
Programming Patterns and Design Patterns

in the Introductory Computer Science Course

Viera K. Proulx

College of Computer Science

Northeastern University

Boston, MA 02115

vkp@ccs.neu.edu

Abstract

We look at the essential thinking skills students need to

learn in the introductory computer science course based on

object-oriented programming. We create a framework for

such a course based on the elementary programming and

design patterns. Some of these patterns are known in the

pattern community, others enrich the collection. Our goal is

to help students focus on mastering reasoning and design

skills before the language idiosynchracies muddy the water.

1 Introduction

The first programming course is a major stumbling block

for many students interested in computer science. As the

languages get more complex, students spend inordinate

amount of time learning minutia of language syntax and

some semantics. Meanwhile the overall picture of what is

essential and how the pieces fit together is lost in a sea of

'stuff'. Seasoned programmers quickly recognize the key

elements needed to write parts of the program and are

fluent in creating a complex program from small

interacting components. Some of these patterns have been

identified by the pattern community and are making their

way into the introductory curriculum. However, the

methods for presenting patterns to the pattern community

are not written as tutorials for novices. An instructor

interested in using problem solving in the context of

patterns often needs to rewrite these patterns.

  ______________________________________________  
Partial support for this work has been provided by the National
Science Foundation Leadership in Laboratory Development,
award #DUE- 9650552 and by the Microsoft Corporation.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGCSE 2000.

Copyright 2000 ACM 1-58113-499-1/00/0006…$5.00.

In order to use pattern based problem solving in our

introductory computer science courses, we looked at all

decisions students must make when designing programs.

This inspired us to build a collection of programming and

design patterns that lead students through all topics

typically covered in an introductory CS course. We decided

to present the patterns as tutorials that guide students from

the general considerations to the actual implementation in

the programming language (C++ or Java). In addition, we

built a collection of practice problems that can be used to

master each of the patterns.

In the first section of this paper we discuss the problems

many of our students encounter when trying to write even

simplest programs. We show how this experience helped us

to notice some of the patterns of thinking and reasoning we

as faculty take for granted. We follow by listing the types

of patterns we identified and their role in learning

programming and design. To illustrate our approach to

presenting patterns we describe the pedagogy used in our

courses. This includes both the written materials for

students and the actual organization of learning time. We

conclude with a brief description of our students'

experience in a pattern-centric course.

2 Learning To Program: Why Is It So Hard?

One of the most frustrating experiences when teaching

introductory course is meeting a bright student who

becomes lost when asked to write even the simplest

program. The fact that many students can hand-simulate an

algorithm and know exactly what needs to happen at each

step - yet cannot program this algorithm has been noticed

before. But some of the otherwise competent students

cannot program independently even the simplest loop. It

seems like we see more of these students as the complexity

of the programming languages grows and the core

programming and design ideas get lost in the mass of

supporting code (the downside of object-oriented

languages).

Of course, the key ideas of how to write a loop appear in

every textbook. So, the problem lies deeper. The program

infrastructure is much more complex than it used to be.



Students get lost in the mire and often just exclaim "I do

not even know where to start." One of our students

commented on the problem of understanding lectures but

not being able to solve lab problems as follows: "Concepts

taught in the classroom tend to be an introduction. ... Three

lines of code on the blackboard merely show the tool to me

but that's about all I saw in the overall view." and later

commented "It was like saying, here is...hm...some food,

this is the food...now make a meal out of it. Maybe to a

person learning to cook for a first time, all this may not

make all that much sense."

Looking at what we typically do when writing programs,

we realize that we have 'canned methods' for deciding what

names to use when - and how to use them, we have a

standard way of reading the input, of writing conversions

between different data representations, to name just a few

'tricks of the trade'. We address all these problems first at

the conceptual level. The programming language

considerations come into play only once we know what we

want to do. By presenting these patterns of thinking and

reasoning we hope that students will be able to apply these

methods to their own programs.

In the following section we will identify these basic

patterns and organize them into several categories and

show how they cover the typical CS1 curriculum.

3 Programming Patterns and Design Patterns
for Novices

The patterns we present here play different roles in the

design and implementation of a program. The categories

often represent an evolving thread that is revisited several

times during the first year.

3.1 Name Use Patterns

Every programming language uses 'identifiers' to represent

different kinds of entities in a program. Yet the use of all

identifiers follows a set pattern: declare - define/build - use

- destroy. This pattern helps students realize that every

identifier will explicitly or implicitly follow this pattern.

When a new kind of entity is presented, students anticipate

learning about the declaration, definition or build, use, and

destruction.

