CS 4300 Computer Graphics

Prof. Harriet Fell
Fall 2012
Lecture 24 - October 31, 2012

Today's Topics

- Ray Casting

Ray Tracing a World of Spheres

What is a Sphere

Vector3D	center;	// 3 doubles
double	radius;	
double	R, G, B;	// for RGB colors between 0 and 1
double	kd;	// diffuse coeficient
double	$\mathrm{ks;}$	// specular coeficient
(double	ka;	// ambient light coefficient)

-. 01 . 01500800 // transform theta phi mu distance													
1 // antialias													
1 // numlights													
100500800 // Lx, Ly, Lz													
9 // numspheres													
//cx	cy	cz	radi				ka	kd	ks	specExp	kgr	k	pic
-100	-100	0	40	. 9		0	. 2	. 9	. 0	4	0	0	0
-100	0	0	40	. 9		0	. 2	. 8	. 1	8	. 1	0	0
-100	100	0	40	. 9		0	. 2	. 7	. 2	12	. 2	0	0
0	-100	0	40	. 9		0	. 2	. 6	. 3	16	. 3	0	0
0	0	0	40	. 9		0	. 2	. 5	. 4	20	. 4	0	0
0	100	0	40	. 9		0	. 2	. 4	. 5	24	. 5	0	0
100	-100	0	40	. 9		0	. 2	. 3	. 6	28	. 6	0	0
100	0	0	40	. 9		0	. 2	. 2	. 7	32	. 7	0	0
100	100	0	40	. 9		0	. 2	. 1	. 8	36	. 8	0	0

World of Spheres

Vector3D VP; int numLights; Vector3D theLights[5]; double ka; int numSpheres; Sphere theSpheres[20];
int ppmT[3];
View sceneView; double distance; bool antialias;
// the viewpoint
// up to 5 white lights
// ambient light coefficient
// 20 sphere max
// ppm texture files
// transform data
// view plane to VP
// if true antialias

