Smaller, More Evolvable
Software

Karl J. Lieberherr
Northeastern University
College of Computer Science
lieber @ccs.neu.edu/www.ccs.neu.edu/home/lieber

4/2/98 AOP/Demeter 1

Smaller, More Evolvable
Software

» Use standard Java and OM G technology
(UML) with better design and
implementation techniques

» Make smaller by eliminating redundancies

» Make more evolvable by bringing code
closer to design and by avoiding tangling in
code

4/2/98 AOP/Demeter 2




Thanks to Industrial
Collaborators/Sponsors

Citibank, SAIC: Adaptive Programming
IBM: Theory of contracts, Adaptive
Programming

Mettler Toledo: OO Evolution ,7

Xerox PARC: Aspect-Oriented
Programming (Gregor Kiczales et al.)

 supported by DARPA (EDCS) and NSF

4/2/98 AOP/Demeter 3

Many Contributors

* The Demeter/C++ team (Cun Xiao, Walter
Huersch, Ignacio Silva-Lepe, Linda Seiter, ...)

» The Demeter/Javateam (Doug Orleans, Johan
Ovlinger, Crista Lopes, Kedar Patankar, Joshua
Marshall, Binoy Samuel, Geoff Hulten, Linda
Seiter, ...)

» Faculty: MiraMezini, Jens Palsberg, Boaz Pait-
Shamir, Mitchell Wand

4/2/98 AOP/Demeter 4




Plan for talk

AOP and AP (avoid code tangling)
Bus simulation example (untangle structure

and behavior)

4/2/98

Law of Demeter dilemmaand AP
Toolsfor AOP and AP
Synchronization aspect

History, Technology Transfer

AOP/Demeter 5

4/2/98

Theme, Idea

good separation of concernsisthe goa
concerns should be cleanly localized
programs should look like designs
avoid code tangling

AOP/Demeter 6




Some sources of code tangling

» Code for arequirement is spread through
many classes. In each class, code for
different requirements is tangled together.

« Synchronization code is tangled with
sequential code.

 Data structure information is tangled with
behavior.

4/2/98 AOP/Demeter

Drawbacks of object-oriented
software devel opment

 programs are tangled and redundant
— data-structure tangling, data structure encoded
repeatedly
— synchronization tangling
— distribution tangling
— behavior tangling, pattern tangling
 programs are hard to maintain and too long
— because of tangling and redundancy

4/2/98 AOP/Demeter




Eliminating drawbacks with
aspect-oriented programming
(AOP)

 Solution: Split software into cooperating,
loosely coupled components and aspect-
descriptions.

 Untangles and eliminates redundancy.

» Aspect description examples. marshalling,
synchronization, exceptions etc.

4/2/98 AOP/Demeter 9

Cross-cutting of components and

asp.eCtS better program
ordinary program

I Components
]

[

I

] Aspect 1
E

.

[

]

—

[ Aspect 2
—

I

4/2/98 AOP/Demeter 10




Aspect-Oriented Programming

components and aspect descriptions

High-level view,

implementation may

be different

N
weaver Source Code
(compile- (tangled code)
time) N
4/2/98 AOP/Demeter 11
Examples of Aspects

» Data Structure

« Synchronization of methods across classes
» Remote invocation (e.g., using Java RMI)
» Quality of Service (QoS)

 Failure handling

» External use (e.g., being a Java bean)

* Replication

4/2/98 AOP/Demeter 12




Wheat is adaptive programming
(AP)? A special case of AOP

» One of the aspects or the components use
graphs which are referred to by traversal
strategies.

» A traversal strategy defines traversals of
graphs without referring to the details of the
graphs.

 Adaptive programming is aspect-oriented
programming with traversal strategies.

4/2/98 AOP/Demeter 13

AOP isuseful with and without
objects

AOP not tied to OO

Also AP not tied to OO

From now on focus on OO AP

Remember: OO AP isaspecia kind of OO
AOP.

4/2/98 AOP/Demeter 14




Objects serve many purposes

 Software objects need to serve many
pUrpOSES.

 For each purpose, some of the object
structure is noise.

» Want to filter out that noise and not talk

about it. Focus only on what is relevant.
Specify object structure in one place.

