
4/2/98 AOP/Demeter 1

Smaller, More Evolvable
Software

Karl J. Lieberherr

Northeastern University

College of Computer Science

lieber@ccs.neu.edu/www.ccs.neu.edu/home/lieber

4/2/98 AOP/Demeter 2

Smaller, More Evolvable
Software

• Use standard Java and OMG technology
(UML) with better design and
implementation techniques

• Make smaller by eliminating redundancies

• Make more evolvable by bringing code
closer to design and by avoiding tangling in
code

4/2/98 AOP/Demeter 3

Thanks to Industrial
Collaborators/Sponsors

• Citibank, SAIC: Adaptive Programming

• IBM: Theory of contracts, Adaptive
Programming

• Mettler Toledo: OO Evolution

• Xerox PARC: Aspect-Oriented
Programming (Gregor Kiczales et al.)

• supported by DARPA (EDCS) and NSF

4/2/98 AOP/Demeter 4

Many Contributors

• The Demeter/C++ team (Cun Xiao, Walter
Huersch, Ignacio Silva-Lepe, Linda Seiter, …)

• The Demeter/Java team (Doug Orleans, Johan
Ovlinger, Crista Lopes, Kedar Patankar, Joshua
Marshall, Binoy Samuel, Geoff Hulten, Linda
Seiter, ...)

• Faculty: Mira Mezini, Jens Palsberg, Boaz Patt-
Shamir, Mitchell Wand

4/2/98 AOP/Demeter 5

Plan for talk

• AOP and AP (avoid code tangling)

• Bus simulation example (untangle structure
and behavior)

• Law of Demeter dilemma and AP

• Tools for AOP and AP

• Synchronization aspect

• History, Technology Transfer

4/2/98 AOP/Demeter 6

Theme, Idea

• good separation of concerns is the goal

• concerns should be cleanly localized

• programs should look like designs

• avoid code tangling

4/2/98 AOP/Demeter 7

Some sources of code tangling

• Code for a requirement is spread through
many classes. In each class, code for
different requirements is tangled together.

• Synchronization code is tangled with
sequential code.

• Data structure information is tangled with
behavior.

4/2/98 AOP/Demeter 8

Drawbacks of object-oriented
software development

• programs are tangled and redundant
– data-structure tangling, data structure encoded

repeatedly

– synchronization tangling

– distribution tangling

– behavior tangling, pattern tangling

• programs are hard to maintain and too long
– because of tangling and redundancy

4/2/98 AOP/Demeter 9

Eliminating drawbacks with
aspect-oriented programming

(AOP)

• Solution: Split software into cooperating,
loosely coupled components and aspect-
descriptions.

• Untangles and eliminates redundancy.

• Aspect description examples: marshalling,
synchronization, exceptions etc.

4/2/98 AOP/Demeter 10

Cross-cutting of components and
aspects
ordinary program

structure-shy
functionality

structure

synchronization

better program

Components

Aspect 1

Aspect 2

4/2/98 AOP/Demeter 11

Aspect-Oriented Programming
components and aspect descriptions

weaver
(compile-
time)

Source Code
(tangled code)

High-level view,
implementation may
be different

4/2/98 AOP/Demeter 12

Examples of Aspects

• Data Structure

• Synchronization of methods across classes

• Remote invocation (e.g., using Java RMI)

• Quality of Service (QoS)

• Failure handling

• External use (e.g., being a Java bean)

• Replication

4/2/98 AOP/Demeter 13

What is adaptive programming
(AP)? A special case of AOP

• One of the aspects or the components use
graphs which are referred to by traversal
strategies.

• A traversal strategy defines traversals of
graphs without referring to the details of the
graphs.

• Adaptive programming is aspect-oriented
programming with traversal strategies.

4/2/98 AOP/Demeter 14

AOP is useful with and without
objects

• AOP not tied to OO

• Also AP not tied to OO

• From now on focus on OO AP

• Remember: OO AP is a special kind of OO
AOP.

4/2/98 AOP/Demeter 15

Objects serve many purposes

• Software objects need to serve many
purposes.

• For each purpose, some of the object
structure is noise.