We first list the kind of entities for which identifiers are

needed:

• variables of built-in types and string objects (used for

echo printing only)

• constants defined by const or enum

• functions

• file names (even though they may look like strings)

• streams (or file control variables in other languages)

• classes and structs

• object instances

• arrays

• pointer variables

• templates

• user defined types

The declare step binds the identifier to a certain kind of

entity (data type, function with a given signature, object in

a given class). In many cases this step completely

determines what kind of operations are allowed for this

identifier.

The second step (define, build, initialize) makes the

identifier ready to be used with its full set of behaviors. For

variables, this is the initialization step. For a function, this

is where the implementation is specified. For a class, the

two steps often overlap. Some of the member functions are

defined inside the class declarations, others can be defined

later. Object instance creation immediately invokes a

constructor and so the two steps are (almost) inseparable.

In each case, once the define/build step has been

completed, the user interface is specified and the identifier

is bound to a specific behavior. The use of an identifier

then follows this interface.

By introducing the destroy step early, we set the stage for

discussing the memory allocation issues, and the scope and

lifetime of an object or variable. Of course, often this step

is implicit. However, by including it as a part of the naming

pattern students become more aware of how the names are

managed by the compiler.

Arrays and pointer variables cover a broader pattern: This

pattern of indirect naming will be presented later.

3.2 Reading Data Pattern

Considering the amount of time students spend reading

data it is a shame that the whole process is not treated as a

serious task. In a typical course functions are used to

encapsulate even the simplest computation, yet students

keep writing from scratch the typical sequence "user

prompt - read data - verify - repeat". We believe students

should understand three levels of user input and use them

correctly in their programs. The three levels are:

• raw input, where we expect only perfect data and

perform no error checking (never used in a production

program)

• verified input, where we verify that the input conforms

to the expected behavior (e.g. is a number if assigned

to a numeric variable)

• filtered input, where we also check that internal

constraints are satisfied (e.g. age is >0 and < 150)

Our students use IOTools toolkit [8] to perform the verified

input. They then learn to write similar utility functions by

implementing filtered input. For example, in a program that

computes a grade point average (GPA), the course grade

must be a valid grade from a given list.



3.3 Read - Process - Write Pattern

To consider this a pattern may seem trivial or restrictive,

but our focus is on the general concept. We focus on the

fact that any segment of a program may be specified by

describing the input that is needed, the process that will

transform this input, and the output or resulting data that

will be generated. The input here may come from a sensor,

file, or mouse manipulation; the output may be sound,

graphics, control signal, as well as plain text. Additionally,

the input may not come from an input device - but be

contained in function arguments, stored as member data of

object invoking a method or take other forms. The output

again just means the information generated during the

process stage and made available to the user of this code

segment - be it a function, method, or an entire program.

3.4 Encapsulation Pattern

In these patterns we try to bring into focus the situations

where it is helpful to write a utility function or build a

toolkit class.  The computational part of these patterns

usually falls within a different category. Here the focus is

on the need to build a utility tool. We identified four

instances where this pattern applies - new ones may emerge

later:

• unit conversions (meters to miles, etc.)

• geometric scaling

• encapsulate inner loop (part of repetition pattern)

• encapsulate complex condition (part of repetition and

selection patterns)

3.5 Repetition Patterns

This is of course well known topic - both as a formal

pattern and as concept covered in every CS class [1]. Our

variation divides this pattern into four parts:

• counting - including increments other than one

• conditioned repetition (usually a while loop)

• polled loop (busy wait for external event - e.g. mouse

click)

• repetition with exits (usually via break or continue

statement)

Our approach is to divide repetition into five stages: initial

setup, verifying loop condition, loop body, loop condition

update, and post-mortem.

We also include here two loop design strategies:

• design loop body first (to make loop understandable

and simple)

• remove from loop repeated computations of the same

quantities

This organization takes us away from focusing on which

loop control statement to use (for vs. while). The focus is

on the nature of the problem and the best solution for that

situation. It becomes clear that the different loop control

statements implement the same algorithm.

3.6 Selection Pattern

This is another well researched and presented pattern. We

include it for completeness. Methods for designing

conditionals are included in this pattern [2].

3.7 Traversal Patterns

Any time we work with a collection of data, we need to

design a process that will look at all the relevant data items

one at a time. The purpose of a traversal is to deliver one

data item from a specified collection each time the traversal

method is called. For example, the Read Data Pattern may

use traversal of input stream to deliver the next item. The

following four traversal patterns may be introduced in the

first course:

• simple linear traversal (vectors, arrays, strings, file

input if using counters or indices)

• streamed traversal - typically terminated by the 'end-

of-input' indicator

• linked traversal - traversal of a linked structure

• iterator based traversal [9]

The last three patterns are closely related. They differ in

how they handle the responsibility for advancing to the

next item and recognizing the end of available data.

