DD

avg – 0.89 / 0.81 0.06 / 0.25

geom – 0.08 / 0.17

DD –

Table 7 Impact of topic aver-
aging on D#-nDCG

Kendall’s s 2010 / 2011

D#-nDCG avg geom DD

avg – 0.74 / 0.88 0.50 / 0.29

geom – 0.56 / 0.34

DD –

Table 8 Impact of subtopic
averaging on a#-IA measures

Kendall’s s 2010 / 2011

casc micro geom smr

avg

casc – 0.87 / 0.77 0.94 / 0.87 0.81 / 0.73

micro – 0.82 / 0.74 0.90 / 0.94

geom – 0.80 / 0.72

smr –

geom

casc – 0.72 / 0.66 1.00 / 0.92 0.72 / 0.65

micro – 0.73 / 0.62 0.99 / 0.97

geom – 0.72 / 0.60

smr –

DD

casc – 0.44 / 0.63 0.99 / 1.00 0.40 / 0.60

micro – 0.45 / 0.63 0.90 / 0.94

geom – 0.41 / 0.60

smr –
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different sets of evaluations. The discriminative power of a measure is defined as the

percentage of system pairs that are significantly different.

In this section, we compare the discriminative power of a#-IA measures with that of

existing measures. There are, essentially, three aspects of a#-IA measures that can be

varied: our choice of discount function, our tuning of the a and k parameters, and our

choice of topic and subtopic normalization. Unfortunately, it is not immediately obvious

how to measure the effect of topic averaging on discriminative power. We leave this for

future work. In this section, we focus on subtopic normalization. In all experiments, a—

which models a user’s tolerance for redundancy—and k—which controls the mixture with

S-Recall—vary over the set f0; 0:1; 0:2; . . .; 1g: Following Clarke et al. (2011), when using

RBP, b is set to 0.8. Discriminative power experiments use a two-tailed paired t test. The

tests are bootstrapped (Sakai 2006), with B = 1,000.

Table 9 shows the maximum discriminative power at rank 20 of each a#-IA measure

observed as a and k are varied, as well as the maximum observed value of the D# measures

as k is varied. From this table we observe that no measures have substantially more

discriminatory power than any other when parameters are appropriately tuned. We note

that the a#-IA measures have more discriminatory power than D# measures, though not

substantially.

Figure 3 shows the discriminative power of each evaluation measure at rank 20 with

DCG discounting for all values of a and k. These results were found to be typical for all

three discount functions. We can compare the a#-IA measures to existing measures (with

the exception of D# measures) by carefully considering these plots. For any subtopic

average, setting k = 1 (the far-right side in 3D plots) shows S-Recall. Using the cascade

average and setting k = 0 (the near-left side in 3D plots) shows a-nDCG. If you assume

that the subtopic distribution is uniform, then using the arithmetic average (micro) and

setting k = a = 0 (the leftmost corner) shows nDCG-IA. Since the maximum for each

year is achieved by cascade averaging, and not on the near-left or far-right side (i.e. it is

achieved with 0 \ k\ 1), we can conclude that the a#-IA measures do have somewhat

higher discriminatory power than existing measures.

Table 9 Maximum discrimina-
tive power observed on actual
runs at rank 20

All choices of subtopic average
and discount function have
comparable maxima

Discount Subtopic 2010 2011
Max Max

ERR Cascade 0.677 0.606

Micro 0.673 0.610

Geom 0.627 0.593

SMR 0.659 0.601

D#-ERR 0.667 0.607

DCG Cascade 0.675 0.617

Micro 0.673 0.623

Geom 0.617 0.595

SMR 0.651 0.607

D#-nDCG 0.643 0.608

RBP Cascade 0.677 0.607

Micro 0.677 0.621

Geom 0.617 0.595

SMR 0.657 0.600

D#-RBP 0.653 0.595
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From Fig. 3, we observe that setting a = 0.3 and k = 0.5 seem to be reasonable choices to

use in further investigation. Figures 4 and 5 show all four subtopic averages at ranks 5, 10, and

20 as one of the parameters is fixed while the other is allowed to vary. From these we conclude

that while the subtopic averages that emphasize the difficult subtopics—the geometric

average (geom) and the subtopic miss rate-weighted average (smr)—have lower discrimi-

native power overall, they are comparable when a and k are appropriately tuned.

