

CS 4300 Computer Graphics

Prof. Harriet Fell Fall 2012 Lecture 24 – October 31, 2012

Today's Topics

Ray Casting

Ray Tracing a World of Spheres

What is a Sphere

```
Vector3D
            center;
                       // 3 doubles
double
            radius;
            R, G, B;
                      // for RGB colors between 0 and 1
double
double
            kd;
                 // diffuse coeficient
double
            ks;
                       // specular coeficient
(double
            ka;
                       // ambient light coefficient)
```



```
500 800 // transform theta phi mu distance
1 // antialias
1 // numlights
100 500 800 // Lx, Ly, Lz
9 // numspheres
//cx
    cy cz radius R G B ka kd ks specExp kgr kt pic
                 . 9
-100 -100 0 40
                    0 0 .2 .9 .0
                                                0
-100
         0 40
                 .9 0 0 .2 .8 .1
       0
                                                0
                                         . 2
-100
    100 0 40
                 .9 0 0 .2 .7 .2
                                   12
                                                0
  0 -100 0 40
                 . 9
                    0 0 .2 .6 .3
                                   16
                                                0
                 . 9
         0 40
                    0 0 .2 .5 .4
                                   20
  0
       0
                                         . 4
                                                0
     100
         0 40
                 . 9
                    0 0 .2 .4 .5
                                   24
                                         .5 0
                                                0
         0 40
                 . 9
                    0 0 .2 .3 .6
                                   28
                                         . 6
100 -100
                                                0
100
         0 40
                 . 9
                       0 .2 .2 .7
                                   32
       0
                                         . 7
                                                0
100
     100
          0 40
                 . 9
                         .2 .1 .8
                                   36
                                         . 8
                                                0
```

October 31, 2012

College of Computer and Information Science, Northeastern University

World of Spheres

```
Vector3D VP;
                               // the viewpoint
int numLights;
Vector3D theLights[5];
                              // up to 5 white lights
double ka;
                               // ambient light coefficient
int numSpheres;
Sphere the Spheres [20];
                              // 20 sphere max
int ppmT[3];
                               // ppm texture files
View sceneView;
                              // transform data
double distance;
                              // view plane to VP
                               // if true antialias
bool antialias;
```


Simple Ray Tracing for Detecting Visible Surfaces

```
select window on viewplane and center of projection
for (each scanline in image) {
  for (each pixel in the scanline) {
       determine ray from center of projection
              through pixel;
       for (each object in scene) {
              if (object is intersected and
                 is closest considered thus far)
                     record intersection and object name;
       set pixel's color to that of closest object intersected;
```


Ray Trace 1 Finding Visible Surfaces

Ray-Sphere Intersection

- Given
 - Sphere
 - Center (c_x, c_y, c_z)
 - Radius, R
 - Ray from P_0 to P_1
 - $P_0 = (x_0, y_0, z_0)$ and $P_1 = (x_1, y_1, z_1)$
 - View Point
 - (V_x, V_y, V_z)
- Project to window from (0,0,0) to (w,h,0)

Sphere Equation

Ray Equation

$$P_0 = (x_0, y_0, z_0)$$
 and $P_1 = (x_1, y_1, z_1)$

The ray from P_0^{\bullet} to P_1 is given by:

$$P(t) = (1 - t)P_0 + tP_1$$
 $0 \le t \le 1$
= $P_0 + t(P_1 - P_0)$

Intersection Equation

$$P(t) = P_0 + t(P_1 - P_0)$$

is really three equations

$$x(t) = x_0 + t(x_1 - x_0)$$

$$y(t) = y_0 + t(y_1 - y_0)$$

$$z(t) = z_0 + t(z_1 - z_0)$$

Substitute x(t), y(t), and z(t) for x, y, z, respectively in

$$(x-c_x)^2 + (y-c_y)^2 + (z-c_z)^2 = R^2$$

$$((x_0 + t(x_1-x_0))-c_x)^2 + ((y_0 + t(y_1-y_0)_1)-c_y)^2 + ((z_0 + t(z_1-z_0))-c_z)^2 = R^2$$

Solving the Intersection Equation

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)_1) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

is a quadratic equation in variable t.

For a fixed pixel, VP, and sphere,

$$x_0, y_0, z_0, x_1, y_1, z_1, c_x, c_y, c_z, and R$$

are all constants.

We solve for t using the quadratic formula.

The Quadratic Coefficients

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)_1) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

Set
$$d_x = x_1 - x_0$$

 $d_y = y_1 - y_0$
 $d_z = z_1 - z_0$

Now find the the coefficients:

$$At^2 + Bt + C = 0$$

Computing Coefficients

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

$$((x_0 + td_x) - c_x)^2 + ((y_0 + td_y) - c_y)^2 + (((z_0 + td_z) - c_z)^2 = R^2$$

$$(x_0 + td_x)^2 - 2c_x(x_0 + td_x) + c_x^2 +$$

$$(y_0 + td_y)^2 - 2c_y(y_0 + td_y) + c_y^2 +$$

$$(z_0 + td_z)^2 - 2c_z(z_0 + td_z) + c_z^2 - R^2 = 0$$

$$x_0^2 + 2x_0td_x + t^2d_x^2 - 2c_xx_0 - 2c_xtd_x + c_x^2 + y_0^2 + 2y_0td_y + t^2d_y^2 - 2c_yy_0 - 2c_ytd_y + c_y^2 + z_0^2 + 2z_0td_z + t^2d_z^2 - 2c_zz_0 - 2c_ztd_z + c_z^2 - R^2 = 0$$

