Introduction to Bayesian Inference

Brooks Paige
Goals of this lecture

- Understand joint, marginal, and conditional probability distributions
- Understand expectations of functions of a random variable
- Understand how Monte Carlo methods allow us to approximate expectations
- Goal for the subsequent exercise: understand how to implement basic Monte Carlo inference methods
Simple example: discrete probability

Red bin

Blue bin
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

\[
\begin{align*}
p(\text{red bin}) &= 2/5 \\
p(\text{apple|red}) &= 2/8 \\
p(\text{blue bin}) &= 3/5 \\
p(\text{apple|blue}) &= 3/4
\end{align*}
\]
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

Easy question: what is the probability I pick the red bin?

\[
\begin{align*}
p(\text{red bin}) &= 2/5 \\
p(\text{apple} | \text{red}) &= 2/8 \\
p(\text{blue bin}) &= 3/5 \\
p(\text{apple} | \text{blue}) &= 3/4
\end{align*}
\]
Simple example: discrete probability

"First I pick a bin, then I pick a single fruit from the bin"

Easy question: If I first pick the red bin, what is the probability I pick an orange?

$p(\text{red bin}) = 2/5$
$p(\text{apple|red}) = 2/8$

$p(\text{blue bin}) = 3/5$
$p(\text{apple|blue}) = 3/4$
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

Less easy question: What is the overall probability of picking an apple?

\[p(\text{red bin}) = \frac{2}{5} \]
\[p(\text{apple} | \text{red}) = \frac{2}{8} \]

\[p(\text{blue bin}) = \frac{3}{5} \]
\[p(\text{apple} | \text{blue}) = \frac{3}{4} \]
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

Hard question: If I pick an orange, what is the probability that I picked the blue bin?

\[p(\text{red bin}) = \frac{2}{5} \]
\[p(\text{apple}|\text{red}) = \frac{2}{8} \]

\[p(\text{blue bin}) = \frac{3}{5} \]
\[p(\text{apple}|\text{blue}) = \frac{3}{4} \]
What is inference?

• The “hard question” requires reasoning backwards in our generative model

• Our generative model specifies these probabilities explicitly:
 ‣ A “marginal” probability $p(bin)$
 ‣ A “conditional” probability $p(\text{fruit} \mid bin)$
 ‣ A “joint” probability $p(\text{fruit}, \text{bin})$

• How can we answer questions about different conditional or marginal probabilities?
 ‣ $p(\text{fruit})$: “what is the overall probability of picking an orange?”
 ‣ $p(bin \mid \text{fruit})$: “what is the probability I picked the blue bin, given I picked an orange?”
Rules of probability

We just need two basic rules of probability.

- **Sum rule:**
 \[
p(y) = \sum_{x} p(y, x) \quad p(x) = \sum_{y} p(y, x)
 \]

- **Product rule:**
 \[
p(y, x) = p(y | x)p(x) = p(x | y)p(y)
 \]

- These rules define the relationship between marginal, joint, and conditional distributions.
Bayes’ Rule

Bayes’ rule relates two conditional probabilities:

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \]

Posterior \quad Likelihood \quad Prior
Mini–exercise

\[\sum_{x} p(x \mid y) = ??? \]

Use the sum and product rules!
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

USE THE SUM RULE: What is the overall probability of picking an apple?

\[p(\text{apple}) = p(\text{apple}|\text{red})p(\text{red}) + p(\text{apple}|\text{blue})p(\text{blue}) \]

\[= \frac{2}{8} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \]

\[= 0.55 \]
Simple example: discrete probability

“First I pick a bin, then I pick a single fruit from the bin”

USE BAYES’ RULE: If I pick an orange, what is the probability that I picked the blue bin?

\[
p(\text{blue}|\text{orange}) = \frac{p(\text{orange}|\text{blue})p(\text{blue})}{p(\text{orange})} = \frac{1/4 \times 3/5}{6/8 \times 2/5 + 1/4 \times 3/5} = 1/3
\]
Continuous probability
The normal distribution

\[p(x|\mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ \frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]
A simple continuous example

- Measure the temperature of some water using an inexact thermometer
- The actual water temperature x is somewhere near room temperature of 22°; we record an estimate y.

$$x \sim \text{Normal}(22, 10)$$

$$y|x \sim \text{Normal}(x, 1)$$

Easy question: what is $p(y \mid x = 25)$?

