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Abstract 

We study bottleneck constra&ed network upgradin 9 problems. We are given an edge weighted 
graph G = (V ,E)  where node v E V can be upgraded at a cost of c(v). This upgrade reduces the 
delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be 
upgraded so that the resulting network has good performance. The performance is measured by 
the bottleneck weight of a minimum spanning tree. 

We give a polynomial time approximation algorithm with logarithmic performance guarantee, 
which is tight within a small constant factor as shown by our hardness results. (~) 1999 Published 
by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Several problems arising in areas such as communication networks can be expressed 
in the following general form: Enhance the performance of an underlying network by 
carrying out upgrades at certain nodes or edges of the network [2, 13, 14, 9]. 

In communication networks, upgrading a node corresponds to installing faster com- 
munication equipment at that node. Such an upgrade reduces the communication 
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delay along each edge emanating from the node. Similarly, upgradin9 an edge can be 
achieved by replacing the old line with a new optical cable. In general, there is a cost 
for improving each node or edge in the existing network by a unit amount. The goal 
is to design a strategy to upgrade the network such that it has a good performance 
while the upgrading cost is minimized. 

2. Preliminaries and problem definition 

The node based upgradin9 model discussed in this paper can be formally described 
as follows. Let G=(V,E)  be a connected undirected graph with n:=lV ] vertices 
and m:=  IE[ edges. For each edge e CE, we are given three integers do(e)>>.dl(e)>>. 
d2(e)>>.O. The value di(e) represents the length or delay of the edge e if exactly i of  
its endpoints are upgraded. Thus, the upgrade of a node v reduces the delay of  each 
edge incident with v. 

For each node v E V the value c(v) specifies how expensive it is to upgrade the 
node. For a subset W of V, the cost of upgrading all the nodes in W, denoted by 
c(W), is equal to ~vcwc(v).  The edge weight function resulting from an upgrade of 
the node set W is denoted by dw, that is 

d0(e) if none of the endpoints of e belongs to W, 
dw(e)=  dl(e) if exactly one endpoint of e belongs to W, 

d2(e) if both endpoints of e belong to W. 

We call the maximum delay of an edge in a subgraph the bottleneck delay of that 
subgraph. The bottleneck 9raph Bottleneck(G, dw,D) contains all edges e EE with 

dw(e) <~D. 
Given a bound D on the bottleneck delay of a subgraph, we partition the set of edges 

into four sets according to how many of the endpoints must be upgraded in order to 
decrease the delay of an edge below the threshold D. An edge of delay do(e)<~D 
is called an uncritical edge. An edge e is said to be 1-criticaL if  do(e)>D>~dl(e), 
and 2-critical, if dl(e)>D>~d2(e). Finally, if d2(e)>D, the edge e is called useless. 
Without loss of generality we can assume that the graph does not contain any useless 

edges. 
We are now ready to formulate the problems studied in this paper. 

Definition 1 (Bottleneck tree upgrading problem). Let G=(V,E)  be an edge and 
node weighted graph as above. Given a bound D, the bottleneck spannin9 tree up- 
9rodin9 problem (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE), is to upgrade 
a set W C V of nodes such that the resulting graph has a spanning tree of bottleneck 
delay at most D and c(W) is minimized. 

The long problem name (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) might 
read confusing. However, the above problem is an example for a bicriteria problem. 
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The notation and the framework developed for this class of problems are described in 

the following two subsections. 

2.1. Bicriteria problems and approximations 

A general bicriteria network upgrade problem ( f l , f 2 , 5  e) is defined by two mini- 

mization objectives f l  and f2 and a class 5 a of subgraphs. The problem specifies a 
budget value D on the objective f2. A solution x is valid, if it belongs to the graph 
class 5 e and satisfies the constraint f2(x)<~D on the objective f2. The goal is to find 

a fl-minimal solution amongst all valid solutions. 
Since the problems which arise are hiP-hard in general, it is meaningful to search 

for approximate solutions which can be computed in polynomial time. 

Definition 2 (Performance of  approximation). Let P = ( f l , f 2 , 5  ~) be a bicriteria 
problem. A polynomial time algorithm has performance (~, fl) for P, if for all instances 

the algorithm produces a solution x E 5 e such that f2(x)<<, ft. D and fl(x)~< 7. f l  (x*), 
where x* denotes an optimal (valid) solution and D is the given bound on objective ./~ 

in the instance. 

2.2. Dual problems 

The problem in Definition 1 is formulated by specifying a bound on the bottleneck 
delay after the upgrade, while the upgrading cost is to be minimized. It is also mean- 
ingful to consider the corresponding dual problem (BOTTLENECK, NODE UPGRADING COST, 
SPANNING TREE), where we are given a bound on the upgrading cost and want to obtain 
the best-possible bottleneck delay while staying within our budget restrictions. 

The following lemma shows that if we have a good approximation algorithm for 
(NODE UPGRADING COST, BOTTLENECK, SPANNING TREE), we can convert it into a good 
approximation algorithm for the dual problem (BOTTLENECK, NODE UPGRADING COST, 
SPANNING TREE) with only a minor additional computational effort. 

