
Noninterference for Free ⇤

William J. Bowman
Northeastern University, USA
wjb@williamjbowman.com

Amal Ahmed
Northeastern University, USA

amal@ccs.neu.edu

Abstract
The dependency core calculus (DCC) is a framework for studying a
variety of dependency analyses (e.g., secure information flow). The
key property provided by DCC is noninterference, which guarantees
that a low-level observer (attacker) cannot distinguish high-level
(protected) computations. The proof of noninterference for DCC
suggests a connection to parametricity in System F, which suggests
that it should be possible to implement dependency analyses in
languages with parametric polymorphism.

We present a translation from DCC into F! and prove that the
translation preserves noninterference. To express noninterference in
F! , we define a notion of observer-sensitive equivalence that makes
essential use of both first-order and higher-order polymorphism. Our
translation provides insights into DCC’s type system and shows how
DCC can be implemented in a polymorphic language without loss
of the noninterference (security) guarantees available in DCC. Our
contributions include proof techniques that should be valuable when
proving other secure compilation or full abstraction results.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Security, Theory

Keywords Noninterference, parametricity, dependency, security,
information flow, polymorphism, logical relations, secure compila-
tion, fully abstract compilation.

1. Introduction
The dependency core calculus (DCC) [2] was designed to cap-
ture the central notion of dependency that arises in settings like
information-flow security, binding-time analysis, program slicing,
and function-call tracking. As an example, consider information-
flow security analyses which must prevent the publicly visible out-
puts of a program from revealing information about confidential in-
puts. Suppose we have a program e with the following security type:

e : boolH ! boolL

⇤ In electronic versions of this paper, we use a blue sans-serif font to typeset
our source language and a bold red serif font to typeset the target. The paper
will be much easier to read if viewed/printed in color.

In this type, the label H indicates high-security or private data that
should not flow to public portions of the program. The label L
indicates low-security or public data. A correct information-flow
analysis must guarantee that the low-security output of the function
does not depend on the high-security input, which means that e must
be a constant function. More generally, we may have programs with
both private and public inputs and outputs, such as e0 below with
the following type:

e0 : boolH ⇥ boolL ! boolH ⇥ boolL

In this case, the low-security output may depend on the low-security
input but not on the high-security input, while the high-security
output may depend on either of the two inputs. In general, labels may
be drawn from a lattice, where the lattice order determines illegal
dependencies: computation lower in the lattice may not depend on
data higher in the lattice. If there are no illegal dependencies, the
program is said to satisfy noninterference.

Abadi et al. formalized and proved noninterference for DCC
using a denotational semantics based on partial equivalence relations
(PERs) indexed by lattice elements. Informally, the relation specifies
an observer-sensitive equivalence, which says that data higher in
the lattice looks indistinguishable to a lower observer. Abadi et
al.’s proof technique suggests a connection to Reynolds’ proof
of parametricity [16] using a PER semantics for the polymorphic
lambda calculus (also known as System F). Such PER semantics are
instances of the logical relations proof method, and many proofs of
noninterference—drawing on Reynolds’ concept of parametricity—
have made use of logical relations [10]. The connection suggests that
it should be possible to use the parametric polymorphism in System
F to express the dependency in DCC. Making this connection
explicit would be of theoretical as well as practical value. As Tse and
Zdancewic [19] point out, a noninterference-preserving translation
from DCC to System F would provide a strategy for implementing
secure information flow and other dependency analyses expressed
in DCC in any language with parametric polymorphism.

Tse and Zdancewic [19] attempted to give a translation from
DCC into System F and prove that noninterference in DCC follows
as a consequence of parametricity in System F. Unfortunately, they
had an error in the proof of a key lemma that says, in essence, that
the translation preserves noninterference. Shikuma and Igarashi
[17, 18] subsequently gave a counterexample to this lemma. They
also gave a noninterference-preserving translation for a language
equivalent to a weaker variant of DCC called DCCpc—for DCC
with protection contexts—whose type system is more liberal than
DCC’s. Moreover, their translation targeted the simply typed �-
calculus, leaving open the explicit connection between noninterfer-
ence and parametricity.

We provide a translation from DCC to F! , translating noninter-
ference into parametricity. Our translation and proofs make essential
use of both first-order and higher-order polymorphism and para-
metricity. We formalize a notion of observer-sensitive equivalence
in F! , which relates protected computations from the perspective of
some observer, and show our translation preserves noninterference.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada

ACM. 978-1-4503-3669-7/15/08...

http://dx.doi.org/10.1145/2784731.2784733

101

The proof that our translation preserves noninterference is es-
sentially a full abstraction result. A translation is fully abstract if
it preserves and reflects contextual equivalence—i.e., if two source
terms cannot be distinguished by source-level contexts if and only
if their translations cannot be distinguished by target-level contexts.
We show preservation of observer-sensitive equivalence, but for the
highest observer—e.g., one that can observe both high- and low-
security outputs—observer-sensitive equivalence corresponds to the
natural contextual equivalence one would get after erasing security
features from the language. As Abadi [1] and Kennedy [11] point
out, fully abstract compilation is vital for secure compilation of
high-level languages.

Contributions The main contributions of our work are:
• the development of a translation from the recursion-free frag-

ment of DCC into F! (§4) and proof of its correctness (§6);
• the development of an open logical relation for F! (§5.2);
• the formalization of an observer-sensitive equivalence for F!

terms of translation type using relational parametricity (§5.3);
• the back-translation from F! terms of translation type s+ to

DCC terms of type s (§7.1) and a novel logical relation to prove
that the back-translation is well-founded; and

• proofs that our translation preserves and reflects observer-
sensitive equivalence (§7.2).

Our translation is novel and sheds light on the type system for DCC
and shows how DCC can be implemented in a polymorphic lan-
guage without loss of security/noninterference guarantees. Proving
a translation fully abstract is particularly difficult when the target
language is more expressive than the source language, as is the case
in this work. This paper provides new proof techniques that should
be useful for establishing other full abstraction results.

We have elided most proofs and parts of some definitions from
the paper. Detailed proofs and complete definitions may be found in
the online technical appendix [7].

2. Dependency Core Calculus (DCC)
DCC is a call-by-name, simply-typed �-calculus, based on the
computational lambda calculus of Moggi [13]. DCC incorporates
multiple monads, one for every level of a predetermined information
lattice, used to restrict dependencies in the program. The lattice
order captures permissible dependencies: computation interpreted
in a monad higher in the lattice can depend on data interpreted in a
monad lower in the lattice, but not vice versa. In effect, data higher
in the lattice is held abstract with respect to computation lower in the
lattice. DCC uses this lattice of monads and a nonstandard typing
rule for their associated bind operation to describe the dependency
of computations in a program.

We assume a lattice L with a set of labels L`
1 and an ordering

on labels Lv. We write ` v `

0 to mean `

0 is at least as high as `. The
monadic type T̀ , and the return ⌘` and bind operations are indexed
by a label ` 2 L`.

Except for the monadic operations, the language is completely
standard. Figure 1 defines the syntax and semantics of DCC. We
define a small-step operational semantics (e 7�! e0) using evaluation
contexts E to lift the primitive reductions to a call-by-name seman-
tics for the language. We write 7�!

⇤ for the reflexive, transitive
closure of 7�!. Note that in this call-by-name language, ⌘` e is a
value form. The operation bind x = e1 in e2 evaluates e1 to a value
⌘` e and then substitutes e for x in e2.

DCC typing judgments have the form � ` e : s where the
environment � tracks the set of free term variables in scope, along

1 Note that in L`, ` is part of the name for the set, not a meta-variable.

Types s ::= 1 | s1 ⇥ s2 | s1 + s2 | s1 ! s2 | T̀ s
Values v ::= x | hi | he1, e2i | inji e | �x : s. e | ⌘` e
Terms e ::= v | prji e | case e of inj

1

x1. e1 || inj
2

x2. e2 |

e1 e2 | bind x= e1 in e2
Eval. Ctxts E ::= [·]S | prji E | case E of inj

1

x1. e1 || inj
2

x2. e2 |

E e | bind x= E in e

e 7�! e0

(�x : s. e1) e2 7�! e1[e2/x]
bind x= ⌘` e1 in e2 7�! e2[e1/x]

· · ·

� ` e : s Term Environment � ::= · | � , x : s

· · ·

� ` e : s

� ` ⌘` e : T̀ s

� ` e1 : T̀ s1 � , x : s1 ` e2 : s2 ` � s2

� ` bind x= e1 in e2 : s2

` � s

` � 1

` � s1 ` � s2

` � s1 ⇥ s2

` � s2

` � s1 ! s2

` v/ `

0
` � s

` � T̀ 0 s

` v `

0

` � T̀ 0 s

Figure 1. DCC: Syntax + Dynamic & Static Semantics (excerpts)

with their types. Typing rules for all constructs except ⌘` and bind
are completely standard so we omit them here. The return operation
⌘` e protects the term e by wrapping it with the label `. These
protected terms can only be unwrapped through a bind operation
bindx=e1 ine2. While e2 may depend on the protected term inside e1,
the results produced by the entire bind expression (of type s2) must
be protected at the label ` or higher. This requirement is captured by
the judgment ` � s2 (pronounced “s2 is protected at `”).

Informally, a type s is protected at ` if expressions of this type
do not leak information to levels lower than (or incomparable to) `.
Since there is only one value of type 1, this type cannot communicate
any information, so it is protected at any `. Pairs are protected if both
components of the pair are protected. Functions are protected if they
produce protected results; the input to a function does not matter.
Finally, there are two cases for ` � T̀ 0 s. First, if s is protected at `,
then the type T̀ 0 s is protected at ` since unwrapping the protected
value gives back an expression that is also protected at `. Second, if
`

0 is at least as high as `, then since the expression of type T̀ 0 s is
protected already protected at the higher label `0, it is also protected
at the lower label `. Note that sum types are never protected; even
the simplest sum type 1+ 1 leaks information, and must be wrapped
in a monadic type to be protected.

For use in examples, we encode bool as the sum 1 + 1, true as
inj

1

hi, false as inj
2

hi, and if using a case expression.
To see how DCC protects information, consider this example:

�x :TH bool. bind y = x in y

This example is ill-typed. We cannot simply return y since it is
of type bool, which is not protected at H. Instead, the typing rule
for bind forces us to first protect the result. For example, we could
instead return ⌘H y. This keeps the protected inputs to the function
from being leaked.

3. Background and Main Ideas
We examine why the translation given by Tse and Zdancewic fails
to preserve noninterference and describe the key ideas behind our
translation. Below, we write s+ to denote the translation of the DCC
type s.

Preserving noninterference Tse and Zdancewic translate the
monadic type as follows:

(T̀ s)+ = ↵` ! s+

The translation of all other types is defined by structural recursion.

102

As mentioned in §1, the key lemma we must prove about our
translation is that it preserves DCC’s noninterference guarantee.
Let us take a closer look at how noninterference is expressed in
DCC and how this type translation captures noninterference at the
target level.

Consider the type THbool. In DCC, this type represents a boolean
value that is visible only to H computations; L computations must
treat such values as opaque and hence cannot distinguish between
true and false at the type THbool. DCC formalizes this situation using
an observer-indexed logical relation that says these two values are
equivalent at L (written ⌘H true ⇡L ⌘H false : TH bool) but not at
H. Hence, the relation ⇡L relates every possible pair of boolean
expressions at the type TH bool, while the relation ⇡H at the same
type only relates boolean expressions that evaluate to the same
value. We will refer to this relation as observer-sensitive equivalence:
we write e1 ⇡⇣ e2 : s to mean that terms e1 and e2 of type s are
equivalent from the perspective of an observer at level ⇣ in the
lattice.2

Intuitively, we must show that if e1 ⇡⇣ e2 : s and e1 and e2 trans-
late to target terms m1 and m2, respectively, then m1 ⇡⇣ m2 : s+.
The key is to formalize the target-level ⇡⇣ relation in terms of
the standard logical relation for System F (or F!), which is not
indexed by an observer. To see how Tse and Zdancewic do this,
consider the type TH bool again, which they translate to the target
type ↵H ! bool. This translation uses abstract types ↵` to encode
each element ` in the source-level lattice. This simulates DCC’s
observer-sensitive equivalence by requiring, in essence, that an L-
observer not have access to any terms of type ↵H, which means that
any function of type ↵H ! bool can never be applied. Hence, the
two functions �x:↵H.true and �x:↵H.false are indistinguishable.
Meanwhile, an H-observer is given access to terms of type ↵H and
can use these as keys to gain access to the computation hidden inside
functions of type ↵H ! bool.