4/2/98 AOP/Demeter 15

Objects serve many purposes

shorter A(E+C)...
A(D+F)...
ABC...
A(B+G)...

4/2/98 AOP/Demeter 16




Benefits of OO AP

* robustness to changes

« shorter programs

» design matches program =
more understandable code -

* partially automated evolution

* keep all benefits of OO technology

* improved productivity

Applicable to design and documentation
of your current systems.

4/2/98 AOP/Demeter 17

Five Patterns

Structure-shy Traversal
Selective Visitor
Structure-shy Object
Class Graph

Growth Plan

4/2/98 AOP/Demeter 18




On-line information

« $D = www.ccs.neu.edu/research/demeter
e $D is Demeter Home Page

« $A00 =3$D/course/f97/

e Lecturesarein: $SAOO/lectures

 Patternsin powerpoint/PLAP.ppt and
powerpoint/PLAP-v4.ppt

4/2/98 AOP/Demeter 19

1. Basic UML class diagrams

 Graph with nodes and directed edges and
labels for nodes and edges

» Nodes: classes, edges. relationships
* labels: class kind, edge kind, cardinality

4/2/98 AOP/Demeter 20




UML Class Diagram

buses
0.*
waiting
4/2/98 AOP/Demeter 21

2. Traversals/ Collaborating
classes

» To process objects we need to traverse them

» Traversal can be specified by a group of
collaborating classes

4/2/98 AOP/Demeter 22




Collaborating Classes

use connectivity in class diagram to define them succinctly
using strategy diagrams

f r omCompany t 0 Employee \f r omCustomer t o Agent

4/2/98 AOP/Demeter 23

Collaborating Classes

find all persons waiting at any bus stop on a bus route

buses OO solution:

‘ one method
_ for each red
class
0..*

4/2/98 AOP/Demeter 24




3: Traversal Strategy Graphs

» Want to define traversals succinctly

» Use graph to express abstraction of class
diagram

o Expresstraversal intent: useful for
documentation of object-oriented programs

4/2/98 AOP/Demeter 25

find all persons waiting at any bus stop on a bus route
Traversal Strategy

first try: f r omBusRoutet o Person

buses

A
*
\o.
LU :

4/2/98 AOP/Demeter 26




find all persons waiting at any bus stop on a bus route

Traversal Strategy

f romBusRoutet hr ough BusStop t o Person

waiting
passengers

——

4/2/98 AOP/Demeter 27

busStops

IIUI
;

find all persons waiting at any bus stop on a bus route

Traversal Strategy

Altern.: f r omBusRoute bypassi ng Bust o Person

waiting
passengers

- —

4/2/98 AOP/Demeter

busStops

e=18l
z
8




find all persons waiting at any bus stop on a bus route

Robustness of Strategy

f r omBusRoute bypassi ng Bust o Person

buses

passengers

A
0 *
\ .

4/2/98 AOP/Demeter 29

Filter out noise in class diagram

only three out of seven classes
are mentioned in traversal
strategy!

-— -
—_—
—
—_—
—_—

f r omBusRoutet hr ough BusStop t o Person

replaces traversal methods for the classes
BusRoute VillagelList Village BusStopList BusStop
PersonList Person

4/2/98 AOP/Demeter 30




Nature Analogy

same strategy in different class graphs. similar traversals
sameseeds indifferent climates: similar trees

4z WM climate JU— cold climate .

same cone different planes define different point sets
same strategy different class graphs define different path sets

Mathematical Analogy

4/2/98 AOP/Demeter 32




Why Traversal Strategies?

 Law of Demeter: a method should talk only to its

friends;

arguments and part objects (computed or stored)

and newly created objects

*Unmaintainable code (if not followed)

hra §  Dilemma:
é} Small method problem of OO (if followed) or
-9

-

4/2/98 AOP/Demeter

S> *Traversal strategies are the solution to this dilemma

33

Law of Demeter (simplified)

All suppliers should be preferred suppliers

preferred_supplier

member_variable class

>

member_function

OR

4/2/98 AOP/Demeter

B, C: Class
M: Method

preferred_supplier

supplier
argument_class




4. Adaptive Programming

» How can we use strategies to program?