We will use this result and formulate our approximation algorithms only for (NODE 
UPGRADING COST, BOTTLENECK, SPANNING TREE), which will be more convenient. 

Lemma 3. Suppose that A is a bicriteria approximation algorithm for (NODE 
UPGRADING COST, BOTTLENECK, SPANNING TREE) with a performance of  ( ct, fl). Then, one 
can construct an approximation algorithm for (BOTTLENECK, NODE UPGRADING COST, 
SPANNING TREE) with performance of  (fl,~) by using (9(logm)_C (9(logn) calls to A, 
plus an overhead of (9(m logm) elementary operations. 

Proof. Let A be an (ct, fl)-approximation algorithm for (NODE UPGRADING COST, 
BOTTLENECK, SPANNING TREE). We will show how to use A to construct a (fl, ct)- 
approximation algorithm for the dual problem. 

An instance of (BOTTLENECK, NODE UPGRADING COST, SPANNING TREE) is specified 
by a graph G = ( F , E ) ,  the node cost function c, the weight functions do, dl, and d2 
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on the edges and the bound B on the node upgrading cost. We denote by OPT the 
optimum bottleneck weight of an MST after upgrading a node set of cost at most B. 

Observe that OPT is an integer such that D2<~OPT<~Do where De :=mineEE d2(e) 
and Do := maxeEE do(e). Moreover, the set 

M := {do(e),dl(e),d2(e): e EE} 

of possible values for OPT has size C(m). 
We sort M in time C(mlogm). Then we use a binary search to find the minimum 

integer D E M with the following property: Algorithm A outputs an upgrading set of 
cost at most 0tB, if it is applied to the instance of (NODE UPGRADIN~ COST, BOTTLENECK, 
SPANNIN~ TREE) given by the weighted graph G as above and the bound D on the 
bottleneck weight of an MST after the upgrade. It is easy to see that this binary search 
indeed works, uses (9(loglM[)C C(logm) calls to algorithm A, and terminates with a 
value D ~<OPT. The corresponding upgrading set W leads to an MST in (G, dw) with 
bottleneck weight at most ft. D<<,fl. OPT and upgrading cost c(W)<~o~. B. [] 

By similar techniques, an approximation algorithm for (BOTTLENECK, NODE UPGRADING 
COST, SPANNING TREE) can be converted into an approximation algorithm for (NODE 
UPGRADING COST, BOTTLENECK, SPANNING TREE). In this case we use the bicriteria algo- 
rithm to search for the optimal upgrading cost. This is stated in the following lemma. 

Lemma 4. Suppose that A is a bicriteria approximation algorithm for (BOTTLENECK, 
NODE UPGRADING COST, SPANNING TREE) with a performance of  (~, fl). Then, there is 
a (fl, ot)-approximation alyorithm for (NODE UPGRADING COST, BOTTLENECK, SPANNING 
TREE). 

It should be noted that the conversion of an algorithm for (NODE UPGRADING COST, 
BOTTLENECK, SPANNING TREE) has the nice property that the running time increases only 
by a factor of C(log n), while the other way round we get a factor of (?(log C), where 

C= ~cvC(V). 

3. Related work 

Some node upgrading problems have been investigated under a simpler model by 
Paik and Sahni [14]. In their model, the delay of an edge is decreased by constant 
factors of 6 or 6 2, when one or two of its endpoints are upgraded, respectively. Clearly, 
this model is a special case of the model treated in our paper. 

Under their model, Paik and Sahni studied the upgrading problem for several per- 
formance measures including the maximum delay on an edge and the diameter of the 
network. They presented N P-hardness results for several problems. Their focus was 
on the development of polynomial time algorithms for special classes of networks 
(e.g. trees, series-parallel graphs) rather than on the development of approximation 
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algorithms. Our constructions can be modified to show that all the problems consid- 

ered here remain NP-hard even under the Paik-Sahni model. 
A special case of the problems studied in this paper is the case of all nodes having 

the same upgrading costs. For spanning trees, these problems, namely (UPGRADING 
SIZE, BOTTLENECK, SPANNING TREE) and its dual version (BOTTLENECK, UPGRADING SIZE, 
SPANNING TREE), are investigated in [8]. The authors give a (5 +4  In A, 1 )-approximation 
algorithm for (UPGRADING SIZE, BOTTLENECK, SPANNING TREE), where A is the maximum 
degree of the graph. The algorithm can be implemented to run in time C(n + m). The 
analysis showed a better performance guarantee of (2 + 2 In A, 1 ) for the case that the 

input does not contain any 2-critical edges. 
A related problem is (UPGRADING COST, BOTTLENECK, GRAPH) which has been intro- 

duced called LINKDELAY in [14]. Paik and Sahni showed that this problem is NP-hard. 

A (2, 1)-approximation algorithm for LINKDELAY has been provided in [8]. 
Edge-based network upgrading problems have also been considered in the literature 

[13,2, 10, 7]. There, each edge has a current weight and a minimum weight below 
which the edge weight cannot be decreased. Upgrading an edge corresponds to de- 
creasing the weight of that particular edge and there is a cost associated with such an 
upgrade. The goal is to obtain an upgraded network with the best performance. 