Simple Ray Tracing for Detecting Visible Surfaces

```
select window on viewplane and center of projection
for (each scanline in image) {
    for (each pixel in the scanline) {
determine ray from center of projection
                through pixel;
for (each object in scene) {
            if (object is intersected and
            is closest considered thus far)
                                    record intersection and object name;
}
set pixel's color to that of closest object intersected;
    }
}

\section*{Ray Trace 1 Finding Visible Surfaces}


\section*{Ray-Sphere Intersection}
- Given
- Sphere
- Center ( \(c_{x}, c_{y}, c_{z}\) )
- Radius, \(R\)
- Ray from \(P_{0}\) to \(P_{1}\)
- \(P_{0}=\left(x_{0}, y_{0}, z_{0}\right)\) and \(P_{1}=\left(x_{1}, y_{1}, z_{1}\right)\)
- View Point
- \(\left(V_{x}, V_{y}, V_{z}\right)\)
- Project to window from \((0,0,0)\) to \((w, h, 0)\)

\section*{Sphere Equation}


\section*{Ray Equation}
\[
P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \text { and } P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
\]

\[
\begin{array}{rlr}
\mathrm{P}(\mathrm{t}) & =(1-\mathrm{t}) \mathrm{P}_{0}+\mathrm{t} \mathrm{P}_{1} \quad 0<=\mathrm{t}<=1 \\
& =\mathrm{P}_{0}+\mathrm{t}\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)
\end{array}
\]

\section*{Intersection Equation}
\[
P(t)=P_{0}+t\left(P_{1}-P_{0}\right) \quad 0<=t<=1
\]
is really three equations
\[
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right) \\
& z(t)=z_{0}+t\left(z_{1}-z_{0}\right)
\end{aligned}
\]

Substitute \(x(t), y(t)\), and \(z(t)\) for \(x, y, z\), respectively in
\[
\begin{gathered}
\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=R^{2} \\
\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}
\end{gathered}
\]

\section*{Solving the Intersection Equation}
\[
\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}
\]
is a quadratic equation in variable t .
For a fixed pixel, VP, and sphere,
\(x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, z_{1}, c_{x}, c_{y}, c_{z}\), and \(R\)
are all constants.
We solve for \(t\) using the quadratic formula.

\section*{The Quadratic Coefficients}
\(\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}\)
Set \(\quad d_{x}=x_{1}-x_{0}\)
\[
\begin{aligned}
& \mathrm{d}_{\mathrm{y}}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \mathrm{~d}_{\mathrm{z}}=\mathrm{z}_{1}-\mathrm{z}_{0}
\end{aligned}
\]

Now find the the coefficients:
\[
A t^{2}+B t+C=0
\]


\section*{Computing Coefficients}
\[
\begin{aligned}
& \left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2} \\
& \left(\left(\mathrm{x}_{0}+\mathrm{td}_{\mathrm{x}}\right)-\mathrm{c}_{\mathrm{x}}\right)^{2}+\left(\left(\mathrm{y}_{0}+\mathrm{td}_{\mathrm{y}}\right)-\mathrm{c}_{\mathrm{y}}\right)^{2}+\left(\left(\left(\mathrm{z}_{0}+\mathrm{td}_{\mathrm{z}}\right)-\mathrm{c}_{z}\right)^{2}=\mathrm{R}^{2}\right. \\
& \left(\mathrm{x}_{0}+\mathrm{td}_{\mathrm{x}}\right)^{2}-2 \mathrm{c}_{\mathrm{x}}\left(\mathrm{x}_{0}+\operatorname{td}_{\mathrm{x}}\right)+\mathrm{c}_{\mathrm{x}}{ }^{2}+ \\
& \left(y_{0}+\operatorname{td}_{y}\right)^{2}-2 c_{y}\left(y_{0}+\operatorname{td}_{y}\right)+c_{y}^{2}+ \\
