
3/30/99 Mezini/Lorenz/Lieberherr 1

Components and Aspect-Oriented
Design/Programming

Mira Mezini, David Lorenz and

Karl Lieberherr

3/30/99 Mezini/Lorenz/Lieberherr 2

Overview

• Our abstract component definition

• Problems with structuring software - function versus object
structuring

• Reconciliation of both worlds: Aspectual components as
the component construct

• Aspectual components for generic higher-level
collaborative behavior

• Aspectual components and Aspect-Oriented Programming
(AOP)

• Summary

3/30/99 Mezini/Lorenz/Lieberherr 3

What is a component?

 any identifiable slice of functionality that describes a meaningful

service, involving, in general, several concepts,

– with well-defined expected and provided interfaces,

– formulated for an ideal ontology - the expected interface

– subject to deployment into several concrete ontologies by 3rd

parties

– subject to composition by 3rd parties

– subject to refinement by 3rd parties

An ontology is, in simple terms, a collection of concepts with
relations among them plus constraints on the relations.

3/30/99 Mezini/Lorenz/Lieberherr 4

Component deployment/composition

• Deployment is mapping idealized ontology to concrete ontology

– specified by connectors separately from components

– without mentioning irrelevant details of concrete ontology in
map to keep deployment flexible

– non-intrusive, parallel, and dynamic deployment

• Composition is mapping the provided interface of one (lower-level)
component to the expected interface of another (higher-level)
component

• deployment is a special case of composition, where the lower level
 component is a concrete ontology (no expected interface)

3/30/99 Mezini/Lorenz/Lieberherr 5

Graph of components

 a directed graph

– nodes are components

– edges denote composition of components

– must be acyclic

– components without outgoing edges form the concrete ontology
– components with outgoing edges are called aspects (meaning
 both application and system level aspects of a software)

3/30/99 Mezini/Lorenz/Lieberherr 6

aspect

concrete
ontology

compose

Graph of components

3/30/99 Mezini/Lorenz/Lieberherr 7

The goal

 The goal is to separate concerns (each decision in a single
place) and minimize dependencies between them (loose
coupling):

– less tangled code, more natural code, smaller code

– concerns easier to reason about, debug and change

– a large class of modifications in the definition of one
concern has a minimum impact on the others

– more reusable, can plug/unplug as needed

2nd & 3rd Generation :
functional decomposition
2nd & 3rd Generation :
functional decomposition

1st Generation
 Spaghetti-Code
1st Generation

 Spaghetti-Code

4th Generation
object decomposition

4th Generation
object decomposition

Software =

 Data (Shapes)
 +
 Functions (Colors)

Software =

 Data (Shapes)
 +
 Functions (Colors)

Problems with Software Structuring

Advantage:
 easy integration
 of new functions

Advantage:
 easy integration
 of new functions

Disadvantage: Data spread around

• integration of new data types ==>
 modification of several functions

• functions tangled due to use of shared
 data

 Difficult to localize changes !

Disadvantage: Data spread around

• integration of new data types ==>
 modification of several functions

• functions tangled due to use of shared
 data

 Difficult to localize changes !

Problems with Functional Decomposition

Disadvantage: functions spread around

• integration of new functions ==>
 modifikation of several objects

• objects tangled due to higher-level
 functions involving several classes

 Difficult to localize changes !

Disadvantage: functions spread around

• integration of new functions ==>
 modifikation of several objects

• objects tangled due to higher-level
 functions involving several classes

 Difficult to localize changes !

Advantage:
easy integration
of new data

Advantage:
easy integration
of new data

Problems with Object Decomposition

Z

C1

C2 C3

C4

C5

Collab-1

Collab-4

OOAD

CollabCollab-2-2 Collab-3

Implementation

C1

C2 C3

C4

C5

high-level behavior
scattered around the

implementation
of several classes

Problems with Object Decomposition

During implementation
separate higher-level
functions are mixed

together

During maintenance/evolution
individual collaborations need

to be factored out of the
tangled code

Problems with Object Decomposition

C1

C2 C3

C4

C5

“Forget about objects”
 [Udell, BYTE, May 94] NO !

The point is merely that objects are too
low-level. If we don’t follow certain
principles, we easily end up with
“hyper spaghetti’’ objects

So, let’s organize!! Let’s have component

constructs that capture functions cross cutting

class boundaries !!

Let’s have Aspectual Components

to reconcile functions and objects

So what?

Reconciling objects and functions:
the intuition behind aspectual components

expected required

modification

Concrete application
connectors

result

3/30/99 Mezini/Lorenz/Lieberherr 15

Aspectual component

• Why not just “component”?

• “Aspectual” is not an English word.

• We want to distinguish between
components that enhance and cross-cut
other components and components that only
provide new behavior.

