
Flexible Data Cubes for Online Aggregation

Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi

Dept. of Computer Science, University of California, Santa Barbara CA 93106, USA?

{mirek, agrawal, amr}@cs.ucsb.edu

Abstract. Applications like Online Analytical Processing depend hea-
vily on the ability to quickly summarize large amounts of information.
Techniques were proposed recently that speed up aggregate range que-
ries on MOLAP data cubes by storing pre-computed aggregates. These
approaches try to handle data cubes of any dimensionality by dealing
with all dimensions at the same time and treat the different dimensions
uniformly. The algorithms are typically complex, and it is difficult to
prove their correctness and to analyze their performance. We present a
new technique to generate Iterative Data Cubes (IDC) that addresses
these problems. The proposed approach provides a modular framework
for combining one-dimensional aggregation techniques to create space-
optimal high-dimensional data cubes. A large variety of cost tradeoffs
for high-dimensional IDC can be generated, making it easy to find the
right configuration based on the application requirements.

1 Introduction

Data cubes are used in Online Analytical Processing (OLAP) [4] to support
the interactive analysis of large data sets, e.g., as stored in data warehouses.
Consider a data set where each data item has d functional attributes and a
measure attribute. The functional attributes constitute the dimensions of a d-
dimensional hyper-rectangle, the data cube. A cell of the data cube is defined
by a unique combination of dimension values and stores the corresponding value
of the measure attribute. An example of a data cube defined for a view on
the TPC-H benchmark database [19] might have the total price of an order as
the measure attribute and the region of a customer and the order date as the
dimensions. It provides the aggregated total orders for all combinations of regions
and dates. Queries issued by an analyst who wants to examine how the customer
behavior in different regions changes over time do not need to access and join the
“raw” data in the different tables. Instead the information is readily available
and hence can be aggregated and summarized from the data cube. Our work
focuses on Multidimensional OLAP (MOLAP) systems [14] where data cubes
are represented in terms of multidimensional arrays (e.g., dense data cubes).

An aggregate range query selects a hyper-rectangular region of the data cube
and computes the aggregate of the values of the cells in this region. For interac-
tive analysis it is mandatory to provide fast replies for these queries, no matter
? This work was partially supported by NSF grants EIA-9818320, IIS-98-17432, and

IIS-99-70700.

J. Van den Bussche and V. Vianu (Eds.): ICDT 2001, LNCS 1973, pp. 159–173, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



160 M. Riedewald, D. Agrawal, and A. El Abbadi

how large the selected region. To achieve this, aggregate values for regions of the
data cube are pre-computed and stored to reduce on-the-fly aggregation costs.
We will refer to a data cube that contains such pre-computed values as a pre-
aggregated data cube. Whenever necessary, the term original data cube is used
for a cube without such pre-computed aggregates (i.e., which is obtained directly
from the data set). Note, that pre-computation increases update costs since an
update to a single cell of the original data cube has to be propagated to all cells
in the pre-computed data cube that depend on the updated value. Also, storing
additional values increases the storage cost. The choice of the query-update-
storage cost tradeoff depends on the application. While “what-if” scenarios and
stock trading applications require fast updates, for other applications overnight
batch processing of updates suffices. But even batch processing poses limits on
the update cost which depend on the frequency of updates and the tolerated
period of inaccessibility of the data.

In this paper space-optimal techniques for MOLAP systems are explored,
i.e., Iterative Data Cubes are generated by replacing values of the original data
cube with pre-computed aggregates. The space-optimality argument would not
apply to sparse data cubes where empty cells are not stored (e.g., Relational
OLAP [14]). The main contributions of Iterative Data Cubes are:

1. For each dimension a different one-dimensional technique for pre-computing
aggregate values can be selected. Thus specific properties of a dimension,
e.g., hierarchies and domain sizes, can be taken into account.

2. Combining the one-dimensional techniques is easy. This greatly simplifies
developing, implementing and analyzing IDCs. In contrast to previous ap-
proaches, dealing with a high-dimensional IDC is as simple as dealing with
the one-dimensional case.

3. IDCs offer a greater variety of cost tradeoffs between queries and updates
than any previous technique and cause no space overhead.

4. They generalize some of the previous approaches, thus providing a new fra-
mework for comparing and analyzing them. For the other known techniques
we show analytically that our approach at least matches their query-update
performance tradeoffs.

In Sect. 2 related work is presented. The Iterative Data Cube technique is
described in Sect. 3. There algorithms for querying and updating Iterative Data
Cubes are discussed as well. Section 4 contains examples for one-dimensional
pre-aggregation techniques and illustrates how those techniques can be used for
an application. In Sect. 5 we discuss how IDC performs compared to the previous
approaches. Section 6 concludes this paper.

2 Related Work

An elegant algorithm for pre-aggregation on MOLAP data cubes is presented
in [11]. We refer to it as the Prefix Sum technique (PS). The essential idea is
to store pre-computed aggregate information so that range queries are answered



Flexible Data Cubes for Online Aggregation 161

in constant time (i.e., independent of the selected ranges). This kind of pre-
aggregation results in high update costs. In the worst case, an update to a single
cell of the original data cube requires recomputing the whole PS cube. The Re-
lative Prefix Sum technique (RPS) [6] reduces the high update costs of PS, while
still guaranteeing a constant query cost. RPS is improved by the Space-Efficient
Relative Prefix Sum (SRPS) [17] which guarantees the same query and update
costs as RPS, but uses less space. For dynamic environments Geffner et al. pro-
posed the Dynamic Data Cube (DDC) [5] which balances query and update costs
such, that both are provably poly-logarithmic in the domain size of the dimen-
sions for any data cube. DDC causes a space overhead which is removed by the
Space-Efficient Dynamic Data Cube (SDDC) [17]. SDDC improves on DDC by
reducing the storage costs, while at the same time providing less or equal costs
for both queries and updates. The Hierarchical Cubes techniques (HC) [3] gene-
ralize the idea of RPS and SRPS by allowing different tradeoffs between update
and query cost. Two different schemes are proposed – Hierarchical Rectangle
Cubes (HRC) and Hierarchical Band Cubes (HBC).