This type translation is simple and promising, but it does not
preserve observer-sensitive equivalence.

Counterexample to Tse-Zdancewic’s key lemma To see why the
above translation fails to preserve observer-sensitive equivalence,
consider the counterexample given by Shikuma and Igarashi [18].
DCC terms of the protected function type sf = T̀ ((T̀ bool)! bool)
must be equivalent to ⌘` (�x : T̀ bool. v), where v is either true or
false. In particular, Shikuma and Igarashi point out that the following
term is ill-typed due to the ` � s2 restriction in the typing rule for
bind (since ` � bool).

ef = ⌘` (�x : T̀ bool. bind y = x in y) // ill typed!

Thus, the following two terms e1 and e2 are equivalent at type
s = sf ! T̀ bool for an observer at level `, since the only functions
we can pass in for f are the constant functions above—i.e., we
cannot pass in non-constant functions such as ef (since they are not
well-typed).

e1 = �f : sf . bind f0 = f in ⌘` (f
0
(⌘` true))

e2 = �f : sf . bind f0 = f in ⌘` (f
0
(⌘` false))

While e1 and e2 are equivalent at type s at level ` in DCC, their
translations are not equivalent at the following type s+ in System F.

s+ = (↵` ! ((↵` ! bool) ! bool)) ! (↵` ! bool)

The term mf defined below, which corresponds to ef , can
distinguish the translations of e1 and e2:

mf = �k:↵`.�y:↵` ! bool. y k

Hence, we have two terms of type s that are equivalent (at `) in
DCC, but their translations are not equivalent at the type s+ (at

2 Following convention, we represent the level of the observer using the
meta-variable ⇣ rather than `.

`) in System F, which means that the translation fails to preserve
(observer-sensitive) equivalence.

How can we fix this problem? At a minimum, since the typing
rule for bind prevents us from concluding that ef : sf , we should not
be able to conclude that the corresponding (behaviorally equivalent)
target term mf is well-typed at s+f . In more detail, consider the
restrictions on the continuation inside ef that uses y : T̀ bool—i.e.,
that the bind expression inside ef must have a result type that is
protected at `. In contrast, there is no such restriction on the body
of mf that uses y : (T̀ bool)+. The problem is that this simple
encoding of the monadic type as a function fails to capture all of
the restrictions imposed by the typing rule for bind. We need to find
an alternative translation for types of the form T̀ s that captures
these restrictions so that for every e : T̀ s, all target-level uses of
the translation of e must satisfy the same constraints as the ones
imposed by the bind typing rule on source-level uses of e.

Our translation is more involved than this simple type translation
and requires higher-order polymorphism, but the way in which we
leverage higher-order relational parametricity when defining ⇡⇣

at the target level (§5.3) is semantically pleasing and insightful
given the semantics of DCC. We define ⇡⇣ at the target-level by
instantiating a novel open logical relation for F! , which interprets
types as relations on open terms rather than closed terms as is
standard. In §5.2 we explain why we need this. Our open logical
relation is inspired by Zhao et al.’s open logical relation for a linear
System F [22].

Need for back-translation As with all proofs of full abstraction,
a key step of our proof requires showing that for any target term
of translation type, m : s+, there exists a semantically equivalent
source term e : s. We formalize this via a “back-translation” relation
between target terms of type s+ and source terms of type s (§7.1).
The need for back-translation arises when proving that if two source
functions f1 and f2 are equivalent then their translations f1 and f2

are equivalent. To show the latter, we must assume that we’re given
two equivalent target-level arguments m1 and m2 and show that
f1m1 is equivalent to f2m2. The only way to proceed is by making
use of the equivalence of the source functions f1 and f2, but they can
only be applied to source-level inputs. If we could back-translate
m1 and m2 to source terms e1 and e2—which is exactly the failure
the counterexample exploits—then we could conclude that f1 e1 is
equivalent to f2 e2 which implies that f1 m1 is equivalent to f2 m2

since each of those source terms is semantically equivalent to the
corresponding target terms.

Our back-translation technique handles more complex lan-
guages compared to the “inverse translation” given by Shikuma
and Igarashi [17, 18]. Note that their source and target languages
are both simply-typed and, thus, in closer correspondence. This
simplifies the back-translation. By contrast, our target language
is more expressive than the source (e.g., F! can encode natural
numbers, while DCC cannot). Back-translation in this setting is
more complicated. We give a more detailed comparison in §8.

Our translation: key ideas The idea for our type translation can
be explained by analogy with existential types and their well-known
encoding using universal types. As a starting point, notice that the
bind typing rule resembles the typing rule for unpacking a term of
existential type:

�;� ` e

1

: 9↵. ⌧ �,↵;�, x : ⌧ ` e

2

: ⌧

2

↵ /2 ftv(⌧

2

)

�;� ` unpack ↵, x = e

1

in e

2

: ⌧

2

Note that, just as the bind rule requires the side condition ` � s2,
the unpack rule requires the side condition ↵ /2 ftv(⌧

2

). This idea
inspires our translation, because a simple encoding captures this
side condition through parametricity.

103

Recall that the encoding of existential types using universal types
captures all of the restrictions imposed by the unpack typing rule:

9↵. ⌧

def

= 8�. (8↵. ⌧ ! �) ! �

The above encoding says that an existential package is a data value
that, given a result type ⌧

2

and a continuation, calls the continuation
to yield a final result. The continuation corresponds to the body of
an unpack: it takes a type ↵ and a value of type ⌧ , and uses them to
compute a result of type ⌧

2

. In particular, note that since ↵ is not in
scope when we instantiate �, the above encoding perfectly captures
the ↵ /2 ftv(⌧

2

) requirement from the unpack typing rule since we
cannot instantiate � with any ⌧

2

with a free ↵.
We can analogously capture the constraints in the bind typing

rule by encoding monadic types roughly as follows:

(T̀ s)+
roughly

= 8�. (J` � �K ⇥ (s+ ! �)) ! �

This encoding says that a protected computation is a data value
that, given a result type t

2

, a proof that t
2

is protected at `—which
we informally write as J` � t

2

K for now and formalize below—
and a continuation, calls the continuation to yield a final result.
The continuation here corresponds to the body of a bind: it takes a
computation of type s+ and uses it to compute a result of type t

2

. In
particular, note that we must provide a proof that the result type of
the continuation is protected at `, only then will this data value call
the continuation to compute a result.

The remaining question then is how to encode the type J` � t

2

K.
Note that we should only be able to construct a term with the
“protection type” J` � t

2

K if 9s2.t2 = s+
2

and ` � s2. First, like
Tse-Zdancewic, we shall use type variables ↵` to encode each
` 2 L`. Then, our desired “protection type” can be built using
an abstract type constructor ↵� :: ⇤ ! ⇤ ! ⇤ applied to the
types ↵` and t

2

. That is, we shall represent J` � t

2

K with the
protection type (↵� ↵` t

2

). Of course, in addition to introducing
the higher-kinded abstract type ↵� and a set of type variables ↵`::⇤
for each ` 2 L`, we must also provide an interface for constructing
terms of protection type—e.g., given terms of type (↵� ↵` t

1

)

and (↵� ↵` t

2

), we should be able to construct a term of type
(↵� ↵` (t

1

⇥ t

2

)). The types of these proof constructors mirror
the protection rules in DCC.

Thus, our translation uses higher-order polymorphism to encode
DCC’s protection judgment at the target-level. To summarize, we
translate monadic types as follows:

(T̀ s)+ = 8�::⇤. ((↵� ↵` �) ⇥ (s+ ! �)) ! �

We describe the details of the translation in the next section.

4. Translating DCC to F
!

In this section, we begin by presenting the target language F! and
then give a type-directed translation from DCC to F! .

Target language: F! The target language F! is the call-by-name,
higher-order polymorphic lambda calculus with unit, pairs, and sums.
Figure 2 presents the syntax and excerpts of the static semantics. We
omit much of the formal presentation as the language is completely
standard (e.g., see Pierce [15]).

Typing judgments in F! have the form �;� ` m : t, which says
that an F! term m has type t under type environment � and term
environment �. The kinding judgment � ` t :: says that a type
t has kind under type environment �, where � maps abstract
types ↵ to kinds . Since we have type-level functions, i.e., type
constructors, we define type equivalence t

1

⌘ t

2

to account for
beta-reduction at the type-level.

Translation We start by defining a translation from DCC types to
F! types, shown in Figure 3. We write s+ to mean the translation
of the DCC type s. Most types are translated by structural recursion.
As discussed above, the monadic type T̀ s is translated to the type

Kinds ::= ⇤ | !
Types t ::= 1 | t

1

⇥ t

2

| t

1

! t

2

| ↵ | 8↵::. t | t

1

+ t

2

|

�↵::.t | t

1

t

2

Values u ::= x | hi | hm1,m2i | �x:t.m | ⇤↵::.m | inji m

Terms m ::= u | prji m | m1 m2 | m[t] |

casemof inj

1

x1.m1 || inj

2

x2. m2

� ` t :: Type Env. � ::= · | �,↵ ::
Term Env. � ::= · | �,x : t

· · ·

↵ :: 2 �

� ` ↵ ::

�,↵ :: ` t :: ⇤
� ` 8↵::. t :: ⇤

�,↵ :: 1 ` t :: 2

� ` �↵::.t :: 1 ! 2

� ` t

1

:: 1 ! 2 � ` t

2

:: 1

� ` t

1

t

2

:: 2

�;� ` m : t

· · ·

�;�,x : t

1

` m : t

2

� ` t

1

:: ⇤
�;� ` �x:t

1

.m : t

1

! t

2

�,↵ :: ;� ` m : t

�;� ` ⇤↵::.m : 8↵::. t

�;� ` m : 8↵::. t
1

� ` t

2

::

�;� ` m[t

2

] : t

1

[t

2

/↵]

�;� ` m : t

1

t

1

⌘ t

2

� ` t

2

:: ⇤
�;� ` m : t

2

t ⌘ t

0

· · ·

t

1

⌘ t

2

�↵::.t
1

⌘ �↵::.t
2

t

1

⌘ t

0
1

t

2

⌘ t

0
2

t

1

t

2

⌘ t

0
1

t

0
2

(�↵::.t
1

) t

2

⌘ t

1

[t

2

/↵]

Figure 2. F!: Syntax and Static Semantics (excerpts)

L

+

` = {↵` :: ⇤ | ` 2 L`} [{↵� :: ⇤ ! ⇤ ! ⇤}
L

+

v = {c`0` : ↵`0 ! ↵` | ` v `

0
2 Lv}

s+ where L

+

` ` s+ :: ⇤
1+ = 1

(s1 ⇥ s2)+ = s+
1

⇥ s+
2

(s1 + s2)+ = s+
1

+ s+
2

(s1 ! s2)+ = s+
1

! s+
2

(T̀ s)+ = 8�::⇤. ((↵� ↵` �) ⇥ (s+ ! �)) ! �

Figure 3. DCC to F!: Lattice (top) and Type (bottom) Translations

of a polymorphic function that expects a continuation and a proof
that the result type of the continuation is protected at label `. This
requires encoding labels and the DCC ` � s judgment in F! .

Following Tse and Zdancewic [19], we encode the labels of the
DCC lattice by generating a fresh abstract type ↵` for each ` in L`,
defined as L+

` in Figure 3. To encode the ordering on labels, Lv, we
generate coercion functions c`0` if `v `

0, defined as L

+

v in Figure 3;
informally, these allow us to convert a higher label `0 to a lower
label `.

To support encoding of the protection judgment ` � s, our
translation L

+

` also introduces an abstract type constructor ↵�.
When we use the type constructor ↵� in the translation, it takes a
type representing a label (i.e., an ↵`) and some type s+, and returns
a type representing a proof that s+ is protected at `.3 We will refer

3 Syntactically, it appears that the proof constructors for ↵� could be applied
to types other than ↵` and s+, but we prevent this via parametricity using
the relational interpretation given in §5.