Reconciling objects and functions:
the intuition behind aspectual components

components

definition deployment result

definition deployment result

StackImpl
CouterImpl

QueueImpl
LockImpl

DataWithCounter

DataWithLock

ShapesAutoReset

ShowReadWriteAccesses

NewInstanceLogging

Point

Line

Rectangle

Weaved Code

DataWithCounter

DataWithLock DataWithCounter&Lock

3/30/99 Mezini/Lorenz/Lieberherr 24

What is an aspect?
• A slice of high-level, system/application level

functionality. Slice: not self-contained.

• High-level: three meanings
– multi-party functionality involving several participants

– one participant may be mapped to a set of otherwise not
structurally related classes

– two neighboring participants may be mapped to classes
that are “far apart” (many intermediate classes)

• Aspect cross-cuts object structure.

3/30/99 Mezini/Lorenz/Lieberherr 25

Examples

• Publisher-subscriber protocol: it applies in
general to multiple sets of classes in
different places in a system's object
structure.

• Logging execution behavior

• Synchronization

3/30/99 Mezini/Lorenz/Lieberherr 26

Need a construct to express
aspects

• Otherwise have tangled code. Would have
to spread fragments of aspect definition
manually.

• Resulting in tangled code. Need to control
tangling (cannot eliminate it)

• Solution: aspectual components

3/30/99 Mezini/Lorenz/Lieberherr 27

 Cross-cutting of aspects
ordinary program

Basic classes:
structure

Slice of
functionality

Slice of
functionality

better program

Aspect 1

Aspect 2

Aspect 3

3/30/99 Mezini/Lorenz/Lieberherr 28

Informal aspect description:
ShowReadAccess

``For any data type in an application, say DataToAccess,
any read access operation, AnyType readOp() defined
for DataToAccess, and any invocation of this operation
on an instance of DataToAccess, dataInstance,
display Read access on <string
representation of dataInstance>}´´.

3/30/99 Mezini/Lorenz/Lieberherr 29

Example of an aspectual
component for ShowReadAccess
component ShowReadAccess {

participant DataToAccess {

 expect Object readOp();

 replace Object readOp() {

System.out.println("Read access on "

 + this.toString());

return expected(); // this calls the

 // expected version of readOp()

 }

}

3/30/99 Mezini/Lorenz/Lieberherr 30

Concrete class graph: in Java

class Point {

 private int x = 0;

 private int y = 0;

 void set(int x,int y) {this.x = x;this.y = y;}

 void setX(int x) { this.x = x; }

 void setY(int y) { this.y = y; }

 int getX(){ return this.x; }

 int getY(){ return this.y; }

 }

 class Line { ... }

 class Rectangle {... }

3/30/99 Mezini/Lorenz/Lieberherr 31

Deployment

connector ShowReadAccessConn1 {

 Point is ShowReadAccess.DataToAccess

 with {readOp = get*};

 }

connector ShowReadAccessConn3 {

 {Point, Line, Rectangle}

 is ShowReadAccess.DataToAccess

 with {readOp = get*; }

}

3/30/99 Mezini/Lorenz/Lieberherr 32

Inheritance between components

component ShowReadWriteAccess extends
ShowReadAccess {

 participant DataToAccess {

 expect void writeOp(Object[] args);

 replace void writeOp(Object[] args){

 System.out.println(

 "Write access on " +

 this.toString());

 expected(args);}}

 }

3/30/99 Mezini/Lorenz/Lieberherr 33

Inheritance between connectors

connector ShowReadWriteAccessConn2
extends ShowReadAccessConn3 {

 {Point,Line,Rectangle}

 is DataToAccess with {

 writeOp = set*;

 }

3/30/99 Mezini/Lorenz/Lieberherr 34

Components have flavor of
classes

• Common
– Have local data and function members

– One component can inherit from another
component

• Different
– component/connector separation. Component

adaptation code is not part of application.

3/30/99 Mezini/Lorenz/Lieberherr 35

What are aspectual components?

• Aspectual components are language constructs that capture
behaviour involving several classes (cross-cuts class
boundaries)

• the programmer uses classes to implement the primary data
(object) structure

• the programmer uses aspectual components to implement
higher-level behavior cross-cutting the primary structure in a
modular way

3/30/99 Mezini/Lorenz/Lieberherr 36

What are aspectual components?

• Aspectual components have provided and expected interfaces

• The expected interface consists of an ideal class graph
(Participant Graph, PG) to enable defining one aspect of the
system with limited knowledge about the object model and/or
other aspects defined by other components

• Aspectual components can be deployed into PGs or concrete
class graphs and/or composed/refined by 3rd parties (reuse)
by mapping interfaces via explicit connectors

 written to the PG
similar to an OO

program is written
to a concrete class

graph

 expected interfaces

minimal
assumptions on

application structure

+

P1

P
P1

P3

...

 meth
3,1...

