
Data Cubes in Dynamic Environments

Steven P. Geffner Mirek Riedewald Divyakant Agrawal Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara, CA 93106 �

Abstract

The data cube, also known in the OLAP community as the multidimensional database, is designed to pro-
vide aggregate information that can be used to analyze the contents of databases and data warehouses.
Previous research mainly focussed on strategies for supporting queries, assuming that updates do not
play an important role and can be propagated to the data cube in batches. While this might be suffi-
cient for most of today’s applications, there is growing evidence that modern interactive data analysis
applications will have to balance update and query costs. Two techniques for maintaining data cubes
in dynamic environments are described here. The first, Relative Prefix Sums (RPS), supports a constant
response time for ad-hoc range sum queries on the data cube, while at the same time greatly reducing the
update costs compared to prior approaches. The second, the Dynamic Data Cube (DDC), guarantees a
sub-linear cost for both range sum queries and updates.

1 Introduction

A data cube or multidimensional database ([7] [4] [1]) is constructed from a subset of attributes in the database.
Certain attributes are chosen to be measure attributes, i.e., the attributes whose values are of interest. Other at-
tributes are selected as dimensions or functional attributes. The measure attributes are aggregated according
to the dimensions. For example, consider a hypothetical database maintained by an insurance company. One
may construct a data cube from the database with SALES as a measure attribute, and CUSTOMER AGE and
DATE OF SALE as dimensions. Such a data cube provides aggregated total sales figures for all combinations
of age and date. Range sum queries are useful analysis tools when applied to data cubes. A range sum query sums
the measure attribute within the range of the query. An example is to “Find the total sales for customers with an
age from 37 to 52, over the past three months”. Queries of this form can be very useful in finding trends and
in discovering relationships between attributes in the database. Efficient range-sum querying is becoming more
important with the growing interest in database analysis, particularly in On-Line Analytical Processing (OLAP)
[3].

Ho et al. [8] have presented an elegant algorithm for computing range sum queries in data cubes which we call
the Prefix Sum (PS) approach. The essential idea is to precompute many prefix sums of the data cube, which can

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was partially supported by NSF grants IIS 98-17432 and IIS 99-70700

1

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8 290

P

3 8 9 11 13 17 23 26 29

10 18 21 29 39 50 57 62 69

12 24 29 40 53 67 78 88 102

15 29 35 51 67 86 99 117 133

19 35 42 61 80 103 123 142 161

21 40 50 75 95 126 151 171 191

25 49 61 93 114 154 182 205 229

27 55 69 103 127 168 205 229 256

32 64 81 116 143 186 224 257

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8 6

3 5 1 2 2 4 6 3 3

7 3 2 6 8 7 1 2 4

A

2 4 2 3 3 3 4 5 7

3 2 1 5 3 5 2 8 2

4 2 1 3 3 4 7 1 3

2 3 3 6 1 8 5 1 1

4 5 2 7 1 9 3 3 4

2 4 2 2 3 1 9 1 3

5 4 3 1 3 2 1 9

Figure 1: The original array (�, left) and the cumulative array used for the Prefix Sum method (� , right)

then be used to answer ad hoc queries at run-time (see Figure 1). The Prefix Sum method permits the evaluation of
any range-sum query on a data cube in constant time. The approach is mainly hampered by its update cost, which
in the worst case requires rebuilding an array of the same size as the entire data cube. [6] describes a technique
that considerably improves the update performance compared to PS, but still provides a constant range sum query
cost. The main idea is to control the cascading updates. The Hierarchical Cubes techniques [2] generalize this
idea by offering the user different tradeoffs between update and query cost. The only technique that provides
guaranteed sub-linear update and range query cost is the Dynamic Data Cube [5].

In some problem instances, update cost is not a significant consideration. There are, however, many current
and emerging applications for which reasonable update cost becomes important. In Section 2 we discuss some
dynamic scenarios. Then in Section 3 the Relative Prefix Sum and the Dynamic Data Cube techniques are pre-
sented. Section 4 concludes this article.