104

�

+ proof constructors
p1 : 8�`::⇤. (↵� �` 1),

p⇥ : 8�`::⇤.8↵1::⇤.8↵2::⇤.
((↵� �` ↵1) ⇥ (↵� �` ↵2)) ! (↵� �` (↵1 ⇥ ↵2)),

p! : 8�`::⇤.8↵1::⇤.8↵2::⇤.
(↵� �` ↵2) ! (↵� �` (↵1 ! ↵2)),

pT1
: 8�`::⇤.8�`0 ::⇤.8↵::⇤. (↵� �` ↵) !

(↵� �` (8�::⇤. ((↵� �`0 �) ⇥ (↵ ! �)) ! �))
pT2

: 8�`::⇤.8�`0 ::⇤.8↵::⇤. (�`0 ! �`) !
(↵� �` (8�::⇤. ((↵� �`0 �) ⇥ (↵ ! �)) ! �)),

pfJ` � sK : (↵� ↵` s+) proof-term construction

pfJ` � 1K def

= p1 [↵`]

pfJ` � s1 ⇥ s2K def

= p⇥ [↵`] [s
+

1

] [s+
2

] hpfJ` � s1K,pfJ` � s2Ki
pfJ` � s1 ! s2Kdef

= p! [↵`] [s
+

1

] [s+
2

] pfJ` � s2K
pfJ` � T̀ 0 sK def

= pT1
[↵`] [↵`0] [s

+

] pfJ` � sK if ` � s and ` v/ `

0

pT2
[↵`] [↵`0] [s

+

] c`0` if ` v `

0

Figure 4. F!: Protection Proofs

to this fully applied type (↵� ↵` s+) as a protection type. Since
the type constructor is abstract, the only terms that can inhabit a
protection type are terms built using the provided proof constructors.

Figure 4 shows �

+ which contains the constructors for terms
of protection types (i.e., the proof constructors). In essence, these
constructors encode the inference rules of the ` � s judgment. Each
constructor is named suggesting the rule from the ` � s judgment
which the constructor encodes. For instance, p1 encodes the rule for
` � 1, that any label is protected at the unit type.

During term translation, we need to construct terms that inhabit
a protection type (i.e., protection proofs). We provide a function
pfJ` � sK for constructing protection proofs by induction on a given
derivation of ` � s. Note that pfJ` � sK yields the following lemma.

Lemma 4.1
If ` � s then 9m. L

+

` ;L

+

v,�

+

` m : (↵� ↵` s+)

That is, if a source type is protected at some label `, then a protection
proof exists, namely pfJ` � sK, for the translated type and label
under L+

` ;L

+

v,�

+ (which we refer to as the protection ADT).
The translation judgment � ` e : s ; m takes an open source

term e of type s and produces the target term m. The term m has
type s+ under the type environment L+

` and the term environments
L

+

v, �+, and �+. We write �+ to mean the point-wise translation of
x : s 2 � to x : s+.

Since DCC and F! share the same basic constructs, we translate
most terms by structural recursion. The translation of an ⌘` value
expects a continuation and a protection proof, so the translation of
bind must produce such a proof and continuation. Several translation
rules are presented in Figure 5.
� ` e : s ; m where L

+

` ;L

+

v,�

+

, �+ ` m : s+

� ` hi : 1 ; hi
(x : s) 2 �

� ` x : s ; x

� , x : s ` e : s2 ; m

� ` �x : s1. e : s1 ! s2 ; �x:s+
1

.m

� ` e1 : s1 ! s2 ; m1 � ` e2 : s1 ; m2

� ` e1 e2 : s2 ; m1 m2
· · ·

� ` e : s ; m where t = ((↵� ↵` �) ⇥ (s+ ! �))

� ` ⌘` e : T̀ s ; ⇤�::⇤.�x:t.((prj
2

x)m)

� ` e1 : T̀ s1 ; m1 � , x : s1 ` e2 : s2 ; m2 ` � s2

� ` bind x= e1 in e2 : s2 ; m1 [s+2] hpfJ` � s2K,(�x:s+
1

.m2)i

Figure 5. DCC to F!: Term Translation (excerpts)

Atom [s] = { (e1, e2) | ` e1 : s ^ ` e2 : s }

VJ1K⇣ = { (hi, hi) 2 Atom [1] }

VJs⇥ s0K⇣ = {(he1, e01i, he2, e
0
2i) 2 Atom [s⇥ s0] |

(e1, e2) 2 EJsK⇣ ^ (e01, e
0
2) 2 EJs0K⇣}

VJs+ s0K⇣ = {(inj
1

e1, inj
1

e2) 2 Atom [s+ s0] | (e1, e2)2 EJsK⇣}
[{(inj

2

e1, inj
2

e2) 2 Atom [s+ s0] | (e1, e2)2 EJs0K⇣}
VJs0 ! sK⇣ = {(�x : s0. e1, �x : s0. e2) 2 Atom [s0 ! s] |

8(e01, e
0
2) 2 EJs0K⇣ .(e1[e01/x], e2[e02/x]) 2 EJsK⇣}

VJT̀ sK⇣ = {(⌘` e1, ⌘` e2) 2 Atom [T̀ s] |
` v ⇣ =) (e1, e2) 2 EJsK⇣}

EJsK⇣ = {(e1, e2) 2 Atom [s] | 9v1, v2.
e1 7�!

⇤ v1 ^ e2 7�!

⇤ v2 ^ (v1, v2) 2 VJsK⇣}
GJ·K⇣ = (;, ;)

GJ� , x : sK⇣ = {(�1 [x 7! e1] , �2 [x 7! e2]) | (�1, �2) 2 GJ�K⇣ ^

((e1, e2) 2 EJsK⇣)}
� ` e1 ⇡⇣ e2 : s

def

= � ` e1 : s ^ � ` e2 : s ^

8(�1, �2) 2 GJ�K⇣ . (�1(e1), �2(e2)) 2 EJsK⇣

Figure 6. DCC: Logical Relation

Lemma 4.2 (Translation preserves well-typedness)
If � ` e : s then � ` e : s ; m and L

+

` ;L

+

v,�

+

, �+ ` m : s+.

5. Observer-Sensitive Equivalence
In this section, we define a notion of observer-sensitive equivalence
for DCC that is formalized using a logical relation. This logical
relation is essentially the same as the one defined by Tse and
Zdancewic [19]. We also define a novel open logical relation for F!

and then formalize an observer-sensitive equivalence for F! using
higher-order parametricity.

5.1 Logical Relation for DCC
The logical relation for DCC, written � ` e1 ⇡⇣ e2 : s, says that e1
and e2 appear equivalent from the perspective of an observer at level
⇣. The relation is defined in Figure 6 and enforces that an observer
whose label in the lattice is ⇣ cannot distinguish data protected at a
lattice level higher than (or incomparable to) ⇣.

The logical relation is defined by structural recursion on types.
The value relation VJsK⇣ relates closed values at type s. We use
the relation Atom [s] to ensure that the logical relation relates only
well-typed terms.

The value hi appears equivalent to itself at type 1 to an observer
at any level. Sums inj

1

e1 and inj
1

e2 appear equivalent at type s+ s0

to an observer at level ⇣ if e1 and e2 appear equivalent at type s to
the observer, and similarly for the second injections at type s0. Pairs
are related if their components are related at their respective types.
Functions are related if, given inputs related at the argument type,
they produce results related at the result type. The values ⌘` e1 and
⌘` e2 are related at type T̀ s if the observer ⇣ is lower than `, or if e1
and e2 appear equivalent to the observer at type s. This captures the
idea that an observer at a level lower than ` is unable to distinguish
⌘` e1 from ⌘` e2.

The relation EJsK⇣ relates closed terms if they reduce to related
values. We extend the logical relation to open terms e1 and e2 by
picking substitutions �1 and �2 that map variables to terms related
at the corresponding types in � , and requiring that the closed terms
�1(e1) and �2(e2) be related.

The fundamental property of this logical relation is noninterfer-
ence, formally stated in Theorem 5.2. The key property enforced by
the logical relation is that any two terms whose type is protected at
level ` are related if the observer ⇣ is lower than or incomparable
to `. This property, stated in Lemma 5.1 is similar to Abadi et al.’s
Proposition 3.2 [2].

105

Atom [t

1

, t

2

]

D;G
= {(m1,m2) | D ` t

1

^ D ` t

2

^

D;G ` m1 : t

1

^ D;G ` m2 : t

2

}

Atom [t]

D;G
⇢ = Atom [⇢1(t),⇢2(t)]

D;G

Rel

D;G
⇤ = { (t

1

, t

2

,R) | R ✓ Atom [t

1

, t

2

]

D;G
}

Rel

D;G
 ! 0 = {(t

1

, t

2

,R) | (8⇡ 2 Rel

D;G
 .

(t

1

⇡1, t2 ⇡2, (R ⇡)) 2 Rel

D;G
0 ^

(8⇡0
2 Rel

D;G
 . ⇡ ⌘

D;G
 ⇡0

=)

R ⇡ ⌘

D;G
0 R ⇡0

}

⇡ ⌘

D;G
 ⇡

def

= ⇡1 ⌘ ⇡0
1 ^ ⇡2 ⌘ ⇡0

2 ^ ⇡R ⌘

D;G
 ⇡0

R

R ⌘

D;G
⇤ R

0 def

= (m1,m2) 2 R () (m1,m2) 2 R

0

R ⌘

D;G
1 ! 2 R

0 def

= 8⇡ 2 Rel

D;G
1 . R ⇡ ⌘

D;G
2 R

0 ⇡

T Jt :: ⇤KD;G
⇢ = VJtKD;G

⇢
if t 2 {1,↵, t

1

+ t

2

, t

1

⇥ t

2

, t

1

! t

2

,8↵::. t}

T J↵ :: 1 ! 2KD;G
⇢ = ⇢R(↵)

T J�↵::1.t :: 1 ! 2KD;G
⇢ = �R⇡.T Jt :: 2KD;G

⇢[↵::1 7!⇡]

T Jt t0 :: 2KD;G
⇢ = (T Jt :: 1 ! 2KD;G

⇢

(⇢1 t

0
,⇢2 t

0
,T Jt0 :: 1KD;G

⇢))

VJ↵KD;G
⇢ ={ (m1,m2) 2 ⇢R(↵) }

...
VJt0!tKD;G

⇢ ={(�x:t0
1

.m1,�x:t0
2

.m2)2Atom [t

0!t]

D;G
⇢ |

8(m

0
1,m

0
2) 2 EJt0KD;G

⇢ .

(m1[m
0
1/x],m2[m

0
2/x]) 2 EJtKD;G

⇢ }

VJ8↵::. tKD;G
⇢ ={(⇤↵::.m1,⇤↵::.m2) 2 Atom [8↵::. t]D;G

⇢ |

8⇡ 2 Rel

D;G
 .

(m1[⇡1/↵],m2[⇡2/↵]) 2 EJtKD;G
⇢[↵:: 7!⇡]

}

VJt t0KD;G
⇢ =T Jt t0 :: ⇤KD;G

⇢

EJtKD;G
⇢ ={(m1,m2) 2 Atom [t]

D;G
⇢ |

9m

0
1,m

0
2. m1 7�!

⇤
m

0
1 ^ m2 7�!

⇤
m

0
2 ^

irred(m

0
1) ^ irred(m

0
2) ^ (m

0
1,m

0
2)2VJtKD;G

⇢ }

DJ·KD;G
=;

DJ�,↵ ::KD;G
={⇢ [↵ :: 7! ⇡] | ⇢ 2 DJ�KD;G

^ ⇡ 2 Rel

D;G
 }

GJ·KD;G
⇢ =(;, ;)

GJ�,x : tKD;G
⇢ ={(�1 [x 7! m1] ,�2 [x 7! m2]) |

(�1,�2) 2 GJ�KD;G
⇢ ^ (m1,m2) 2 EJtKD;G

⇢ }

�;� ` m1 ⇡ m2 : t

def

= �;� ` m1 : t ^ �;� ` m2 : t ^ 8D,G,⇢,�1,�2. dom(D)#dom(�) ^ dom(G)#dom(�) ^

⇢ 2 DJ�KD;G
^ (�1,�2) 2 GJ�KD;G

⇢ =) (⇢1(�1(m1)),⇢2(�2(m2))) 2 EJtKD;G
⇢

Figure 7. F!: Logical Relation (excerpts)

Lemma 5.1
If ` � s and ` v/ ⇣ then 8(e1, e2) 2 Atom [s] .(e1, e2) 2 EJsK⇣

Theorem 5.2 (Noninterference)
If � ` e : s then 8⇣.� ` e ⇡⇣ e : s

We prove Theorem 5.2 directly by induction on the typing
judgment, which requires Lemma 5.1 in the bind case. In §7.2,
we will also show that noninterference follows as a consequence of
our translation and parametricity in the target language.