P2
P3

 meth
3,j

 meth
1,k

 meth
1,1 add new functionality

+
enhance the expected

provided
=

everything declared
public

Aspectual Components (AC)

3/30/99 Mezini/Lorenz/Lieberherr 38

Aspectual Component Def.

• A set of participants forming a graph called
the participant graph (represented by a
UML class diagram). Participant
– formal argument to be mapped
– expects function members (keyword expect)

– reimplementations (keyword replace)

– local data and function members

3/30/99 Mezini/Lorenz/Lieberherr 39

Aspectual Component Def.
(continued)

• Local classes: visibility: aspectual
component

• Aspectual component-level data and
function members. There is a single copy of
each global data member for each
deployment

3/30/99 Mezini/Lorenz/Lieberherr 40

Deployment/Composition of ACs

• Specified by connectors separately from aspectual components

• Connectors use
– regular-expressions to express sets of method names and class names and

interface names

– standard code everywhere simple method name mapping is not enough

– graphs and regular expression-like constructs for mapping graphs

P1

P1
m 1,1
m 1,k
..
.

P2
P3

participant-to-class
name map

expected/provided
interface map

link-to-paths
map

Deploying/Composing ACs

P1

Reconciling objects and functions:
the intuition behind aspectual components

expected required

modification

Concrete application
connectors

result

3/30/99 Mezini/Lorenz/Lieberherr 43

component UsingComparables {

 participant Comparable {
 public int compareTo(Object that);
 }

 class ComparableClient {
 Comparable[] c;
 public Comparable[]
 filterAllSmaller(Object that) {
 Comparable[] t;
 int j = 0;
 for (int i = 0; i < c.length; i++) {
 if (c[i].compareTo(obj) >= 0) {
 t[j] = c[i];
 j = j +1;}
 }
 }
 }

package appl;
 ...
 class Byte {
 private byte value;
 public Byte(byte value) {this.value = value; }
 public byte byteValue() {return value;}
 public myCompareTo(Byte that) {
 return this.value - that.value;}

connector applWithComparison {
 appl.Byte implements UsingComparables.Comparable {
 public int compareTo(Object that) {
 return myCompareTo((Byte) that); }
 }

incomplete

3/30/99 Mezini/Lorenz/Lieberherr 44

package appl;
 ...
 class Byte {
 private byte value;
 public Byte(byte value) {this.value = value; }
 public byte byteValue() {return value;}

connector applWithComparables {
 appl.Byte implements UsingComparable.Comparable {
 public int compareTo(Object that) {
 return this.byteValue() -
 (Byte) that.byteValue(); } }
 }

component UsingComparables {

 interface Comparable {
 public int compareTo(Object that);
 }

 class ComparableClient {
 Comparable[] c;
 public Comparable[]
 filterAllSmaller(Object that) {
 Comparable[] t;
 int j = 0;
 for (int i = 0; i < c.length; i++) {
 if (c[i].compareTo(obj) >= 0) {
 t[j] = c[i];
 j = j +1;}
 }
 }
 }

3/30/99 Mezini/Lorenz/Lieberherr 45

Ideal Class Graph
Where Have We Seen That Before ?

Quote:

 Avoid traversing multiple links or methods. A method should
have limited knowledge of an object model. A method must be
able to traverse links to obtain its neighbors and must be able to
call operations on them, but it should not traverse a second link
from the neighbor to a third class.

Rumbaugh and the Law of Demeter (LoD)

3/30/99 Mezini/Lorenz/Lieberherr 46

Adaptive Following LoD

FRIENDS

S

A

b

C

X

a:From S to A
b:From S to B c:From S via X to C

a

c

• are not accidentally friends

• other classes exist fo
r other reasons

• ideal class graph: all are friends, even

 “far” away classes.

B

 an application generator from IBM (‘70)

 Hardgoods Distributors Management Accounting System

 encode a generic design for order entry systems which
 could be subsequently customized to produce an
 application meeting a customer’s specific needs

an example ...

consider the pricing component ...

Deploying/Composing ACs

LineItemParty

 PricerParty

 ItemParty

int quantity ();

float basicPrice(ItemParty item)
int discount(ItemParty item, Integer qty,

Customer cust)

CustomerParty

 ChargerParty
 ChargerParty

float cost(Integer qty, Float unitPrice, ItemParty item)

pricer

cust

item

charges

pricing component: class diagram

Deploying ACs

lineItem: LineItemParty
pricer: PricerParty

item: ItemParty

price() 1: unitPrice (item, qty, cust)

2: additionalCharges(unitPr, qty)

 ch: ChargerParty ChargerParty ChargerParty

2.1: ch=next() 2.2: cost(qty,unitPr,item)

additionalCharges(…){
 int total;
 forall ch in charges {
 total += ch.cost(…);}
 return total;}

price() {
 int qty = quantity();
 quotePr = pricer.unitPrice(item, qty, cust);
 quotePr += item.additionalCharges(unitPr, qty);
 return quotePr;}

pricing component: collaboration diagram

 unitPrice(...) {
 basicPr = basicPrice(item);
 discount = discount(item, qty, cust);
 unitPr = basicPr - (discount * basicPr);
 return unitPr; }

design applies to several applications

with different classes playing the roles

of different participants !!!