2 Why Do Updates Matter?

Update complexity is often considered to be unimportant in current-day data analysis applications. These sys-
tems are oriented towards batch updates, and for a wide variety of business applications this is considered suffi-
cient. Nevertheless, the batch updating paradigm, a holdover from the computing environment of the 1960’s, is
tremendously limiting to the field. The Prefix Sum method is a good example of present-day cutting-edge data
cube technology. Any range sum query can be answered in constant time. During updates, however, it requires
in the worst case updating an array whose size is equal to the size of the entire data cube. It is easy to see that,
even under batch update conditions, this model is not workable for many emerging applications (e.g., what if the
size of the data cube were a terabyte?).

There is no doubt that OLAP applications typically have to deal with updates. Data warehouses collect con-
stantly changing data from a company’s databases; digital libraries and data collections grow with an increasing
rate. But isn’t it good enough if those updates can be efficiently processed in batches? Why instantly propagating
each update to the data cube? Why not just collect all updates during the day and then apply them overnight when
nobody uses the data collection? There are several arguments.

� For some applications, it is desirable to incorporate updates as soon as possible. Batch updating unneces-
sarily limits the range of choices. While some applications do not suffer in the presence of stale data, in
many emerging applications, e.g. decision support and stock trading, the instant availability of the latest
information plays a crucial role.

� OLAP means interactive data analysis. For instance, business leaders will want to construct interactive
what-if scenarios using their data cubes, in much the same way that they construct what-if scenarios using
spreadsheets now. These applications require real-time (or even hypothetical) data to be integrated with

2

A4A3A2A1Q

+-= -

Figure 2: A geometric illustration of the two-dimensional case: SUM(Q) = SUM(A1) - SUM(A2) - SUM(A3) +
SUM(A4)

historical data for the purpose of instantaneous analysis and subsequent action. The fact that there are sig-
nificant impediments to updates in popular data cube techniques prevents these and many other emerging
applications from being deployed.

� Batch updates incur another serious handicap. Even though the average cost per update might be small,
performing the complete batch of updates takes a considerable amount of time. During this time the data
in the data cube is generally not accessible to an analyst. The greater the amount of updates, the worse the
situation can get. Finding a suitable time slot for this update window becomes increasingly harder when
businesses demand flexible work hours and 24 hour availability of their data. Also, data collections that
are accessible from all over the world (e.g., for multinational companies) do not follow the simple “many
accesses during daytime, no accesses at nighttime” pattern.

By reducing the barriers to frequent updates in very large data cubes, new and interesting applications become
possible; traditional applications can profit from greater flexibility and 24 hour availability of the data. With
growing data collections and a growing demand for interactive analysis of up to date data, traditional approaches
like batch updates and re-computation of the complete data cube can not be regarded as sufficient any more for
an increasing number of applications.

3 Two Dynamic Data Cube Approaches

In the following, two data cube techniques for dynamic environments are presented. Compared to the Prefix Sum
technique [8] they trade query efficiency for faster updates. Both make use of the inverse property of addition by
adding and subtracting region sums to obtain the complete sum of the query region, in the same manner as the PS
method. As Ho et al. point out, the technique can be applied to any operator � for which there exists an inverse
operator � such that �� �� � � � (e.g., COUNT, AVERAGE, ROLLING SUM, ROLLING AVERAGE).