• Want to filter out that noise and not talk
about it. Focus only on what is relevant.
Specify object structure in one place.

4/2/98 AOP/Demeter 16

Objects serve many purposes

Four purposes

A

C

B

E

D

G

F

A(E+C)...
A(D+F)...
ABC…
A(B+G)...

shorter

4/2/98 AOP/Demeter 17

Benefits of OO AP

• robustness to changes
• shorter programs
• design matches program
 more understandable code
• partially automated evolution
• keep all benefits of OO technology
• improved productivity

Applicable to design and documentation
of your current systems.

4/2/98 AOP/Demeter 18

Five Patterns

• Structure-shy Traversal

• Selective Visitor

• Structure-shy Object

• Class Graph

• Growth Plan

4/2/98 AOP/Demeter 19

On-line information

• $D = www.ccs.neu.edu/research/demeter

• $D is Demeter Home Page

• $AOO =$D/course/f97/

• Lectures are in: $AOO/lectures

• Patterns in powerpoint/PLAP.ppt and
powerpoint/PLAP-v4.ppt

4/2/98 AOP/Demeter 20

1: Basic UML class diagrams

• Graph with nodes and directed edges and
labels for nodes and edges

• Nodes: classes, edges: relationships

• labels: class kind, edge kind, cardinality

4/2/98 AOP/Demeter 21

UML Class Diagram

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

4/2/98 AOP/Demeter 22

2: Traversals / Collaborating
classes

• To process objects we need to traverse them

• Traversal can be specified by a group of
collaborating classes

4/2/98 AOP/Demeter 23

Collaborating Classes
use connectivity in class diagram to define them succinctly
using strategy diagrams

from Company to Employee from Customer to Agent

4/2/98 AOP/Demeter 24

Collaborating Classes

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

find all persons waiting at any bus stop on a bus route

OO solution:
one method
for each red
class

4/2/98 AOP/Demeter 25

3: Traversal Strategy Graphs

• Want to define traversals succinctly

• Use graph to express abstraction of class
diagram

• Express traversal intent: useful for
documentation of object-oriented programs

4/2/98 AOP/Demeter 26

Traversal Strategy

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

first try: from BusRoute to Person

find all persons waiting at any bus stop on a bus route

4/2/98 AOP/Demeter 27

Traversal Strategy

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

 from BusRoute through BusStop to Person

find all persons waiting at any bus stop on a bus route

4/2/98 AOP/Demeter 28

Traversal Strategy

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses

busStops

waiting

0..*

0..*

0..*

Altern.: from BusRoute bypassing Bus to Person

find all persons waiting at any bus stop on a bus route

4/2/98 AOP/Demeter 29

Robustness of Strategy

BusRoute BusStopList

BusStopBusList

Bus PersonList

Person

passengers

buses
busStops

waiting

0..*

0..*

0..*

 from BusRoute bypassing Bus to Person

VillageList

Village

villages

0..*

find all persons waiting at any bus stop on a bus route

4/2/98 AOP/Demeter 30

Filter out noise in class diagram

•only three out of seven classes
 are mentioned in traversal
 strategy!

from BusRoute through BusStop to Person

BusRoute VillageList Village BusStopList BusStop
PersonList Person

replaces traversal methods for the classes

4/2/98 AOP/Demeter 31
warm climate cold climate

same strategy in different class graphs: similar traversals
same seeds in different climates: similar trees

Nature Analogy

4/2/98 AOP/Demeter 32

same cone different planes define different point sets
same strategy different class graphs define different path sets

Mathematical Analogy

4/2/98 AOP/Demeter 33

Why Traversal Strategies?

• Law of Demeter: a method should talk only to its
 friends:
 arguments and part objects (computed or stored)
 and newly created objects

• Dilemma:
•Small method problem of OO (if followed) or
•Unmaintainable code (if not followed)

•Traversal strategies are the solution to this dilemma

4/2/98 AOP/Demeter 34

Law of Demeter (simplified)

B

preferred_supplier

M

C

member_variable_class

member_function

supplier

B

preferred_supplier

Msupplier
argument_class

B, C: Class
M: Method

OR

All suppliers should be preferred suppliers

4/2/98 AOP/Demeter 35

4: Adaptive Programming

• How can we use strategies to program?