Hard question: what is $p(x \mid y = 25)$?
Rules of probability: continuous

• For real-valued x, the sum rule becomes an integral:

$$ p(y) = \int p(y, x) \, dx $$

• Bayes’ rule:

$$ p(x | y) = \frac{p(y | x) p(x)}{p(y)} = \frac{p(y | x) p(x)}{\int p(y, x) \, dx} $$
Integration is harder than addition!

Bayes’ rule:
\[p(x|y = 25) = \frac{p(x)p(y = 25|x)}{p(y = 25)} \]

Sum rule, in the denominator:
\[p(y = 25) = \int p(x)p(y = 25|x)dx \]

In general this integral is intractable, and we can only evaluate up to a normalizing constant
Monte Carlo inference
Our data is given by y.

Our generative model specifies the prior and likelihood.

We are interested in answering questions about the posterior distribution of $p(x \mid y)$.

General problem:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$
Typically we are not trying to compute a probability density function for $p(x \mid y)$ as our end goal.

Instead, we want to compute expected values of some function $f(x)$ under the posterior distribution.

General problem:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- Posterior
- Likelihood
- Prior
Expectation

• Discrete and continuous:

\[\mathbb{E}[f] = \sum_{x} p(x) f(x) \]

\[\mathbb{E}[f] = \int p(x) f(x) \, dx. \]

• Conditional on another random variable:

\[\mathbb{E}_{x}[f|y] = \sum_{x} p(x|y) f(x) \]
Key Monte Carlo identity

• We can approximate expectations using samples drawn from a distribution p. If we want to compute

$$
\mathbb{E}[f] = \int p(x) f(x) \, dx.
$$

we can approximate it with a finite set of points sampled from $p(x)$ using

$$
\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)
$$

which becomes exact as N approaches infinity.
How do we draw samples?

- Simple, well-known distributions: samplers exist (for the moment take as given)

- We will look at:
 1. Build samplers for complicated distributions out of samplers for simple distributions compositionally
 2. Rejection sampling
 3. Likelihood weighting
 4. Markov chain Monte Carlo
Ancestral sampling from a model

- In our example with estimating the water temperature, suppose we already know how to sample from a normal distribution.
 \[
 x \sim \text{Normal}(22, 10)

 y|x \sim \text{Normal}(x, 1)
 \]

 We can sample \(y \) by literally simulating from the generative process: we first sample a “true” temperature \(x \), and then we sample the observed \(y \).

- This draws a sample from the joint distribution \(p(x, y) \).
Samples from the joint distribution
What if we want to sample from a conditional distribution? The simplest form is via rejection.

Use the ancestral sampling procedure to simulate from the generative process, draw a sample of x and a sample of y. These are drawn together from the joint distribution $p(x, y)$.

To estimate the posterior $p(x \mid y = 25)$, we say that x is a sample from the posterior if its corresponding value $y = 25$.

Question: is this a good idea?
Conditioning via rejection

Black bar shows measurement at $y = 25$. How many of these samples from the joint have $y = 25$?
One option is to sidestep sampling from the posterior $p(x \mid y = 3)$ entirely, and draw from some proposal distribution $q(x)$ instead.