» Need to do useful work besides traversing:
visitors

* Incremental behavior composition using
visitors

4/2/98 AOP/Demeter 35

Writing Adaptive Programs with
Strategies

strategy: f r omBusRoutet hr ough BusStopt o Person

BusRoute {
t raver sal waitingPersons(PersonVisitor) {

t hr ough BusStop t o Person; } // f r omisimplicit
I nt printWaitingPersons() // traversal/visitor weaving instr.
= waltingPersons(PrintPersonVisitor);
PrintPersonVisitor {
before Person (@ ... @) ... }
PersonVisitor {i nit (@r=0; @) ... }

Extension of Java: keywords: t raversal init
t hrough bypassing to before after etc.

4/2/98 AOP/Demeter 36




Adaptive Programming

Strategy Diagrams

- are use-case based
abstractions of

Class Diagrams
- define family of

Object Diagrams

4/2/98 AOP/Demeter 37

Adaptive Programming

Strategy Diagrams

define traversals
of

Object Diagrams

4/2/98 AOP/Demeter 38




Adaptive Programming
Strategy Diagrams
guide and
' inform
Visitors

4/2/98 AOP/Demeter 39

AP

» An application of automata theory.

» Apply ideaof regular expressions and finite
automata to data navigation.

4/2/98 AOP/Demeter 40




Strategy Diagrams

= = =
BusRoute BusStop  Person

Nodes: positive information: Mark corner

stonesin class diagram: Overall topology
of collaborating classes. 3 nodes:
f r omBusRoute
t hr ough BusStop

t 0 Person

4/2/98 AOP/Demeter 41

Strategy Diagrams

bypassing edges incident with Bus
= =

BusRoute Person

Edges. negative information:
Delete edges from class diagram.

f r omBusRoute bypassi ng Bust o Person

4/2/98 AOP/Demeter 42




5: Tools for Aspect-Oriented and
Adaptive Programming

* many free toolsavailable, including
Aspect/J from Xerox PARC

» one commercia tool which uses apoint
and-click interface to define traversals
(StructureBuilder from Tendril)

4/2/98 AOP/Demeter 43

What is Demeter

A high-level interface to object-oriented
programming and specification systems
Demeter System/OPL =

Demeter Method + Demeter ToolsOPL

So far: OPL ={Java, C++, Perl, Borland
Pascal, Flavors}

Demeter Tools/OPL = Demeter/OPL

4/2/98 AOP/Demeter 44




Demeter/Javain Demeter/Java

structure (*.cd)
class diagrams

structure-shy structure-shy
communication behavior
(*.ridl) (*.beh)
distribution st_rqtegi esand
(under visitors
devel opment)
structure-shy
object description
synchronization (*.cool) (*.input, at runtime)
multi threading
4/2/98 AOP/Demeter 45

Goad of Demeter/Java

» Avoid code tangling

— traversal strategies and visitors untangle
structure and behavior

— visitors untangle code for distinct behaviors

— COOL untangles synchronization issues and
behavior

— RIDL untangles remote invocation issues and
behavior

4/2/98 AOP/Demeter 46




Free Tools on WWW

 Demeter/C++
e Demeter/Java =@
* Demeter/StKlos

e Dem/Perl5 _ .

last five developed outside our group
 Dem/C++
« Dem/CLOS Aspect/J from Xerox

» Demeter/Object Pascal

4/2/98 AOP/Demeter 47

Cross-cutting in Demeter/Java

generated Demeter/Java program
Java program

replicated!

4/2/98 AOP/Demeter 48




Demeter/Java

) WwWw.ccs.neu.edu/research/demeter
eclass diagrams

functionality
estrategies
svisitors

Executable
Java code for your favorite
commercial Java Software
Development Environment

4/2/98 AOP/Demeter 49

AP Studio

svisual development of traversal strategies relative
to classdiagram
svisual feedback about collaborating classes
svisual development of annotated UML class diagrams

4/2/98 AOP/Demeter 50




Strengths of Demeter/Java

eTheory
<Novel algorithms for strategies
<Formal semantics
ecorrectness theorems

=Practice
=Extensive feedback (7 years)
=Reflective implementation

4/2/98 AOP/Demeter 51

Meeting the Needs

» Demeter/Java

— Easier evolution of class diagrams (with
strategy diagrams)

— Easier evolution of behavior (with visitors)
— Easier evolution of objects (with sentences)

4/2/98 AOP/Demeter 52




Commercial Tools available on
WWW

StructureBuilder from Tendril Software Inc.