Deploying ACs

3/30/99 Mezini/Lorenz/Lieberherr 50

participant-to-class
name map

expected interface
map

One AC deployed into several
applications

P1

P1 m 1,1
m 1,k
..
.

P2 P3

participant-to-class
name map

expected interface
map

¶ one slice of behavior reused
with several applications

¶ one slice of high-level behavior reused with several applications

· one slice of behavior multiply reused in different places of a single
 application

¸ higher-level behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different implementations
 of the lower-level behavior

¹ define new behavior by refining existing behavior

¶ one slice of high-level behavior reused with several
 applications

· one slice of behavior multiply reused in different places of a
 single application

¸ behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different lower-level
 behavior implementations

¹ define new behavior by refining existing behavior

Deploying/Composing/Refining ACs

* may need to represent several pricing schemes:

• regular pricing: discounts depending on the number of
 ordered units,

• negotiated pricing: customers may have negotiated
 prices for items,

• sale pricing: each product has a designated sale price
 and no discounting allowed

Design is the same for all schemes !!!

Given a concrete application, each scheme

might require the application class model

to conform to the design in a specific way

· one slice of behavior multiply deployed
 into different places of a single application

Multiply deploying an AC into
an application

float regPrice()
float regDiscount(int)
float salePrice()
float saleDiscount()

customer

prodQuote

int quantity

int quantity()
HWProduct prod()
Customer customer()

 Customer

String name

float negProdPrice(HWProduct)
float negProdDiscount(HWProduct, int)

taxes

HWProduct

float price
float salePrice
Table discount

 Tax

float percentage

float taxCharge(float)

1..N

float regPrice()
float regDiscount(int)
float salePrice()
float saleDiscount()

HWProductQuote

customer

 Customer Tax

prod

taxes

 Tax

LineItemParty PricerParty

 ItemParty

Customer

 ChargerParty

regular pricing

HWProductQuote

customer

 Customer Tax

prod

taxes

 Tax

LineItemParty PricerParty

 ItemParty

Customer

 ChargerParty

negotiated pricing

· one slice of behavior multiply reused in different places of a single application

Multiply deploying an AC into

Pricing AC

connector HWApplWithRegPricing {
 // connects HWApp, Pricing;

 Quote is LineItemParty {
 with{regularPrice = price }
 };
 HWProduct is PricerParty {
 with {
 float basicPrice() {return regPrice();}
 float discount() {return regDiscount();}
 };
 HWProduct is ItemParty;
 Tax is ChargerParty;}

HWProductQuote

cust

 Customer Tax Tax

prod

taxes

 Tax Tax

Multiply deploying an AC into
an application

Pricing AC

connector HWApplWithNegPricing {
 connec ts HWApp, Pricing;

 Quote implements LineItemParty {
 provided {negotiatedPrice = price }
 }
 Customer implements PricerParty {
 expected {
 float basicPrice() {return negProdPrice();}
 float discount() {return negProdDiscount();}
 } }
 HWProduct implements ItemParty;
 Tax implements ChargerParty;}

HWProductQuote

cust

 Customer Tax Tax

prod

taxes

 Tax Tax

Multiply deploying an AC into
an application

¶ one slice of high-level behavior reused with several applications

· one slice of behavior multiply reused in different places of a single
 application

¸ higher-level behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different implementations
 of the lower-level behavior

¹ define new behavior by refining existing behavior

¶ one slice of high-level behavior reused with several
 applications

· one slice of behavior multiply reused in different places of a
 single application

¸ behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different lower-level
 behavior implementations

¹ define new behavior by refining existing behavior

Deploying/Composing/Refining ACs

LineItemParty

float price()

LineItemParty

float price()

OrderParty

:OrderParty

:LineItemParty lineItem :LineItemParty

1:lineItem = next() 2: price()

total()

 may be any of the
 pricing schemes

write Total once and reuse

with all pricing schemes

¸ define higher-level behavior in terms of lower-level behavior

Composing ACs

expected interface of one AC mapped to provided interface of other AC

component Total {
 Participant-Graph:

 participant OrderParty {
 expect Customer customer
 expect LineItemParty[] lineItems)
 participant LineItemParty { float price(); }