Let � denote the original array, � its dimensionality and � the number of possible indexes (attribute values)
for each dimension� . ���� 	 	 	 � ��� describes a single cell, i.e., a point of the multidimensional data space. Without
loss of generality we assume that ��� 	 	 	 � �� is the point of the array with the smallest index in each dimension.
Then the sum for an arbitrary range query can be obtained as the result of combining (adding/subtracting) up to
�� range sums of the form SUM����� 	 	 	 � �� � ��
�� 	 	 	 �
���. Figure 2 illustrates the calculations for a two-
dimensional data cube. With SUM������ 	 	 	 � ��� � ����� 	 	 	 � ���� we refer to the aggregate sum of all cells
enclosed in the bounding box described by ���� 	 	 	 � ��� (“upper left” corner) and ���� 	 	 	 � ��� (“lower right” cor-
ner). The “upper left” corner of a hyper-rectangle, i.e., the point of the rectangle with the smallest index in each
dimension, will be referred to as the anchor of that hyper-rectangle. Since an arbitrary range sum can be obtained
as the combination of up to �� (which is independent of the size of the range) range sums for ranges anchored at
��� 	 	 	 � ��, we will only focus on handling those ranges.

�Choosing a single parameter � is done for the sake of clarity and results in simpler formulas. Our techniques, however, are not
restricted to data cubes with domains of equal sizes.

3

x2

y2

1 2 5 6 743

2

3

4

5

6

7

80

8

1

0

x1

y1

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

V

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

Figure 3: Calculation of overlay values as the sum of the cells in the shaded area on array �

3.1 The Relative Prefix Sum Approach

The Relative Prefix Sum (RPS) method [6] provides constant-time queries with reduced update complexity (com-
pared to the Prefix Sum technique), and is suitable for applications where constant time queries are vital but up-
dates are more frequent than the Prefix Sum method will allow. The main idea behind RPS is to control the
cascading updates that lead to poor update behavior.

The RPS method makes use of two components: an overlay (OL) and a relative-prefix (RP) array. The over-
lay partitions array � into fixed size regions called overlay boxes. Overlay boxes store information regarding the
sums of regions of array � preceding them. RP contains relative prefix sums within regions defined by the over-
lay. Using the two components in concert, we construct prefix sums “on the fly”. We first describe the overlay,
then describe RP.

3.1.1 Overlay

We define an overlay as a set of disjoint hyper-rectangles of equal size, further on called overlay boxes, that com-
pletely partition array � into regions of cells. For clarity, and without loss of generality, let the length of the
overlay box in each dimension be �. The size of array � is ��, thus the total number of overlay boxes is ��
���.
The first overlay box is anchored at ��� 	 	 	 � ��. Let overlay box � be anchored at ���� 	 	 	 � ���. � is said to
cover a cell �
��
�� 	 	 	 �
�� in array � if the cell falls within the boundaries of the overlay box, i.e., if for all �:
�� �
� � �� 	 �. A single cell � of an overlay box aggregates a cell � of array � outside the overlay box, if the
value of � depends on �’s value. Each overlay box corresponds to an area of array � of size �� cells. The values
stored in an overlay box provide sums of regions outside the box. In the two-dimensional example in Figure 3
the cells in the top row and the leftmost column contain the sums of the values in the corresponding shaded cells
of array � (those overlay cells aggregate the respective cells in the shaded area). The other cells covered by the
overlay box are not needed in the overlay, and would not be stored.

In general only overlay cells in the “upper left” surfaces are needed, i.e., in those surfaces that contain the an-
chor cell. More formally, overlay box� anchored at ���� 	 	 	 � ��� aggregates �� overlay cells� � ���� 	 	 	 � ��� 	 	 	 � ���,
namely those cells that satisfy for each dimension �: �� � �� � �� 	 �. Among those overlay cells, only
�� � �� �
�� are used, namely those where a dimension � exists, such that �� � �� (compare to the two-
dimensional example). The anchor cell ���� 	 	 	 � ��� stores the value

�
���

����

	 	 	
���

����

����� 	 	 	 � ����� �
���

�����

	 	 	
���

�����

����� 	 	 	 � ����

(the sum of all cells in���� 	 	 	 � �� � ����� 	 	 	 � ��� excluding ���� 	 	 	 � ���). For an overlay cell� where for exactly

4

one dimension � �� � �� and for all other dimensions � �� � �� the value is calculated as

�
���

����

	 	 	