Has support for traversals

www.tendril.com

4/2/98 AOP/Demeter 53

Tendril Software, Inc.

» Researched in Fall/Winter of 1995
» Founded in 1996

» Sdllsanew generation of Java development
tools using some of the Demeter ideas:
point and click traversals and object
transportation

4/2/98 AOP/Demeter 54




Generated Methods

 Sequence of actions which contain enough
detail to actually generate code

» Contains a palette of data structures

» New data structures can be added by writing
new templates

4/2/98 AOP/Demeter 55

Synchronization Aspect

» Developed by Crista Lopes
» Separate synchronization and behavior

4/2/98 AOP/Demeter 56




Problem with synchronization
code: it istangled with
component code

cl ass BoundedBuffer {
bj ect[] array;
int putPtr = 0, takePtr = 0;
int usedSlots = 0;
BoundedBuf fer (i nt capacity){
array = new (bj ect[capacity];

4/2/98 AOP/Demeter

57

Tangling

synchroni zed void put (QObject 0) {
while (usedSlots == array.length) {
try { wait(); }
catch (InterruptedException e) {};

|3
array[putPtr] = o;

putPtr = (putPtr +1 ) % array. | ength;
if (usedSlots==0) notifyall();
usedSl ot s++;

/1 if (usedSlots++==0) notifyall();

4/2/98 AOP/Demeter

58




Solution: tease apart basics and
synchronization

e write core behavior of buffer

» write coordinator which deals with
synchronization

* use weaver which combines them together
» simpler code

» replacesynchroni zed, wait,
notifyandnotifyal | by coordinators

4/2/98 AOP/Demeter 59

Usi ng Deneter/Java, *.beh file
With coordinator: basics

BoundedBuf fer {

public void put (Qhject 0) (@
array[putPtr] = o;
putPtr = (putPtr+1)%rray. | ength;
usedSl ots++; @

public Object take() (@
bject old = array[takePtr];
array[takePtr] = null;
takePtr = (takePtr+1)%array.| ength;
usedSl ot s--;
return old; @

4/2/98 AOP/Demeter 60




Usi ng Deneter/COCL, put into *.cool file

Coordinator

coor di nat or BoundedBuffer {
sel fex {put, take}>
nut ex {put, take} ~

bool ean enmpty=(@rue@, full=(@al se@,;

exclusion sets

T

coordinator variables

4/2/98 AOP/Demeter 61

Coordinator

method managers with requires clauses and entry/exit clauses
put requires (@!full @ {
on exit (@enpty=false;
i f (usedSl ots==array. | ength)
full=true;, @}
take requires (@'!enmpty @ {
on exit (@full=fal se;
i f (usedSl ot s==0)
enpty=true; @}

4/2/98 AOP/Demeter 62




exclusion sets

« selfex {f, g}
— only one thread can call a selfex method
e mutex {g,h,i} mutex {f,k, I}

— if athread calls amethod in a mutex set, no
other thread may call a method in the same
mutex set.

4/2/98 AOP/Demeter 63

Design decisions behind COOL

» The smallest unit of synchronization isthe
method.

» The provider of aservice definesthe
synchronization (monitor approach).

e Coordination is contained within one
coordinator.

» Association from object to coordinator is
stetic.

4/2/98 AOP/Demeter 64




Design decisions behind COOL

» Dealswith thread synchronization within
each execution space. No distributed
synchronization.

» Coordinators can access the objects’ state,
but they can only modify their own state.

Synchronization does not “disturb” objects.

Currently adesign rule not checked by
implementation.