5.2 An Open Logical Relation for F!

We formalize equivalence in F! via an open logical relation whose
structure resembles that of the logical relation for R! given by
Vytiniotis and Weirich [20]. The main difference is that we interpret
types as relations on open terms with open types—instead of closed
terms of closed type, as is standard practice—following ideas from
Zhao et al.’s [22] open logical relation for a linear System F.
Specifically, our value relation V and term relation E for F! may
relate open terms with open types, unlike the V and E relations for
DCC which relate closed terms of closed type.

We need an open logical relation due to our type translation.
Recall from §3 that when proving that equivalence of functions is
preserved, we have two arguments m1 and m2 related by the F!

term relation E. We must show that we can back-translate these to
two related source terms e1 and e2. In order to back-translate m1

and m2, we must know they have a translation type, since only
terms of translation type can be back-translated (see §7.1). However,
our translation produces types that contain free variables ↵� and
↵`, and terms with the free variables from �

+. If our F! relation
closed these free variables, as is standard, then terms that belong to
the relation E will not have translation type, and we will not be able
to back-translate them.

Figure 7 presents the open logical relation for F! . As usual, the
top-level logical relation �;� ` m1 ⇡ m2 : t requires that we
close all the free variables of � and � in m1 and m2 choosing
a relational type interpretation ⇢ and related term substitutions �1
and �2. However, in contrast to a standard logical relation, such as
our logical relation for DCC, these substitutions contain terms that
may be open with respect to a fresh type environment D and term

environment G. By fresh, we mean the domains of the environments
D and G are disjoint from � and �, written dom(D)#dom(�) and
dom(G)#dom(�). In effect, this allows us to extend the logical
relation with new constants and leverage these when we provide
relational interpretations for the original type variables. In §5.3,
we show how we take advantage of this extra expressive power to
extend the logical relation with constants for our protection ADT
and relational interpretations for the type variables in L

+

` .
We define a value relation V and a term relation E which

are inhabited by open terms that are well-typed under D;G. The
relations are indexed by a type t such that � ` t :: . Hence, the
relations need to be parameterized by a relational interpretation
⇢ which maps the free type variables ↵ in � to triples (t

1

, t

2

,R)

(abbreviated ⇡). The types t

1

and t

2

must be well-formed under
D rather than �, and are the types we substitute for ↵ in pairs of
related terms. We write ⇡1 and ⇡2 to denote the projections of t

1

and
t

2

from ⇡, and ⇡R to denote the projection of R from ⇡. We extend
this notation to ⇢; if ⇢ = [↵1 :: 1 7! ⇡1

] . . . [↵n :: n 7! ⇡n
], then

⇢1 = [↵1 7! ⇡1
1] . . . [↵n 7! ⇡n

1], and we analogously use ⇢2 and
⇢R. Finally, we write ⇢1(m) to denote applying the substitution ⇢1
to all the type variables in m. We use similar notation for application
of other substitutions to terms and types.

The relation EJtKD;G
⇢ runs terms until they are irreducible, and

then requires that the irreducible terms be related in VJtKD;G
⇢ . Note

that unless t is ↵, the terms must reduce to values of the appropriate
canonical form for type t. If t is ↵, ⇢R(↵) can be a relation on terms
with free (term and type) variables and VJ↵KD;G

⇢ relates terms that
are not values. This follows the formalism by Zhao et al. [22].

As usual, when relating the values ⇤↵::.m1 and ⇤↵::.m2 in
VJ8↵::. tKD;G

⇢ , we consider arbitrary types t
1

and t

2

and a relation
object R. At kind ⇤, relation objects are just sets of terms. At kind
1 ! 2, relation objects are relation-level functions. Intuitively,
relation-level functions take relations as inputs and produce relations
as outputs. Formally, relation-level functions written �R⇡.R take
triples ⇡ and produce relation objects. We write (R⇡) as the
application of the relation-level function R to ⇡.

The relation objects for all types, including the higher-kinded
types, are defined inductively on the judgment � ` t :: by
T Jt :: KD;G

⇢ . When t has kind ⇤, this is just the relation VJtKD;G
⇢ .

106

L

+

` ;L

+

v,�

+

, �+ ` m1 ⇡⇣ m2 : s+
def

=

L

+

` ;L

+

v,�

+

, �+ ` m1 : s+ ^ L

+

` ;L

+

v,�

+

, �+ ` m1 : s+^

let ⇢ = JL+

` K⌃⇣ ,�v = JL+

vK,�� = J�+Kin
8(�1,�2) 2 GJ�+K⌃⇢ .

(⇢1(�v(��(�1(m1)))),⇢2(�v(��(�2(m2))))) 2 EJs+K⌃⇢

Figure 8. F!: Observer-Sensitive Logical Relation

⌃ =D`;G`,G� Note ⌃D = D` and ⌃G = G`,G�
D` ={

ˆ↵` :: ⇤ | ` 2 L`} [{

ˆ↵� :: ⇤ ! ⇤ ! ⇤}
G` ={

ˆ

c``0 : ˆ↵` ! ˆ↵`0 | `

0
v ` 2 Lv}

G�={

ˆ

p1 : 8�`::⇤. (ˆ↵� �` 1),

ˆ

p⇥ : 8�`::⇤.8↵1::⇤.8↵2::⇤.
((

ˆ↵� �` ↵1)⇥(

ˆ↵� �` ↵2)) ! (

ˆ↵� �` (↵1⇥↵2)),

ˆ

p! : 8�`::⇤.8↵1::⇤.8↵2::⇤. (ˆ↵� �` ↵2) !
(

ˆ↵� �` (↵1 ! ↵2)),

ˆ

pT1
: 8�`::⇤.8�`0 ::⇤. (ˆ↵� �`0 t) !
(

ˆ↵� ˆ↵` (8�::⇤. ((↵� �`0 �) ⇥ (t ! �)) ! �))
ˆ

pT2
: 8�`::⇤.8�`0 ::⇤.8↵::⇤. (�`0 ! �`) !
(

ˆ↵� �` (8�::⇤. ((↵� �`0 �) ⇥ (↵ ! �)) ! �))}

Figure 9. F!: Open Protection ADT

For type-level functions �↵::.t, we construct a relation-level
function that takes a triple ⇡ and produces a relation object where ⇢
is extended to map ↵ to ⇡. For type application t t

0
:: 2, we apply

the inductively defined relation-level function for t :: 1 ! 2 to
the closed types ⇢1(t

0
), ⇢2(t

0
), and the inductively defined relation

object for t0 :: 1.
The set Rel

D;G
 defines well-formed relations. Formally, Rel

D;G

contains triples ⇡ where ⇡R is a relation object defined on types
⇡1 and ⇡2. For kind ⇤, a relation is well-formed if it relates well-
typed terms. For higher kinds, a relation object R is well-formed
if, for equivalent inputs ⇡ and ⇡0, it produces equivalent outputs
R ⇡ and R ⇡0.

We prove the fundamental property of this logical relation, stated
in Theorem 5.3 (Parametricity). The proof essentially follows that
of Vytiniotis and Weirich [20].

Theorem 5.3 (Parametricity)
If �;� ` m : t then �;� ` m ⇡ m : t

5.3 Observer-Sensitive Relation for F!

To prove that observer-sensitive equivalence is preserved, we need
an observer-sensitive relation for F! . Recall that the DCC logical
relation is indexed by an observer ⇣, but so far the F! relation is
simply �;� ` m1 ⇡ m2 : t. In Figure 8, we define the relation
L

+

` ;L

+

v,�

+

, �+ ` m1 ⇡⇣ m2 : s+ referenced in §3. We explain
the interpretations JL+

` K⌃⇣ , JL+

vK and J�+K in detail shortly. For now,
note that we pick the relational interpretation ⇢ based on the observer
⇣. This is where we use parametricity to encode the notion of an
observer and the properties necessary to preserve noninterference.

Recall that we must be able to back-translate terms given only
that they are in the EJtKD;G

⇢ relation. We need to pick a particular
D;G that allows us to implement the protection ADT and still
identify translation types. In Figure 9 we provide an open protection
ADT D`;G`,G�, abbreviated ⌃. This open ADT is simply an
alpha-renaming of our protection ADT, adding a hat symbol (ˆ) to
each name. This satisfies the freshness condition for D;G and we
can still identify translation types.

In Figure 10, we provide implementations of �+ and L

+

v, written
J�+K and JL+

vK in terms of the open ADT ⌃. Recall that the
V relation for F! only relates stuck terms at abstract types. We
ensure the new open constructors can only appear fully applied by

JL+

vK = { c``0 7! �x: ˆ↵`.ˆc``0 x | `

0
v ` 2 Lv }

J�+K = {p1 7! ⇤�`::⇤.ˆp1 [�`],

p⇥ 7! ⇤�`::⇤.⇤↵1::⇤.⇤↵2::⇤.
�x:((ˆ↵� �` ↵1) ⇥ (

ˆ↵� �` ↵2)).

ˆ

p⇥ [�`] [↵1] [↵2] x,

· · · }

Figure 10. F!: Impl. of Coercions & Proof Constructors (excerpts)

JL+

` K⌃⇣ ={↵` :: ⇤ 7! (

ˆ↵`, ˆ↵`, Atom [

ˆ↵`, ˆ↵`]
⌃
) | ` 2 L`}

[

{↵� :: ⇤ ! ⇤ ! ⇤ 7!

(��`::⇤.��::⇤.(ˆ↵� �` �), ��`::⇤.��::⇤.(ˆ↵� �` �),
�R(t

1

, t

2

,R`).�R(t

0
1

, t

0
2

,R�).

{(m1,m2) 2 Atom

⇥
(

ˆ↵� t

1

t

0
1

), (

ˆ↵� t

2

t

0
2

)

⇤⌃
|

t

1

=

ˆ↵` ^ t

2

=

ˆ↵`^

9s+
1

.t

0
1

= s+
1

^ ` � s1 ^ 9s+
2

.t

0
2

= s+
2

^ ` � s2 ^

(` v/ ⇣ =) R� = Atom

⇥
t

0
1

, t

0
2

⇤⌃
)}}

Figure 11. F!: Relational Interpretation of Labels and ↵�

implementing the original constructors as eta-expansions of the new
constructors.

In Figure 11, we build the notion of an observer into the
interpretation of ↵�. In particular, we build in the key property given
by Lemma 5.1. The relation on ↵� requires that if the observer is too
low, then every well-typed term of the protected type must be related.
Since ↵� is a higher-kinded type, we encode this property using
a relation-level function. When the observer is too low, we require
that all well-typed terms are in R�—the relation given for terms of
the protected type. The relation also enforces that a protection proof,
i.e., a term of type (↵� ↵` s+), actually implies `� s. We can only
state this condition since each ˆ↵` is left free. That is, by leaving the
types ˆ↵` free, we are able to interpret each ˆ↵` as new a base type
encoding the lattice labels from DCC. Using these new base types,
we can define a relational interpretation for ↵� that encodes the key
property needed to show that noninterference is preserved.

These requirements turn into proof obligations to users of a
protected expression: to produce related protection proofs, you
must prove that low observers cannot distinguish protected terms
by providing an R� that relates all appropriately typed terms if
the observer is too low. Hence, the existence of a protection proof
corresponds to the DCC protection judgment.

Thus we have encoded, using parametricity, the requirement of
noninterference in F!: a low observer cannot distinguish protected
terms. That is, using this relational interpretation, any proof that a
type is protected also proves that, if the observer is not permitted
to see the protected type then any two terms of that type are
indistinguishable.

6. Translation Preserves Semantics
To prove that the translation preserves semantics, like Tse and
Zdancewic, we define a cross-language logical relation that relates
source terms of type s to target terms of type s+. The relation is
defined by induction on source types s.