4. An algorithm for bottleneck upgrading 

In this section, we present our approximation algorithm for (NODE UPGRADING COST, 
BOTTLENECK, SPANNING TREE). This algorithm provides a performance guarantee of 
(21nn, 1) on a graph G=(V,E)  with n := IV[ nodes. In Section 6 we will counterbal- 
ance this approximation result with a hardness result which shows that, unless NP C 
DTIME(NC~(I°gI°gN)), this performance is essentially the best possible. 

4.1. Overview 

We first give a brief overview of our algorithm. The algorithm maintains a set W 
of nodes, a set F of edges and a set cg of clusters which partition the node set V 
of the given graph G. The set cg of clusters is initialized to be the set of connected 

components of the bottleneck graph Bottleneck( G, dw,D), 

Algorithm 1. Approximation algorithm for spanning trees 
Input: A graph G:-(V,E),  three edge weight functions do, dl,d2, a node weight 

function c, and a number D 

1 W+-[~ 
2 G' +-- Bottleneck(G, dw,D) 
3 Cl . . . . .  Cq +--- connected components of G' 
4 F +-- set of edges of G ~ 
5 while G~= (V,F) has more than one connected component do 
6 {Assume that cg = {C~ . . . .  Cp) is the set of components) 
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7 Find a node v E V in the graph with minimum quotient cost as defined 
in Definition 5. 

8 Let CI . . . . .  Cr be the components in W chosen in Step 7 above, where 
w.l.o.g, v E CI. 

9 Let e2 . . . . .  er be a set o f  edges in G connecting v to C2 . . . . .  Cr, respectively 
10 F+--FrO{e2 . . . .  ,er} {Merge C1,C 2 . . . . .  Cr into one component} 
11 W ~ W tO {v} {Add center (see Definition 7) to upgrading set} 
12 for i+ -2 , . . . , r  do 

13 if ei : (v, vi) is 2-critical then 

14 W +- W U {vi} {Add finger (see Definition 7) to upgrading set} 
15 end if 
16 end for 

{Note that the total cost o f  the nodes added to the solution W is 
r 

exactly c(v) + ~j=l  c(v, Ca-).} 
17 Cl . . . . .  Cp, +-- connected components of  G ' = ( V , F )  
18 end while 
19 return W 

containing only those edges e which have a delay do(e) of  at most D. The set W 
contains the upgraded nodes and is initially empty. 

The algorithm iteratively merges clusters until only one cluster remains. To this end, 

in each iteration it determines a node v of  minimum quotient cost. The quotient cost 
of  a node v is the ratio whose numerator is the cost o f  v plus the costs o f  some 

nodes adjacent to v in different clusters via 2-critical edges, and whose denominator 
is the number of  clusters which have nodes adjacent to v. A precise definition of  

the quotient cost appears in Eq. (1) below. This quotient cost measures the "average 
upgrading cost" o f  v and the vertices that are adjacent to v through 2-critical edges. 
The algorithm then adds v and the nodes mentioned above to the solution set W and 
merges the corresponding clusters. 

The algorithm is shown in Algorithm 1. It is easy to see that the set W output by 
the algorithm is indeed a valid upgrading set, since all the edges added to F in Step 10 
will be of  delay at most D after upgrading the nodes in W. 

Definition 5 (Quotient cost). Let cg= {CI . . . . .  Cp} be the connected components of  
(V,F) at some iteration of  the algorithm. 

I f  vC Cj or v is adjacent to a node in C a via a 1-critical edge, then we set c(v, Ca.):= 0. 
I f  all the edges from v to Ca are 2-critical, then we set c(v, Cj) to be the minimum 

cost o f  a node in Cj adjacent to v. I f  there is no edge between v and any node in Ca., 
then c(v, Ca.) := +c~.  

We now define the quotient cost q(v) of  v as follows: 

r 

q(v) := min min (1) 
2<~r<~p {Cb...,Cr} C_~ r 
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Notice that the quotient cost o f  a node can be computed in polynomial time: We can 

order the components in ~ as C1, C2, Ca . . . .  in nondecreasing order of  c(v, Cj) (where, 
without loss o f  generality, v E C1 ). In computing the quotient cost o f  v, it is sufficient 

to consider the p subsets of  cg of  the form {CI, C2 . . . .  , Cr}, where 2 ~<r~< p. 
In the sequel, we use W* to denote an optimal upgrading set, i.e., an upgrading 

set o f  minimal cost OPT :----c(W*). We now proceed to prove the following theorem 

which indicates the performance guarantee provided by the algorithm. 

Theorem 6. Algorithm 1 as applied to (NODE UPGRADING COST, BOTTLENECK, SPANNING 

TREE) has a performance of  (21nn, 1), where n denotes the number of  nodes in the 

graph. 

Our proof  of  Theorem 6 relies mainly on an averaging lemma which is proved by 

using the notion of  a claw decomposition introduced below. 