�����
������

���
�������

�����
������

	 	 	
���

����

����� 	 	 	 � ����

��
���

�����

	 	 	

�����
���������

���
�������

�����
���������

	 	 	
���

�����

����� 	 	 	 � ����

In general the value stored in a used overlay cell � � ���� 	 	 	 � ��� is

�
���

�����

	 	 	
���

�����

����� 	 	 	 � ����� �
	��

���
�

	 	 	
	��

���
�

����� 	 	 	 � ����

where for all dimensions �:

� if �� � ��: �� � �� �� � ����� � ��� �� � ��

� if �� � ��: �� � �� 	
� �� � ����� � �� 	
� �� � ��

Intuitively the first sum includes all cells that fall into the hyper-rectangle ���� 	 	 	 � �� � ����� 	 	 	 � ���, and that
are not aggregated by another overlay cell whose coordinates can be obtained by replacing some of the �� that
are greater than �� by �� (e.g., in Figure 3 � ’s coordinates ��� �� can be obtained by replacing
�’s x-coordinate 5
with the corresponding overlay anchor coordinate 3, therefore
�’s summation in x-direction has to range from
(3+1) to 5). The second term subtracts the values of those cells that fall into overlay box � and should therefore
not be included in the summation (in Figure 3 for
� the values in cells �
� �� and ��� �� have to be subtracted).

3.1.2 Relative Prefix Array (RP)

The relative prefix array (RP) is of the same size as array �. It is partitioned into regions of cells that correspond
to overlay boxes. Each region in RP contains prefix sums that are relative to the area enclosed by the box, i.e., it is
independent of other regions. More formally, given a cell RP���� 	 	 	 � ��� and the anchor cell location ���� 	 	 	 � ���
of the overlay box covering this cell, the value stored in RP���� 	 	 	 � ��� is SUM������ 	 	 	 � ��� � ����� 	 	 	 � ����.

3.1.3 Query and Update Operations

The range sum for any query anchored at ��� 	 	 	 � �� can be obtained by adding the corresponding values stored in
the overlay and in RP. The overlay values and RP are therefore sufficient to provide the region sums required by
the method illustrated in Figure 2. Figure 4 shows the two data structures for our example array. For instance to
calculate the value for SUM����� �� � ����
�� we have to add OL��� ��, OL��� ��, OL���
� and RP���
�, resulting
in 4 accesses and returning 142.

In general, a query for SUM����� 	 	 	 � �� � ����� 	 	 	 � ����, i.e., a query that sums the values of all array
cells up to � � ���� 	 	 	 � ���, accesses exactly one value in RP and some values in the overlay box �� that
covers � . Let �� be anchored at ���� 	 	 	 � ���. Then all overlay cells in �� that together aggregate the range
���� 	 	 	 � �� � ����� 	 	 	 � ���, excluding the cells covered by overlay box �� , must be accessed. These are all
cells � � �
�� 	 	 	 �
�� that satisfy for all dimensions �:
� � �� or
� � ��, excluding cell ���� 	 	 	 � ��� which is
not a used overlay cell. Intuitively all overlay cells have to be accessed whose coordinates can be obtained from
� by replacing one or more of the �� with the corresponding ��. In total �� �
 overlay cells must be accessed.
The overall cost for a query anchored at ��� 	 	 	 � �� therefore sums to ��. Since an arbitrary range sum query can
be computed by adding/subtracting the results of at most �� of these queries, the overall worst case query cost

5

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

RP

3 8 9

10 18 21

12 24 29

2 4 8

8 18 29

11 24 38

6 9 12

7 12 19

11 21 35

3 5 6

7 11 13

9 16 21

5 8 13

8 14 23

14 21 38

2 10 12

9 18 23

14 24 30

4 9 11

6 15 19

11 24 31

7 8 17

9 13 23

10 17 29

3 6 10

12 16 23

13 26 39

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

0 0 0

0

0

9 0 0

12

20

17 0 0

33

50

12 12 17

0

0

46 13 27

7

15

97 10 24

17

40

21 19 29

0

0

86 20 51

8

20

179 20 40

14

32

OL

Figure 4: Overlay OL and array RP with overlay boxes drawn for reference (computed for array �)