The cross-language relation is defined in Figure 12. The relation
V

+

⇣ JsK⌃� specifies when a DCC value v : s is related (i.e., seman-
tically equivalent) to an F! value ⌃ ` u : �(s+). The relation is
parametrized by our open protection ADT ⌃. (We write ⌃D to
refer to the D` component of ⌃ and ⌃G to refer to the components
G`,G�.) The type substitution � maps types from our protection
ADT to corresponding types in the open protection ADT. Note that
the relation is also indexed by an observer ⇣. This seems strange
since clearly semantic equivalence should be independent of an
observer. We discuss this issue below.

Most values are related in the obvious way: hi is related to hi,
pairs are related if they contain related components, and functions

107

⌘

`,s
k

def

= �y:s+.⇤�::⇤.�x:((↵� ↵` �) ⇥ (s+ ! �)).
((prj

2

x) y)

Atom

+

[s]⌃� = {(e,m) | · ` e : s ^ ⌃D ` �(s+) ^

⌃D;⌃G ` m : �(s+)}...
V

+

⇣ Js0 ! sK⌃� = {(�x : s0. e,�x:�((s0)+).m) 2 Atom

+

[s0 ! s]⌃� |

8e0,m0
.(e0,m0

) 2 E

+

⇣ Js0K⌃� =)

(e[e0/x],m[m

0
/x]) 2 E

+

⇣ JsK⌃� }

V

+

⇣ JT̀ sK⌃� = {(⌘` e,⇤�::⇤.m) 2 Atom

+

[T̀ s]⌃� |

let ⇢ = JL+

` K⌃⇣ ^ xp = pfJ` � T̀ sK in
9m

0
.⌃D;⌃G ` m

0
: �(s+) ^

(m[(T̀ s)+/�] hxp,⌘
`,s
k i, ⌘`,sk m

0
) 2 EJ(T̀ s)+K⌃⇢ ^

(e,m0
) 2 E

+

⇣ Js+K⌃� }

E

+

⇣ JsK⌃� = {(e,m) 2 Atom

+

[s]⌃� | 9v,u.

e 7�!

⇤ v ^ m 7�!

⇤
u ^ (v,u) 2 V

+

⇣ JsK⌃� }

G

+

⇣ J·K⌃� = { (;, ;) }

G

+

⇣ J� , x : sK⌃� = {(� [x 7! e] ,� [x 7! m]) |

(�,�) 2 G

+

⇣ J�K⌃� ^ (e,m) 2 E

+

⇣ JsK⌃� }

� | ⌃ ` e ' m : s | �
def

= � ` e : s ^ ⌃D;⌃G,

ˆ�+ ` m : �(s+) ^

8⇣, (�,�) 2 G

+

⇣ J�K⌃� .(�(e), �(�(m))) 2 E

+

⇣ JsK⌃�

� ` e ' m : s
def

= � ` e : s ^ L

+

` ;L

+

v,�

+

, �+ ` m : s+ ^

let � = {↵` 7!

ˆ↵` | ` 2 L`} [{↵� 7!

ˆ↵�} ^

�v = JL+

vK ^ �� = J�+K in
� | ⌃ ` e ' �(�v(��(m))) : s | �

Figure 12. DCC to F!: Cross-Language Logical Relation

are related if, given related inputs, they produce related outputs.
But when should two values be related at type T̀ s? Intuitively,
⌘` e should be related to ⇤�::⇤.m if e is related to the protected
contents of m, which we will denote with m

0. We could extract m0

if we could instantiate � with s+ and apply the resulting term to a
protection proof of type (↵� ↵` s+) and the identity continuation.
However, a term of type (↵� ↵` s+) does not exist in general, so
we cannot use the identity continuation.

Note that we can always construct a protection proof of type
(↵� ↵` (T̀ s)+). If we instantiate � with (T̀ s)+ and provide the
proof and a suitable continuation, then m must eventually call that
continuation on the protected term m

0. We use the continuation
⌘

`,s
k given at the top of Figure 12. This continuation corresponds to

�x : s. ⌘` x in DCC, and simply protects its argument at label `. We
consider ⌘` e related to ⇤�::⇤.m when there exists an m

0 such that
m[(T̀ s)+/�] ⌘`,sk is equivalent to ⌘

`,s
k m

0 (in the target language!),
and e is related to m

0. This technique is reminiscent of the cross-
language relation for CPS given by Chlipala [8].

To require equivalence of the two F! terms above, we use the
F! logical relation E, which is indexed by ⇢. In Figure 12, we use
the ⇢ defined for our protection ADT in §5.3. To generate this ⇢
we require an observer, therefore the value and term relations must
be indexed by an observer. However, we quantify over all possible
observers when we define the relation ' for open terms.

Two terms e and m are related in E

+

⇣ JsK⌃� if they evaluate to
values that are related in V

+

⇣ JsK⌃� . Note that any target term in E

+

⇣ JsK⌃�
must reduce to a value, since the type s+ cannot be an abstract type
↵, whereas in EJ↵KD;G

⇢ terms may not reduce to a value. In the
top-level relation � ` e ' m : s, as in §5.3, we use JL+

vK and J�+K
from Figure 10 to implement L

+

v and �

+. We pick � using the
same types from JL+

` K⌃⇣ . Unlike in the F! logical relation, we do
not provide a relational interpretation for these types because terms
of type ˆ↵` or (ˆ↵� ˆ↵` t) are never related by this logical relation.
Such terms can only appear in larger terms of translation type.

To prove the translation is correct, we’ll need the following
two lemmas. Lemma 6.1 is a free theorem, called the Parametricity
Condition by Wadler [21]. Intuitively it states that passing two
composed continuations to a function is the same as passing one,
and then applying the other to the result.

Lemma 6.1 (Free theorem: parametricity condition)
If D,↵ :: ⇤ ` ⇢i(t1) :: ⇤, D ` ⇢1(tg) :: ⇤, D ` ⇢2(tf) :: ⇤,
D;G ` m : ⇢i(8↵::⇤. (t

1

⇥ (t

2

! ↵)) ! ↵),
D;G ` mf : tg ! tf , D;G ` mg : t

2

! tg ,
(ma,m

0
a) 2 EJt

1

KD;G

⇢
[

↵ 7!(tg ,tf ,R)

]

,

then (mf (m[tg] hma,mgi),m[tf] hm0
a,mf �mgi) 2 EJtf KD;G

⇢

Lemma 6.2 below tells us that if a source term e1 is related to
m1, and m1 is related to m2 in the F! relation, e1 is also related to
m2 in the cross-language relation. This allows us to use reasoning
in the target logical relation, e.g., to use the parametricity condition,
to reason about the cross-language relation.

Lemma 6.2 (Cross-language relation respects F! relation)
Let ⇢ = JL+

` K⌃⇣ . If (v,u) 2 V

+

⇣ JsK⌃� and (u

1

,u

2

) 2 EJs+K⌃⇢ then
(v,u

2

) 2 V

+

⇣ JsK⌃�
We prove Theorem 6.3, which says that if a source term is well-

typed then it must be related to its translation in the cross-language
logical relation. The standard notion of adequacy—given a closed
boolean expression e, its translation m runs to the same boolean
value as e—follows from this theorem. The proof of Theorem 6.3
is by induction on � ` e : s ; m. The case for bind is the most
interesting. We sketch this case by noting a series of equivalences.
We decompose the translation of the bind continuation (�x:sˆ+

1

.m2

in the proof below) into the ⌘

`,s
k continuation and the continuation

mf defined below. Then we use the parametricity condition and
the definition of V

+

⇣ JT̀ s1K⌃� to find the protected target value m

0

inside m1.

Theorem 6.3 (Translation preserves semantics)
If � ` e : s and � ` e : s ; m then � ` e ' m : s

Proof Sketch:
Show bind x= e1 in e2 : s2 is related to
m1 [s+

2

] hpfJ` � s2K,�x:s+
1

.m2i
Let xp =

ˆ

pfJ` � s2K
mf = �y:(T̀ s1)

ˆ

+

.y [s
ˆ

+

2

] hxp,�x:s
ˆ

+

1

.m2i : (T̀ s1)
ˆ

+ ! s
ˆ

+

2

.

Suppose e1 7�!

⇤
⌘` e

0
1.

Suffices to show:
e2[e01/x] ⇡ m1 [s+

2

] hpfJ` � s2K,�x:s+
1

.m2i by evaluation
e2[e01/x] ⇡ m1 [s+

2

] hpfJ` � s2K,mf � ⌘

`,s
k i by Lemma 6.2

e2[e01/x] ⇡ mf (m1 [s+
2

] hpfJ` � T̀ s1K,⌘`,sk i) by Lemma 6.1
e2[e01/x] ⇡ mf (⌘

`,s
k m

0
) by IH on e1 and m1

e2[e01/x] ⇡ m2[m
0
/x] by evaluation

Follows by IH on e2 and m2

7. Translation Preserves Noninterference
In this section, we present our central result, that our translation
from DCC to F! preserves noninterference. The proof requires
a back-translation. Our back-translation is inspired by Ahmed
and Blume’s [5], but contains several novel features as discussed
below. We first present the back-translation and then prove that our
translation preserves observer-sensitive equivalence.

Below we write s
ˆ

+ to denote s+ with all instances of ↵` and
↵� replaced with ˆ↵` and ˆ↵�, respectively. We analogously put the
hat symbol ˆ on other notation that we have defined already, such
as �+ to � ˆ

+, to indicate substitution of type and term variables in
L

+

` ;L

+

v,�

+ with those in D`;G`,G�.

108

⌃;Gk; �
ˆ

+

` m : s
ˆ

+ ⇣ e where ⌃D;⌃G,Gk, �
ˆ

+

` m : s
ˆ

+ and � ` e : s

⌃;Gk; �
ˆ

+

` hi : 1 ⇣ hi
⌃;Gk; �

ˆ

+

` m : s
ˆ

+

i ⇣ e
⌃;Gk; �

ˆ

+

` inji m : s
ˆ

+

1

+ s
ˆ

+

2

⇣ inji e
(x : s

ˆ

+

) 2 �
ˆ

+

⌃;Gk; �
ˆ

+

` x : s
ˆ

+ ⇣ x
⌃;Gk; �

ˆ

+

,x : s
ˆ

+

` m : s
ˆ

+

2

⇣ e
⌃;Gk; �

ˆ

+

` �x:s
ˆ

+

1

.m : s
ˆ

+

1

! s
ˆ

+

2

⇣ �x : s1. e

⌃;Gk; �
ˆ

+

` m1 : s
ˆ

+

1

⇣ e1 ⌃;Gk; �
ˆ

+

` m2 : s
ˆ

+

2

⇣ e2
⌃;Gk; �

ˆ

+

` hm1,m2i : s
ˆ

+

1

⇥ s
ˆ

+

2

⇣ he1, e2i

FD-K
k : (s

ˆ

+ ! (T̀ s)
ˆ

+

) 2 Gk

⌃;Gk; �
ˆ

+

` k : s
ˆ

+ ! T̀ s
ˆ

+ ⇣ �x : s. ⌘` x

FD-⌘
⌃;Gk,k : (s

ˆ

+ ! (T̀ s)
ˆ

+

); �
ˆ

+

` m[(T̀ s)
ˆ

+

/�] h ˆ

pfJ` � T̀ sK,ki : T̀ s
ˆ

+ ⇣ e
⌃;Gk; �

ˆ

+

` ⇤�::⇤.m : T̀ s
ˆ

+ ⇣ e

FD-BIND
⌃;Gk; �

ˆ

+

` mp : (↵� ↵` s
ˆ

+

) ⇥ (s0
ˆ

+ ! s
ˆ

+

) ⌃;Gk; �
ˆ

+

` m : (T̀ s0)
ˆ

+ ⇣ e ⌃;Gk; �
ˆ

+

` prj

2

mp : s0
ˆ

+ ! s
ˆ

+ ⇣ e0

⌃;Gk; �
ˆ

+

` m[s
ˆ

+

] mp : s
ˆ

+ ⇣ bind x= e in e0 x

FD-SUBTERM
⌃;Gk; �

ˆ

+

` F : s
ˆ

+

1

)s
ˆ

+

2

⇣ F0
⌃;Gk; �

ˆ

+

` m : s
ˆ

+

1

⇣ e
⌃;Gk; �

ˆ

+

` F[m] : s
ˆ

+

2

⇣ F0
[e]