The above techniques are the ones that are most related to IDC. They ex-
plore query-update cost tradeoffs at no extra storage space (except RPS and
DDC, which were replaced with the space-efficient SRPS and SDDC) for MO-
LAP data cubes. Like IDC they are only applicable when the aggregate operator
is invertible (e.g., SUM) or can be expressed with invertible operators (e.g., AVG
(average)). Iterative Data Cubes generalize PS, SRPS, and SDDC. For Hierar-
chical Cubes we show that no better query-update cost tradeoffs than for IDC
can be obtained. Note that all of the above techniques, except PS, are difficult
to analyze when the data cube has more than one dimension. For instance, the
cost formulas for the Hierarchical Cubes are so complex, that they have to be
evaluated experimentally in order to find the “best suited” HC for an application.

In [7] a new SQL operator, CUBE or “data cube”, was proposed to support
online aggregation by pre-computing query results for queries that involve grou-
ping operations (GROUP BY). Our notion of a data cube is slightly different from
the terminology in [7]. More precisely, the cuboids generated by CUBE (i.e, the
results of grouping the data by subsets of the dimensions) are data cubes as
defined in this paper. The introduction of the CUBE operator generated a sig-
nificant level of interest in techniques for efficient computation and support of
this operator [1,2,8,9,10,12,13]. These techniques do not concentrate on efficient
range queries, but rather on which cuboids to pre-compute and how to efficiently
access them (e.g., using index structures). Since our technique can be applied
to any cuboid which is dense enough to be stored as a multidimensional array,
IDC complements research regarding the CUBE operator. For instance, by adap-
ting the formulas for query and update costs, support for range queries can be
included into the framework for selecting “optimal” cuboids to be materialized.
The fact that Iterative Data Cubes are easy to analyze greatly simplifies this
process.

Smith et al. [18] develop a framework for decomposing the result of the CUBE
operator into view elements. Based on that framework algorithms are developed



162 M. Riedewald, D. Agrawal, and A. El Abbadi

that for a given population of queries select the optimal non-redundant set of
view elements that minimizes the query cost. An Iterative Data Cube has pro-
perties similar to a non-redundant set of view elements. It contains aggregates
for regions of the original data cube, does not introduce space overhead, and
allows the reconstruction of the values of the cells of the original data cube. Ho-
wever, in contrast to [18] the goal of IDC is to support all possible range queries
in order to provide provably good worst case or average query and update costs.

Vitter et al. [20,21] propose approximating data cubes using the wavelet
transform. While [20] explicitly deals with the aspect of sparseness (which is not
addressed in this paper) [21], like IDC, targets MOLAP data cubes. Wavelets
offer a compact representation of the data cube on multiple levels of resolution.
This makes them particularly suited for returning fast approximate answers.
Using wavelets to encode the original data cube, however, increases the update
costs and does not result in a better worst case performance when exact results
are required. While [21] proposes encoding the pre-aggregated data cube which
is used for the PS technique, any pre-aggregated (or the original) data cube
can be encoded using wavelets. In that sense wavelet transform and IDC are
orthogonal techniques1. Once an appropriate Iterative Data Cube is selected,
approximate answers to queries can be supported by encoding this IDC using
wavelet transform.

3 The Iterative Data Cubes Technique

In this paper we focus on techniques for MOLAP data cubes that are handled
similar to multidimensional arrays. The query cost is measured in terms of the
number of cells that need to be accessed in order to answer the query. Similarly
the update cost is measured as the number of cells of the pre-aggregated data
cube whose values must be updated to reflect a single update on the data set.
Since the data cubes are stored and accessed using multidimensional arrays, this
cost model is realistic for both, internal (main memory) and external (disk, tape)
algorithms.

In general the IDC technique can be applied to an attribute whose domain
forms an Abelian group under the aggregate operator. Stated differently, it can
be applied to an aggregate operator ⊕ if there exists an inverse operator 	, such
that for all attribute values a and b it holds that (a ⊕ b) 	 b = a (e.g., COUNT,
but also AVG when expressed with “invertible” operators SUM and COUNT). For
the sake of simplicity, the technique is described for the aggregate operator SUM
and a measure attribute whose domain is the set of integers.

3.1 Notation

Let A be a data cube of dimensionality d, and let without loss of generality
the domain of each dimension attribute δi be {0, 1, . . . , ni − 1}. A cell c =
1 Note, however, that wavelet encoding typically increases the update cost.