*

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

0 0 0

0

0

9 0 0

12

20

17 0 0

33

50

12 12 17

0

0

46 13 27

7

17

97 10 24

17

42

21 21 31

0

0

88 20 51

8

20

181 20 40

14

32

OL 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

RP

3 8 9

10 18 21

12 24 29

2 4 8

8 18 29

11 24 38

6 9 12

7 12 19

11 21 35

3 5 6

7 11 13

9 18 23

5 8 13

8 14 23

14 21 38

2 10 12

9 18 23

14 24 30

4 9 11

6 15 19

11 24 31

7 8 17

9 13 23

10 17 29

3 6 10

12 16 23

13 26 39

Figure 5: Effects of an update to cell �
� �� (marked with a star)

is
�. For a certain data cube its dimensionality � is fixed, i.e., we obtain a worst query cost that is constant and
independent of the size of the query range.

Determining the update cost requires a more detailed analysis. We first illustrate the update process on our
two-dimensional example array (Figure 5). Let ��
� �� be updated with the value 5 (replacing the former value
3) and let � be the overlay box anchored at ��� ��, i.e., the box that covers �
� ��. In RP only cells covered by �
that reside to the lower right of �
� �� including the cell itself, have to be updated (shaded area in RP). In OL, for
overlay boxes in the same row as � to its right, the corresponding column values are affected (��� �� and ��� ��),
similar for the overlay boxes in the same column as � below it. Finally the anchor cells ��� �� and ��� �� have to
be updated as well. In Figure 5 the affected overlay cells are shaded.

To keep the description of the general case simple, we assume that �, the side-length of an overlay box, evenly
divides �, the side-length of the data cube. Let � � ���� 	 	 	 � ��� be the updated cell and �� be the overlay box
anchored at ���� 	 	 	 � ��� that covers � . The cost of an update to � is the sum of the cost of updating the overlay
cells and the cost of updating RP. Regarding the relative prefix sum array RP, only cells inside overlay box ��
can be affected by the update. To be more precise, only those cells in �� whose indexes are each at least as great
as the corresponding index of � are to be updated, resulting in a worst case cost of ��.

Next we describe which overlay cells need to be updated. In general, these are all overlay cells that include �
in their aggregation. Let for each dimension �: �� � ���	�� ��	��� ��	��� 	 	 	 ����	. Intuitively �� contains the
coordinates of the anchors of the affected overlay boxes (the boxes to the “lower right” of�� in two-dimensional
terminology) in the �-th dimension. Let for each dimension �: �� � ���� ��	
� ��	�� 	 	 	 � ��	���
�	. This set
intuitively contains the coordinates of the affected overlay cells inside a certain overlay box (the cells to the “lower
right” of � in two-dimensional terminology) in the �-th dimension. Then the overlay cells � � ���� 	 	 	 � ��� that
need to be updated are those that satisfy

� � �� �
�

�� , if �� � ��
�� � �� , otherwise

and do not belong to overlay box �� . In the example of Figure 5 the sets become �� � ��� �	, �� � �
� �	,

6

�
 � ��	 and �
 � ��	. Since �� �
 � � � �� and �
 � � � � � �
 the affected overlay cells are all cells
���� �
� where �� � �
� �� �� �	 and �
 � ��� �	, minus �
� �� and ��� �� which fall into the same overlay box as
�
� ��.