3.8 Cumulative Result Patterns

These are composite patterns built out of several earlier

patterns. Some variations are known in the pattern world,

but we believe that the programmer needs to make several

independent and interdependent decisions when designing

solutions to this type of problems. The goal is to traverse

some collection of data, collecting partial information into

some accumulator entity and presenting the composite

result at the end. We identify the following four separate

components a programmer must consider:

• design the accumulator (Name Use Pattern)

• design update operations (Reading Data Pattern,

Selection, Conversion, Formatting Output and other

patterns)

• select traversal (Traversal Pattern)

• design post-mortem (may use Formatting Output

Pattern)

This pattern has two variations. At the basic level only one

accumulator is used. A multipurpose variation may include

several accumulators that perform different functions (e.g.

computing minimum and maximum in one pass) or even an



array of accumulators (for example when computing a

histogram).

3.9 Conversion Patterns

Multitudes of textbooks include the conversion of

temperature data from Fahrenheit to Celsius and vice versa.

However, this is just the tip of the iceberg. Conversion

permeates all computing and should be identified as such

whenever students encounter it. We classify conversion

patterns as follows:

• basic scaling (conversion between frames of reference:

minutes and seconds, feet and inches, miles and meters

as well as real vs. drawing coordinates) [5]

• casting (either automatic of forced; discusses loss of

precision or accuracy, impossibility of some

conversions

• formatting output (implicit conversion of integers into

strings, etc.)

• table lookup based conversion (mapping is determined

by a table)

• encapsulated scaling (constructing scaling class and

scaling function object[5])

3.10 Indirect Reference Patterns

Indirect naming comes in several forms. Reference

arguments in function calls and array references are the

first encounters. Later follows the use of explicit pointer

variables and the introduction of iterators. However, they

key idea here is that there are several identifiers or

identifier-like entities that represent several different kinds

of data and each of them is bound to a different behavior. It

is best illustrated in the context of arrays. Array name

represents a location in memory where the array is stored.

It is a pointer. Array index is an integer, with all integer

arithmetic and relational operator at our disposal - and with

no guarantees about the range. The index is a modifier that

may affect the actual location referenced by the pointer.

Finally, the array item is identified by a composite name

(e.g. a[i]) and its behavior is bound to the base array type.

Following N. Parlante, we refer to this entity as pointee.

Understanding the Name Use Pattern helps us in explaining

the different behavior of the pointer, pointee, and the

modifier.

3.11 Other Patterns

This collection of patterns is not yet complete. We did not

look at recursion, algorithmic problem solving patterns

(e.g. divide and conquer), or data organization patterns.

There is a 'class definition pattern' that includes 'constructor

building pattern'. There are also patterns for objects, for

example function objects, state objects, data container

objects, and derived objects [7].

In our curriculum, most of these will be introduced in the

second course. The patterns at this higher level are more

likely to be recognized and identified in the pattern

literature. Our goal was to create a framework for

designing simple programs that will help students

understand what are the key questions to ask and what

considerations need to be made before the design is

completed.

4 Pedagogical Considerations

4.1 Our Course Organization

To guide students through the sea of new ideas introduced

in the introductory programming based course, we organize

the course as follows. Three weekly lectures introduce the

key concepts and outline the relevant patterns. Students

read the pattern tutorials together with a problem set

document that contains several completely solved

problems, several unsolved problems, and a short

introduction that suggests a problem solving strategy that

student should use when trying to solve the problems and

highlights the relevant patterns. Problem sets are discussed

during weekly recitation sessions conducted in small

groups of no more than 20 students. Students are then

required to program and run some of the unsolved

problems. The other weekly class meeting of the small

group is a closed lab where students implement part of a

substantial project that illustrates the use of the new

concepts in the context of an interesting application of

computer science.

4.2 Pattern Tutorials

Each pattern tutorial is presented in a separate document.

The format for pattern tutorials is a modified version of the

standard used by the pattern community, to achieve our

pedagogical goals. In each pattern we use three levels of

explanation: introduce a problem, explore the idea and the

related concerns, and finally present the solutions in the

context of a particular programming language.

The patterns are written to guide a novice with little or no

programming experience who needs a more structured

guidance in learning how to program. Better students will

also benefit from reading the tutorials, just as it helps

experienced programmers to read about patterns. The

intuitive decisions become more focused, some of the

issues that may have been overlooked will come to the

forefront, and possible misconceptions will be corrected. In

addition, naming the patterns helps in communicating

about the program design with other students and

instructors.