Flexible Data Cubes for Online Aggregation 163

[c1, . . . , cd], where each ci is an element of the domain of the corresponding
dimension, contains the measure value A[c]. With e : f we denote a region of
the data cube, more precisely the set of all cells c that satisfy ei ≤ ci ≤ fi for
all 1 ≤ i ≤ d (i.e., e : f is a hyper-rectangular region of the data cube). Cell e
is the anchor and cell f the endpoint of the region. The anchor and endpoint
of the entire data cube are [0, . . . , 0] and [n1 − 1, . . . , nd − 1], respectively. The
term op(A[e] : A[f ]) denotes the result of applying the aggregate operator op to
the values in region e : f . Consequently, SUM(A[e] : A[f ]) is a range sum. The
range sum SUM(A[0, . . . , 0] : A[f ]) will be referred to as a prefix sum.

3.2 Creating Iterative Data Cubes

Iterative Data Cubes are constructed by applying one-dimensional pre-
aggregation techniques along the dimensions. To illustrate this process, it is first
described for one-dimensional data cubes and then generalized. Let Θ be a one-
dimensional pre-aggregation technique and A be the original one-dimensional
data cube with n cells. Technique Θ generates a pre-aggregated array AΘ of size
n, such that each cell of AΘ stores a linear combination of the cells of A:

∀0 ≤ j ≤ n − 1 : AΘ[j] =
n−1∑

k=0

αj,kA[k] . (1)

The variables αj,k are real numbers that are determined by the pre-aggregation
technique. Figure 1 shows an example. The array SRPS is the result of ap-
plying the SRPS technique with block size 3 to the original array A. SRPS
pre-aggregates a one-dimensional array as follows. A is partitioned into blocks of
equal size. The anchor of a block a : e (its leftmost cell) contains the correspon-
ding prefix sum of A, i.e., SRPS[a] = SUM(A[0] : A[a]). Any other cell c of the
block stores the “local prefix sum” SRPS[c] = SUM(A[a+1] : A[c]). Consequently,
the coefficients in the example are α0,0 = 1, α1,1 = 1, α2,1 = α2,2 = 1, α3,k = 1
for 0 ≤ k ≤ 3, α4,4 = 1, α5,4 = α5,5 = 1, α6,k = 1 for 0 ≤ k ≤ 6, and αj,k = 0
for all other combinations of j and k.

Original array A

Query: 1+2+2+4=9

Update: A[4]=3

3 5 1 2 2 6 34 3

3 5 1 2 2 6 34 3

3 5 1 2 2 6 34 3

3 5 6 11 2 6 23 3 6

3 5 6 11 2 6 23 3 6

3 5 6 11 3 7 24 3 6

SRPS array

Query: (11+6)-(3+5)=9

Update: A[4]=3

3 8 9 11 13 17 23 26 29

3 8 9 13 17 23 26 29

3 8 9 11 14 18 24 27 30

PS array

Query: 17-8=9

Update: A[4]=3

11

Fig. 1. Original array A and corresponding SRPS (block size 3) and PS arrays (query
range and updated cell are framed, accessed cells are shaded)



164 M. Riedewald, D. Agrawal, and A. El Abbadi

For a two-dimensional data cube A two (possibly different) one-dimensional
pre-aggregation techniques Θ1 and Θ2 are selected. Θ1 is first applied along
dimension δ1, i.e., each row of A is pre-aggregated as described above. Let A1
denote the resulting pre-aggregated data cube. The columns of A1 are then
processed using technique Θ2, returning the final pre-aggregated data cube A2.
Figure 2 shows an example. For both dimensions the SRPS technique with block
size 3 was selected. Note that applying the two-dimensional SRPS technique
directly would generate the same pre-aggregated data cube.

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8 6

3 5 1 2 2 4 6 3 3

7 3 2 6 8 7 1 2 4

2 4 2 3 3 3 4 5 7

3 2 1 5 3 5 2 8 2

4 2 1 3 3 4 7 1 3

2 3 3 6 1 8 5 1 1

4 5 2 7 1 9 3 3 4

2 4 2 2 3 1 9 1 3

5 4 3 1 3 2 1 9

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

3 5 6 11 2 6 23 3 6

7 3 5 18 8 15 34 2 6

9 7 11 29 11 21 55 7 18

15 14 20 51 16 35 99 18 34

4 2 3 10 3 7 24 1 4

6 5 9 24 4 16 52 2 6

25 24 36 93 21 61 182 23 47

2 4 6 10 3 4 23 1

7 8 13 23 6 9 42 10 19

4

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

3 5 6 11 2 6 23 3 6

7 3 5 18 8 15 34 2 6

2 4 6 11 3 6 21 5 12

3 2 3 11 3 8 21 8 10

4 2 3 10 3 7 24 1 4

2 3 6 14 1 9 28 1 2

4 5 7 18 1 10 31 3 7

2 4 6 10 3 4 23 1

5 4 7 13 3 5 19 9 15

4

Processing of the rows
using SRPS: A1

Processing of the columns
using SRPS: A2

Original data cube: A

Fig. 2. Original data cube A, intermediate cube A1, and final SRPS cube A2 (fat lines
indicate partitioning into blocks by SRPS)

Generalizing the two-dimensional IDC construction to d dimensions is
straightforward. First, for each dimension δi, 1 ≤ i ≤ d, a one-dimensional tech-
nique Θi is selected. Then Θ1 is applied along dimension δ1, i.e., to each array
[0, c2, c3, . . . , cd] : [n1 − 1, c2, c3, . . . , cd] for any combination of cj , 0 ≤ cj < nj

and j ∈ {2, 3, . . . , d} (intuitively only the first dimension value varies, while the
others are fixed). Let the resulting pre-aggregated data cube be A1. Each cell
c = [c1, . . . , cd] in A1 now contains a linear combination of the values in the
original array A which are in the same “row” along δ1. Formally,