4.2. Claw decompositions 

Definition 7 (Claw, claw decomposition). A graph G = (V,E) is called a claw, if  there 

is a node c E V such that the edge set E is o f  the form E = {(c, v): v C V\{c}  }. The 
node c is called a center of  the claw, the remaining nodes are called fingers. The center 
is uniquely determined if there are at least 3 nodes in the claw. A claw consisting of  

one single node is called a trivial claw. 
Let G be a graph with node set V. A claw decomposition of  V in G is a collection 

of  node-disjoint nontrivial claws, which are all subgraphs of  G and whose vertices 

form a partition of  V. 

The following theorem can be proven by an easy induction on n := ]V[: 

Theorem 8. Let G be a connected graph with node set V, where [V[ >~2. Then there 

& a claw decomposition o f  V in G. 

4.3. An averaging lemma 

L e m m a  9. Let v be a node chosen in Step 7 of  Algorithm 1 and let C denote the total 

cost of  the nodes added to the solution set W in this iteration. Let there be p clusters 

before v is chosen and assume that in this iteration r clusters are merged. Then 

C OPT 
- - 4 - -  
r p 

Proof. Let T* be an optimal tree with the nodes W* be the upgraded nodes. Let 

OPT := c(W*)  be the cost o f  the optimal solution. Let cg = C I , . . . ,  Cp be the clusters 
when the node v was chosen and let T*(v) be the graph obtained from T* by con- 
tracting each Cj to a supernode. T*(v) is connected and contains all supernodes. We 
then remove edges ( i f  necessary) from T*(v) so as to make it a spanning tree. Note 

that all the edges in this tree are critical. 
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Let A C_ W* be the set of  nodes in the optimal solution that are adjacent to another 

cluster in T*(v). Clearly, the cost of  these nodes is no more than OPT. Take a claw 

decomposition of T*(v). We now obtain a set of claws in the graph G itself in the 
following way: Initialize E ~ to be the empty set. For each claw in the decomposition 
with center Cj and fingers ' ' C~ . . . . .  C t we do the following: For each edge (C1, Cj) the 
optimal tree T* must have contained an edge (u,w) with u E C~ and w C C/'. Notice 

that since this edge was critical, at least one of the vertices u and w must belong to 
A C_ W*. We add (u,w) to U.  

It is easy to see that the subgraph of G induced by the edges in E t consists of  disjoint 
nontrivial claws. Also, all edges in the claws were critical and the total number of nodes 

in the claws is at least p. We need one more useful observation: If  a claw center is 
not contained in A, then a / / the  fingers of  the claw must be contained in A, since the 
edges in the claw were critical. 

Let Ac be the set of  nodes from A acting as centers in the just generated claws. Let 
A1 denote the fingers of  the claws contained in A which are connected to their claw 

center via a 1-critical edge, whereas A2 stands for the set of fingers adjacent to the 
center via a 2-critical edge and also contained in A. For each claw with exactly two 

nodes we designate an arbitrary one of the nodes to be the center. Then by construction, 
Ac, A1, and A2 are disjoint. Therefore, 

OPTs> ~ c(u)+ ~ c(u). (2) 
uCAcUA2 uCAt 

For a node u c A~, let Nu denote the number of  vertices in the claw centered at u. We 

have seen that if a center is not in A, then all the fingers belong to the optimal solution. 
Clearly, this can only happen, if the claw centered at u does not contain a 2-critical 

edge. Thus, we can estimate the total number of  nodes in the claws from above by 
summing up the cardinalities of  the claws with centers in A and for all other claws 
adding twice the number of  fingers. Hence, 

Nu + 2]All >~ ]{w: w belongs to some claw}] ~>p, (3) 
uCA~ 

since the total number of nodes in the claws is at least p. 

We now estimate the first sum in (2). I f  uEA~, then the quotient cost of  u is at 
most the cost of  u plus the cost of the fingers in the claw that are in A2 divided by 
the total number of nodes in the claw. This in turn is at least C/r by the choice of  the 
algorithm in Step 7. By summing up over all those centers, this leads to 

c(u)>~ C- ~ Nu. (4) 
uEAcUA2 F uEAc 

Now, for a node u in A~, its quotient cost is at most c(u)/2, which again is at least 
C/r. Thus, 

c(u)>~ ~ 2 C = 2 [ A , I  C (5) 
uEAt uGAt 1~ F " 



S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 139-155 147 

Using (4) and (5) in (2) yields 

OPT >/ ~ c (u )+  ~ c ( u )  
uEAcUA2 uEAI 

> / -  ~ Nu +21A,I 
F \ uCAc 

(3) C 
>~--p. 

r 

This proves the claim. [] 

4.4. A potential function argument 

We are now ready to complete the proof of the performance stated in Theorem 6. 
Assume that the algorithm uses f iterations of the loop and denote by Vl . . . . .  vf  the 
vertices chosen in Step 7 of the algorithm. 