• Need to do useful work besides traversing:
visitors

• Incremental behavior composition using
visitors

4/2/98 AOP/Demeter 36

Writing Adaptive Programs with
Strategies

BusRoute {
 traversal waitingPersons(PersonVisitor) {
 through BusStop to Person; } // from is implicit
 int printWaitingPersons() // traversal/visitor weaving instr.
 = waitingPersons(PrintPersonVisitor);
PrintPersonVisitor {
 before Person (@ … @) … }
PersonVisitor {init (@ r = 0; @) … }

Extension of Java: keywords: traversal init
through bypassing to before after etc.

strategy: from BusRoute through BusStop to Person

4/2/98 AOP/Demeter 37

Adaptive Programming

Strategy Diagrams

Object Diagrams

define family of

Class Diagrams

are use-case based
abstractions of

4/2/98 AOP/Demeter 38

Adaptive Programming

Strategy Diagrams

Object Diagrams

define traversals
 of

4/2/98 AOP/Demeter 39

Adaptive Programming

Strategy Diagrams

Visitors

guide and
inform

4/2/98 AOP/Demeter 40

AP

• An application of automata theory.

• Apply idea of regular expressions and finite
automata to data navigation.

4/2/98 AOP/Demeter 41

Strategy Diagrams

Nodes: positive information: Mark corner

stones in class diagram: Overall topology

 of collaborating classes. 3 nodes:

from BusRoute

 through BusStop

to Person

BusRoute BusStop Person

4/2/98 AOP/Demeter 42

Strategy Diagrams

Edges: negative information:
Delete edges from class diagram.

BusRoute Person

from BusRoute bypassing Bus to Person

bypassing edges incident with Bus

4/2/98 AOP/Demeter 43

5: Tools for Aspect-Oriented and
Adaptive Programming

• many free tools available, including
Aspect/J from Xerox PARC

• one commercial tool which uses a point
and-click interface to define traversals
(StructureBuilder from Tendril)

4/2/98 AOP/Demeter 44

What is Demeter

• A high-level interface to object-oriented
programming and specification systems

• Demeter System/OPL =

 Demeter Method + Demeter Tools/OPL

• So far: OPL = {Java, C++, Perl, Borland
Pascal, Flavors}

• Demeter Tools/OPL = Demeter/OPL

4/2/98 AOP/Demeter 45

Demeter/Java in Demeter/Java

compiler/
weaver

structure (*.cd)
class diagrams

structure-shy
behavior
 (*.beh)
strategies and
visitors

structure-shy
object description
(*.input, at runtime)synchronization (*.cool)

multi threading

structure-shy
communication
(*.ridl)
distribution
(under
development)

4/2/98 AOP/Demeter 46

Goal of Demeter/Java

• Avoid code tangling
– traversal strategies and visitors untangle

structure and behavior

– visitors untangle code for distinct behaviors

– COOL untangles synchronization issues and
behavior

– RIDL untangles remote invocation issues and
behavior

4/2/98 AOP/Demeter 47

Free Tools on WWW

• Demeter/C++

• Demeter/Java

• Demeter/StKlos

• Dem/Perl5

• Dem/C++

• Dem/CLOS

• Demeter/Object Pascal

last five developed outside our group

Aspect/J from Xerox

4/2/98 AOP/Demeter 48

Cross-cutting in Demeter/Java

generated
Java program

structure-shy
functionality

structure

synchronization

Demeter/Java program

replicated!

4/2/98 AOP/Demeter 49

Demeter/Java

Executable
Java code for your favorite
commercial Java Software
Development Environment

•class diagrams
•functionality

•strategies
•visitors

•etc.

weaver

www.ccs.neu.edu/research/demeter

4/2/98 AOP/Demeter 50

AP Studio

•visual development of traversal strategies relative
 to class diagram
•visual feedback about collaborating classes
•visual development of annotated UML class diagrams

4/2/98 AOP/Demeter 51

Strengths of Demeter/Java

•Theory
•Novel algorithms for strategies
•Formal semantics
•correctness theorems

•Practice
•Extensive feedback (7 years)
•Reflective implementation

4/2/98 AOP/Demeter 52

Meeting the Needs

• Demeter/Java
– Easier evolution of class diagrams (with

strategy diagrams)

– Easier evolution of behavior (with visitors)

– Easier evolution of objects (with sentences)

4/2/98 AOP/Demeter 53

Commercial Tools available on
WWW

StructureBuilder from Tendril Software Inc.