A1[c1, c2, . . . , cd] =
n1−1∑

k1=0

α1,c1,k1A[k1, c2, . . . , cd] . (2)

Clearly A1 does not contain more cells than A (since Θ1 does not use additional
space) and can be computed at a cost of n2 · n3 · · ·nd · C1(n1), where Ci(ni)
denotes the cost of applying technique Θi to an array of size ni. In the next step
technique Θ2 is similarly applied to dimension δ2, but now with A1, the result
of the previous step, as the input data cube. For all cells in the resulting cube
A2 it holds that

A2[c1, c2, . . . , cd] =
n2−1∑

k2=0

α2,c2,k2A1[c1, k2, c3, . . . , cd] (3)



Flexible Data Cubes for Online Aggregation 165

=
n2−1∑

k2=0

α2,c2,k2

n1−1∑

k1=0

α1,c1,k1A[k1, k2, c3, . . . , cd] (4)

=
n1−1∑

k1=0

n2−1∑

k2=0

α1,c1,k1α2,c2,k2A[k1, k2, c3, . . . , cd] . (5)

This process continues until all dimensions are processed. The final result, the
pre-aggregated data cube Ad, contains values which are the linear combination
of the values in the original data cube. More precisely

Ad[c1, c2, . . . , cd] =
n1−1∑

k1=0

n2−1∑

k2=0

· · ·
nd−1∑

kd=0

α1,c1,k1α2,c2,k2 · · ·αd,cd,kd
A[k1, k2, . . . , kd] .

(6)
The cost for processing dimension δj is Cj(nj) · ∏

i 6=j ni. This results in a total

construction cost of
∏d

i=1 ni · (
∑d

j=1 Cj(nj)/nj) which is equal to d times the
size of the data cube if a one-dimensional pre-aggregation technique processes
an array of size nj at cost nj .

3.3 Querying an Iterative Data Cube

Aggregate range queries as issued by a user or application select ranges on the
original data cube. This data cube, however, was replaced by an Iterative Data
Cube where cells contain pre-computed aggregate values. The query therefore
needs to be translated to match the different contents. We will show that the pro-
blem of querying a high-dimensional IDC can be reduced to the one-dimensional
cases.

Let Θ be a one-dimensional pre-aggregation technique, and let A and AΘ

denote the original and pre-aggregated data cubes, respectively. Technique Θ
has to be complete in the sense that it must be possible to answer each range
sum query on A by using AΘ. Formally, for each range r on A there must exist
coefficients βr,l, such that

∑

j∈r

A[j] =
n−1∑

l=0

βr,lAΘ[l] (7)

where the βr,l are variables whose values depend on the pre-aggregation techni-
que and the selected range. In the example in Fig. 1 the coefficients for SRPS
(range r = 2 : 5) are βr,0 = βr,1 = −1, βr,3 = βr,5 = 1, and βr,l = 0 for
l ∈ {2, 4, 6, 7, 8}.

On a d-dimensional data cube A a range sum query selects a range ri for
each dimension δi. The answer Q to this query is computed as

Q =
∑

jd∈rd

∑

jd−1∈rd−1

· · ·
∑

j1∈r1

A[j1, j2, . . . , jd] . (8)



166 M. Riedewald, D. Agrawal, and A. El Abbadi

Recall, that the pre-aggregated cube Ad for A was obtained by iteratively ap-
plying one-dimensional pre-aggregation techniques, such that data cube Ai is
computed by applying technique Θi along dimension δi to Ai−1 (let A0 = A).
Consequently, range sum Q can alternatively be computed as

Q =
∑

jd∈rd

∑

jd−1∈rd−1

· · ·
∑

j2∈r2

(
n1−1∑

l1=0

β1,r1,l1A1[l1, j2, . . . , jd]) (9)

=
n1−1∑

l1=0

β1,r1,l1(
∑

jd∈rd

∑

jd−1∈rd−1

· · ·
∑

j2∈r2

A1[l1, j2, . . . , jd]) (10)

=
n1−1∑

l1=0

β1,r1,l1

∑

jd∈rd

∑

jd−1∈rd−1

· · ·
∑

j3∈r3

(
n2−1∑

l2=0

β2,r2,l2A2[l1, l2, j3, . . . , jd]) (11)

...

=
n1−1∑

l1=0

n2−1∑

l2=0

· · ·
nd−1∑

ld=0

β1,r1,l1β2,r2,l2 · · ·βd,rd,ldAd[l1, l2, . . . , ld] . (12)

The βi,ri,li are well defined by the aggregation technique Θi and the selected
range ri. There are no dependencies between the different dimensions in the sense
that βi,ri,li does not depend on the techniques Θj and the ranges rj , if j 6= i. This
enables the efficient decomposition into one-dimensional sub-problems. Note,
that cell Ad[l1, . . . , ld] of the pre-aggregated array Ad contributes to the query
result Q if and only if the value of β1,r1,l1β2,r2,l2 · · ·βd,rd,ld is not zero.

The query algorithm follows directly from the above discussion. For each di-
mension δi and range ri, the set of all li such that βi,ri,li is non-zero is determined
independently of the other dimensions. Then, for each possible combination of
non-zero β1,r1,l1 , β2,r2,l2 ,. . . ,βd,rd,ld the cell Ad[l1, l2, . . . , ld] has to be accessed
and contributes its value, multiplied by β1,r1,l1β2,r2,l2 · · ·βd,rd,ld , to the final re-
sult Q of the range sum query.