FD-HOLE 6+
E

6+
[u] 7�! m1 ⌃;Gk; �

ˆ

+

` m1 : s
ˆ

+

2

⇣ e
⌃;Gk; �

ˆ

+

` E

6+
[u] : s

ˆ

+

2

⇣ e

FD-HOLE+

⌃;Gk; �
ˆ

+

` m : s
ˆ

+

1

+ s
ˆ

+

2

⌃;Gk; �
ˆ

+

` casemof inj

1

x1.m1 || inj

2

x2. m2 : t where 6 9s0.t = s0
ˆ

+

⌃;Gk; �
ˆ

+

` casemof inj

1

y1.E
6+
[m1[y1/x1]] || inj

2

y2. E
6+
[m2[y2/x2]] : s

ˆ

+ ⇣ e (fresh y1,y2)

⌃;Gk; �
ˆ

+

` E

6+
[casemof inj

1

x1.m1 || inj

2

x2. m2] : s
ˆ

+ ⇣ e

Figure 13. F! to DCC: Term Back-Translation

7.1 Back-Translation
Recall from §3 that proving equivalence preservation for functions
requires a back-translation. Specifically, proving that (f1, f2) 2

VJs0 ! sK⇣ implies (f1, f2) 2 VJs0+ ! s+K⌃⇢ (where ⇢ = JL+

` K⌃⇣),
requires that given (m1,m2) 2 EJs0+K⌃⇢ we can produce (e1, e2) 2

EJs0K⇣ . Note that m1 and m2 have the translation type s0ˆ+ under
⌃. So, at the “top-level” we need to back-translate terms m where
⌃ ` m : s

ˆ

+. However, consider the function �x:s0ˆ+.m : s0ˆ+ ! s
ˆ

+.
The obvious way to back-translate this is to back-translate the
term ⌃,x : s

ˆ

+

` m : s
ˆ

+. Therefore, we will at least need to be
able to back-translate terms m such that ⌃D;⌃G, � ˆ

+

` m : s
ˆ

+,
where � ˆ

+ is restricted to contain only variables of translation type.
To do so, we will set up a back-translation judgment of the form
⌃; � ˆ

+

` m : s
ˆ

+ ⇣ e which says that the target term m, which has
type s

ˆ

+ under the open ADT ⌃ and the term context � ˆ

+, back-
translates to e of type s under context � . In fact, our back-translation,
defined in Figure 13, will require an additional environment Gk,
but the reader should ignore that for now. We will introduce this
extra environment as we explain Figure 13. First, we discuss the
rules for back-translating values and then the more complex rules
for back-translating expressions.

Back-translating values The rules for back-translating values are
in the top half of Figure 13. We back-translate hi to hi. We back-
translate a pair hm1,m2i : s

ˆ

+

1

⇥ s
ˆ

+

2

to he1, e2i if m1 : s
ˆ

+

1

and
m2 : s

ˆ

+

2

back-translate to e1 and e2, respectively. We back-translate
sums and functions of translation type similarly by structural
recursion since their subterms must be of translation type.

For type abstractions, we only need to be able to back-translate
terms ⇤�::.m of translation type, i.e., of type (T̀ s)

ˆ

+, which is
defined by rule FD-⌘. Note that ⇤�::.m can only be of translation
type when = ⇤, so we only need to back-translate ⇤�::⇤.m. As
discussed in §6, the term ⇤�::⇤.m has some protected contents
m

0. Roughly speaking, if we could back-translate m

0
: s

ˆ

+ to e0,
then ⇤�::⇤.m : (T̀ s)

ˆ

+ should back-translate to ⌘` e
0. To extract

m

0, we need to provide a protection proof for (ˆ↵� ˆ↵` s
ˆ

+

) which
does not exist in general. Previously, we noted that we can always
construct a protection proof for (

ˆ↵� ˆ↵` (T̀ s)
ˆ

+

) and used the
continuation ⌘

`,s
k . However, here if we use the continuation ⌘

`,s
k

then the back-translation would not be well-founded. Instead, we

introduce a continuation variable k : s
ˆ

+ ! (T̀ s)
ˆ

+ and keep it
in a separate environment Gk. Then we back-translate ⇤�::⇤.m
to e by back-translating mk = m[T̀ s

ˆ

+

/�] h ˆ

pfJ` � T̀ sK,ki to e.
Note that parametricity guarantees that the term mk will return the
result of the continuation k applied to the protected contents m

0.
Thus, the back-translation of mk will eventually back-translate km

0

to produce its result. We back-translate k via FD-K to �x : s. ⌘` x
and back-translate m

0 to e0. Hence, we back-translate k m

0 to
(�x : s. ⌘` x) e

0 which is beta-equivalent to ⌘` e
0.

Back-translating expressions When back-translating a term
whose subterms are all of translation type, we proceed by struc-
tural recursion for most forms. When a term has subterms of
non-translation type, we use partial evaluation to eliminate those
subterms. Our partial evaluation is more involved than Ahmed and
Blume’s because our target language is not restricted to CPS form
(i.e., not all subterms of an expression are values). With a CPS
restriction, every elimination form in evaluation position is a redex,
but without this restriction one needs to look arbitrarily deep to find
a redex.

The back-translation of bind expressions depends on the invari-
ants imposed by the protection types, expressed in the FD-BIND
rule. In the target language, bind appears as an expression like
m

0
[s

ˆ

+

] mp. That is, an expression of type (T̀ s)
ˆ

+ applied to a
type and a protected continuation.

To illustrate back-translation of other expressions, let us consider
how to back-translate the term prj

1

m : s
ˆ

+

1

. There are two cases.

1. Subterms are of translation type In the simplest case, the
subterm m is of translation type s

ˆ

+

1

⇥ s
ˆ

+

2

. We can back-translate m

to e and prj

1

m to prj
1

e.
The same idea applies to all elimination forms of translation type,

such as application and case, and is captured by the FD-SUBTERM
rule. To abstract this reasoning, we introduce a restricted evaluation
context F—the grammar appears in Figure 14. This context is
restricted to be one level deep. Any target elimination form can
be written as F[m]. If both the type of the hole and the result are
translation types, then we can simply back-translate F to F and m to
e, and produce F[e]. We omit the definition of context typing, as it is
standard. We write F : t

1

)t

2

to mean the hole of F has type t

1

while
the result has type t

2

, under type and term environments that are
obvious from context. We also omit the back-translation of F. Each

109

F! ctxt F ::= prji [·]T | [·]T m | [·]T [t] |

case [·]T of inj

1

y.m1 || inj

2

y. m2
DCC ctxt F ::= prji [·]S | [·]S e | bind x= [·]S in e |

case [·]S of inj
1

y. e1 || inj
2

y. e2

E

6+
=F

0

[F

1

[...Fn]] where

⌃D;⌃G,Gk, �
ˆ

+

` F

0

: t

1

)s
ˆ

+

8i 2 [1,n+1]. 6 9si.ti = s
ˆ

+

i

8i 2 [1,n].⌃D;⌃G,Gk, �
ˆ

+

` Fi : ti+1

)ti

Figure 14. F! to DCC: Back-Translation Contexts

F is back-translated by back-translating each of its subterms—which
a simple case analysis shows must all be of translation type—and
back-translating [·]T to [·]S.

2. Subterms are not of translation type Next, consider the scen-
ario where the subterm m is of non-translation type s

ˆ

+

1

⇥ t

2

. Let us
consider the structure of m. If m is a value u that is not a variable,
then u = hm1,m2i. Hence, we can reduce prj

1

hm1,m2i 7�! m1

and then back-translate m1 : s
ˆ

+

1

. We will come back to the
possibility of u being a variable shortly.

But what if m is not a value? Intuitively, there must be some
redex F[u] in m. If we can find that redex and reduce it, then
we can eliminate a term of non-translation type and continue
back-translating, For example, if m is the redex F[u], then we
can reduce prj

1

F[u] 7�! prj

1

m

0 and continue back-translating
prj

1

m

0
: s

ˆ

+

1

. Note that this means our back-translation depends on
strong-normalization. We discuss this further in §8.

More generally, when a subterm is of non-translation type,
we evaluate away terms of non-translation type by repeatedly
reducing the inner-most redex until all subterms are of translation
type. To find the inner-most redex of a term, we decompose the
term into F

0

[F

1

[F

2

[. . .Fn[u]]]] (case 2a). When a term cannot
be decomposed like this and is of non-translation type, there is
additional structure imposed by our type translation that we use to
rewrite the term (case 2b).

2a. There exists a non-translation redex Suppose we decompose
a term into E

6+
[u] = F

0

[F

1

[F

2

[. . .Fn[u]]]], where the result of F
0

is
a translation type and the hole and result types of all other Fi are non-
translation types. We refer to the redex Fn[u] as a non-translation
redex. We use E

6+ to denote such a sequence of Fi contexts, formally
defined in Figure 14. In this case, the rule FD-HOLE applies. We
perform one step of evaluation, eliminating the redex Fn[u], then
continue back-translating the resulting term. We might worry that
here u can be a variable, and thus E

6+
[u] is stuck. However, recall

by assumption that the hole of Fn must be of non-translation type.
Let us consider which variables can appear in the hole of Fn.

During back-translation, only certain variables are free. Free
variables can be either the coercion functions c`0`, the proof con-
structors ˆ

pt, the variables x : s
ˆ

+ from functions of translation type,
or the variables k : s

ˆ

+ ! (T̀ s)
ˆ

+ introduced by the back-translation.
Clearly a variable of translation type cannot appear in the hole, so u

cannot be one of the variables from the final two cases.
Suppose u is a coercion function c`0` :

ˆ↵`0 ! ˆ↵`. Then Fn[u]

has type ˆ↵`. However, a term of type ˆ↵` cannot appear in any
evaluation context. This follows by considering the type of each
evaluation context in F! . Since there must be at least an outer F

0

whose result is of translation type, u cannot be a coercion function.
Finally, suppose u is a proof constructor, for instance, ˆ

p1.
Then Fn[u] =

ˆ

p1 [t] has type (

ˆ↵� ˆ↵` 1). Again, terms of this
type cannot appear in any evaluation context due to the types of
evaluation context in F! . Similar reasoning applies to all proof
constructors since after wrapping them in some number of F

contexts the final result will be a term of protection type which

cannot appear in any evaluation context. So u cannot be a proof
constructor. Hence, we conclude that it is impossible for a value u

in E

6+
[u] to be a variable.

2b. There does not exist a non-translation redex Note that the
FD-HOLE 6+ rule requires that the hole of each Fi be of non-
translation type. Suppose that before we find a non-translation
redex, we reach some boundary where the hole of a context has
translation type. That is, we decompose a term into E

6+
[Fi[m]] =

F

0

[F

1

[F

2

[. . .Fi[m]]]], where m is the first term (going outside in)
that has translation type, but the result of Fi is of non-translation
type. In this case E

6+
[Fi] is not a valid E

6+
1 and there is no non-

translation redex. This could happen, for instance, if m is a variable
of translation type, which we can only rule out when E

6+
[Fi] is a

valid E

6+
1 . Let us analyze what Fi could be.

If Fi is prji [·]T, then m must have type s
ˆ

+ ⇥ s0ˆ+. But then the
result of Fi is a translation type, so Fi cannot be a projection.

If Fi is [·]T m

0, then m

0 must have type s
ˆ

+ ! s0ˆ+. But then the
result of Fi is a translation type, so Fi cannot be an application.

If Fi is [·]T [t], then m must have type (T̀ s0)ˆ+. But then Fi[m]

must be m

0
[t], and this must appear in at least one higher context

m

0
[t] mp. But mp : (↵� ↵` s

ˆ

+

) ⇥ s0ˆ+ ! s
ˆ

+—since we can
only construct protection proofs for translation types—so t = s

ˆ

+.
Therefore, m0

[t] mp is of translation type. Recall that we assumed
that m is the first term of translation type, so Fi cannot be a
type instantiation.

