What is CSG150 about?

- Understand the basic principles of networking:
 - Description of existing networks, and networking mechanisms
 - Understanding of networks modeling and analysis tools

- Covers:
 - Terminology, layering concept, physical layer, data link layer, basics of queuing theory, medium access control (MAC), algorithmic aspects of routing, flow control (window/rate control)

- Very limited coverage of higher layers (applications, compression, TCP/IP programming, etc.)

Course Outline

- Introduction to networking and to 7-layer OSI architecture
- Error detection, retransmissions strategies, and framing
- Introduction to Markov chains and queuing theory
- Multiple access schemes (MAC sublayer):
 - aloha, CSMA, ethernet, token rings, wireless, etc.
- Routing algorithms: Unicast and Multicast
 - Dijkstra, Bellman-Ford algorithms and RIP and OSPF protocols
- Packet Scheduling:
 - Max-Min Fairness, Weighted Fair Queuing.
- Multicast Routing
- Flow Control

Lecture 1 Outline

- Networking Concepts and Terminology
- Protocols Layering
- Internet Architecture

Reading: Chapter 1.
Basic Terminology

- **Network**: set of nodes interconnected through communication links
- **Node**: host, router, switch
- **Link**: twisted-pair, coaxial cable, optical fiber, wireless
- **Protocol**: set of rules and conventions used between peer entities to communicate
- **Message**: sequence of bits/application level (e.g., email, document)
- **Packet**: messages are broken into packets that can transmitted between network nodes
- **Session**: transaction consisting of a sequence of message exchanges

Types of Networks

- Several taxonomies exist...
- Transmission technology based differentiation:
 - Point-to-point networks
 - Broadcast networks (generally small area: ethernet)
- Scale based differentiation:
 - Local Area Network (LAN): privately owned networks, up to few miles in size (e.g., ethernet)
 - Metropolitan Area Networks (MAN): larger than LANs, may cover a city (e.g., IEEE802.6 DQDB)
 - Wide Area Network (WAN): covers a large geographical area (e.g., country, continent)

Performance Issues

- Packets arrival modeling assumed (simplicity) either:
 - Poisson Process (data packets)
 - ON/OFF flow model (for digitized voice)
- Common performance metrics:
 - latency and throughput,
 - delay-jitter, and rate-jitter (maximum - minimum)

\[
\text{Latency} = \text{PropagationDelay} + \text{TransmissionDelay} + \text{QueuingDelay}
\]

\[
\text{PropagationDelay} = \frac{\text{Distance}}{\text{SpeedOfLight}} \quad \text{(independent of message size)}
\]

\[
\text{TransmissionDelay} = \frac{\text{MessageSize}}{\text{Bandwidth}}
\]

\[
\text{QueuingDelay} = \text{delay due to time spent waiting in queues}
\]

Sessions Characteristics

- Message arrival rate:
 - Poisson arrivals, deterministic arrivals, uniformly distributed
- Session holding time: duration of the session
- Expected message length and length distribution
- Allowable delay: depends on the application type
 - Interactive, real-time, email, voice, video-on-demand
- Reliability: depends on the application (FER)
 - Voice/video (tolerant), email (strict), sensing etc.
- Message & packet ordering: depends on the application
 - Databases, email, etc.
Types of Applications

- Interactive terminal and computer sessions:
 - Small packet length, small delay, high reliability
- File transfer:
 - High packet length, high delay, high reliability
- High resolution graphics:
 - High packet length, small delay, low arrival rate
- Voice application:
 - Small packet length, small delay, small reliability, high arrival rate

Sessions Transmission Paradigms

- Circuit Switching
- Store-and-Forward Switching

Circuit Switching

- On session establishment a path from source to destination is selected. Resources are allocated over all the links of the path. Route does not change during session life.
- Links can be shared by different sessions through mechanisms such as time-division multiplexing (TDM) or frequency-division multiplexing (FDM).
- For any link: the sum of rates of sessions using the link is at most the bandwidth of the link.
- Example: telephone networks.
- Guarantees: rate and in order packets delivery.

Store-and-Forward Switching

- Links are shared on a “demand basis” vs. fixed allocation
- Packets wait in a queue before being transmitted
Inefficiency of Circuit Switching

- Broadly speaking: when a session is idle, the reserved resources are lost.
- Simple analysis of session s:
 - λ: message arrival rate;
 - $1/\lambda$: inter-arrival time between messages
 - \overline{X}: expected transmission time
 - \bar{L}: expected message length
 - Bit rate allocated to s: $R_s = \frac{\bar{L}}{\overline{X}}$
 - Link utilization $= \frac{\overline{X} + P + Q}{T}$
 - $T < 0.01$ for interactive app.

\[\overline{X} + P + Q \leq T \Rightarrow \overline{X} < \lambda T \]

\[\text{if} \lambda T << 1 \Rightarrow \text{utilization is poor} \]

Circuit Switching vs. Store-and-Forward Switching

- Advantage of Store-and-Forward over Circuit Switching:
 - Network utilization is better (each link is utilized when there is some traffic)
 - Lower delays
- Drawbacks of Store-and-Forward:
 - Necessity of having control flow mechanisms to avoid buffer congestion and maintain acceptable delays. This is generally achieved through some feedback to the senders.