 Behavior-Definition:

 OrderParty {
 public float total() {
 ...
 while lineItems.hasElements()) {
 total += nextLineItem.price(); }
 return total; }
 }
 }

connector applWithTotal{
 connects HWAppl, Total;
 Order implements OrderParty ;
 LineItemParty implements Quote
 expected {

price() { return regularPrice();
 };
 }
} }

Pricing AC

 connector ApplWithPricing {

 { . . . regularPrice() }

Composing ACs

3/30/99 Mezini/Lorenz/Lieberherr 59

P1

P2
P3

P1

P6
P2

P5 P3

P4
P1

P2

Software Structure with ACs

¶ one slice of high-level behavior reused with several applications

· one slice of behavior multiply reused in different places of a single
 application

¸ higher-level behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different implementations
 of the lower-level behavior

¹ define new behavior by refining existing behavior

¶ one slice of high-level behavior reused with several
 applications

· one slice of behavior multiply reused in different places of a
 single application

¸ behavior defined in terms of lower-level behavior;
 high-level behavior definition reused with different lower-level
 behavior implementations

¹ define new behavior by refining existing behavior

Deploying/Composing/Refining ACs

 pricing component: collaboration diagram

lineItem: LineItemParty
pricer: PricerParty

item: ItemParty

price() 1: unitPrice (item, qty, cust)

2: additionalCharges(unitPr, qty)

 ch: ChargerParty ChargerParty ChargerParty

2.1: ch=next() 2.2: cost(qty,unitPr,item)

additionalCharges(…){
 Integer total;
 forall ch in charges{
 total += ch.cost(…)}
 return total}

price() {
 int qty = quantity();
 quotePr = pricer.unitPrice(item, qty, cust);
 quotePr += item.additionalCharges(unitPr, qty);
 return quotePr;}

 unitPrice(...) {
 basicPr = basicPrice(item);
 discount = discount(item, qty, cust);
 unitPr = basicPr - (discount * basicPr);
 return unitPr; }

¹ define new behavior by refining existing behavior

price() {
 int qty = quantity();
 quotePr = pricer.unitPrice(item, qty, cust);
 quotePr += item.additionalCharges(unitPr, qty);
 quotePr = quotePr - cust.frequentRed();
 return quotePr; }

 frequentRed() {
 . . . }

3 frequentRed()

frequent
cust: CustomerPartycust: CustomerParty

Refining ACs

Pricing

AgingPricing
FrequentPricing

Aging&FrequentCustomer
Pricingwant to reuse the definition

of the basic pricing component

¹ define new behavior by combining existing behavior

Refining ACs

Independent development of components

 Decoupled black-box composition of collaborations

ACs as larger-grained constructs that complement classes in modeling
collaborations or behavior that cross-cut class boundaries

Definition of new collaborations as refinements of existing collaborations

Generic behavior that can be reused with a family of applications

Independent connectors of ACs with applications

 Independent interfaces that are adapted explicitly

Summary so far

Adaptive
Programming

Rondo

ACs

visitor pattern (GOF, Chrishnamurthi & al)

role modeling with template classes (VanHilst & Notkin)

mixin-layers (Smaragdakis & Batory)

contracts (Holland)

SOP (Harrison & Ossher)

AOP (Kiczales & Lopes)

Related work

polytypic programming (Jansson & Jeuring, Hinze)

AOP (Kiczales & Lopes)

3/30/99 Mezini/Lorenz/Lieberherr 65

Aspect-Oriented Programming
(AOP) Definition

• Aspect-oriented programs consist of complementary,
collaborating aspects, each one addressing a different
application/system level concern

• Two aspects A1 and A2 are complementary collaborating
aspects if an element a1 of A1 is formulated in terms of
partial information about elements of A2 and A1 adds
information to A2 not provided by another aspect.

3/30/99 Mezini/Lorenz/Lieberherr 66

AOP Definition (cont.)

• The partial information about A2 is called join points and
provides the range of the weaving in A2.

• The domain of the weaving is in A1 and consists of
weaves that refer to the join points. The weaves describe
enhancements to A2.

• The join points may be spread through A2. After the
weaving, enhancements from a1 effectively cross-cuts A2

3/30/99 Mezini/Lorenz/Lieberherr 67

aspect

concrete
ontology

compose
connector or
refinement

Graph of components

3/30/99 Mezini/Lorenz/Lieberherr 68

Components and connectors

provides

requires

connector

AC1 AC2

3/30/99 Mezini/Lorenz/Lieberherr 69

Partial
Informationa1 in A1

a2 in A2Cross-cutting in AOP

The partial information of a2 referred to in a1
Enhancement defined in a1 is spread in a2.
a1 adds to a2.