The results of this section as a whole tell us that a#-IA measures are slightly more

sensitive than existing measures, as assessed by discriminative power.

7 Document selection sensitivity

A system’s diversity is necessarily conflated with the diversity of the collection and the

system’s ad-hoc performance. So far, we have described ways of incorporating collection

diversity into evaluation metrics. In this section, we introduce Document selection

Fig. 3 Discriminative power as a function of a and k
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sensitivity to address the issue of controlling for ad-hoc performance. Document selection

sensitivity is defined in Sect. 7.1. Experimental results are presented in Sect. 7.2.

7.1 Definition

One way to control for the impact of ad-hoc performance on diversity evaluation is to only

consider lists with the same performance. We do so using artificial ranked lists created by

randomly permuting the set of relevant documents. These lists will all have the same ad-

hoc performance—perfect. For a given topic, whatever difference exists between ranked

lists with perfect combined precision—the percentage of retrieved documents relevant to at

least one subtopic (Clarke et al. 2011)—must be due solely to novelty and diversity.

We use the binary TREC relevance judgments to create 50 artificial runs by (uniformly)

randomly ranking the relevant documents of all 100 TREC topics. Figure 6 shows the

discriminative power of a#-IA measures over these simulated runs. We observe that dis-

criminative power is almost an order of magnitude smaller than it is over actual runs. This

suggests that diversity evaluation is more a function of ad-hoc performance than of actual

novelty and diversity. Given this, if we wish to assess the extent to which measures are

impacted by novelty and diversity, we must use an alternative framework.

For some measure M, imagine evaluating randomly selected permutations of the set of

relevant documents. Since our measures are truncated at specific ranks, these lists will,

effectively, differ in the relevant documents selected, as well as the ranks of the relevant

documents. The observed set of evaluations has some sample mean, �x; and sample standard

deviation, s. We define the document selection sensitivity of a measure as the coefficient

of variation—the standard deviation divided by the mean—of the set of evaluations.

dssðMÞ ¼ s

�x
ð11Þ

This produces a normalized measure of the variance of ranked lists with perfect perfor-

mance. A low document selection sensitivity means that it is unlikely that a system which

Fig. 4 Discriminative power of as a function of k. a is fixed at 0.3. While choice of subtopic average
clearly impacts discriminative power, all maxima are comparable
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assigns relevant documents at random will be different than the mean.6 The larger this

number, the more sensitive the measure is to the documents in ranked lists and their order.

If this number is small, it does not mean that the measure did not evaluate some lists as

substantially better than others: the maximum and minimum scores achieved by any of the

randomly generated ranked lists could be quite different; it simply means that the majority

of ranked lists have highly similar scores.

Document selection sensitivity is computed separately for each topic. As discussed in

Sect. 6.3, when averaging, we wish to place more emphasis on difficult topics with low

Fig. 5 Discriminative power as a function of a. k is fixed at 0.5. While choice of subtopic average clearly
impacts discriminative power, all maxima are comparable

Fig. 6 Discriminative power on
artificial ranked lists with
perfect combined precision.
Discriminative power is almost
an order of magnitude smaller on
these lists than on actual systems

6 For normally-distributed data, a coefficient of variation of c % means that roughly 68 % of the population
is within ±c % of the mean.
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diversity difficulty scores. Experimentally, we explore the impact of the three topic

averages previously discussed: Avg, Geom, and DD.

We note that as described, document selection sensitivity does not use relevance grades

or intent probabilities. We suggest that one way to use this information would be to select

documents iteratively by first using the intent probability distribution to choose a subtopic,

and then randomly drawing from the most relevant documents remaining for that subtopic.

We hypothesize that not using relevance grades and subtopic probabilities may be bene-

ficial, in that some diversity measures will be better able to leverage this information to

distinguish between lists than others. We will address this question in future work.

A further limitation is that, as defined, DSS can only be used to evaluate measures that

are always positive. While this is almost always the case, it is not universal, e.g. logit(AP).

Also, DSS is not invariant to even the most simple of transformations. For example, given

a measure M, the measure M0 ¼ Mþ1
2

would have a smaller DSS score, while still ranking

systems in the exact same order.