More Taxonomy

- Message store-and-forward
- Packet store-and-forward
- Packet switching = store-and-forward switching
- Virtual circuit switching = packet switching + fixed path
- Dynamic routing => each packet finds its own path

Layering

- Layering: is a form of “hierarchical modularity”
- The role of each layer is to provide services for higher layers (abstracting lower layers)
- What is important is the functional relation between Inputs and Outputs
- Each layer has and interface to higher/lower layers (constituted of service access points: SAP)
- Entities at the same layer on different nodes are called peer-entities. They communicate through protocols
- A set of consecutive layers is called a Protocol Stack
- Drawback of layering: may hide important information (e.g., TCP over wireless links)
OSI Reference Model

- Open systems Interconnect (OSI) defined a reference for a layered architecture of data networks.
- Existing protocol stacks (e.g., TCP/IP) are quite different from the OSI RM but it is still an interesting conceptual model because of its clean structure.

<table>
<thead>
<tr>
<th>Application</th>
<th>Presentation</th>
<th>Transport</th>
<th>Network</th>
<th>Data Link Control</th>
<th>Physical Interface</th>
</tr>
</thead>
</table>

Physical Layer

- Function: provides a “virtual bit pipe”
- How: maps bits into electrical/electromagnetic signals appropriate for the channel.
- The physical layer module is called a modem (modulator/demodulator).
- Important issues:
 - Timing: synchronous, intermittent synchronous, asynchronous (characters)
 - Interfacing the physical layer and DLC (e.g., RS-232, X.21)

Data Link Control Layer (DLC)

- Receives packets from the network layer and transforms them into bits transmitted by the physical layer. Generally guarantees order and correctness.
- Mechanisms of the DLC:
 - Framing: header, trailer to separate packets, detect errors…
 - Multiple access schemes: when the link is shared by several nodes there is a need for addressing and controlling the access (this entity is called MAC sublayer)
 - Error detection and retransmission (LLC sublayer)

Network Layer

- Provides naming/addressing, routing, flow control, and scheduling/queuing in a multi-hop network.
- Makes decisions based on packet header (e.g., destination address) and module stored information (e.g., routing tables).
- General comment: each layer looks only at its corresponding header (here packet header)
- Routing is different on virtual circuit networks than on datagram networks.
Datagram vs. Virtual Circuits

- In virtual circuits after an initialization phase all packets follow the same path. We generally assume that packets are delivered once and only once, and in order.
- In a datagram network packet are routed individually. They may be lost or delivered out-of-sequence.
- Sometimes referred to as: connection-oriented service and connectionless service.

Flow control & Congestion

- Flow control avoids sending data faster than the destination can absorb
- Congestion control avoids sending data faster than the network can handle.
- Requires:
 - efficient feedback mechanism, buffer management, route load-balancing
- In a connectionless service it is not easy to negotiate an equitable service between users

Transport Layer

- Provides a reliable mean to transmit messages between two end-nodes through:
 - Messages fragmentation into packets
 - Packets reassembly in original order
 - Sessions multiplexing and splitting
 - Retransmission of lost packets
 - end-to-end flow control and congestion control

Session Layer

- Was intended to handle the interaction between two end points in setting up a session:
 - Two connections
 - Service location (e.g., would achieve load sharing)
 - Control of access rights
- In many networks these functionalities are inexistent or spread over other layers
Presentation Layer

- Was intended to provide data encryption, data compression, and code/types conversion from one architecture to another.

Application Layer

- What’s left …
- Examples: WWW, Email, Telnet, …

Internet Architecture

- Defined by Internet Engineering Task Force (IETF)
- IETF requires working implementations for standard adoption
- Application vs. Application Protocol (FTP, HTTP)

Implementing Network Software

- Success of the internet is partially due to:
 - Minimal functionality within the network
 - Most of the functionality running is software over general-purpose computers
- Simple Application Programming Interface
- Efficient Protocol implementation
Application Programming Interface

- Each OS can have a special interface exported by the network to the applications developer
- Most widely used network API is: socket interface
 - Initially developed by the Berkeley Distribution of Unix and today ported to almost all OS
 - int socket(int domain, /* PF_INET, PF_UNIX */ int type, /* SOCK_STREAM, SOCK_DGRAM */ int protocol)

Client/Server Sockets

- TCP:
 - Client: socket, connect, (send, recv)*, close
 - Server: socket, bind, listen, (accept, (recv, send)*, close)*
- UDP:
 - Client: socket, bind, sendto/recvfrom
 - Server: socket, bind, sendto/recvfrom

 - int connect(int socket, struct sockaddr *address, int addr_len)
 - int send(int socket, char *message, int msg_len, int flags)
 - int recv(int socket, char *buffer, int buf_len, int flags)
 - int bind(int socket, struct sockaddr *address, int addr_len)
 - int listen(int socket, int backlog)
 - int accept(int socket, struct sockaddr *address, int *addr_len)
 - Other: hostent *gethostbyname(const char *);

Summary

- Networking terminology and basic concepts
- Layering in networking
- 7-layers OSI reference model
- Internet architecture