4/2/98 AOP/Demeter

65

COOL

» Provides meansfor dealing with mutual
exclusion of threads, synchronization state,
guarded suspension and notification

. @
‘<—
@ \Q Q

coordinator

4/2/98 AOP/Demeter

66




COOL

o |dentifies“good” abstractions for
coordinating the execution of OO programs
— coordination, not modification of the objects
— mutual exclusion: sets of methods
— preconditions on methods
— coordination state (history-sensitive schemes)
— state transitions on coordination

4/2/98

AOP/Demeter

67

pl ain Java

public class Shape {

}

protected double x_ =
protected double y_ =

protected double wi dth_ 0.0;
protected doubl e height_ = 0.0;

0.
0.

oo

doubl e x() { return x_(); }
double y() { returny_(); }
doubl e wi dt h(){
return width_();
}
doubl e hei ght (){
return height_();
}
voi d adj ustLocation() {
X_ = longCal cul ati onl();
y_ = longCal cul ation2();
}
voi d adj ust Di nensi ons() {
wi dt h_ = longCal cul ati on3();
hei ght _ = I ongCal cul ati on4();
}

4/2/98 AOHR

COOL Shape

coordi nat or Shape {

sel fex {adjustLocation,
adj ust Di nensi ons}

{adj ust Locat i on, x}

{adj ust Locat i on, y}

{adj ust Di nensi ons,
wi dt h}

{adj ust Di nensi ons,
hei ght }

mut ex
mut ex
mut ex

mut ex

Demeter

68




Risks of adaptive OO

» Advantages. Simpler programs for next
project (compensates for learning curve).
Programs are easier to evolve and maintain.

» Disadvantages. Additional training costs.
New concepts, debugging techniques and
toolsto learn.

4/2/98 AOP/Demeter 69

Experience regarding training
costs

» GTE project which took approximately four
man months by non-adaptive techniques,
took only 7 days to complete with adaptive
techniques (using Demeter/Java).

» Our experience with Demeter/C++ is that
the first project also has a shorter
development time and maintenance is much
simpler.

4/2/98 AOP/Demeter 70




Redl Life

o Used in several commercial projects

» Implemented by severa independent
developers

» Used in severa courses, both academic and
commercial

4/2/98 AOP/Demeter 71

Scenarios

» Best: Use Demeter/Javafor future projects.
Build library of adaptive components.
Reduce software development and
maintenance costs significantly.

» Worst: Use Demeter/Java only to generate
Java code, but then you maintain Java code
manually. You still win since alot of useful
Java code is produced.

4/2/98 AOP/Demeter 2




History

» Hades (HArdware DEScription language
%% by Niklaus Wirth at ETH Zurich)

» Zeus (abrother of Hades, asilicon

8285 compilation language devel oped at
Princeton University/MIT, implemented at

GTE Labs; predecessor of VHDL)

* Demeter (asister of Zeus, used to
%" implement Zeus, started at GTE Labs)

4/2/98 AOP/Demeter 73

History

» First traversal specifications

= Separation of Concerns paper by Huersch

*% " and L opes started “ untangling” movement
TR NU-CCS-95-03. Collaboration with
Xerox PARC started (initiated in 1994).

» Gregor Kiczales and his group name and
1996 further develop AOP.

4/2/98 AOP/Demeter 74




Technology Evolution
Object-Oriented Programming

Traversal/ Law of Demeter dilemma
Visitor style Tangled structure/behavior

Adaptive Programming

Tangled code

Aspect-Oriented Programming

4/2/98 AOP/Demeter 75

Benefits of Demeter

* robustness to changes

« shorter programs

» design matches program, =
more understandable code -

* partially automated evolution

* keep all benefits of OO technology

* improved productivity

Applicable to design and documentation
of your current systems.

4/2/98 AOP/Demeter 76




Related Work

» Gregor Kiczales and his group: Open
| mplementation, Aspect-Oriented Programming
* Polytypic programming and shape-polymorphism
» Alberto Mendelzon: GraphL og query language,
guery languages for semi-structured data

4/2/98 AOP/Demeter 7

Where to get more information

 Adaptive Programming book

* Demeter/Java page

* Demeter home page:
www.ccs.neu.edu/research/demeter/

4/2/98 AOP/Demeter 78




Summary

» What has been learned: Concepts of AOP,
simple UML class diagrams, strategies and
adaptive programs

* How can you apply:

— Demeter/Java takes adaptive programs as input
— Document object-oriented programs with
aspect-descriptions and strategies

— Design in terms of traversals and visitors and
ey ESPECES.

AOP/Demeter 79