Let 4)j denote the number of clusters after choosing node vj in this iteration. Thus, 
for instance, 4)o = t, the number of components at the beginning of the whole algorithm 
and 4)f= 1, since we end up with one cluster. Let the number of clusters merged using 
node v/ be ~ and the total cost of the vertices added in that iteration be cj. Then we 

have 

4 ) j = 4 ) j - - l  - -  ( ~  --  l). (6) 

Notice that, since ~ ~>2, we have ~ - 1/> l~.. Using this inequality in (6) we obtain 

4)j...< 4) j_, _ l~ . .  (7) 

Observe that 4)j/>2 for j = 0 . . . . .  f -  1, since the algorithm does not stop before the 
f t h  iteration. Notice also that 4)f= l. Then by Lemma 9, we have 

r: >>. cs4)J- ~ (8) 
OPT 

for all O<~j<~f. We now use an analysis technique due to Leighton and Rao [12] to 
complete the proof. Substituting Eq. (8) into (7) yields 

cj 
l cj4)j_, = 4)j-1 (1 2OPT) (9) 4)j<'~4)j-1 2 OPT 

Using recurrence (9), we obtain 

f (1 cj 
4)c--< 4)o H ) -  (10) 

j=l 2 OPT 

Taking natural logarithms on both sides and simplifying using the estimate In(1 -z)~< 
- z ,  we obtain 

2OPTln(4)°   cj. 
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Notice that by Lemma 9 we have 

~3 ~<OPT<2 OPT, ej <~ OPT ~j_I 

and so the logarithms of all the terms in the product of  (10) are well defined. 

Note also that 00~<n:= IVl and ~bf= 1 and hence from (11) we get 

f 
cj ~<2 OPT Inn. (12) 

j--I 

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum 
~f=l cj. This completes the proof of  Theorem 6. [] 

4.5. Running time 

We now sketch an efficient implementation of Algorithm 1. The results are summa- 
rized in the following theorem: 

Theorem 10. Algorithm 1 can be implemented to run in time C(nm~(m,n)), where 
n denotes the number of  nodes, m the number of edges in the graph, and ~ is the 
inverse of Ackerman's function. 

Proof. The main effort lies in the computation of the minimum quotient cost in Step 7. 
Suppose we have for each node v E V a sorted list L(v)= (C1, C2 . . . . .  Cp) of clusters 

such that c(v, C1)<~c(v, C 2 ) ~ . . .  <~c(v, Cp). Then, the cost of  the set {C1 . . . . .  Cr} is 
minimal amongst all r-element collections of  clusters, so we do not have to test all 
possible r-element sets of clusters. 

Since, for fixed v, the number p of  clusters is bounded by the number of adjacent 
nodes, Step 7 can be implemented to run in time C(m). 

To maintain the sorted lists we use the help of a fast disjoint-set data structure [4]. 
We initialize the data structure with the clusters formed by uncritical edges. The costs 
of the clusters are computed as stated in Step 7. After each step, we assure that the data 
structure again represents the clusters which are formed by edges whose weight does 
not exceed the threshold. This is done by merging those clusters which are connected 

by edges involved in the current upgrading, i.e. those edges which are incident with 
nodes upgraded in the current step. Such merging of clusters is efficiently supported by 
the data structure. The time needed in one iteration of the while loop is (9(m~(m,n)). 
For details we refer to [11]. 

Since in each iteration the number of  clusters is decreased by at least 1, there are 
at most n iterations. This results in a total running time of (9(nmcffm, n)). [] 

Using Lemma 3 we obtain the following approximation result for the dual problem. 
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Theorem 11. There exists an approximation algorithm for (BoTtLENECK, NODE 
UP~RADIN~ COST, SPANNINC TREE) with performance (1,2Inn). It can be implemented 

to run in time C(nm~(m,n)logn). 

5. Treewidth-bounded graphs 

In this section we will show that (NODE UPGRADING COST, BOTTLENECK, SPANNING 
TREE) can be solved in polynomial time if restricted to the class of treewidth-bounded 
graphs. For the sake of a better presentation we will first show how to solve the 
problem in polynomial time on series-parallel graphs. Then, we will describe how the 

ideas carry over to treewidth-bounded graphs. 
Treewidth-bounded graphs were introduced by Robertson and Seymour [15]. Inde- 

pendently, Bern et al. [3] introduced the notion of decomposable graphs. Later, it was 
shown [1] that the class of decomposable graphs and the class of treewidth-bounded 
graphs coincide. A class of decomposable graphs F is given by a set of recursive rules 

that satisfy the following conditions [3]: 
(1) The rules define a finite number of primitive graphs. 
(2) Each graph in F has an ordered (possibly empty) set of special nodes called 

terminals. The number of terminals in each graph is bounded by a global constant. 
(3) There is a finite collection of binary composition rules that operate only at ter- 

minals, either by identifying two terminals or adding an edge (called attachment 
edge) between terminals. A composition rule also determines the terminals of the 
resulting graph, which must be a subset of the terminals of the two graphs being 

composed. 
Series-parallel graphs are an example of decomposable graphs and can be defined by 

the following rules [3]. 
(1) The set of primitive graphs consists of the single graph P with node set {s, t} and 

the single edge (s, t). The node s is the "start-terminal" of P and the node t is the 