Figure 3 shows an example for a query that computes SUM(A[2, 4] : A[5, 6])
on a two-dimensional pre-aggregated data cube (SRPS with box size 3 applied
along both dimensions). First, for range 2 : 5 in dimension δ1 and range 4 : 6 in
dimension δ2 the indices with non-zero β values are obtained together with the
βs. Recall, that for range r1 = 2 : 5 we obtained the values β1,r1,0 = β1,r1,1 = −1,
β1,r1,3 = β1,r1,5 = 1, and β1,r1,l1 = 0 for l1 ∈ {2, 4, 6, 7, 8} (see above). Similarly,
we obtain β2,r2,3 = −1, β2,r2,6 = 1, and β2,r2,l2 = 0 for l2 ∈ {0, 1, 2, 4, 5, 7, 8}
for range r2 = 4 : 6 in dimension δ2. Combining the results leads to the correct
computation of SUM(A[2, 4] : A[5, 6]) as A2[0, 3] − A2[0, 6] + A2[1, 3] − A2[1, 6] −
A2[3, 3] + A2[3, 6] − A2[5, 3] + A2[5, 6].

The query cost of IDC, i.e., the number of cells accessed in Ad, follows di-
rectly from the algorithm. It is the product of the sizes of the sets of non-empty
β values obtained for each dimension. As a consequence, once the worst case or
average query cost of a one-dimensional technique is known, it is easy to com-
pute the worst/average query cost for the d-dimensional pre-aggregated data



Flexible Data Cubes for Online Aggregation 167

93+61-51-35-25-24+15+14=48
Query result computation:

Values that are subtracted

Values that are added

R
an

ge
 in

 s
ec

on
d 

di
m

en
si

on

Cells to be updated: [4,2], [4,3], [4,6],

Range in first dimension

1 2 3 4 6 7

0

1

2

3

4

5

6

7

80

8

5

6 11 2 6 23 3 6

7 3 5 18 8 15 34 2 6

9 7 11 29 11 21 55 7 18

15 14 20 51 16 35 99 18 34

4 2 3 10 3 7 24 1 4

6 5 9 24 4 16 52

3

25 24 36 93 21 61 182 23 47

2 4 6 10 3 4 23 1

7 8 13 23 6 9 42 10 19

4

5

2

Query: SUM(A[2,4]:A[5,6])

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

3 5 6 11 2 6 23 3 6

7 3 5 18 8 15 34 2 6

9 7 11 29 9 19 53 7 18

15 14 20 51 14 33 97 18 34

4 2 3 10 3 7 24 1 4

6 5 9 24 4 16 52 2 6

25 24 36 93 19 59 180 23 47

2 4 6 10 3 4 23 1

7 8 13 23 6 9 42 10 19

4

Update: A[4,2] decreased from 3 to 1

Affected cells

6

[5,2], [5,3], [5,6], [6,2], [6,3], [6,6]

Fig. 3. Processing queries and updates on an Iterative Data Cube (SRPS technique
used for both dimensions)

cube by multiplying the one-dimensional costs. In our example, one-dimensional
SRPS allows each range sum to be computed from at most 4 values (computing
SUM(A[e] : A[f ]) with SRPS requires at most accessing the anchor of the box
that contains f , cell f , and, if e > 0, the anchor of the box that contains e − 1
and cell e−1). Consequently, independent of the selected ranges at most 4d cells
in the d-dimensional pre-aggregated SRPS data cube have to be accessed.

3.4 Updating an Iterative Data Cube

For the original data cube, an update to the data set only affects a single cell.
Since Iterative Data Cubes store pre-computed aggregates, such an update has
to be translated to updates on a set of cells in the pre-aggregated data cube.
The set of affected cells in Ad follows directly from (6). Note that equations (6)
and (12) are very similar, therefore the algorithms for processing queries and
updates are almost identical.

Equation (1) describes the dependencies between the pre-aggregated and the
original data cube for the one-dimensional case. Clearly AΘ[j] is affected by an
update to A[k] if and only if αj,k 6= 0 (see Fig. 1 for an example). Based on (6)
this can be generalized to d dimensions. Let [k1, . . . , kd] be the cell in the original
data cube A which is updated by a value ∆. For each dimension δi, the set of all ci

such that αi,ci,ki
is non-zero is determined independently of the other dimensions.

Then, for each possible combination of non-zero α1,c1,k1 , α2,c2,k2 ,. . . ,αd,cd,kd
the

cell Ad[c1, c2, . . . , cd] has to be updated by ∆ · α1,c1,k1α2,c2,k2 · · ·αd,cd,kd
.

Figure 3 shows an example for an update that decreases the value A[4, 2] in
the original data cube by 2. Recall, that SRPS with block size s = 3 was applied
along both dimensions of the data cube and that the corresponding coefficients
are α1,0,0 = 1, α1,1,1 = 1, α1,2,1 = α1,2,2 = 1, α1,3,k1 = 1 for 0 ≤ k1 ≤ 3,



168 M. Riedewald, D. Agrawal, and A. El Abbadi

α1,4,4 = 1, α1,5,4 = α1,5,5 = 1, α1,6,k1 = 1 for 0 ≤ k1 ≤ 6, and α1,c1,k1 = 0 for all
other combinations of c1 and k1. In dimension δ1 the updated cell has the index
value 4, i.e., the relevant coefficients are α1,4,4, α1,5,4, and α1,6,4 which have
the value 1, while all other α1,c1,4 are zero. Similarly the non-zero coefficients
α2,2,2 = α2,3,2 = α2,6,2 = 1 are obtained. Consequently, the cells [4, 2], [4, 3],
[4, 6], [5, 2], [5, 3], [5, 6], [6, 2], [6, 3], and [6, 6] in A2 have to be updated by
1 · (−2).