Obviously the greatest number of affected overlay cells results from choosing ��
� �� and �� as small as
possible� . �� has at most �
� �
 elements, �� can have up to � �
 elements� . Since there are at most ��
� �

 	 � �
� � ��
� 	 � � �� possible values for each dimension, there are at most ��
� 	 � � ��� overlay
cells that satisfy the above formula. Among those, �� �
�� cells fall into overlay box ��

�. Altogether ��
� 	
� � ��� � �� �
�� overlay cells must be updated in the worst case. Note, that this bound is tight, since it is
met for an update on �
� 	 	 	 �
�. For �
� � � the cost of updating the overlay cells determines the worst overall
update cost. Therefore the worst update cost is obtained when cell �
� 	 	 	 �
� is updated, resulting in a cost of
��
� 	 � � ��� � �� �
�� 	 �� �
�� � ��
� 	 � � ���. This value is minimized for � �

�
�. The worst

update cost therefore is O������ (compare to O���� for the PS technique).

3.2 The Dynamic Data Cube (DDC)

The Dynamic Data Cube [5] provides sub-linear performance (O����� ��) for both range sum queries and updates
on the data cube. The method supports dynamic growth of the data cube in any direction and gracefully manages
clustered data and data cubes. The DDC method utilizes a tree structure which recursively partitions array �
into a variant of overlay boxes. Each overlay box will contain information regarding relative sums of regions of
�. By descending the tree and adding these sums, we will efficiently construct sums of regions which begin at
���� 	 	 	 � �� and end at any arbitrary cell in �. To calculate complete region sums from the tree, we again make
use of the inverse property of addition as illustrated in Figure 2. We will first describe the overlay box variant,
then describe their use in constructing the Dynamic Data Cube.

3.2.1 Overlay Variant

For the DDC we define an overlay as before, i.e., as a set of disjoint hyper-rectangles (hereafter called ”boxes”)
of equal size that completely partition the set of cells of array � into non-overlapping regions. However, these
overlay boxes differ from those in RPS in the values they store and in the number of overlay boxes used to par-
tition the data space. Referring to Figure 6, � is the subtotal cell, while
�,
�,
� are row sum cells in the first
dimension and ��, ��, �� are row sum cells in the second dimension. Each box stores exactly �� � �� �
��

values; the other cells covered by the overlay box are not needed in the overlay, and would not be stored. Values
stored in an overlay box provide sums of regions within the overlay box. Figure 6 demonstrates the calculation
of those values. The row sum values shown in the figure are equal to the sum of the associated shaded cells
in array �. Note that row sum values are cumulative; i.e., �� includes the value of ��, etc. Formally, given an
overlay box anchored at ����� ��� 	 	 	 � ���, the row sum value contained in cell ���� ��� 	 	 	 � �� 	 	 	 � ��� is equal to
SUM������ ��� 	 	 	 � ��� � ����� ��� 	 	 	 � �� 	 	 	 � ����.

3.2.2 Constructing the Dynamic Data Cube

Overlay boxes are used in conjunction with a tree that recursively partitions array �. We now describe its con-
struction (Figure 7). The root node of the tree encompasses the complete range of array �. It forms children by
dividing its range in each dimension in half. It stores a separate overlay box for each child. Each of its children
are in turn subdivided into children, for which overlay boxes are stored. This recursive partitioning continues
until the leaf level. Thus, each level of the tree has its own value for the overlay box size �; � is �
� at the root

�The choice of �� determines the value of ��. The smaller ��, the smaller ��, i.e., the more elements in ��.
�This is because �� �� ��, i.e., �� � �� � �.
�These are all cells where �� � �� � ��.

7

y1

y2

x3 S

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

Figure 6: Partitioning of array � into overlay boxes and calculation of overlay values

Level 2 (root), k=4

35

10

54308 61

24

47

31

15

342612 52

42

48

Level 0 (leaves), k=1

3 5

7 3

1 2

2 6

2 4

8 7

6 3

2

2 4

3 2

2 3

1 5

3 3

3 5

4 5

2 8

4 2

2 3

1 3

3 6

3 4

1 8

7 1

5 2

4 5

2 4

2 7

2 2

1 9

3 1

3 3

9 1

16 66

48

33

15

352915 51

40

29

11

1

8

1810

3

113

6

115

5

113

Level 1, k=2

6

2110

9

127

6

146

9

196

6

116

4

134

9

156

9

134

7

164

8

1512

10

144

6

1612

Figure 7: Dynamic Data Cube (computed for the data in array ���� �� � ���� ��)

of the tree, and is successively divided in half for each subsequent tree level. We define the leaf level as the level
wherein � �
. When � �
, each overlay box contains a single cell; since a single-cell overlay box contains
only the subtotal cell, the leaf level contains the values stored in the original array �.