7.2 Experimental results

For each topic, 1,000 ranked lists were created by ranking the relevant documents at

uniformly random. These ranked lists were used to compute the document selection sen-

sitivity of each measure on each topic. As before, a—which models a user’s tolerance for

redundancy—and k—which controls the mixture with S-Recall—vary over the set

f0; 0:1; 0:2; . . .; 1g: Table 10 shows that, unlike discriminatory power, document selection

sensitivity can be affected by choice of topic and subtopic averaging. At rank 20, document

selection sensitivity ranges from a low of 0.05 to a high of 0.8. This can also be seen in

Fig. 7, which shows the selection sensitivity using DCG discounting at rank k = 20.

Geometric (geom) and arithmetic topic averaging are quite similar, and the latter is

omitted. Diversity difficulty topic weighting (DD) shows marked increases in selection

sensitivity, as does geometric subtopic weighting (geom). Subtopic miss rate weighting

(smr) has higher selection sensitivity than arithmetic average (micro) and cascade

normalization.

Figures 8 and 9 show the selection sensitivity of the topic averages at ranks k = 5, 10,

and 20, each with one of the parameters fixed. From these figures, as well as Table 10, we

can see that selection sensitivity clearly goes down as the cutoff increases. This makes

sense intuitively. Imagine that there are 20 relevant documents, 5 documents relevant to all

subtopics and 15 documents each relevant to a single subtopics. At k = 20, you will get at

least some gain from every relevant document. At k = 5, you may see the 5 documents

relevant to all subtopics, or you may see none of them. Seeing all of them versus none of

them should have more variance than seeing all of them in different orders.

Consulting Table 10, we can see that a#-IA measures clearly have higher document

selection sensitivity than D# measures. We can compare the a#-IA measures against the

other existing measures by carefully considering Fig. 7. Again, for any subtopic average,

setting k = 1 (the far-right side in 3D plots) shows S-Recall. Using the cascade average

and setting k = 0 (the near-left side in 3D plots) shows a-nDCG. If you assume that the

subtopic distribution is uniform, then using the arithmetic subtopic averaging (micro) and

setting k = a = 0 (the leftmost corner) shows nDCG-IA. Since the maximum is achieved

by geometric subtopic averaging (geom), and not on the far-right side where k = 1, we can

conclude that the a#-IA measures can have significantly higher document selection sen-

sitivity than existing measures.
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Table 10 Maximum observed
document selection sensitivity

Smaller cutoffs have higher sensitivity

Topic Subtopic Rank Max

ERR DCG RBP

Avg Cascade 5 0.229 0.218 0.218

10 0.210 0.174 0.176

20 0.204 0.152 0.170

Micro 5 0.229 0.218 0.218

10 0.211 0.174 0.174

20 0.204 0.154 0.154

Geom 5 1.558 1.556 1.556

10 1.012 0.978 0.978

20 0.683 0.608 0.608

SMR 5 0.598 0.529 0.516

10 0.518 0.404 0.422

20 0.480 0.327 0.391

D# 5 0.218 0.218 0.218

10 0.152 0.152 0.152

20 0.116 0.096 0.111

Geom Cascade 5 0.224 0.204 0.196

10 0.205 0.168 0.167

20 0.199 0.149 0.162

Micro 5 0.224 0.204 0.204

10 0.206 0.169 0.169

20 0.199 0.151 0.151

Geom 5 1.176 1.120 1.120

10 0.761 0.667 0.667

20 0.540 0.420 0.420

SMR 5 0.504 0.436 0.423

10 0.448 0.344 0.344

20 0.425 0.292 0.323

D# 5 0.176 0.175 0.175

10 0.109 0.095 0.097

20 0.081 0.057 0.077

DD Cascade 5 0.260 0.260 0.260

10 0.220 0.194 0.201

20 0.211 0.163 0.193

Micro 5 0.260 0.260 0.260

10 0.220 0.194 0.194

20 0.211 0.165 0.165

Geom 5 2.015 2.029 2.029

10 1.319 1.300 1.300

20 0.871 0.801 0.801

SMR 5 0.719 0.642 0.629

10 0.612 0.492 0.518

20 0.559 0.383 0.478

D# 5 0.260 0.260 0.260

10 0.194 0.194 0.194

20 0.129 0.129 0.129
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According to document selection sensitivity, one should use diversity difficulty topic

averaging and geometric subtopic averaging. That one should use diversity difficulty topic

averaging supports our hypothesis that evaluation should take a collection-oriented view,