The update cost of IDC, i.e., the number of accessed cells in Ad, is the product
of the sizes of the sets of non-empty α values obtained for each dimension. Thus,
like for the query cost, once the worst case or average update cost of a one-
dimensional technique is known, it is easy to compute the worst/average update
cost for high-dimensional Iterative Data Cubes. This is done by multiplying the
worst/average update costs of the one-dimensional techniques.

4 IDC for Real-World Applications

We present one-dimensional aggregation techniques and discuss how they are
selected for pre-aggregating a high-dimensional data cube. The presented tech-
niques mainly illustrate the range of possible tradeoffs between query and update
cost. In the following discussion the original array is denoted with A and has
n elements A[0], A[1],. . . ,A[n − 1]. The pre-aggregated array will be named like
the corresponding generating technique.

4.1 One-Dimensional Pre-aggregation Techniques

The pre-aggregated array used for the PS technique [11] contains the prefix
sums of the original array, i.e., PS[j] =

∑j
k=0 A[k]. Figure 1 shows an example

for n = 9. Any range sum on A can be computed by accessing at most two values
in PS (difference between value at endpoint and predecessor of anchor of query
range). On the other hand, an update to A[k] affects all PS[j] where j ≥ k. This
results in worst case costs of 2 for a query and of n for an update. In Fig. 1 cells
in PS which have to be accessed in order to answer SUM(A[2] : A[5]) and those
that are affected by an update to A[4] are shaded.

The SRPS technique [17] (Fig. 1) was already introduced in Sect. 3.2. Its
worst case costs are 4 for queries, and 2

√
n (or 2

√
n − 2 when n is a perfect

square) for updates [17].
To compute the pre-aggregated array SDDC, the SDDC technique [17] first

partitions the array A into two blocks of equal size. The anchor cell of each block
stores the corresponding prefix sum of A. For each block, the same technique is
applied recursively to the sub-arrays of non-anchor cells. The recursive partitio-
ning defines a hierarchy, more precisely a tree of height less or equal to dlog2 ne,
on the partitions (blocks). Queries and updates conceptually descend this tree.
The processing starts at the root and continues to that block that contains the
endpoint of the query or the updated cell, respectively. A query SUM(A[0] : A[c])
is answered by adding the values of the anchors of those blocks that contain c.



Flexible Data Cubes for Online Aggregation 169

Due to the construction, at most one block per level can contain c, resulting
in a worst case prefix sum query cost of dlog2 ne. Queries with ranges [x] : [y]
where x > 0 are answered as SUM([0] : [y]) − SUM([0] : [x − 1]). Thus the cost of
answering any range sum query is bounded by 2dlog2 ne. At each level an update
to a cell u in a block U only propagates to those cells that have a greater or
equal index than u and are an anchor of a block that has the same parent as U .
Consequently, the update cost is bounded by the height of the tree (dlog2 ne). In
Fig. 4 an example of an SDDC array and how the query SUM(A[2] : A[5]) and an
update to A[4] are processed are shown. Note, that SDDC can be generalized by
choosing different numbers of blocks and different block sizes when partitioning
the data cube. This enables the technique to take varying attribute hierarchies
into account.

15 1 2 33 2 64 3 1

1

1

3 5 1 8 2 6 317 12

3 5 1 8 2 6 317 12

3 5 1 8 3 6 3 12

1

1

Original array A

Query: 1+2+2+4=9

Update: A[4]=3

3 5 1 2 2 6 34 3

3 5 1 2 2 6 34 3

SDDC array

Query: 17-(3+5)=9

Update: A[4]=3

73 8 9 2 4 14 38 6

73 8 9 2 4 38 6

73 8 9 2 5 15 39 6

14

LPS array

Query: 8+(9-8)=9

Update: A[4]=3

17

Fig. 4. Original array A and corresponding SDDC and LPS (s1 = 3, s2 = 4, s3 = 3)
arrays (query range and updated cell are framed, accessed cells are shaded)

The Local Prefix Sum (LPS) technique partitions array A into t blocks of sizes
s1, s2, . . . , st, respectively. Any cell in the pre-aggregated array LPS contains a
“local” prefix sum, i.e., the sum of its value and the values in its left neighbors
until the anchor of the block it is contained in. A range query is answered by
adding the values of all block endpoints that are contained in the query range,
adding to it the value of the cell at the endpoint of the query range (if it is not
an endpoint of a block) and subtracting the value of the cell left to the anchor
of the query range (if it is not an endpoint of a block). Thus the query cost is
bounded by t + 1. Figure 4 shows an example. Updates only affect cells with a
greater or equal index than the updated cell in the same block, resulting in a
worst case update cost of max{s1, . . . , st}. For a certain t the query cost is fixed,
but the worst case update cost is minimized by choosing s1 = s2 = . . . = st. The
corresponding family of (query cost, update cost) tradeoffs therefore becomes
(t + 1, dn/te).