Overlay box values are stored in special structures to guarantee the sublinear query and update times. For two-
dimensional overlays (i.e., � � �) we do not store the values of an overlay box in arrays. Instead a hierarchical
structure is used (B c-tree, see [5]) that has an access and update cost of O���� ��. For higher dimensional data
cubes (� � �) we make the observation that the surfaces containing the overlay values of a �-dimensional overlay
box are ���
�-dimensional. Thus, the overlay box values of a � dimensional data cube can be stored as ���
�-
dimensional data cubes using Dynamic Data Cubes, recursively. The recursion stops for � � �.

3.2.3 Query and Update Operations

The range sum for any query anchored at ��� 	 	 	 � �� is obtained by only accessing overlay values. We describe
this process for a query SUM����� 	 	 	 � �� � ����� 	 	 	 � ����, i.e., a query that sums the values of all array cells
up to � � ���� 	 	 	 � ���. The query process begins at the root of the tree. The algorithm checks the relationship
of cell � and the overlay boxes in the node. When an overlay box covers � , a recursive call to the function is
performed, using the child associated with the overlay box as the node parameter (i.e., the algorithm descends the
tree for that case). When� comes before the overlay box in any dimension (i.e., has a smaller index than each cell
covered by the overlay box in that dimension), the query region does not intersect the overlay box, and therefore
this box does not contribute a value for the sum. When � comes after the overlay box in every dimension (i.e.,
has a greater index than each cell covered by the overlay box in every dimension), the query includes the entire
overlay box, and the box contributes the subtotal to the sum. Otherwise the cell is neither before nor after the
box, i.e., the query area intersects the overlay box, and the box contributes the corresponding overlay value (a
row sum value in two-dimensional terminology) to the sum.

8

added outside the

bounds of the

current root.

8

10

4

44

3 5

7 3

4 0

0 0

all boxes that cover the new cell.

Overlay values are calculated for

3 5 *4

7 3

A new cell (*) is

8

1810

*

3 5

7 3

*4

A new root node is created.

Level 0 (root) Level 1 (new root) Level 1

Level 0 (former root) Level 0 (new leaves)

18

Figure 8: Example for the growth of the Dynamic Data Cube (shaded areas do not store values)

Since overlay boxes at the same tree level are non-intersecting, at most one child will be descended at a tree
level. The contribution of overlay boxes that intersect the query area but do not cover � is obtained by accessing
a single overlay value. There are at most �� �
 overlay boxes in a node that can have this property. In sum at
most ��� �
� ���� � � O���� �� overlay values are accessed. Due to the recursive way of storing the overlays,
accessing a single overlay value costs O������� ��, resulting in an overall query cost of O����� �� (for details
see [5]).

To perform an update on cell � the DDC tree has to be descended in a way similar to the query process. Even
though the cells of an overlay box store cumulative values, the balanced query/update cost of the Bc-trees (for
� � �) together with the recursive way of storing higher dimensional boxes result in a worst case update cost of
O����� �� (for details see [5]).

3.2.4 Dynamic growth of the cube

Neither the Prefix Sum (PS), nor the Relative Prefix Sum (RPS), nor the Hierarchical Cubes (HC) [2] methods
address the growth of the data cube. Instead, they assume that the size of each dimension is known a priori. For
some applications, however, it is more convenient and space efficient to grow the size of the data cube dynam-
ically to suit the (size of the) data. For instance, an attribute might have a large domain, but the data cube only
contains non-empty cells that can be addressed by a much smaller range of values for that attribute. Take for ex-
ample astronomical databases where new telescopes allow discovering stars in greater distance; or commercial
applications where new products and customers are added or deleted from time to time.