3/30/99 Mezini/Lorenz/Lieberherr 70

class Point {
 int _x = 0;
 int _y = 0;

 void set(int x, int y) {
 _x = x; _y = y;
 }

 void setX(int x)
 { _x = x; }

 void setY(int y)
 { _y = y; }

 int getX(){
 return _x; }

 int getY(){
 return _y; }
}

aspect ShowAccesses {
 static before Point.set,
 Point.setX,
 Point.setY {
 System.out.println(“W”);
 }
}

aspect

applicationExample: Write
accesses

3/30/99 Mezini/Lorenz/Lieberherr 71

component ShowWAccesses {
 expect {
 Data-To-Access{
 void writeOp(*);}
 replace Object writeOp(){
 System.out.println(“W”);
 expected(*);}
}

AOP example with AC
class Point {
 int _x = 0;
 int _y = 0;

 void set(int x, int y) {
 _x = x; _y = y;
 }

 void setX(int x)
 { _x = x; }

 void setY(int y)
 { _y = y; }

 int getX(){
 return _x; }

 int getY(){
 return _y; }
}

connector AddShowWAccesses {
 //connects appl, ShowWAccesses ...
 Point is Data-To-Access {

… writeOp = set* ...
 }
 }

3/30/99 Mezini/Lorenz/Lieberherr 72

component ShowWAccesses {
 expected {
 Data-To-Access{
 * write-op(*);}
 }
 provided {
 Data-To-Access {
 * write-op(*) {
 System.out.println(“W”);
 write-op(*);}
 }}
}

Alternative syntax?
class Point {
 int _x = 0;
 int _y = 0;

 void set(int x, int y) {
 _x = x; _y = y;
 }

 void setX(int x)
 { _x = x; }

 void setY(int y)
 { _y = y; }

 int getX(){
 return _x; }

 int getY(){
 return _y; }
}

connector AddShowWAccesses {
 connects appl, ShowWAccesses ...
 Point is Data-To-Access {

… write-op = set* ...
 }
 }

3/30/99 Mezini/Lorenz/Lieberherr 73

participant-to-class
name map

expected interface
map

AOP with ACs

P1

P1 m 1,1
m 1,k
..
.

P2 P3

3/30/99 Mezini/Lorenz/Lieberherr 74

participant-to-class
name map

expected interface
map

AOP with ACs

P1

P1 m 1,1
m 1,k
..
.

P2 P3

participant-to-class
name map

expected interface
map

Application {
 . . .
 FIFOQueue {
 List elements = new List();

 public void put(Object e) {
 elements.insertLast(e); }

 public Object get() {
 e = elements.removeFirst();
 return e;}
}

component Monitor {
 expected {
 Data-To-Protect {* access-op(*);}
 }

 provided {
 private Semaphore mutex = new Semaphore(1);

 Data-To-Protect {

 * access-op(*) {
 mutex.P();
 * access-op(*);
 mutex.V(); }
 }
 }

connector ConcurentApplication {
 connects Application, Monitor;
 FIFOQueue implements Data-To-Protect {
 expexted { access-op = {put, get} }
 }
 ...
 }

AOP with ACs

Application {
 . . .
 class HTTPServer {

 public HTMLDocument
 getURL(String url) { . . . }

 public void
 putURL(String url, HTMLDocument doc) {
 . . .}

class WebBrowser {
 HTTPServer server;

void connectToServer(HTTPServer aServer) {
 server = aServer;}
void onMouseClick() {
 ...
 Server.getURL(linkUrlAddress);
 ... }
}

 component Rendez-Vous-Synchronization {
 expected {
 Data-To-Protect {* access-op(*);}
 }

 provided {
 Semaphore mutex = new Semaphore(0);
 Semaphore sync = new Semaphore(0);

 Data-To-Protect {

 access-op(*) {
 mutex.P();
 access-op(*);
 sync.V();}
 public void accept() {
 mutex.V(); sync.P();}
 }
 }

connector ConcWebApplication {
 connects Application, Rendez-Vous-Synchronization;

 Application.HTTPServer implements Rendez-Vous-Synchronization.Data-To-Protect {
 expexted { access-op = {putURL, getURL} }
 }
 }

ConcWebApplication.HTTPServer myServer = new ConcWebApplication. HTTPServer();
// Thread 1
while (true) {myServer.accept();}
//Thread 2 // Thread 3
Browser b1 = new Browser(); Browser b2 = new Browser();
b1.connect(myServer); b2.connect(myServer);

AOP with ACs

3/30/99 Mezini/Lorenz/Lieberherr 77

Generalized Parameterized
Programming

• Loose coupling is achieved by writing each component in
terms of interfaces expected to be implemented by other
components. This leads to a parameterized program with
cross-cutting parameters P(C1, C2, ...).