Has support for traversals

www.tendril.com

4/2/98 AOP/Demeter 54

Tendril Software, Inc.

• Researched in Fall/Winter of 1995

• Founded in 1996

• Sells a new generation of Java development
tools using some of the Demeter ideas:
point and click traversals and object
transportation

4/2/98 AOP/Demeter 55

Generated Methods

• Sequence of actions which contain enough
detail to actually generate code

• Contains a palette of data structures

• New data structures can be added by writing
new templates

4/2/98 AOP/Demeter 56

Synchronization Aspect

• Developed by Crista Lopes

• Separate synchronization and behavior

4/2/98 AOP/Demeter 57

Problem with synchronization
code: it is tangled with

component code

class BoundedBuffer {

 Object[] array;

 int putPtr = 0, takePtr = 0;

 int usedSlots = 0;

 BoundedBuffer(int capacity){

 array = new Object[capacity];

 }

4/2/98 AOP/Demeter 58

Tangling
synchronized void put(Object o) {
 while (usedSlots == array.length) {
 try { wait(); }
 catch (InterruptedException e) {};
 }
 array[putPtr] = o;
 putPtr = (putPtr +1) % array.length;
 if (usedSlots==0) notifyall();
 usedSlots++;
 // if (usedSlots++==0) notifyall();
}

4/2/98 AOP/Demeter 59

Solution: tease apart basics and
synchronization

• write core behavior of buffer

• write coordinator which deals with
synchronization

• use weaver which combines them together

• simpler code
• replace synchronized, wait,
notify and notifyall by coordinators

4/2/98 AOP/Demeter 60

With coordinator: basics

BoundedBuffer {
public void put (Object o) (@
 array[putPtr] = o;
 putPtr = (putPtr+1)%array.length;
 usedSlots++; @)
public Object take() (@
 Object old = array[takePtr];
 array[takePtr] = null;
 takePtr = (takePtr+1)%array.length;
 usedSlots--;
 return old; @)

Using Demeter/Java, *.beh file

4/2/98 AOP/Demeter 61

Coordinator

coordinator BoundedBuffer {
 selfex {put, take}
 mutex {put, take}
 boolean empty=(@true@), full=(@false@);

exclusion sets

coordinator variables

Using Demeter/COOL, put into *.cool file

4/2/98 AOP/Demeter 62

Coordinator

 put requires (@ !full @) {
 on exit (@ empty=false;
 if (usedSlots==array.length)
 full=true; @)}
 take requires (@ !empty @) {
 on exit (@ full=false;
 if (usedSlots==0)
 empty=true; @)}
}

method managers with requires clauses and entry/exit clauses

4/2/98 AOP/Demeter 63

exclusion sets

• selfex {f,g}

– only one thread can call a selfex method

• mutex {g,h,i} mutex {f,k,l}

– if a thread calls a method in a mutex set, no
other thread may call a method in the same
mutex set.

4/2/98 AOP/Demeter 64

Design decisions behind COOL

• The smallest unit of synchronization is the
method.

• The provider of a service defines the
synchronization (monitor approach).

• Coordination is contained within one
coordinator.

• Association from object to coordinator is
static.

4/2/98 AOP/Demeter 65

Design decisions behind COOL

• Deals with thread synchronization within
each execution space. No distributed
synchronization.

• Coordinators can access the objects’ state,
but they can only modify their own state.
Synchronization does not “disturb” objects.
Currently a design rule not checked by
implementation.