The two techniques of using A directly or using its prefix sum array PS
instead, constitute the extreme cases of minimal cost of updates and minimal
cost of queries for one-dimensional data. Note, that it is possible to reduce the
worst case query cost to 1. This, however, requires pre-computing and storing
the result for any possible range query, i.e., n

2 (n+1) values. Also, since A[bn/2c]



170 M. Riedewald, D. Agrawal, and A. El Abbadi

is contained in (bn/2c + 1)(n − bn/2c) different ranges, the update cost for this
scheme is at least n2/4. Since we focus on techniques that do not introduce space
overhead, PS is the approach with the minimal query cost. Table 1 summarizes
the query and update costs for selected one-dimensional techniques.

Table 1. Query-update cost tradeoffs for selected one-dimensional techniques

One-dimensional technique Query cost Update cost Note
(worst case) (worst case)

Original array n 1
Prefix Sum (PS) 2 n

Space-Efficient Relative 4 2
√

n − 2 when n perfect square
Prefix Sum (SRPS) 4 2

√
n otherwise

Space-Efficient Dynamic 2dlog2 ne dlog2 ne
Data Cube (SDDC)
Local Prefix Sum (LPS) t + 1 dn/te 2 ≤ t < n

4.2 Selecting an IDC for an Application

The IDC technique provides a modular framework for choosing a suitable pre-
aggregation scheme. It greatly simplifies taking advantage of a priori knowledge
about an application. For instance, when it is known that a hierarchy exists for
an attribute and that users typically query according to this hierarchy (e.g., it is
more likely that a query aggregates monthly sales figures than sales figures for
a 30-day period that starts in the middle of a month), one can set a correspon-
ding block size for SDDC or SRPS. If a dimension has only a few values (e.g.,
gender), the best choice in most cases will be PS or not pre-aggregating along
this dimension at all. Alternatively, if no appropriate technique is available, it
is relatively easy to develop a new one and to integrate it into the framework.
Recall, that all one has to do is to develop a one-dimensional technique and to
analyze its cost tradeoffs.

The process of selecting an appropriate IDC is illustrated with a hypothe-
tical example. Assume that the data cube has three dimensions of size n each,
and a fourth dimension of size 2 (e.g., gender). Two of the three attributes with
dimension size n are hierarchical and it is likely that users query according to
the hierarchies. For simplicity assume further that both hierarchies are similar
to a balanced binary tree. Apart from that, the query cost has to be small, but
frequent updates are expected. Then the best choice for the two hierarchical
attributes is the SDDC technique (depending on the actual hierarchical struc-
ture, variations of SDDC can be used). It guarantees a sublinear query and up-
date cost and provides good expected costs for queries that aggregate according
to the hierarchies. For the dimension of size 2 pre-aggregation is unnecessary.



Flexible Data Cubes for Online Aggregation 171

The remaining dimension is processed with PS to enable fast queries. In to-
tal, the worst case costs are 2 log2 n · 2 log2 n · 2 · 2 = 16 log2

2 n for queries and
log2 n · log2 n ·1 ·n = n log2

2 n for updates. Note that all costs are exact, i.e., there
are no hidden constants.

5 Comparing IDC to Previous Approaches

The IDC technique reduces the problem of pre-aggregating d-dimensional data
cubes to the one-dimensional case. Compared to techniques that directly solve
the d-dimensional problem, IDC’s range of possible query-update cost tradeoffs
is therefore restricted. However, as we will show below, none of the previously
proposed d-dimensional pre-aggregation techniques obtains superior tradeoffs.

The PS, SRPS, and SDDC techniques constitute special cases of IDC. One
can iteratively create the pre-aggregated data cubes for these techniques by ap-
plying the corresponding one-dimensional technique for each dimension of the
original data cube. This results in d-dimensional Iterative Data Cubes with worst
case (query, update)-cost pairs (2d, nd), (4d, 2dnd/2), and (2ddlog2 ned, dlog2 ned),
respectively. As an interesting by-product PS, SRPS, and SDDC can be analy-
zed and implemented as Iterative Data Cubes. Note that for SRPS and SDDC
the implementation is quite complex and the analysis difficult. For instance for
a d-dimensional data cube, SDDC stores (d − 1)-dimensional surfaces of pre-
aggregated cumulative values recursively as (d−1)-dimensional data cubes. Thus,
IDC provides a great “tool” for verifying the results of these previous approaches
and for obtaining new results, like for instance average case costs.

The HC technique [3] generates a pre-aggregated data cube by hierarchically
partitioning the original data cube A into smaller hyper-rectangles (blocks) of
equal size. The number of recursive partitioning steps determines the height of
a Hierarchical Cube. Hierarchical Rectangle Cubes (HRC) with a height of one
are identical to the original data cube. In HRCs of height two each cell stores the
prefix sum local to the anchor of the block it belongs to. Consequently, any HRC
of height two can be constructed iteratively by applying the one-dimensional LPS
technique with the corresponding block sizes along each dimension. Hierarchical
Rectangle Cubes of height one and two hence are generalized by IDC. For HRCs
of height greater than two, [3] does not provide analytical or experimental results.
Thus we were not able to compare IDC to HRCs of height greater than two.
Hierarchical Band Cubes (HBC) can not be generalized by our technique. Only
HBCs of height one are identical to the PS cube, which is an IDC. For HBCs of
height greater than one we prove, that no matter which hierarchical partitioning
scheme is used, a d-dimensional HBC has always a worst case update cost of
at least nd−1 (we assume without loss of generality that all dimensions have a
domain of size n). The proof can be found in [15]. The range of possible update
costs therefore is restricted compared to IDC. In total, the best possible HBC
cube of height h ≥ 2 has a worst case query cost of at least 2dh = 2d+1 [3], and
a worst case update cost of at least nd−1. An Iterative Data Cube where the
PS technique is used for (d − 2) dimensions and the SRPS technique is used for



172 M. Riedewald, D. Agrawal, and A. El Abbadi

the remaining two dimensions, has respective worst case query and update costs
of 2d−242 = 2d+2 and nd−2(2

√
n)2 = 4nd−1. Thus, there exists an IDC whose

query and update costs are asymptotically identical to the lower bounds for the
corresponding costs of any HBC cube.