"end-terminal" of P. 
(2) Let G1 = (V1,EI) and G2 = (Vz,E2) be series-parallel graphs with terminals st, tl 

and s2, t2, respectively. Then 
(a) The graph obtained by identifying tt and s2 is a series-parallel graph, with sl 

and t2 as its terminals. This graph is the series composition of G1 and G2. 
(b) The graph obtained by identifying Sl and s2 and also tx and t2 is a series- 

parallel graph, the parallel composition of G1 and G2. This graph has Sl ( = s2) 

and tl( = tz) as its terminals. 
Let F be any class of  decomposable graphs. Following [3], we assume that a given 

graph G c F is accompanied by a parse tree specifying how G is constructed using the 
rules. The size of the parse tree is linear in the size of G. Moreover, we may assume 
without loss of generality that the parse tree is a binary tree. 
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5.1. Restriction to series-parallel 9raphs 

Let G be a series-parallel graph with the two terminals s and t. We call an edge sub- 

graph G / of G consisting of two disjoint spanning trees containing s and t, respectively, 
a terminal forest. 

For a set M C_{s,t}, define C(M) to be the least cost of an upgrading set W in G 

with W N {s, t} = M such that after upgrading this set G contains a bottleneck spanning 

tree of delay at most D. If there is no upgrading set W such that the bottleneck delay 

can be reduced to be at most D and W N  { s , t } = M ,  then C ( M ) : = + o o .  In the same 

way as we defined C, we define C t for the minimum upgrading cost to obtain a 
terminal forest of bottleneck delay at most D. 

Clearly, if we know the four values C(M), we can tell the optimum objective func- 

tion value. We will now show that for a series-parallel graph G we can compute C and 

C I by using the information of the decomposition tree of G in a total of C(n+m) time. 

The basic idea is to keep track of which terminals belong to an optimal upgrading set. 

In the sequel we write M \ v  and M to v instead of M\{v}  and M U {v}, respectively, 
for the sake of brevity. 

First, we will take care of the case that G is the series composition of G1 and G2. 

Assume that we have already computed the values C and C ~ for G1 and Gz. Denote 
them by C1, C I and C2, C~, respectively. 

It is easy to see that the restriction of any tree T to GI and G2, respectively, is 

again a tree. Thus, we can compute C with the help of Cl and C2 in the following 
way. 

C(M) = min{ Cl (M\ t )  + C2(M\s), CI(M U t) + C2(M (3 s) - c(fi )}. 

The first term above considers the case when the terminal q( = s2) is not upgraded. 
The second term takes care of ti being upgraded. 

Similarly, we now compute C r for G. A terminal forest in G must either be a 

terminal forest in G1 and a tree in G2 or vice versa. No other possibilities exist. It 
now follows that C can be computed by 

C'(M) = min{Cl(M\t  ) + C2(M\s), CI(M tO t) + C2(M U s) - C(tl ), 

C1(M\t} ) + C~(M\s), C,(M U t) + C~(M tO s) - c(tl)}. 

We now consider the case that G is parallely composed from G1 and G2. Again, we 

assume that the two arrays C and C ~ are already available for G1 and G2. 

We start with the computation of C. A tree T in G must be a tree in exactly one 
of the graphs G1 and G2 and a terminal forest in the second one. We just need to 
distinguish between the cases covering the upgrade of the terminals of G1 and G2. We 

must make sure that sl is upgraded if and only if s2 is. We thus obtain C by the 
following formula: 

C({s, t}) = min{ Cl({s, t}) + C2({s, t}) - c(sl ) - c(q ), 

c~({s,t}) + c~({s u t } )  - c ( s ~  ) - c(t~ ) } ,  
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C({t}) = min{C~({t}) + C2({t}) - c(q ), Cl({t}) + C~({t})] - c(tl)}, 

C({s}) = min{Cl({s}) + C2({s}) - c(s~ ), C~({s}) + C~({s}) - c(s, )}, 

C(0) = min{Ci(0)+  C2(0), CI(0) + C~(0)}. 

We proceed with C'. If G' is a terminal forest of G, it is straightforward to see that 
the restriction to both graphs GI and G2 is a terminal forest of that particular graph. 
Thus, C' can be computed by using the information from C I and C~ by the following 
formula: 

C( {s, t } ) :  C~( {s, t}) + C~{s, t} - C(Sl ) - C(tl ), 

c ( { t } )  = c l d t } )  + G ( { t } )  - 

= c' ds}) + C ds}) - c ( s , ) ,  

c(o )  = c l (o )  + 

Finally, observe that for a series-parallel graph consisting of the two terminals s and 
t and the edge (s, t) we can trivially compute the arrays C and C'. 

Using the above recurrences, the array C can be computed in linear time for a 
series-parallel graph G, provided a decomposition tree for G is given. Since such a 
decomposition tree with C(n + m) nodes can be computed in C(n + m) time [16], we 
can conclude that the dynamic programming algorithm presented above runs in total 
time C(n+m). It should be noted that by also keeping track of the respective upgrading 
sets we cannot only find the optimal function value but also the optimal upgrading set. 

Theorem 12. I f  restricted to the class of  series-parallel graphs, the problem (NODE 
UPGRADING COST, BOTTLENECK, SPANNING TREE) can be solved optimally in C(n + re)- 
time. 