Finally, if Fi is case [·]T of inj

1

x1.m1 || inj

2

x2. m2, then
m must have type s

ˆ

+

+ s0ˆ+, yet the result of Fi can be of non-
translation type! That is, we are trying to back-translate the follow-
ing expression:

· · · ` E

6+
[casemof inj

1

x1.m1 || inj

2

x2. m2] : s
ˆ

+

1

We could back-translate E

6+
[casemof inj

1

x1.m1 || inj

2

x2. m2]

if we could rewrite this expression into one in which all the subterms
are of translation type. Recall that we know the result of E 6+ must
result in a translation type, and by assumption m is of translation
type. Therefore, we can rewrite the term! Specifically, we rewrite
the term into:

· · · ` casemof inj

1

x1.E
6+
[m1] || inj

2

x2. E
6+
[m2] : s

ˆ

+

1

This scenario is captured by the rule FD-HOLE+. This rule is
analogous to the commuting conversion used by Shikuma and
Igarashi [17]. All of the subterms of this rewritten term are of
translation type, so we can continue back-translating the structurally
smaller terms.

Back-translation is well-founded While Ahmed and Blume
claimed that their back-translation is well-founded by a nested induc-
tion metric, careful inspection of their back-translation reveals that
their nested induction metric is not valid for their back-translation.
We believe that their back-translation is well-founded, but that a
more advanced technique is necessary to prove it.

To prove that our back-translation is well-founded, we use a
novel logical relations argument. We formalize an open unary logical
relation and prove that any well-typed F! term under ⌃ belongs
to this logical relation. When proving strong normalization of the
simply-typed lambda calculus via logical relations, one wants terms
to belong to the relation if the terms evaluate to a value. We, however,
do not wish to “run” terms; we want terms m to belong to our logical
relation if there exists a term e such that m back-translates to e.
Back-translation performs partial evaluation, but the “normalization”
done during back-translation differs from evaluation using the F!

dynamic semantics, for instance, because we perform reduction
under �.

We briefly present the logical relation at a high-level. Full defini-
tions and proofs are available in our online technical appendix [7].

110

Atom

⇣
[t]

⌃
� ={ ((Gk; �

ˆ

+

),m) | ⌃D;⌃G,Gk, �
ˆ

+

` m : �(t) }

Atom

⇣ctx
h
t, s

ˆ

+

i⌃
�
={ ((Gk; �

ˆ

+

),E

6+
) | ⌃D;⌃G,Gk, �

ˆ

+

` E

6+
: �(t))s

ˆ

+

}

O ⇣Jsˆ+K⌃� ={(W,m) | (W,m) 2 Atom

⇣

h
s
ˆ

+

i⌃
�

^ 9e.⌃;Wk;W� ` m : s
ˆ

+ ⇣ e}

Wf

⇣ctx ⌃
[t, s

ˆ

+

] ={(W,E

6+
) 2 Atom

⇣ctx
h
t, s

ˆ

+

i⌃
;

| 8W

0
,u.(W

0
◆ W ^ (W

0
,u) 2 Atom

⇣val
[t]

⌃
;) =) (W

0
,E

6+
[u]) 2 O ⇣Jsˆ+K⌃; }

Rel

⇣ ⌃⇤ ={(s
ˆ

+

,R) | R ✓ O ⇣Jsˆ+K⌃; ^ 8m,W

0
.(W,m) 2 R ^ W

0
◆ W) =) (W

0
,m) 2 R}

[{(t,R) | R ✓ Atom

⇣

[t]

⌃
; ^ 6 9s.t = s

ˆ

+

^ 8 (W,m) 2 R, 8W

0
◆ W.(W

0
,m) 2 R ^

8E

6+
, s0.(W,E

6+
) 2 Wf

⇣ctx ⌃
[t, s0ˆ+] =) (W,E

6+
[m]) 2 O ⇣Js0ˆ+K⌃; }

Rel

⇣ ⌃1 ! 2
={(t

1

,R1) | 8(t2,R2) 2 Rel

⇣ ⌃1
.((t

1

t

2

),R1 (t

2

,R2)) 2 Rel

⇣ ⌃2
^

8(t

0
2

,R

0
2) 2 Rel

⇣ ⌃1
.(t

2

,R2) ⌘
⌃
1

(t

0
2

,R

0
2) =) (R1 (t

2

,R2)) ⌘
⌃
2

(R1 (t

0
2

,R

0
2))}

Figure 15. F! to DCC: Well-Formed Relations

The logical relation considers terms of translation type and non-
translation type separately. The essence of the relation is that a
term of translation type belongs to the relation E ⇣Js+K⌃� if it is
back-translatable, while a term of non-translation type belongs to
the relation E ⇣JtK⌃� if plugging the term into a valid E

6+ context
results in a term that is back-translatable. We use a >>-closed-style
relation to formalize this. In particular, we say that E

6+ belongs
to the continuation relation K ⇣Jt, sˆ+K⌃� if, given any u 2 V ⇣JtK⌃� ,
E

6+
[u] is back-translatable. Implicit in the definition of this logical

relation is an obligation to show any expression we back-translate
will not get stuck, formalizing our informal argument from earlier
about rewriting E

6+
[casemof inj

1

x1.m1 || inj

2

x2. m2]. There
is no V ⇣Js+K⌃� relation for translation types. The relation V ⇣JtK⌃�
for non-translation types is completely standard and ensures that
subterms belong to the E ⇣JtK⌃� relation, so we give only excerpts.

Our logical relation is based on a possible-worlds model. Typ-
ically, a possible-worlds model is necessary when membership in
the relation depends on some state. For instance, a term may only
be well-typed under certain heaps, and when evaluating that term
the heap changes. Worlds are used to keep track of these possible
heaps as they change. Our language is not “stateful” in the usual
sense, but as we back-translate a term we may add new free variables
to the environment—e.g., k : s

ˆ

+ ! T̀ s
ˆ

+. Since target terms can
only be back-translated under certain term environments—i.e., the
environments Gk and � ˆ

+—we use worlds W to keep track of these
environments as they are extended during the back-translation.

We define Rel

⇣ ⌃ in Figure 15, which contains well-formed
relations. For translation types at kind ⇤, a well-formed relation
guarantees that the elements of the relation are back-translatable.
For non-translation types t at kind ⇤, a well-formed relation R

guarantees that for all contexts E

6+, if filling E

6+ with a value of
type t results in a back-translatable term, so does filling E

6+ with
elements of R. Relations on types of higher kinds are well-formed
if, given equivalent relations, they produce equivalent relations. We
omit the definition of equivalence on relations as the definition is
standard and analogous to our F! definition of relation equivalence.

Finally, since this logical relation is for F! terms, we require
an interpretation of the kinding judgment as is the case in our F!

relation in §5.2. These relations, defined in Figure 17, are standard.
The definition of the top-level back-translation logical relation,

D`,�;G`,G�,Gk, �
ˆ

+

,Gk,� ✏ ⇣

m : t, first closes all free
variables in � and �. We omit the definitions of D ⇣J�K⌃ and
G ⇣J�K⌃� , which are standard. We also permit closing some of the
variables in � ˆ

+. This is to account for partial evaluation. For example,
a function whose parameter is of translation type may be back-
translated by leaving the variable free, if the result is of translation
type, or by reducing the function via FD-HOLE 6+, if the result is
of non-translation type. All the above environments are required to

E ⇣Jsˆ+K⌃� =O ⇣Jsˆ+K⌃�
V ⇣Jt0 ! tK⌃� ={(W,�x:t0.m) 2 Atom

⇣

[t

0 ! t]

⌃
� |

8W

0
,m

0
.W

0
◆ W ^ (W

0
,m

0
) 2 E ⇣Jt0K⌃� =)

(W

0
,m[m

0
/x]) 2 E ⇣JtK⌃� }

V ⇣J8↵::. tK⌃�={(W,⇤↵::.m) 2 Atom

⇣

[8↵::. t]⌃� |

8W

0
, t

0
,R.W

0
◆ W ^ (t

0
,R) 2 Rel

⇣ ⌃ =)

(W

0
,m[t

0
/↵]) 2 E ⇣JtK⌃

�[↵ 7!(t0,R)]

}

V ⇣Jt t0K⌃� =(T ⇣Jt :: 0 ! ⇤K⌃� (�1(t0),T ⇣Jt0 :: 0K⌃�))

E ⇣J↵K⌃� =�R(↵)

E ⇣JtK⌃� ={(W,m) 2 Atom

⇣

[t]

⌃
� | 8W

0
,E

6+
, s

ˆ

+

.

W

0
◆ W ^ (W

0
,E

6+
) 2 K ⇣Jt, sˆ+K⌃� =)

(W

0
,E

6+
[m]) 2 O ⇣Jsˆ+K⌃� }

K ⇣Jt, sˆ+K⌃� ={(W,E

6+
) 2 Atom

⇣ctx
h
t, s

ˆ

+

i⌃
�

| 8W

0
,u.

W

0
◆ W ^ (W

0
,u) 2 V ⇣JtK⌃� =)

(W

0
,E

6+
[u]) 2 O ⇣Jsˆ+K⌃� }

D`,�;G`,G�,Gk, �
ˆ

+

,� ✏ ⇣
m : t

def

=

8�
ˆ

+

1 , �
ˆ

+

2 , �, �,�. �
ˆ

+

1] �
ˆ

+

2 = � ˆ

+

^ � 2 D ⇣J�KD`
^

((Gk; �
ˆ

+

2), �) 2 G ⇣J� ˆ

+

1 KD`;G`,G�
� ^

((Gk; �
ˆ

+

2),�) 2 G ⇣J�KD`;G`,G�
� =)

((Gk; �
ˆ

+

2), �(�(�(m)))) 2 E ⇣JtKD`;G`,G�
�

Figure 16. F! to DCC: Back-Translation Logical Relation

T ⇣Jt :: ⇤K⌃� = E ⇣JtK⌃�
if t 2 {1,↵, t

1

+ t

2

, t

1

⇥ t

2

, t

1

! t

2

,8↵::. t}

T ⇣J↵ :: 1 ! 2K⌃� = �R(↵)

T ⇣J�↵::1.t :: 1 ! 2K⌃� = �R⌧ .{T ⇣Jt :: 2K⌃
�[↵::1 7!⌧]}

T ⇣Jt
1

t

2

:: 2K⌃� = (T ⇣Jt
1

:: 1 ! 2K⌃�
(�(t

2

),T ⇣Jt
2

:: 1K⌃�))

Figure 17. F! to DCC: Kinding Interpretation

obtain a strong enough induction hypothesis. Below we show that
any well-typed F! term, as long as it is open with respect to ⌃ and
the other environments required by the back-translation, belongs to
the logical relation.

Lemma 7.1 (Type interpretation is well-formed)
If � ` t :: and � 2 D ⇣J�K⌃ then
1. (�(t),T ⇣Jt :: K⌃�) 2 Rel

⇣ ⌃
2. If �0 2 D ⇣J�K⌃ such that � ⌘

D;G �0, then
T ⇣Jt :: K⌃� ⌘

⌃
 T ⇣Jt :: K⌃

�0

111

Lemma 7.2 (Fundamental property of logical relation)
If D`,�;G`,G�,Gk, �

ˆ

+

,Gk,� ` m : t then
D`,�;G`,G�,Gk, �

ˆ

+

,Gk,� ✏ ⇣

m : t

Finally, as a corollary of the fundamental property above, we
show that the back-translation exists.

Corollary 7.3 (Back-translation exists (1))
If ⌃D;⌃G,Gk, �

ˆ

+

` m : s
ˆ

+ then 9e. ⌃;Gk; �
ˆ

+

` m : s
ˆ

+ ⇣ e.
Corollary 7.4 (Back-translation exists (2))
If ⌃D;⌃G ` m : s

ˆ

+ then 9e. ⌃; ·; · ` m : s
ˆ

+ ⇣ e.
The first corollary form is needed to show the back-translation

exists in its general form. The second corollary is the form needed
in the proof of equivalence preservation. Note that the contexts are
empty except for the protection ADT.

Properties of back-translation To show our back-translation pre-
serves semantics we prove Corrollary 7.6. Note that in order to have
a strong enough induction hypothesis we first prove Lemma 7.5,
which quantifies over arbitrary Gk environments. We substitute
variables in Gk with appropriate ⌘

`,s
k .

Lemma 7.5
Let �k={k 7! ⌘

`,s
k | k : s

ˆ

+

! (T̀ s)
ˆ

+

2 Gk}

� = {↵` 7!