6 Conclusion

IDC is the first pre-aggregation technique on data cubes that can take the spe-
cific properties of different dimension attributes into account. Instead of solving
a d-dimensional pre-aggregation problem directly, the different dimensions are
handled independently. This greatly simplifies the development, analysis, and
implementation compared to earlier approaches. At the same time a greater
variety of query-update cost tradeoffs can be generated. Thus Iterative Data
Cubes provide a practical framework for developing pre-aggregation techniques
for MOLAP data cubes.

Even though the space of possible pre-aggregation schemes is restricted by the
iterative combination process, we were able to show that the query-update cost
tradeoffs of previously proposed techniques are matched. It remains, however,
as an open problem, to show that in general the query-update cost tradeoffs
that are optimal for the IDC technique are also optimal with respect to any
pre-aggregation technique on a high-dimensional data cube. We will pursue this
problem, as well as the problem of sparse data sets [16] in our future research.

References

[1] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a mult-
idimensional database. In Proc. Int. Conf. on Very Large Databases (VLDB),
pages 156–165, 1997.

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
CUBEs. In Proc. Int. Conf. on Management of Data (SIGMOD), pages 359–370,
1999.

[3] C.-Y. Chan and Y. E. Ioannidis. Hierarchical cubes for range-sum queries. In Proc.
Int. Conf. on Very Large Databases (VLDB), pages 675–686, 1999. Extended
version published as Tech. Report, Univ. of Wisconsin, 1999.

[4] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An
IT mandate. Technical report, E. F. Codd and Associates, 1993.

[5] S. Geffner, D. Agrawal, and A. El Abbadi. The dynamic data cube. In Proc. Int.
Conf. on Extending Database Technology (EDBT), pages 237–253, 2000.

[6] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: An
efficient approach for querying dynamic OLAP data cubes. In Proc. Int. Conf.
on Data Engineering (ICDE), pages 328–335, 1999.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator genera-
lizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery,
pages 29–53, 1997.

[8] H. Gupta. Selection of views to materialize in a data warehouse. In Proc. Int.
Conf. on Database Theory (ICDT), pages 98–112, 1997.



Flexible Data Cubes for Online Aggregation 173

[9] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for
OLAP. In Proc. Int. Conf. on Data Engineering (ICDE), pages 208–219, 1997.

[10] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In Proc. Int. Conf. on Management of Data (SIGMOD), pages 205–
216, 1996.

[11] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data
cubes. In Proc. Int. Conf. on Management of Data (SIGMOD), pages 73–88,
1997.

[12] T. Johnson and D. Shasha. Some approaches to index design for cube forests.
IEEE Data Engineering Bulletin, 20(1):27–35, 1997.

[13] Y. Kotidis and N. Roussopoulos. An alternative storage organization for ROLAP
aggregate views based on cubetrees. In Proc. Int. Conf. on Management of Data
(SIGMOD), pages 249–258, 1998.

[14] N. Pendse and R. Creeth. The OLAP report.
http://www.olapreport.com/Analyses.htm, 2000. Parts available online in the
current edition.

[15] M. Riedewald, D. Agrawal, and A. El Abbadi. Flexible data cubes for online
aggregation. Technical report, UC Santa Barbara, 2000.

[16] M. Riedewald, D. Agrawal, and A. El Abbadi. pCube: Update-efficient online
aggregation with progressive feedback and error bounds. In Proc. Int. Conf. on
Scientific and Statistical Database Management (SSDBM), pages 95–108, 2000.

[17] M. Riedewald, D. Agrawal, A. El Abbadi, and R. Pajarola. Space-efficient data
cubes for dynamic environments. In Proc. Int. Conf. on Data Warehousing and
Knowledge Discovery (DaWaK), pages 24–33, 2000.

[18] J. R. Smith, V. Castelli, A. Jhingran, and C.-S. Li. Dynamic assembly of views
in data cubes. In Proc. Symp. on Principles of Database Systems (PODS), pages
274–283, 1998.

[19] Transaction Processing Performance Council. TPC-H benchmark (1.1.0). Avai-
lable at http://www.tpc.org.

[20] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggre-
gates of sparse data using wavelets. In Proc. Int. Conf. on Management of Data
(SIGMOD), pages 193–204, 1999.

[21] J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms
via wavelets. In Proc. Intl. Conf. on Information and Knowledge Management
(CIKM), pages 96–104, 1998.


	Flexible Data Cubes for Online Aggregation
	Introduction
	Related Work
	The Iterative Data Cubes Technique
	Notation
	Creating Iterative Data Cubes
	Querying an Iterative Data Cube
	Updating an Iterative Data Cube

	IDC for Real-World Applications
	One-Dimensional Pre-aggregation Techniques
	Selecting an IDC for an Application

	Comparing IDC to Previous Approaches
	Conclusion
	References