3/30/99 Mezini/Lorenz/Lieberherr 78

Enterprise Java Beans (EJB) and
Aspectual components

• EJB: a hot Java component technology from
SUN/IBM

• Aspectual components: a conceptual tool
for the design of enterprise Java beans (and
other components)

3/30/99 Mezini/Lorenz/Lieberherr 79

Enterprise JavaBeans (EJB)

• Addresses aspectual decomposition.

• An enterprise Bean provider usually does
not program transactions, concurrency,
security, distribution and other services into
the enterprise Beans.

• An enterprise Bean provider relies on an
EJB container provider for these services.

3/30/99 Mezini/Lorenz/Lieberherr 80

EJB

• Beans

• Containers: to manage and adapt the beans.
Intercept messages sent to beans and can
execute additional code. Similar to
reimplementation of expected interface in
aspectual component.

3/30/99 Mezini/Lorenz/Lieberherr 81

Aspectual components for EJB
design/implementation

• Use ACs to model transactions,
concurrency, security, distribution and other
system level issues. Translate ACs to
deployment descriptors (manually, or by
tool).

• Use ACs to model beans in reusable form.
Generate (manually or by tool) Java classes
from ACs and connectors.

3/30/99 Mezini/Lorenz/Lieberherr 82

Example: Use AC for EJB
persistence

As an example we consider how persistence is
handled by EJB containers. The deployment
descriptor of a bean contains an instance variable
ContainerManagedFields defining the instance
variables that need to be read or written. This will
be used to generate the database access code
automatically and protects the bean from database
specific code.

3/30/99 Mezini/Lorenz/Lieberherr 83

Aspectual component:
Persistence

component Persistence { PerMem p;

participant Source {

 expect Target[] targets;

 expect void writeOp();}

 // for all targets:writeOp

participant Target

 expect void writeOp();

 replace void writeOp() {

// write to persistent memory p

expected();}}

3/30/99 Mezini/Lorenz/Lieberherr 84

Deployment

connector PersistenceConn1 {

 ClassGraph g = … ; // from Company …

 Company is Persistence.Source;

 Nodes(g) is Persistence.Target;

 g is Persistence.(Source,Target);

 with {writeOp = write*};

 // must be the same writeOp for both

 // Source and Target

}

3/30/99 Mezini/Lorenz/Lieberherr 85

Generate deployment descriptor

• Connector contains information about
ContainerManagedFields

• Connector localizes information; it is not
spread through several classes

3/30/99 Mezini/Lorenz/Lieberherr 86

Composition example

• Use three aspects simultaneously with three
classes.

• Three aspects:
– ShowReadWriteAccess

– InstanceLogging

– AutoReset

• Three classes: Point, Line, Rectangle

Shapes (Point, Line, Rectangle)AutoReset

ShowReadWriteAccess

InstanceLogging

Point

Line

Rectangle

Weaved Code

3/30/99 Mezini/Lorenz/Lieberherr 88

Inheritance between components

component ShowReadWriteAccess extends
ShowReadAccess {

 participant DataToAccess {

 expect void writeOp(Object[] args);

 replace void writeOp(Object[] args){

 System.out.println(

 "Write access on " +

 this.toString());

 expected(args);}}

 }

3/30/99 Mezini/Lorenz/Lieberherr 89

InstanceLogging component
(first part)

component InstanceLogging {

 participant DataToLog {

 expect public DataToLog(Object[] args);

 replace public DataToLog(Object[] args) {

 expected(args);

 long time = System.currentTimeMillis();

 try {

 String class = this.class.getName() + " ";

 logObject.writeBytes(""New instance of " + class +

 at "" " + time + "" " \n");

 } catch (IOException e)

 {System.out.println(e.toString());}

 }

 }

3/30/99 Mezini/Lorenz/Lieberherr 90

InstanceLogging component
(second part)

 protected DataOutputStream logObject = null;

 public init() {

 try {logObject = new DataOutputStream(

 new FileOutputStream(log));}

 catch (IOException e)

 {System.out.println(e.toString());}

 }

}

3/30/99 Mezini/Lorenz/Lieberherr 91

AutoReset component

component AutoReset {

 participant DataToReset {

 expect void setOp(Object[] args);

 expect void reset();

 protected int count = 0;

 replace void setOp(Object[] args) {

 if (++count >= 100) {

 expected(args);

 count = 0;

 reset();

 }}

 }

}

3/30/99 Mezini/Lorenz/Lieberherr 92

Composition of components

connector CompositionConn1 {

 {Line, Point} is
ShowReadWriteAccess.DataToAccess with

 { readOp = get*; writeOp = set*;};

 Point is AutoReset.DataToReset with {

 setOp = set*;

 void reset() { x = 0; y = 0; }

 };