emphasizing topics that are difficult, rather than a user-oriented view, emphasizing topics

with poor results. However, as with Sect. 6.4, geometric subtopic averaging outperforms

subtopic miss rate-weighted averaging. This would seem to directly contradict our hypoth-

esis; by emphasizing small values, geometric subtopic averaging takes the user-oriented

view, emphasizing subtopics on which the user is expected to be left unsatisfied. Instead, we

believe that this is likely due to our particular implementation of subtopic miss rate, both the

approximation of sampling with replacement, and by choosing to measure subtopic miss rate

at n, which is often as high as rank one or two. We believe that geometric subtopic averaging,

by emphasizing the subtopics where systems performed poorly, as would be expected of

Fig. 7 Document selection sensitivity as a function of a and k. Choice of topic and subtopic averaging can
have a substantial impact
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subtopics with large subtopic miss rates, was actually a better approximation of subtopic miss

rate than our computed approximation. We will revisit this in future work. We do observe that

smr, even as approximated here, still outperforms micro and cascade normalization with

respect to document selection sensitivity.

8 Conclusion and future work

A search engine’s diversity is necessarily conflated with its ability to perform ad-hoc

retrieval and the diversity of the collection. In this work, we attempted to isolate diversity

Fig. 8 Document selection sensitivity as a function of k. a is fixed at 0.3

Fig. 9 Document selection sensitivity as a function of a. k is fixed at 0.5
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from those other factors so that we can begin to understand it. We (1) introduced a new

family of measures that explicitly account for the collection diversity and (2) introduced a

meta-evaluation measure of sensitivity that controls for ad-hoc performance. Our

hypothesis is that these collection-oriented features, while opaque to the user, will be better

able to differentiate between systems, thereby leading to a better overall user experience.

To assess collection difficulty, we developed measures at the topic and subtopic level. At the

topic level, diversity difficulty blends the maximum possible number of subtopics covered by any

ranked list with the number of subtopics covered by the expected ranked list. At the subtopic level,

subtopic miss rate measures the probability of selecting documents at random and failing to cover

subtopics. We showed that a#-IA measures, which combine the best features of existing evalu-

ation measures and emphasize difficult topics and subtopics, sometimes rank systems in quite

different orders than existing measures, yet have slightly more discriminative power.

That our measures prefer different systems does not indicate that they prefer more diverse

systems. To show that our new measures preferred more diverse systems than existing

measures, we restricted our attention to artificial ranked lists with perfect combined precision

to show that our measures were less influenced by ad-hoc performance than existing mea-

sures. According to discriminative power, no measure was able to distinguish between these

lists. This led us to introduce document selection sensitivity, the coefficient of variation of an

evaluation measure over these artificial ranked lists. According to this measure, a#-IA

measures that explicitly account for collection diversity were far more sensitive to differences

in these lists than existing measures, suggesting that these measures may prefer more diverse

systems. However, while averaging subtopics by their difficulty also led to higher document

selection sensitivity, it was still less than geometric averaging. This is likely due to limitations

of our implementation of difficulty at the subtopic level.

We believe that these results support our hypothesis that taking a collection-oriented

view of evaluation leads to systems that are preferable to the user. We contrast this with the

user-oriented view of Sakai’s intuitiveness measure (Sakai 2012; Sakai et al. 2010; Sakai

and Song 2011). We look forward to comparing these two approaches, in terms of cor-

relation with each other and with the preference of actual users.

We note that our framework accepts any definition of difficulty at the collection level.

In future work, we will explore alternate definitions of, and uses for, diversity difficulty at

the topic and subtopic levels. We also wish to explore the correlation with diversity

difficulty and ad-hoc query difficulty. Is one predictive of the other?

There is also the question of incorporating relevance grades and intent probabilities into

document selection sensitivity. We briefly suggested one way this can be done, but surely there

are other ways. Would incorporating this information produce a more useful meta-evaluation?

Finally, recent work has shown that subtopic taxonomy (Broder 2002), e.g. whether the

subtopic is navigational or informational, has been shown to lead to better performance of

both diversification algorithms (Santos et al. 2011) and diversity evaluation measures

(Sakai 2012), since a user is far less tolerant of redundancy for a navigational query than an

informational one. In future work, we intend to show the effect of incorporating subtopic

taxonomy into document selection sensitivity and a#-IA measures.
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