& \left(\mathrm{z}_{0}+\mathrm{td}_{\mathrm{z}}\right)^{2}-2 \mathrm{c}_{\mathrm{z}}\left(\mathrm{z}_{0}+\mathrm{td}_{\mathrm{z}}\right)+\mathrm{c}_{\mathrm{z}}{ }^{2}-\mathrm{R}^{2}=0 \\
& \mathrm{x}_{0}{ }^{2}+2 \mathrm{x}_{0} \mathrm{td}_{\mathrm{x}}+\mathrm{t}^{2} \mathrm{~d}_{\mathrm{x}}{ }^{2}-2 \mathrm{c}_{\mathrm{x}} \mathrm{x}_{0}-2 \mathrm{c}_{\mathrm{x}} \mathrm{td}_{\mathrm{x}}+\mathrm{c}_{\mathrm{x}}{ }^{2}+ \\
& y_{0}{ }^{2}+2 \mathrm{y}_{0} \mathrm{td}_{\mathrm{y}}+\mathrm{t}^{2} \mathrm{~d}_{\mathrm{y}}{ }^{2}-2 \mathrm{c}_{\mathrm{y}} \mathrm{y}_{0}-2 \mathrm{c}_{\mathrm{y}} \mathrm{td}_{\mathrm{y}}+\mathrm{c}_{\mathrm{y}}{ }^{2}+ \\
& \mathrm{z}_{0}{ }^{2}+2 \mathrm{z}_{0} \mathrm{td}_{\mathrm{z}}+\mathrm{t}^{2} \mathrm{~d}_{\mathrm{z}}{ }^{2}-2 \mathrm{c}_{\mathrm{z}} \mathrm{z}_{0}-2 \mathrm{c}_{\mathrm{z}} \mathrm{td}_{\mathrm{z}}+\mathrm{c}_{\mathrm{z}}{ }^{2}-\mathrm{R}^{2}=0
\end{aligned}
\]

\section*{The Coefficients}
\[
\begin{aligned}
& x_{0}^{2}+2 x_{0} t d_{x}+t^{2} d_{x}^{2}+2 c_{x} x_{0}-2 c_{x} t d_{x}+c_{x}^{2}+ \\
& y_{0}^{2}+2 y_{0} d_{y}+\left(t^{2} d_{y}^{2}-2 c_{y} y_{0}-2 c_{y} t d_{y}+\left(c_{y}^{2}\right)\right. \\
& \mathrm{Z}_{0}^{2}+2 \mathrm{z}_{0} \mathrm{td}_{2}+\text { t }^{2 \mathrm{~d}_{2}^{2}}-2 \mathrm{C}_{\mathrm{z}} \mathrm{z}_{0}-2 \mathrm{C}_{2} \mathrm{Id}_{2}-\mathrm{C}_{2}^{2}-R^{2}=0 \\
& \mathrm{~A}=\mathrm{d}_{\mathrm{x}}{ }^{2}+\mathrm{d}_{y}{ }^{2}+\mathrm{d}_{z}{ }^{2} \\
& \mathrm{~B}=2 \mathrm{~d}_{\mathrm{x}}\left(\mathrm{x}_{0}-\mathrm{c}_{\mathrm{x}}\right)+2 \mathrm{~d}_{\mathrm{y}}\left(\mathrm{y}_{0}-\mathrm{C}_{\mathrm{y}}\right)+2 \mathrm{~d}_{\mathrm{z}}\left(\mathrm{z}_{0}-\mathrm{c}_{\mathrm{z}}\right) \\
& \mathrm{C}=\mathrm{C}_{\mathrm{x}}{ }^{2}+\mathrm{C}_{\mathrm{y}}{ }^{2}+\mathrm{C}_{\mathrm{z}}{ }^{2}+\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}+\mathrm{z}_{0}{ }^{2}+ \\
& -2\left(c_{x} x_{0}+c_{y} y_{0}+c_{z} z_{0}\right)-R^{2}
\end{aligned}
\]

\section*{Solving the Equation}
\[
\mathrm{At}^{2}+\mathrm{Bt}+\mathrm{C}=0
\]
\[
\text { discriminant }=D(A, B, C)=B^{2}-4 A C
\]
\[
D(A, B, C) \begin{cases}<0 & \text { no intersection } \\ =0 & \text { ray is tangent to the sphere } \\ >0 & \text { ray intersects sphere in two points }\end{cases}
\]

The intersection nearest \(P_{0}\) is given by:
\[
t=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\]

To find the coordinates of the intersection point:
\[
\begin{aligned}
& x=x_{0}+t d_{x} \\
& y=y_{0}+t d_{y} \\
& z=z_{0}+t d_{z}
\end{aligned}
\]

\section*{First Lighting Model}
- Ambient light is a global constant.

Ambient Light \(=k_{a}\left(A_{R}, A_{G}, A_{B}\right)\)
\(k_{a}\) is in the "World of Spheres"
\(0 \leq k_{a} \leq 1\)
\(\left(A_{R}, A_{G}, A_{B}\right)=\) average of the light sources
\(\left(A_{R}, A_{G}, A_{B}\right)=(1,1,1)\) for white light
- Color of object \(S=\left(S_{R}, S_{G}, S_{B}\right)\)
- Visible Color of an object \(S\) with only ambient light \(C_{S}=k_{a}\left(A_{R} S_{R}, A_{G} S_{G}, A_{B} S_{B}\right)\)
- For white light
\[
\mathrm{C}_{\mathrm{S}}=\mathrm{k}_{\mathrm{a}}\left(\mathrm{~S}_{\mathrm{R}}, \mathrm{~S}_{\mathrm{G}}, \mathrm{~S}_{\mathrm{B}}\right)
\]

\section*{Visible Surfaces Ambient Light}


\section*{Second Lighting Model}