The PS, RPS and HC methods would store each single cell in non-populated areas, wasting a huge amount
of space. The Dynamic Data Cube, on the other hand, could start by building the smallest data cube that contains
all non-empty cells. As soon as a cell is inserted that lies outside the current data cube, the data cube “grows”
into the required direction. New roots are created successively, each time doubling the size of the data cube in
each dimension, until the new root encompasses the new cell. This update process is incremental, i.e., the old
tree structure appears unchanged as the descendent of the new root (see Figure 8 for a simple example). Only one
overlay box at each tree level is affected by an update; therefore, we will create only one child node and overlay
box per tree level during this process.

This incremental construction of the Dynamic Data Cube is naturally suited to clustered data and data that
contains large, non-populated regions. Where data does not exist, overlay boxes will not be instantiated; thus,
the Dynamic Data Cube avoids the storage of empty regions. Since overlay boxes are self-contained, there is no
cascading update problem associated with adding a new cell. The Dynamic Data Cube allows graceful growth
of the data cube in any direction, making it more suitable for applications which involve change or growth. Note
that the PS and RPS techniques could be augmented by methods to handle a data cube growth by appending rows.
Handling growth in any direction, however, will be very costly.

9

4 Conclusion

In the near future an increasing number of applications will require or be enabled by providing fast and frequent
updates on data cubes and avoiding long down-times of the data analysis tools. Together, the RPS and DDC
methods offer a range of options for implementing data cubes in such dynamic environments. The Dynamic Data
Cube provides balanced sub-linear performance for queries and updates. It is suitable for dynamic environments
where queries and updates are both frequent; where data cubes are very large; where data is clustered and sparse;
and where the data can grow in any direction relative to the original data (i.e., updates are not append-only). The
Relative Prefix Sum technique does not offer this flexibility, but has its merits for applications that do not deal
with frequent updates but require fast answers within a guaranteed time limit.

The obvious disadvantage of our methods compared to PS and HC is the usage of additional space. While
PS and HC require exactly the same amount of storage as the original data cube (O����), RPS and DDC need
to store the overlay values. In the case of RPS the storage overhead is provably within small bounds. Since each
overlay box of size �� stores ������
�� values, the ratio of RPS’s total storage requirements to the requirements
of the original data cube is � � ��� �
�
���, i.e., less than �. For � �
 and � �
�� RPS uses only
� more
storage. In the case of DDC it is obvious that the lowest tree levels consume the most storage. By deleting a
certain number of those levels, one can trade off query speed for storage space, or conversely bring the DDC
within delta of the storage required by the Prefix Sum method (for details see [5]). Also, in the case of DDC the
worst case storage overhead will only occur for dense data cubes. For empty chunks whole subtrees will not be
created, saving a considerable amount of space for practical applications.

We are currently developing new techniques that apply the basic ideas of the presented approaches to high-
dimensional and sparse data sets.

References

[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In Proc. 13th ICDE, 1997.

[2] C.-Y. Chan and Y. E. Ioannidis. Hierarchical cubes for range-sum queries. In Proc. 25th VLDB, 1999.

[3] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical
report, E. F. Codd and Associates, 1993.

[4] The OLAP Council. MD-API the OLAP Application Program Interface Version 5.0 Specification, September
1996.

[5] S. Geffner, D. Agrawal, and A. El Abbadi. The dynamic data cube. In Proc. EDBT, 2000. To appear.

[6] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: An efficient approach for querying
dynamic OLAP data cubes. In Proc. 15th ICDE, 1999.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, pages 29–53, 1997.

[8] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes. In Proc. ACM SIGMOD,
1997.

10