5.2. Extension to treewidth-bounded graphs 

Theorem 13. I f  restricted to any class of  treewidth bounded graphs with no more 
than k terminals, where k is fixed, the problem (NODE UPGRADING COST, BOTTLENECK, 
SPANNING TREE) can be solved optimally in time C((2k)2k(n + m)). 

Proofl Let tl . . . . .  tk be the terminals of G and let n be a partition of these terminals. 
Define a n-terminal forest F to be a spanning forest of G with the following properties: 
(1) For each block of n the forest F contains a tree spanning all the vertices in that 

block. 
(2) No pair of trees is connected. 
The notion of a n-terminal forest generalizes the concept of spanning trees and terminal 
forests introduced above. In the case of series-parallel graphs, the set of terminals is 
{s, t}. The possible partitions of {s, t} are nl = ({s, t}, 0) and n2 = ({s}, {t}). Partition 
7~ 1 corresponds to a spanning tree of G, while n2 gives us a terminal tree. 
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We keep the following information along with each partition rt of terminals of  G 

and each subset M of the terminals {tl . . . .  , tk }. 

C~(M) := Minimum cost of a subset W _C V with W n  {h . . . .  ,tk} : M  

such that after upgrading the vertices in W the graph G 

contains a n-terminal forest of  bottleneck cost at most D. 

For the above-defined cost, if there is no subset W C_ V satisfying the required condi- 

tions the value of C ' ( M )  is defined to be + ~ .  Note that the number of  cost values 

associated with any graph in F is C((2k)k). We now show how the cost values can be 

computed in a bottom-up manner given the parse tree for G. Since the method is very 

similar to the case of  series-parallel graphs treated above we only sketch the main 

ideas. 
To begin with, since F is fixed, the number of primitive graphs is finite. For a 

primitive graph, each cost value can be computed in constant time, since the number 
of forests to be examined is fixed. Now consider computing the cost values for a graph 

G constructed from subgraphs GI and G2, where the cost values for G1 and G2 have 

already been computed. 
Let a partition n and a subset M of the terminals {tl . . . .  , tp} of G be given. Any 

upgrading set W in G with W A { t l  . . . . .  tp} = M  resulting in a n-terminal tree of  bot- 

tleneck delay at most D induces two upgrading sets, one in G1 and one in G2. Since 

we have maintained the best cost values for all possibilities for G~ and G2, we can 
reconstruct for the partition n and the set M the cost value C~(M). We can do this in 

time independent of  the sizes of GI and G2 because they interact only at the terminals 

to form G, and we have maintained all relevant information. 
Hence, we can generate all possible cost values for G by considering combinations of  

all relevant pairs of  cost values for G1 and G2. This takes time (9(1) per combination for 
a total time of C(2 2k • k 2k). As in [3], we assume that the size of  the given parse tree for 

G is C(n +m). Thus the dynamic programming algorithm takes time (9((2k)2k(n +m)) .  

This completes the proof. [] 

The algorithm presented in the proof of  the last theorem, although being linear for 

fixed k, is only practical for small values of  k, since the constant factor (2k) 2k in front 
of  the n + m grows extremely fast with k. Thus, the above results might be considered 

to be more of theoretical interest than application oriented. 

6. Hardness results 

In this section we establish our hardness results for the node upgrading problems 
under study. We show that (NODE UP~RADINC COST, BOTTLENECK, SPANNINO TREE) is 
hard to approximate within a logarithmic factor. 
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We first recall the results from [5] about the hardness o f  approximating MINIMUM 

DOMINATING SET and MIN SET COVER. 

Theorem 14. Unless NPC_ DTIMF(NC"(I°gI°gN)), the MINIMUM DOMINATING SET problem 
on a graph with n vertices cannot be (polynomial time) approximated within a factor 
of  ~ < Inn. 

Moreover, the MtN SET COVER problem, with a ground set M, can not be approxi- 
mated within a factor of  ~ <  ln[M[. 

Theorem 15. For an &stance of  (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) 
denote by n the number of  nodes in the input graph. Let ~ < ½ In n, and f be any 
polynomial time computable function. Then, unless NP C_ DTIME(NCC'O°gI°gN)), there is 
no polynomial time approximation algorithm for (NODE UPGRADING COST, BOTTLENECK, 
SPANNING TREE) with performance ( ~, f ( n ) ). 

Proof.  We give a reduction from MINIMUM DOMINATING SET [6, Problem GT2]. An 

instance of  MINIMUM DOMINATING SET consists of  a graph G----(V,E). A dominating set 
is a subset V' C_ V of  nodes, such that each node w f~ V' is adjacent to a node of  V. 

A Dominating Set of  an instance I is a solution for MINIMUM DOMINATING SET, if its 

cardinality is minimal amongst all Dominating Sets o f  I. 

Given an instance G = ( V , E )  of  MINIMUM DOMINATING SET with n :=  I VI nodes, we 

construct an instance G ~ -  - ( V ' , U )  of  (NODE UPGRADING COST, BOTTLENECK, SPANNING 

TREE) as follows. First, insert all nodes and edges from G into G ~. Then, add a new 

node r (the root) and connect it to all nodes of  V. The number of  nodes in G ~ equals 
n ~ = n + 1. Notice that In n' = ln(n + 1 ) ~< ln(n 2) = 2 Inn. 