ˆ↵` | ` 2 L`} [{↵� 7!

ˆ↵�}.

If ⌃D;⌃G,Gk, �
ˆ

+

` m : s
ˆ

+ then
9e.⌃;Gk; �

ˆ

+

` m : s
ˆ

+ ⇣ e and � | ⌃ ` e ' �k(m) : s | �.

Corollary 7.6 (Back-translation preserves semantics)
If ⌃D;⌃G ` m : s

ˆ

+ then
9e.⌃; ·; · ` m : s

ˆ

+ ⇣ e and · | ⌃ ` e ' m : s | �

7.2 Preservation of Observer-Sensitive Equivalence
With the back-translation defined, we prove that the translation
preserves equivalence. To prove equivalence preservation, we must
simultaneously prove equivalence reflection. That is, the statement
of our theorem is in two parts. Part 1 (preservation) states that given
related source terms e1 and e2 that translate to target terms m1 and
m2, the target terms must be related. Part 2 (reflection) states the
converse: if the translations of two source terms are related, the
source terms must be related.

Theorem 7.7 (⇡⇣ preservation and reflection)
Let � ` e1 : s ; m1 and � ` e2 : s ; m2.
1. If � ` e1 ⇡⇣ e2 : s, then L

+

` ;L

+

v,�

+

, �+ ` m1 ⇡⇣ m2 : s+.
2. If L+

` ;L

+

v,�

+

, �+ ` m1 ⇡⇣ m2 : s+, then � ` e1 ⇡⇣ e2 : s.

Indirect proof of noninterference Finally, as a sanity check that
our notion of noninterference in F! makes sense, we can prove that
noninterference in DCC, Theorem 5.2, follows from parametricity:
Theorem 5.2 (Noninterference)
If � ` e : s then 8⇣. � ` e ⇡⇣ e : s.
Indirect Proof of Noninterference:
By correctness of the translation:
� ` e : s ; m, � ` e ' m : s, and L

+

` ;L

+

v,�

+

, �+ ` m : s+.
By parametricity, L+

` ;L

+

v,�

+

, �+ ` m ⇡ m : s+.
Since L

+

` ;L

+

v,�

+

, �+ ` m ⇡ m : s+ quantifies over all ⇢, �, �0,
the particular implementations we use in the observer-sensitive
definition work, so: L+

` ;L

+

v,�

+

, �+ ` m ⇡⇣ m : s+.
By reflection, � ` e ⇡⇣ e : s.

8. Related Work, Future Work, and Conclusion
In §3, we examined the counterexample Shikuma and Igarashi
[17, 18] gave to show that Tse and Zdancewic’s translation fails
to preserve observer-sensitive equivalence. In that work, they also

gave a noninterference-preserving translation, much like Tse and
Zdancewic’s, from a variant of DCC to a simply-typed target lan-
guage. Specifically, their source language was the sealing calculus—
a simply-typed �-calculus with operations for sealing at level ` and
unsealing—which they proved equivalent to a variant of DCC intro-
duced by Tse and Zdancewic [19] called DCCpc for “DCC with pro-
tection contexts.” DCCpc has a lattice of monads like DCC and asso-
ciated ⌘` and bind operations but a different type system. DCCpc typ-
ing judgments have the form � ;⇡ ` e : s where ⇡ ::= ·|⇡, ` for ` 2 L`

is the protection context. The typing rules for ⌘` and bind are:
� ;⇡, ` ` e : s

� ;⇡ ` ⌘` e : T̀ s

� ;⇡ ` e1 : T̀ s1 � , x : s1;⇡ ` e2 : s2 ⇡ ` ` � s2

� ;⇡ ` bind x= e1 in e2 : s2

Note that the premise ⇡ ` `� s2 means that either `� s2 as usual or
` v `

0 for some `

0
2 ⇡. Thus, the following term—which is ill typed

in DCC—is well typed in DCCpc:

e = ⌘` (�y : T̀ bool. bind x= y in x) : T̀ ((T̀ bool)! bool)

This is the same ill-typed term we discussed in §3. Thus,
Shikuma and Igarashi have weakened their source language to
admit terms disallowed by DCC. While DCCpc is of independent
interest and arguably has a more pragmatic type system because
it admits terms that intuitively should be well-behaved in DCC,
adding this rule simplifies the proof of full-abstraction.4

In addition to weakening their source language, Shikuma and
Igarashi also strengthen their target language: it admits fewer terms
compared to System F since their target is a simply-typed �-calculus,
extended with base types to represent each ` 2 L`. They rightly note
that Tse and Zdancewic’s translation does not use polymorphism in
an essential way—that is, the translation makes use of abstract types
↵` introduced “globally” (at top level) that may easily be replaced
with base types as in Shikuma and Igarashi’s work. By comparison,
our translation does make essential use of polymorphism in the
encoding of the monadic type because a continuation’s answer
type � is locally polymorphic. Moreover, we use higher-order
parametricity to require the property given by Lemma 5.1.

Our back-translation improves upon Shikuma and Igarashi’s
“inverse translation” technique [17, 18] in several ways. Our target
language F! is more expressive than the source—e.g., we can
encode arithmetic operations in F! but not in DCC. This is important
because, in general, relying on a close correspondence between
source and target is not practical since we want to be able to
implement dependency calculi in rich general-purpose languages—
or compile them to intermediate representations—that may be more
expressive than the source language. Shikuma and Igarashi’s inverse
translation relies on full beta-reduction and “commuting conversions”
that they add to their source and target operational semantics. This
reduces terms to a normal form that satisfies a subformula property:
if the term has type s then all of its subterms have a type that
appears within s. Also, their inverse translation cannot be extended to
languages with recursion since it relies on “normalization” of terms.
Our rewriting rule for stuck terms is similar to their commuting
conversions but our back-translation does not demand any changes
to the standard call-by-name operational semantics of the source
or target, and it is designed to be easily extended to a setting with
recursion, following the proposal by Ahmed and Blume [5].

Fully Abstract Translation As noted earlier, our key result (The-
orem 7.7) is reminiscent of full abstraction. Proving full abstraction
is particularly difficult when the target language is more expressive
than the source language, as is the case with F! and DCC. Our
back-translation is based on Ahmed and Blume’s [5] but is more

4 Much prior work resorts to bringing the source and target languages into
closer correspondence in order to prove full abstraction; see Ahmed and
Blume [5] for a discussion.

112

challenging because our target language is not in CPS form as theirs
is. Other work on proving translations fully abstract takes advan-
tage of the source and target language being syntactically identical,
though proving that the transformation preserves equivalence is
still a nontrivial result. For instance, Ahmed and Blume [4] prove
that typed closure conversion for System F with recursive types is
fully abstract in this way. Fournet et al. [9] prove that a translation
from a �-calculus with references and exceptions to an encoding of
JavaScript in the source language is fully abstract.

Recursion Like Tse and Zdancewic, we have focused on the
terminating fragment of DCC, leaving recursion as future work.
One can extend DCC with recursion by adding pointed types and
a fix operator (as in the original version of DCC [2]). We foresee
three issues that will need to be addressed. First, the back-translation
would need to be extended to work in the presence of recursion,
which we are fairly confident can be done following the proposal
by Ahmed and Blume [5]. Second, the parametricity condition
(Lemma 6.1), central to our proof of semantics preservation, does
not hold as stated in the presence of effects such as recursion.
To prove a similar lemma in the presence of recursion, our type
translation will have to make use of linear types to ensure that the
continuation is used exactly once as in the work on linearly-used
continuations [6]. Third, in the presence of recursion we would
need to use logical relations that are step indexed [3]. Our proof
of semantics preservation relies on transitivity across the cross-
language and target logical relations, but it is not known how to
prove transitivity for cross-language step-indexed logical relations.
This can be handled by defining a multi-language semantics [5,
12, 14] for DCC and F! which would then allow us work with the
definition of contextual equivalence for the multi-language whenever
transitivity is required. This strategy also has the advantage of
scaling to correctness of multi-pass compilers [14], which is not the
case for cross-language logical relations.

Conclusion It is folklore that noninterference can be encoded via
parametricity but we are unaware of any work that successfully
shows how to do that. By expressing source-level noninterference
using target-level parametricity, we can implement security-typed
features in a more standard (polymorphic) typed language. Fur-
thermore, ensuring that compilation preserves noninterference is
important if code compiled from security-typed languages is to
be linked with target components compiled from other source lan-
guages, or those written directly in the target language. We give a
translation from DCC to F! that leverages first-order and higher-
order parametricity to encode the key property required to ensure
that the translation preserves source-level noninterference.

Several elements of our translation and proof techniques should
be applicable to security-preserving and fully abstract compilation.
We provide a more general back-translation technique as compared
to prior work; we expect this to be useful for proving translations
fully abstract. We show how to encode DCC’s security lattice and
protection judgment using our protection ADT at the target level; a
similar strategy could be used to encode other specialized security
or safety properties captured by the source type system. Finally, we
demonstrate the use of an open logical relation at the target-level to
prove parametricity while also accommodating back-translation of
target terms that need to be linked with such ADTs.

Acknowledgments
We gratefully acknowledge the valuable feedback provided by
anonymous reviewers and J. Ian Johnson on earlier versions of this

paper. This research was supported in part by the National Science
Foundation (grant CCF-1422133).

References
[1] M. Abadi. Protection in programming-language translations. In ICALP

1998.

[2] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. In POPL 1999.

[3] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In ESOP 2006.

[4] A. Ahmed and M. Blume. Typed closure conversion preserves observa-
tional equivalence. In ICFP 2008.

[5] A. Ahmed and M. Blume. An equivalence-preserving CPS translation
via multi-language semantics. In ICFP 2011.

[6] J. Berdine, P. O’Hearn, U. Reddy, and H. Thielecke. Linear
continuation-passing. Higher Order Symbol. Comput., 15(2-3):181–
208, 2002.

[7] W. J. Bowman and A. Ahmed. Noninterference for free (technical
appendix). June 2015. URL https://perma.cc/RJ9N-B5ZQ.

[8] A. Chlipala. A certified type-preserving compiler from lambda calculus
to assembly language. In PLDI 2007

[9] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In POPL 2013.

[10] N. C. Heintze and J. G. Riecke. The SLam Calculus: Programming
with secrecy and integrity. In POPL 1998.

[11] A. Kennedy. Securing the .NET programming model. In APPSEM II
Workshop, Industrial Applications Session, Sept. 2005.

[12] J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. In POPL 2007.

[13] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[14] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-
language semantics. In ESOP 2014.

[15] B. C. Pierce. Types and Programming Languages, chapter 30: Higher-
Order Polymorphism. MIT Press, 2002.

[16] J. C. Reynolds. Types, abstraction, and parametric polymorphism.
Information Processing, pages 513–523, 1983.

[17] N. Shikuma and A. Igarashi. Proving noninterference by a fully
complete translation to the simply typed lambda-calculus. In 11th
Asian conference on advances in computer science, 2007.

[18] N. Shikuma and A. Igarashi. Proving noninterference by a fully
complete translation to the simply typed lambda-calculus. Logical
Methods in Computer Science, 4(3:10):1–31, 2008.

[19] S. Tse and S. Zdancewic. Translating dependency into parametricity.
In ICFP 2004.

[20] D. Vytiniotis and S. Weirich. Parametricity, type equality, and higher-
order polymorphism. J. Funct. Programming, 20(2):175–210, Mar.
2010.

[21] P. Wadler. Theorems for free! In ACM Symp. on Functional Program-
ming Languages and Computer Architecture (FPCA), Sept. 1989.

[22] J. Zhao, Q. Zhang, and S. Zdancewic. Relational parametricity for a
polymorphic linear lambda calculus. In APLAS 2010.

113

https://perma.cc/RJ9N-B5ZQ

	Introduction
	Dependency Core Calculus (DCC)
	Background and Main Ideas
	Translating DCC to Fw
	Observer-Sensitive Equivalence
	Logical Relation for Fw
	An Open Logical Relation for Fw
	Observer-Sensitive Relation for Fw

	Translation Preserves Semantics
	Translation Preserves Noninterference
	Back-Translation
	Preservation of Observer-Sensitive Equivalence

	Related Work, Future Work, and Conclusion