4/2/98 AOP/Demeter 66

COOL
• Provides means for dealing with mutual

exclusion of threads, synchronization state,
guarded suspension and notification

Thread 1 Thread 2

!

coordinator

4/2/98 AOP/Demeter 67

COOL
• Identifies “good” abstractions for

coordinating the execution of OO programs
– coordination, not modification of the objects

– mutual exclusion: sets of methods

– preconditions on methods

– coordination state (history-sensitive schemes)

– state transitions on coordination

4/2/98 AOP/Demeter 68

COOL Shapepublic class Shape {
 protected double x_ = 0.0;
 protected double y_ = 0.0;
 protected double width_ = 0.0;
 protected double height_ = 0.0;

 double x() { return x_(); }
 double y() { return y_(); }
 double width(){
 return width_();
 }
 double height(){
 return height_();
 }

 void adjustLocation() {
 x_ = longCalculation1();
 y_ = longCalculation2();
 }

 void adjustDimensions() {
 width_ = longCalculation3();
 height_ = longCalculation4();
 }
}

coordinator Shape {
 selfex {adjustLocation,
 adjustDimensions}
 mutex {adjustLocation,x}
 mutex {adjustLocation,y}
 mutex {adjustDimensions,
 width}
 mutex {adjustDimensions,
 height}
}

plain Java

4/2/98 AOP/Demeter 69

Risks of adaptive OO

• Advantages: Simpler programs for next
project (compensates for learning curve).
Programs are easier to evolve and maintain.

• Disadvantages: Additional training costs.
New concepts, debugging techniques and
tools to learn.

4/2/98 AOP/Demeter 70

Experience regarding training
costs

• GTE project which took approximately four
man months by non-adaptive techniques,
took only 7 days to complete with adaptive
techniques (using Demeter/Java).

• Our experience with Demeter/C++ is that
the first project also has a shorter
development time and maintenance is much
simpler.

4/2/98 AOP/Demeter 71

Real Life

• Used in several commercial projects

• Implemented by several independent
developers

• Used in several courses, both academic and
commercial

4/2/98 AOP/Demeter 72

Scenarios

• Best: Use Demeter/Java for future projects.
Build library of adaptive components.
Reduce software development and
maintenance costs significantly.

• Worst: Use Demeter/Java only to generate
Java code, but then you maintain Java code
manually. You still win since a lot of useful
Java code is produced.

4/2/98 AOP/Demeter 73

History

• Hades (HArdware DEScription language
by Niklaus Wirth at ETH Zurich)

• Zeus (a brother of Hades, a silicon
compilation language developed at
Princeton University/MIT, implemented at
GTE Labs; predecessor of VHDL)

• Demeter (a sister of Zeus, used to
implement Zeus, started at GTE Labs)

1982

82-85

1985-

4/2/98 AOP/Demeter 74

History

• First traversal specifications

• Separation of Concerns paper by Huersch
and Lopes started “untangling” movement
TR NU-CCS-95-03. Collaboration with
Xerox PARC started (initiated in 1994).

• Gregor Kiczales and his group name and
further develop AOP.

1990

1995

1996

4/2/98 AOP/Demeter 75

Technology Evolution
Object-Oriented Programming

Adaptive Programming

Aspect-Oriented Programming

Law of Demeter dilemma
Tangled structure/behavior

Tangled code

Traversal/
Visitor style

4/2/98 AOP/Demeter 76

Benefits of Demeter

• robustness to changes
• shorter programs
• design matches program,
 more understandable code
• partially automated evolution
• keep all benefits of OO technology
• improved productivity

Applicable to design and documentation
of your current systems.

4/2/98 AOP/Demeter 77

Related Work

• Gregor Kiczales and his group: Open
Implementation, Aspect-Oriented Programming

• Polytypic programming and shape-polymorphism

• Alberto Mendelzon: GraphLog query language,
query languages for semi-structured data

4/2/98 AOP/Demeter 78

Where to get more information

• Adaptive Programming book

• Demeter/Java page

• Demeter home page:

www.ccs.neu.edu/research/demeter/

4/2/98 AOP/Demeter 79

Summary

• What has been learned: Concepts of AOP,
simple UML class diagrams, strategies and
adaptive programs

• How can you apply:
– Demeter/Java takes adaptive programs as input

– Document object-oriented programs with
aspect-descriptions and strategies

– Design in terms of traversals and visitors and
aspects.