We describe briefly the Name Use Pattern tutorial to

illustrate the three levels of explanations we use.

The first section is called Intent and Motivation. In the

Name Use Pattern we explain the need to name each



entity that a program will use, the fact that the

programming language has fixed rules how this can be

done and that one needs to know what kind of entity a

particular identifier represents.

The next two sections discuss the problem at the conceptual

level, without using any actual program code.

The Problem Examples section gives a few examples with

only a rudimentary reference to a programming language.

For example, we are printing a weather report, so we will

need to record name of each city (string object) and the

temperature (integer).

The next section, Problem and Context, explains the four

steps: declare, define/build, use, destroy and what happens

in each step as the program is compiled and executed (i.e. a

name is entered into a dictionary and space is allocated,

space is filled with a value, value is accessed or modified,

space is released and the name is deleted from the

dictionary).

The next two sections then focus on the implementation of

the pattern in a programming language of choice.

The Required Elements and Structure section looks at the

actual code that can be used to implement the four steps in

this pattern and explains the semantics of the relevant

statements and directives.

This is followed by a section of Implementation Examples

that illustrates all four steps in the context of a several

simple problems.

The Summary section helps student in remembering the key

issues needed to apply the pattern and serves as a quick

reference.

A section on Further Explorations contains references to

other related resources and patterns as well as a brief

outline of related but more advanced topics, such as scope,

lifetime, memory allocation and deallocation.

4.3 Our Experiences

To make sure students actually read the tutorials, they were

required to comment in writing on their usefulness and on

any problems they encountered. Most of the novice

programmers found the tutorials very helpful, though

students with more programming experience felt they

already knew most of what was discussed. Some of the

comments stated "I thought the information in this section

was well though out and clearly presented. The main

reason for this clarity is that the information was organized

very well and also presented in laymen's terms. Another

excellent addition was using both verbal description to

point out the different steps and properties of a function,

and also concrete examples that the reader could follow

easily and apply his/her understanding of the definitions",

or " This packet gives a student a much better visual

understanding than our text book", or "very helpful, covers

a lot, whenever I need to know a specific thing about

functions it is there. Thank you.", and "I liked how the

handout was set up, giving a definition of a term,

explaining it, and then giving several examples on how it

works and is used." Overall, we felt the course was a

success. Students performed better on the midterm exam

and seemed more confident than in the past.

The pattern tutorials and the problem sets are available at

our web site: http://www.ccs.neu.edu/teaching/EdGroup/

5 Acknowledgements

I want to thank Joe Bergin for introducing me to the pattern

community and providing the inspiration for this work. I

also want to thank Richard Rasala, for years of

conversations and collaboration that helps in turning ideas

into reality. I also acknowledge with gratitude the support

of the NSF and the Microsoft Corporation.

References

[1] Astrachan, O. and Wallingford, E. (1998) Loop

Patterns. Available:

http://www.cs.duke.edu/~ola/patterns/plopd/loops.html

[2] Bergin, J. (1999) Patterns for Selection. Available:

http://csis.pace.edu/~bergin/patterns/selection.html

[3] Bergin, J. (1997) Ten Pedagogical Patterns for

Teaching Computer Science. Available:

http://csis.pace.edu/~bergin/PedPat1.2.html.

[4] Bergin,  J. (1998) Six Pedagogical Patterns. Available:

http://csis.pace.edu/~bergin/fivepedpat.html.

[5] Deek., F. P., Turoff, M., and McHugh, J. A., A

Common Model for Problem Solving and Program

Development, IEEE Transactions on Education, 4

(1999), 331-336.

[6] Fell, H. J., Proulx, V. K., and Rasala, R. Scaling: A

Design Pattern in Introductory Computer Science.

ACM SIGCSE Bulletin 1 (1998), 326-330.

[7] Rasala, R.. Function Objects, Function Templates, and

Passage by Behavior in C++. ACM SIGCSE Bulletin 1

(1997), 35-38.

[8] Rasala, R. (1999) Toolkits in Freshman Computer

Science: A Pedagogical Imperative, ACM SIGCSE

Bulletin 1 (1999), to appear.

[9] Rasala, R. A Model Tree Iterator Class for Binary

Search Trees. ACM SIGCSE Bulletin, 1 (1997), 72-76.

[10] Wolz, U., and Koffman, E. simpleIO: A Java Package

for Novice Interactive and Graphic Programming,

Proceedings of the 4th Annual SIGCSE/SIGCUE

ITiCSE’99 Conference, (June 1999), 139-142.