- Point source light \(L=\left(L_{R}, L_{G}, L_{B}\right)\) at \(\left(L_{x}, L_{y}, L_{z}\right)\)
- Ambient light is also present.
- Color at point pon an object S with ambient \& diffuse reflection
\[
C_{p}=k_{a}\left(A_{R} S_{R}, A_{G} S_{G}, A_{B} S_{B}\right)+k_{d} k_{p}\left(L_{R} S_{R}, L_{G} S_{G}, L_{B} S_{B}\right)
\]
- For white light, \(L=(1,1,1)\)
\[
C_{p}=k_{a}\left(S_{R}, S_{G}, S_{B}\right)+k_{d} k_{p}\left(S_{R}, S_{G}, S_{B}\right)
\]
- \(k_{p}\) depends on the point \(p\) on the object and \(\left(L_{x}, L_{y}, L_{z}\right)\)
- \(\mathrm{k}_{\mathrm{d}}\) depends on the object (sphere)
- \(k_{a}\) is global
- \(\mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{d}} \leq 1\)

\section*{Diffuse Light}


\section*{Lambertian Reflection Model Diffuse Shading}
- For matte (non-shiny) objects
- Examples
- Matte paper, newsprint
- Unpolished wood
- Unpolished stones
- Color at a point on a matte object does not change with viewpoint.

\section*{Physics of Lambertian Reflection}
- Incoming light is partially absorbed and partially transmitted equally in all directions


\section*{Geometry of Lambert's Law}


\section*{\(\cos (\theta)=N \cdot \mathrm{~L}\)}


\section*{Surface 2}

\section*{Cp= ka (SR, SG, SB) + kd N•L (SR, SG, SB)}

\section*{Finding N}
\(\mathbf{N}=\underline{(x-c x, y-c y, z-c z)}\) |(x-cx, y-cy, z-cz)|


\section*{Diffuse Light 2}


\section*{Shadows on Spheres}


\section*{More Shadows}


\section*{Finding Shadows}


\section*{Shadow Color}
- Given

Ray from \(P\) (point on sphere \(S\) ) to \(L\) (light)
\[
P=P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \text { and } L=P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
\]
- Find out whether the ray intersects any other object (sphere).
- If it does, P is in shadow.
- Use only ambient light for pixel.

\section*{Shape of Shadows}



\section*{Different Views}


College of Computer and Information Science, Northeastern University

\section*{Planets}


\section*{Starry Skies}


\section*{Shadows on the Plane}


\section*{Finding Shadows on the Back Plane}


\section*{Close up}


\section*{On the Table}


\section*{Phong Highlight}


\section*{Phong Lighting Model}

Light
Normal
Reflected
View

Surface
We make the highlight maximal when \(\boldsymbol{\alpha}\) is 0 , but have it fade off gradually.

\section*{Phong Lighting Model}
\(\cos (\theta)=\mathbf{R} \cdot \mathbf{V}\)
We use \(\cos ^{n}(\theta)\).
The higher n is, the faster the drop off.

Surface
\(C p=k a(S R, S G, S B)+k d N \cdot L(S R, S G, S B)+k s(R \cdot V) n(1,1,1)\)

\section*{Powers of \(\cos (\theta)\)}


\section*{Computing \(\mathbf{R}\)}

\section*{\(L+R=(2 L \cdot N) \mathbf{N}\) \\ \(\mathbf{R}=(2 \mathbf{L} \cdot \mathbf{N}) \mathbf{N}-\mathbf{L}\)}


\section*{The Halfway Vector}
\[
H=\frac{L+V}{|L+V|}
\]

Use \(\mathbf{H} \cdot \mathbf{N}\) instead of \(\mathbf{R} \cdot \mathbf{V}\).
\(\mathbf{H}\) is less expensive to compute than R.

From the picture
\(\theta+\varphi=\theta-\varphi+\alpha\)
So \(\varphi=\alpha / 2\).
This is not generally true. Why?

Surface
\(C p=k a(S R, S G, S B)+k d N \cdot L(S R, S G, S B)+k s(H \cdot N)^{n}(1,1,1)\)

\section*{Varied Phong Highlights}


\section*{Varying Reflectivity}
```