 {Line, Point, Rectangle} is

 InstanceLogging.DataToLog;}

ShapesAutoReset

ShowReadWriteAccesses

NewInstanceLogging

Point

Line

Rectangle

Weaved Code

3/30/99 Mezini/Lorenz/Lieberherr 94

Composition of components

Connector graph CompositionConn1
 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset *

InstanceLogging.DataToLog * * *

3/30/99 Mezini/Lorenz/Lieberherr 95

Modified composition

connector CompositionConn2 extends
CompositionConn1 {

 Line is AutoReset.DataToReset with {

 setOp = set*;

 void reset() {init();}

 };

}

3/30/99 Mezini/Lorenz/Lieberherr 96

Composition of components

Connector graph CompositionConn1
 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset *

InstanceLogging.DataToLog * * *

Connector graph CompositionConn2
 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset * *

InstanceLogging.DataToLog * * *

3/30/99 Mezini/Lorenz/Lieberherr 97

Modify existing connection
statements

connector CompositionConn3 extends CompositionConn1 {

 Point is AutoReset.DataToReset with {

 { setOp = set;

 void reset() {

 x = 0; y = 0; }}

 { setOp = setX;

 void reset() { x = 0;}}

 {

 setOp = setY;

 void reset() { y = 0;}}

 };

}

3/30/99 Mezini/Lorenz/Lieberherr 98

Composition of components

Connector graph CompositionConn3
 Line, Point, Rectangle

ShowReadWriteAccess.DataToAccess * *

AutoReset.DataToReset ***

InstanceLogging.DataToLog * * *

overridden: ***

3/30/99 Mezini/Lorenz/Lieberherr 99

DataWithCounter component
pairwise interaction Data/Counter
component DataWithCounter {

 private participant Counter { int i=0;

 void reset(){i=0;}; void inc(){…}; void dec(){…};}

 participant DataStructure {

 protected Counter counter;

 expect void initCounter();

 expect void make_empty();

 expect void push(Object a);

 expect void pop();

 replace void make_empty(){counter.reset();expected();}

 replace void push(Object a){counter.inc(); expected(a);}

 replace void pop() {counter.dec();expected();}

 }

}

3/30/99 Mezini/Lorenz/Lieberherr 100

DataWithLock Component
pairwise interaction Data/Lock

component DataWithLock {

 participant Data {

 Lock lock;

 expect void initLock();

 expect AnyType method_to_wrap(Object[] args);

 replace AnyType method_to_wrap(Object[] args) {

 if (lock.is_unlocked()) {

 lock.lock();

 expected(Object[] args);

 lock.unlock(); }}}

 private participant Lock {boolean l = true;

 void lock(){…};

 void unlock(){…};

 boolean is_unlocked(){return l};}

StackImpl

QueueImpl

DataWithCounter

DataWithLock

Counter

Lock

3/30/99 Mezini/Lorenz/Lieberherr 102

First connector
connector addCounter&Lock {

 StackImpl is DataWithCounter.DataStructure

 with {

 void initCounter() {counter = new Counter();}

 void push(Object obj) {push(obj));} // use name map instead

 Object top() {return top();}

 ...

 } is DataWithLock.Data

 with {

 method_to_wrap = {pop, push, top, make_empty, initCounter};

 };

 QueueImpl is DataWithCounter.DataStructure with {

 ... } is DataWithLock.Data with { ... };

}

DataWithCounter

DataWithLock DataWithCounter&Lock

3/30/99 Mezini/Lorenz/Lieberherr 104

Create composed aspects prior to
deployment

component DataWithCounterAndLock {

 participant Data =

 DataWithCounter.DataStructure is

 DataWithLock.Data with {

 method-to-wrap =

 {make_empty, pop, top, push}};

}

3/30/99 Mezini/Lorenz/Lieberherr 105

Second connector: Deploy
composed component

connector addCounter&Lock {

 StackImpl is DataWithCounterAndLock.Data with {

 void make_empty() {empty();}

 void initCounter() {

 counter = new Counter();}

 void push(Object obj) {push(obj);}

 ...

 };

 QueueImpl is DataWithCounterAndLock.Data with
{...};

}

3/30/99 Mezini/Lorenz/Lieberherr 106

END

3/30/99 Mezini/Lorenz/Lieberherr 107

Inheritance between components

component ShowReadWriteAccess extends
ShowReadAccess {

 participant DataToAccess {

 expect void writeOp(Object[] args);

 replace void writeOp(Object[] args){

 System.out.println(

 "Write access on " +

 this.toString());

 expected(args);}}

 }

3/30/99 Mezini/Lorenz/Lieberherr 108

Inheritance between connectors

connector ShowReadWriteAccessConn2
extends ShowReadAccessConn3 {

 {Point,Line,Rectangle}

 is DataToAccess with {

 writeOp = set*;

 }