The Coefficients

$$A = d_x^2 + d_y^2 + d_z^2$$

$$B = 2d_{x}(x_{0} - c_{x}) + 2d_{y}(y_{0} - c_{y}) + 2d_{z}(z_{0} - c_{z})$$

$$C = c_x^2 + c_y^2 + c_z^2 + x_0^2 + y_0^2 + z_0^2 + c_z^2 +$$

Solving the Equation

$$At^2 + Bt + C = 0$$

discriminant =
$$D(A,B,C) = B^2 - 4AC$$

$$D(A,B,C) \begin{cases} <0 & \text{no intersection} \\ =0 & \text{ray is tangent to the sphere} \\ >0 & \text{ray intersects sphere in two points} \end{cases}$$

The intersection nearest P_0 is given by:

$$t = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

To find the coordinates of the intersection

point:
$$x = x_0 + td_x$$

$$y = y_0 + td_y$$

$$z = z_0 + td_z$$

First Lighting Model

Ambient light is a global constant.

```
Ambient Light = k_a (A_R, A_G, A_B)

k_a is in the "World of Spheres"

0 \le k_a \le 1

(A_R, A_G, A_B) = average of the light sources

(A_R, A_G, A_B) = (1, 1, 1) for white light
```

- Color of object $S = (S_R, S_G, S_B)$
- Visible Color of an object S with only ambient light
 C_S= k_a (A_R S_R, A_G S_G, A_B S_B)
- For white light

$$C_S = k_a (S_R, S_G, S_B)$$

Visible Surfaces Ambient Light

Second Lighting Model

- Point source light L = (L_R, L_G, L_B) at (L_x, L_y, L_z)
- Ambient light is also present.
- Color at point p on an object S with ambient & diffuse reflection

$$C_p = k_a (A_R S_R, A_G S_G, A_B S_B) + k_d k_p (L_R S_R, L_G S_G, L_B S_B)$$

• For white light, L = (1, 1, 1)

$$C_p = k_a (S_R, S_G, S_B) + k_d k_p (S_R, S_G, S_B)$$

- k_p depends on the **point p** on the object and (L_x, L_y, L_z)
- k_d depends on the object (sphere)
- k_a is global
- $k_a + k_d \le 1$

Diffuse Light

Lambertian Reflection Model Diffuse Shading

- For matte (non-shiny) objects
- Examples
 - Matte paper, newsprint
 - Unpolished wood
 - Unpolished stones
- Color at a point on a matte object does not change with viewpoint.

Physics of Lambertian Reflection

 Incoming light is partially absorbed and partially transmitted equally in all directions

Geometry of Lambert's Law

$cos(\theta)=N\cdot L$

Surface 2

Cp= ka (SR, SG, SB) + kd N•L (SR, SG, SB)

Finding N

Diffuse Light 2

Shadows on Spheres

More Shadows

Finding Shadows

October 31, 2012

College of Computer and Information Science, Northeastern University

Shadow Color

Given

Ray from P (point on sphere S) to L (light) $P = P_0 = (x_0, y_0, z_0) \text{ and } L = P_1 = (x_1, y_1, z_1)$

- Find out whether the ray intersects any other object (sphere).
 - If it does, P is in shadow.
 - Use only ambient light for pixel.

Shape of Shadows

Different Views

October 31, 2012

College of Computer and Information Science, Northeastern University

Planets

Starry Skies

Shadows on the Plane

Finding Shadows on the Back Plane

Close up

On the Table

Phong Highlight

Phong Lighting Model

Light

Normal

Reflected

View

Surface

The viewer only sees the light when α is 0.

We make the highlight maximal when α is 0, but have it fade off gradually.

Phong Lighting Model

 $cos(\theta) = \mathbf{R} \cdot \mathbf{V}$

We use $cos^n(\theta)$.

The higher n is, the faster the drop off.

For white light

Surface

Cp= ka (SR, SG, SB) + kd N•L (SR, SG, SB) + ks (R•V)n(1, 1, 1)

Powers of $cos(\theta)$

Computing R

$$L + R = (2 L \cdot N) N$$

$$R = (2 L \cdot N) N - L$$

The Halfway Vector

$$H = \underline{L+V}$$
$$|L+V|$$

Use **H•N** instead of **R•V**.

H is less expensive to compute than R.

From the picture

$$\theta + \phi = \theta - \phi + \alpha$$

So
$$\varphi = \alpha/2$$
.

This is not generally true. Why?

Surface

Cp= ka (SR, SG, SB) + kd **N•L** (SR, SG, SB) + ks (**H•N**)ⁿ (1, 1, 1)

Varied Phong Highlights

Varying Reflectivity

October 31, 2012

College of Computer and Information Science, Northeastern University