Instead of computing an expectation with respect to $p(x|y)$, we compute an expectation with respect to $q(x)$:

$$
\mathbb{E}_{p(x|y)}[f(x)] = \int f(x)p(x|y)\,dx
$$

$$
= \int f(x)p(x|y) \frac{q(x)}{q(x)}\,dx
$$

$$
= \mathbb{E}_{q(x)} \left[f(x) \frac{p(x|y)}{q(x)} \right]
$$
Conditioning via importance sampling

- Define an “importance weight” \(W(x) = \frac{p(x|y)}{q(x)} \)

- Then, with \(x_i \sim q(x) \)

\[
\mathbb{E}_{p(x|y)}[f(x)] = \mathbb{E}_{q(x)}[f(x)W(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)W(x_i)
\]

- Expectations now computed using *weighted* samples from \(q(x) \), instead of unweighted samples from \(p(x|y) \)
Conditioning via importance sampling

- Typically, can only evaluate $W(x)$ up to a constant (but this is not a problem):

\[
W(x_i) = \frac{p(x_i|y)}{q(x_i)} \quad w(x_i) = \frac{p(x_i, y)}{q(x_i)}
\]

- Approximation:

\[
W(x_i) \approx \frac{w(x_i)}{\sum_{j=1}^{N} w(x_j)} \quad \mathbb{E}_{p(x|y)}[f(x)] \approx \sum_{i=1}^{N} \frac{w(x_i)}{\sum_{j=1}^{N} w(x_j)} f(x_i)
\]
Conditioning via importance sampling

- We already have very simple proposal distribution we know how to sample from: the prior $p(x)$.

- The algorithm then resembles the rejection sampling algorithm, except instead of sampling both the latent variables and the observed variables, we only sample the latent variables.

- Then, instead of a “hard” rejection step, we use the values of the latent variables and the data to assign “soft” weights to the sampled values.
Likelihood weighting schematic

Draw a sample of x from the prior
What does $p(y|x)$ look like for this sampled x?
What does $p(y|x)$ look like for this sampled x?
What does $p(y|x)$ look like for this sampled x?
Compute $p(y|x)$ for all of our x drawn from the prior
Likelihood weighting schematic

Assign weights (vertical bars) to samples for a representation of the posterior
Problem: Likelihood weighting degrades poorly as the dimension of the latent variables increases, unless we have a very well-chosen proposal distribution $q(x)$.

An alternative: Markov chain Monte Carlo (MCMC) methods draw samples from a target distribution by performing a biased random walk over the space of the latent variables x.

Idea: create a Markov chain such that the sequence of states $x_0, x_1, x_2, ...$ are samples from $p(x \mid y)$.
MCMC also uses a proposal distribution, but this proposal distribution makes \textbf{local} changes to the latent variables x. The proposal $q(x' \mid x)$ defines a conditional distribution over x' given a current value x.

- Typical choice: add small amount of Gaussian noise

- We use the proposal and the joint density to define an “acceptance ratio”

\[
A(x \rightarrow x') = \min \left(1, \frac{p(x', y)q(x \mid x')}{p(x, y)q(x' \mid x)} \right)
\]

- With probability A we “move” state with the new value x', otherwise we stay at x.
The (unnormalized) joint distribution $p(x,y)$ is shown as a dashed line.
MCMC schematic

Initialize arbitrarily (e.g. with a sample from the prior)
Propose a local move on x from a transition distribution
Here, we proposed a point in a region of higher probability density, and accepted
Continue: propose a local move, and accept or reject. At first, this will look like a stochastic search algorithm!
Once in a high-density region, it will explore the space
Once in a high-density region, it will explore the space
Helpful diagnostic: a “trace plot” of the path of the sampled values, as the number of MCMC iterations increases
MCMC schematic

Histogram of trace plot, overlaid on prior probability density

Posterior water temperature $x \mid y = 25$
Now: exercises

• **Part one:** a model much like the model we just looked at, Gaussian data with a latent Gaussian distributed mean

 A. implement likelihood weighting for this model

 B. this is one of the very few continuous models where exact inference is possible. Do the math, and check if your sampler is correct!

• **Part two:** seven scientists are performing an experiment to estimate the value of a particular physical constant. Most of them find similar results, but a few differ by surprisingly much. Do I trust all these scientists equally? What is the “real” value? Write an MCMC sampler to find out!