The upgrading cost o f  the root is set to c(r):= L :=  In Inn] + 1, the upgrading costs 

for the remaining nodes are set to 1. For each edge e ~ E U ,  we set do(e ~) :=  f ( n  ~) + 1 
and dl(e ~) : = d 2 ( e ' ) : =  1. The bound on the bottleneck weight of  the resulting MST is 
set to 1. 

If  U is a Dominating Set in G, then there is a set o f  nodes to upgrade in G ~ such that 

the cost for upgrading is no more than I Ut and that the resulting MST has bottleneck 

weight no more than 1. To see this, upgrade all nodes in U. Since each node from U 

has upgrading cost 1 (the only node with different upgrading cost is the root which is 

not contained in G), the total upgrade cost is exactly IU[. The resulting MST is a tree 

of  height 2: its root is the node r, at first level there are all upgraded nodes (i.e. those 

in U), and at second level all remaining nodes (i.e. those in V - U). Since all edges 

of  this tree are incident with a node of  level 1, the weight of  all edges is 1. 

Let there be an (~,f(n~))-approximation algorithm for (NODE UPGRADING COST, 
BOTTLENECK, SPANNING TREE). Denote by T' the resulting MST of  G r. The bottleneck 

weight of  T ~ is no more than f(n~). Therefore all o f  its edges have weight 1 and the 
upgraded nodes must form a Dominating Set on G ~. 

Let OPT ~< n be the cost o f  an optimal upgrade node set. Then, the upgrading cost of  
T ~ is at most OPTs  ~< n ½ In n ~ ~< n In n <L.  Consequently, the root cannot be upgraded 
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in the produced solution. Hence the set of  upgraded nodes forms a Dominating Set 

on G. 

We conclude that the algorithm can be used as an c~-approximation algorithm for 

M~NIMUM DOMINATING SET which is a contradiction to the result o f  Feige [5]. [] 

A similar construction shows the hardness even in the case that all vertices have 

upgrading cost 1. 

Theorem 16. (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) is NP-hard even if 
all vertices have upgrading cost 1. Also, unless NP C DTIME(N~(I°gI°gN)), even in this 
unit cost case for any ~ < ½ In n, and polynomial time computable function f there is 
no polynomial time approximation algorithm with performance (~, f (n) ). 

ProoL We use a similar reduction as in the proof o f  the preceding theorem. The 

instance G'= (V~,E ') of  (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) is con- 

structed as follows. First, insert all nodes and edges from G into G ~. Then add a new 

node r (the root) and connect it to all nodes o f  V. Third, for each claw in G with 

center v and fingers N(v), set up a collection L(v) of  new nodes. Connect each of  

these nodes to all nodes o f  {v} UN(v). Choose the number L of  the nodes in L(v) as 

L =  In Inn] + 1. 
Let K :=  n + Ln, then the number of  nodes in G ~ equals n t = K + 1. Notice that 

In n t = ln((L + 1 )n + 1 ) ---- ln(n rn In n] + 2n + 1 ) ~< ae ln(n 3) = 3 In n. 

The upgrading cost o f  each node equals 1 per definition. For each edge e ~ C U ,  

we set do(e ~) :=  f (n  ~) + 1 and dl(e r) :=d2(e  ~) :=  1. The bottleneck weight bound on 
(UPGRADING SIZE, TOTAL WEIGHT, SPANNING TREE) is set to 1. 

As before, upgrading all nodes in U results in an MST of  bottleneck weight 1: its 

root is r, at first level are the nodes o f  U, at second level the nodes of  V - U. We 

now have to deal with the remaining nodes in the collections L(v) for each v E V. 

Since U is a dominating set in G, each star {v} UN(v) around v must contain at least 

one node v ~ which is contained in U. So, we can connect all nodes of  L(v) through 

edges of  weight 1 via v t to the MST. Therefore, all the edges in the resulting MST 

have weight 1. 

Let there be an (~,f(n~))-approximation algorithm for (UPGRADING SIZE, TOTAL 

WEIGHT, SPANNING TREE). Denote by T ~ the resulting MST of  G t. All edges o f  T t 

have weight 1. 

Let OPT ~< n be the cost o f  an optimal chosen upgrade set. Then, the upgrading cost 
o f  T'  is at most OPT. u ~< n ½ In n t ~< n In n < L. Consider the star around an arbitrary node 

v. Each of  the nodes in L(v) is connected via a light edge to the tree. If  none o f  the 

nodes in the star would be upgraded, then each of  the L nodes in L(v) must be upgraded 

which would exceed the available budget. Therefore, at least one node of  each star o f  G 

is upgraded and the set o f  upgraded nodes, restricted to the node set V, forms a Dom- 
inating Set o f  G. We conclude that the algorithm can be used as an co-approximation 
algorithm for MINIMUM DOMINATING SET which is a contradiction as before. [] 
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